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New signatures for octupole deformation in some actinide nuclei
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Energies for three positive and three negative parity bands predicted by the extended coherent state model in
218,226Ra, 228Th, 232Th, in four uranium even-mass isotopes,2322238U, and in 238Pu, are calculated and used
to point out new signatures for octupole deformation in ground as well as inb andg bands. A beat pattern is
found by using a new displacement energy function, which is more appropriate for a spectrum that exhibits
large deviations from a linearJ(J11) dependence.
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The field of negative parity bands became very attrac
especially since the first suggestions for octupole defor
tion were advanced by Chassman@1# and Moler and Nix@2#.
Chassman predicted parity doublets for several odd mass
topes of Ac, Th, and Pa@1# . The lowest doublet constitute
of a degenerate ground state corresponding to an equilib
shape having a reflection symmetry. If the doublet is
mathematically degenerate but exhibits a small energy s
ting, this is a sign of a reflection symmetry breaking. Mo
and Nix @2# suggested that some even-even radium isoto
might have an octupole deformed ground state. Indeed,
binding energy of these nuclei gains about 2 MeV when
octupole deformation is assumed in the mean field. The m
achievements in this field have been reviewed in several
pers@3–5#.

Since there is no measurable quantity for the octup
deformation, some indirect information about this variab
should be found. Several properties are considered as s
tures for octupole deformation:~a! The state 12, the head of
the Kp502 band, has a very low position, and this is
indication that the potential energy has a flat minimum, a
function of the octupole deformation.~b! The parity alternat-
ing structure in ground and the lowest 02 bands suggests tha
the two bands may be viewed as being projected from a
deformed intrinsic state, exhibiting both quadrupole and
tupole deformations.~c! A nuclear surface with quadrupol
and octupole deformations might have the center of charg
a different position than the center of mass, which result
having an electric dipole moment that may excite the s
12 from the ground state, with a large probability. Of cour
the list is not complete, and thereby any new signature
this new nuclear phase deserves a special attention.

Few years ago our group considered this subject with
phenomenological framework. Thus, in Refs.@6–8# one of
us ~A.A.R! proposed a phenomenological model to descr
simultaneously the ground state band and theKp502 band.
The model has been applied to nuclei that are proved to h
octupole deformation, such as the even-even Ra isoto
@6,7#, as well as for Rn isotopes@8# whose negative parity
states are interpreted as octupole vibrational states. Both
of nuclei were described equally well, which leads to t
conclusion that the proposed model is able to describe in
unified fashion negative parity spectra of pear shaped
octupole-nondeformed nuclei. In Ref.@9# the formalism was
0556-2813/2003/67~4!/044312~8!/$20.00 67 0443
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extended to two other pairs of bands, which are conventi
ally called b6 and g6 by assuming that the intrinsic state
associated tob andg bands, have also an octupole deform
tion. The resulting phenomenological scheme was named
extended coherent state model~ECSM!. By simultaneous
projection of the angular momentum and parity from ea
such state, two bands of opposite parities are obtained.
wanted to see if specific fingerprints of the octupole def
mation would also appear in the excited bandsb6 andg6.

In this paper, the results for218,226Ra, 228,232Th, 2322238U,
and 238Pu are presented in a new light by using new int
pretation means. Indeed, by studying the dependence o
energies of the three pairs of bands on angular moment
one notices large deviation from theJ(J11) pattern. In this
context it is worth to investigate to what extent an analy
based on a more realisticJ dependence may suggest ne
values for angular momentum where the octupole deform
tion shows up.

Aiming at a self-consistent presentation, we first ske
the ideas underlying ECSM. ECSM is based on the cohe
state model~CSM! proposed by Radutaet al. to describe the
main properties of the first three collective bands of posit
parity, i.e., ground,b andg bands@10,11#. The name of the
formalism comes from the fact that the intrinsic ground st
is described by an axial symmetric coherent function for
quadrupole bosons,b2m

† , while theb and g intrinsic states
are orthogonal polynomial excitations of the intrinsic grou
state. ECSM assumes that the intrinsic ground state exh
both a quadrupole and an octupole deformation. The o
bands,b and g, also have this property because they a
excited from the ground state. The octupole deformation
described by means of an axially symmetric coherent s
for the octupole bosonb30

† . Thus, the intrinsic states fo
ground,b, andg bands are

Cg5ef (b30
†

2b30)ed(b20
†

2b20)u0& (3)u0& (2) , Cb5Vb
†Cg ,

Cg5Vg
†Cg , ~1!

where the excitation operators have the expressions

Vb
†5~b2

†b2
†b2

†!01
3d

A14
~b2

†b2
†!02

d3

A70
,

Vg
†5~b2

†b2
†!221dA2

7
b22

† . ~2!
©2003 The American Physical Society12-1
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A. A. RADUTA AND D. IONESCU PHYSICAL REVIEW C67, 044312 ~2003!
The notationu0& (k) stands for the vacuum state of the 2k-pole
boson operators. Because the states~1! are mixtures of posi-
tive and negative parity states, they do not have good refl
tion symmetry. Since in the laboratory frame this symme
is valid, it should be restored by a projection procedure.
restoring the two symmetries, rotation and reflection,
three orthogonal states defined above generate six se
mutually orthogonal states:

wJM
( i ,k)5N J

( i ,k)PMKi

J C i
(k) , Ki52d i ,g , k56; i 5g,b,g,

~3!

N J
( i ,k) are renormalization factors, whilePMK

J is the angular
momentum projection operator. The functionC i

(k) is the
component of parityk(56) of the intrinsic stateC i .

Within the boson space spanned by the projected sta
one considers the following effective quadrupole and oc
pole boson Hamiltonian

H5A1~22N̂215Vb8
† Vb8!1A 2Vb

†Vb

1B1N̂3~22N̂215Vb8
† Vb8!1B2N̂3Vb

†Vb1B3N̂3

1A(J23)JW2JW31A JJW
2. ~4!

If the angular momentum squareJW2 is restricted to the
angular momentum carried by the quadrupole bosonsJW2

2, the
first two terms and the last one from Eq.~4! define the
Hamiltonian used by CSM for ground,b, andg bands. The
pure octupole Hamiltonian is a harmonic operator, i.e.,
octupole boson number operator. We assume that the
pling between quadrupole and octupole bosons can be
scribed by a product between the octupole boson num
operator,N̂3, and the quadrupole boson anharmonic ter
that are involved in the CSM Hamiltonian. Also, two sca
terms depending on the angular momenta carried by
quadrupole (JW2) and octupole (JW3) bosons and on total an
gular momentumJW , respectively, are included. HereN̂2 de-
notes the quadrupole boson number operator andVb8

† stands
for the following second-order invariant:Vb8

†
5(b2

†b2
†)0

2d2/A5. Arguments supporting this choice for the mod
Hamiltonian are given in Refs.@6,9#.

As shown in Ref.@11#, the projected states are linear s
perposition of states with definiteK quantum number. More
over, in the asymptotic limit of the deformation parameter
singleK component is prevailing for each set. Actually, th
property answers the question why one associates the s
$fJM

( i ) % ( i 5g,b,g) to the ground,b, and g bands, respec
tively. A similar analysis could be performed also for th
ECSM states. The result is that, preserving the conven
mentioned above, the set of projected states given by Eq~3!
comprises twoKp501, two Kp502, oneKp521, and one
Kp522 subsets. The positive parity bands are the grou
b, and g bands, respectively. Conventionally, these nam
will be symbolized byg1, b1, and g1. Correspondingly,
the negative parity bands are denoted byg2, b2, andg2,
respectively.
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In the boson basis of projected states, the only nonvan
ing matrix elements of the effective Hamiltonian are relati
gk and gk (k56) states. The eigenvalues of the mod
Hamiltonian in the boson space generated by the proje
state depend on the structure coefficients defining the bo
Hamiltonian and two deformation parametersd and f. Be-
cause there are no experimental data for theb2 band, we did
not include the coefficientB2 in the fitting procedure. Indeed
the corresponding term from the Hamiltonian affects t
band exclusively. The remaining eight parameters were fi
by a least square procedure in order to fit the experime
excitation energies.

For what follows, a short comment on the physical s
nificance of these parameters is necessary. We begin with
deformation parametersd andf. They bear these names sinc
the average values of the harmonic quadrupole and harm
octupole moments are proportional tod and f, respectively.
The quadrupole deformation parameter has been relate
the nuclear deformationb in the first paper published on th
CSM model@10,11#. Indeed, therein it was shown that in th
rotational regime the projected states can be written i
factorized form, one factor being a Wigner function while t
other one a function of the dynamic deformationsb andg.
For ground band states, the second factor mentioned ab
depends only onb, and moreover is proportional to

F5
1

b
e[d2(kb/A2)]2. ~5!

Here k is a parameter determining the relation between
quadrupole bosons and the quadrupole coordinates:

a2m5
1

kA2
@b2m

1 1~2 !mb22m#. ~6!

In the harmonic liquid drop model, this parameter has a d
nite expression in terms of the mass and string parame
CSM takesk as a free parameter that is consistent with
known fact that the boson operators are related to the co
tive coordinates and their conjugate momenta by a canon
transformation, determined up to a multiplicative consta
The factorF has two extremes in the dynamic quadrupo
deformationb. It can be shown that the maximum value
reached for a deformationb0, which obeys the equation

d5
kb0

A2
1

1

2
. ~7!

To this deformation it corresponds the most likely shape, i
the equilibrium one. Thus, our previous analysis sugge
that in the large deformation regime, the parameterd and the
static quadrupole deformationb0 are related by a linea
equation. This relationship is confirmed by our results for
actinide region shown in Fig. 1.

Now, let us address the question ‘‘what is the mechan
reponsible for setting on the static octupole deformation
Consider first a fourth-order octupole boson Hamiltonia
Since in the laboratory frame this Hamiltonian should
invariant to a spatial inversion operation, the third-order te
2-2
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NEW SIGNATURES FOR OCTUPOLE DEFORMATION IN . . . PHYSICAL REVIEW C67, 044312 ~2003!
is necessarily missing. Writing the chosen Hamiltonian in
intrinsic frame it is clear that the corresponding poten
energy is a biquadratic expression in the octupole defor
tion b3. Suppose that this potential has a minimum in t
variableb3

2 for b3
25b, with b positive. Under these circum

stances the potential energy, considered as a function ofb3,
has two degenerate minima separated by a maxim
reached inb350. Concluding, for a boson Hamiltonian ex
hibiting a space reflection symmetry in the laboratory fram
the potential energy might have two degenerate minima.
larger the strength of the boson two-body interaction,
higher the intermediate maximum. Had the potential ene
a minimum for a vanishing octupole deformation, the nucl
shape would preserve the reflection symmetry. Therefore
eigenstates of the intrinsic Hamiltonian have definite par
and moreover, the positive and negative parity states are
generate. If the nuclear shape has an octupole static d
mation equal to one of the degenerate minima mentio
above, the corresponding ground state is an admixture
components with different parities. The opposite parity co
ponents interact with each other due to the octupole corr
tions which, as a matter of fact, determine the height of
barrier separating the degenerate minima. Due to this fea
one has been attempting to relate the parity energy split w
the height of the potential barrier@12#. This picture for octu-
pole deformation was formulated by several authors of bo
description works@4#.

Here the situation is essentially different since the eff
tive octupole potential energy is a quadratic polynomial
b3, which might have a single minimum for a nonvanishi
octupole deformation. Indeed, let us consider the octup
boson HamiltonianH3, obtained by averaging the mod
Hamiltonian~4! on the state:

FIG. 1. The quadrupole deformation parameterd is plotted as a
function of the nuclear deformationb. The data forb are from
Refs.@28,29#.
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F5ef (b30
†

2b30)ed(b20
†

2b20)u0& (2) . ~8!

The result forH3 is

H35D01 f D1~b30
† 1b30!1D2N̂31D3Ĵ3

2 , ~9!

where the following notations have been used:

D05~22A116AJ!d
21~B3122d2B1112AJ! f 2,

D15B3122d2B1112AJ , D25D1212AJ , D35AJ .
~10!

SinceH3 contains a linear term in octupole bosons, it is n
invariant to rotations. One may say that the operation app
to the model Hamiltonian is equivalent to bringing it to a
intrinsic frame, where the conjugate collective variable m
be defined as

a3m5
21

k3A2
@b3m

† 1~2 !mb32m#,

p3m5
2 ik3

A2
@~2 !mb32m

† 2b3m#. ~11!

The collective coordinatesa3m can be parametrized in term
of octupole deformationb3 and three anglesg1 ,g2 ,g3,
whose static values are equal to zero. Taking forg variables
their static values, one obtains the following expression
the potential energy:

Voct5
1
2 D2~k3b3!22 fA2k3b3D1 . ~12!

If D2.0, this function has a minimum for

k3b3
(0)5 fA2S 11

12AJ

D2
D . ~13!

This equation suggests that the deformation parameterf is
proportional to the static octupole deformation. However,
we already mentioned, there is no measurable observ
that could conferb3

(0) an experimental value. Consequent
a graph for the octupole deformation parameter analogou
that given in Fig. 1 is not possible. The general features
the results supplied by the fitting procedure are as follo
For an isotopic chain,f is an increasing function ofA. Thus,
for uranium isotopes it varies almost linearily from 0
(232U) to 0.6 (238U). For radium isotopes,f has the value 0.3
for 218Ra and 0.8 for226Ra. For all other nuclei the octupol
deformation parameterf aquired a value equal to 0.3.

The structure coefficients involved in the model Ham
tonian ~4! have been analyzedin extensoin several papers
@6,9,11#, where the CSM model and its extension have be
formulated. Moreover, the accompanying operators h
been studied in the restricted collective space in the extre
deformation regimes, vibrational and rotational@11#, both
analytically and numerically. These extreme regimes con
the quoted coefficients a definite significance.

We note that without exception, the terms entering
boson Hamiltonian have been obtained microscopica
2-3
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TABLE I. The coefficients defining the model Hamiltonian, determined by a least squares fit are given in units of keV. The defo
parameters are dimensionless.

218Ra 226Ra 228Th 232Th 232U 234U 236U 238U 238Pu

d 1.40 3.00 3.1 3.25 3.4 3.6 3.6 3.90 3.90
f 0.30 0.80 0.3 0.30 0.1 0.3 0.45 0.60 0.30
A1 16.86 20.29 17.72 14.26 15.7 17.8 17.8 20.64 18.84
A2 223.43 217.54 212.66 28.33 210.5 29.58 28.53 29.72 28.63
AJ 1.81 0.49 1.32 2.26 2.08 1.55 1.73 1.55 2.23
A(J23) 18.09 7.17 8.38 11.93 15.9 27.5 19.67 20.45 10.77
B1 27.13 20.74 22.63 26.17 27.35 213.56 29.23 210.77 28.39
B3 786.24 362.84 831.25 2 093.34 2 402.6 4 644. 3 279.55 4 239.42 3 308.60
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within a boson expansion formalism formulated in conn
tion with a quadrupole-quadrupole plus octupole-octup
two-body interaction@13–15#. The expansion was made i
terms of collective and noncollective quasiparticle–rand
phase approximation bosons. In this context one could
that our phenomenological quadrupole-octupole boson te
have microscopic counterparts, and thereby their stren
exhibit a microscopic interpretation.

In what follows, we summarize the results concerning
effects of varying these coefficients on the spectrum un
consideration. In vibrational (d→0) and rotational limit (d
is large. It was shown thatd>3 already means thatd is
large! the ground state energies have the expressions

Eg,v ib522A1

J

2
1AJJ~J11!,

Eg,rot522A1

J~J11!

6d2
1AJJ~J11!.

~14!

For vibrational nuclei and low angular momentum, theA1
term is much larger than theAJ one. Therefore one could sa
that for such a regime, 22A1 is a good approximation for the
energy of the first 21 state. In the rotational limit, this coef
ficient together withAJ determine the kinematic moment o
inertia for the ground band. For transitional nuclei, the res
for the ground state energies lies between the limits
scribed above. Actually these energies are obtained by di
nalizing, for a given angular momentum, a 232 matrix; the
second eigenvalue is the energy of theg band state. As
shown in Ref.@11#, the A2 term contributes only to the en
ergies ofb band states. Due to this feature the CSM fixes
strength in order to reproduce the position of the head s
of b band relative to the ground state. In the vibrational lim
and harmonic regime, the energy of the lowest 32 state is
given by theB3 term. Departing from this picture, this en
ergy is affected by anharmonicities, i.e., the quadrupo
octupole boson interaction, and by deformation. The t
types of collective degrees of freedom are coupled by theB1
term as well as by those terms depending on the ang
momenta carried by the quadrupole and octupole boson
Ref. @7# we have shown that for an almost vibration
nucleus, as for example is the case of218Ra, the low position
04431
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of the state 12 is detemined by theĴ2• Ĵ3 term that is attrac-
tive in the state 12, and repulsive in all other negative parit
states from theKp502 band.

The boson Hamiltonian has novanishing matrix eleme
only between the pair of statesJg

1 ,Jg
1 (J even! andJg

2 ,Jg
2

(J odd!. The coupling terms contribute to the energy splitti
for the states in the parity partner bands but also to the m
tures of the pair of states mentioned before. Also, we h
shown that the anharmonic terms of higher order in octup
bosons have the effect of renormalizing the matrix eleme
of the terms contained by our model Hamiltonian. The co
pling terms affect the positive and negative bands in a
ferent manner. For example, for large quadrupole and sm
octupole deformation, the bandsg2, b2, and g2 are
pressed down in energy~otherwise the energy split is small!,
while for the parity partner bands the effect is about the sa
as for the ground state, and therefore the excitation energ
left unchanged. In this region ford andf, the average values
of the octupole boson number operator exhibit a linear
pendence onJ(J11). For smalld and f, the average ofN̂3
on states fromg2, b2, andg2 bands is almost independen
of angular momentum, while the averages ofN̂2N̂3 exhibit a
strong dependence onJ. Concluding, the energies in negativ
parity bands are obtained as a result of the competition
tween the octupole harmonic and quadrupole-octupole in
acting terms.

The coefficients depend smoothly on the atomic m
number. Comparing the coefficients for238U and 238Pu as
well as for 232U and 232Th, one notices a dependence on t
charge asymmetry. Actually, a large number of actinide i
topes have been considered and the corresponding stru
coefficients, provided by the fitting procedure, lie on curv
given by fourth-order polynomials inA2(N2Z)/2. Excep-
tion is for 2A2, which is fitted by a second-order polyno
mial.

Note that the total number of free parameters is about
same as in other phenomenological models~see, for ex-
ample, Ref.@16#!, although none of them treats simulta
neously six bands, going up to high and very high spin
gion. To get an idea about the capability of the propos
model to describe a large number of data, we just men
that in Ref.@9#, we obtained a quite accurate description
55 level energies in232Th, the deviations being smaller tha
20 keV.
2-4
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FIG. 2. The displacement function given by Eq.~16! for ground,b, andg bands in218Ra, 228Th, 232Th, and 238Pu is represented as
function of angular momentum. Forg bands the labelI is used when the state 2g

1 is the lowest angular momentum state involved in Eq.~16!,
while II corresponds to the calculation using 2g

2 as the first state in the chain. Experimental data were taken from Ref.@26# (218Ra), Ref.@21#
(228Th), Ref. @19# (232Th), and Ref.@27# (238Pu).
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The parameters yielded by the fitting procedure are lis
in Table I.

These parameters determine the excitation energies fo
six bands. In Ref.@9#, the results were presented by givin
the dynamic moment of inertia as function of the rotation
frequency for some of the nuclei from Table I. Here we wa
to stress on the fact that the energies in the three pair
bands exhibit large deviation from aJ(J11) pattern, and
therefore the displacement energy function previously u
by several authors@4,17# is not appropriate to predict th
04431
d
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angular momentum in the partner bands, where the co
sponding moments of inertia become equal to each ot
Instead, we shall use a new displacement energy func
@18#, which is suitable for spectra having a quadratic dep
dence onJ(J11):

E~J!5E01AJ~J11!1B@J~J11!#2. ~15!

This depends on the dipoleg transition energiesE1,g(I )
5E(I 11)2E(I ) and has the expression
2-5



A. A. RADUTA AND D. IONESCU PHYSICAL REVIEW C67, 044312 ~2003!
FIG. 3. The same as in Fig. 2 but for232U, 234U, 236U, and 238U. Experimental data were taken from Ref.@22# (232U), Ref. @23# (234U),
Ref. @24# (236U), and Ref.@25# (238U).
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DE1,g~ I !5
1

16
@6E1,g~ I !24E1,g~ I 21!24E1,g~ I 11!

1E1,g~ I 22!1E1,g~ I 12!#. ~16!

The functionDE1,g(I ) has been first used by Bonatsoset al.
@18# for ground and 02 bands, to analyze the predictions
the spd f-interacting boson model.

The energies predicted by our formalism for the thr
pairs of bands are used in Figs. 2–4 to show the ang
momentum dependence of the functionDE1,g . The parities
associated to the angular momenta, involved in Eq.~16!, are
as follows: for ground andb bands the levelsI and I 62
04431
e
ar

have the same parity, whileI 61 are of opposite parities. In
the case ofg bands this rule is preserved, but we have tw
chains depending on whether the first state (I 22) in Eq.~16!
is 21 or 22. From Figs. 2 and 3 one can see that only218Ra,
228Th, 238U, and 238Pu have octupole deformation in th
ground bands atJ57, J519,21, J527, andJ521,23, re-
spectively. Theb band shows an octupole deformation
228Th (J59,11) and232Th (J511,13). By contradistinction,
all g bands, except that of218Ra, have octupole deformatio
for some values of angular momentum. For the bands wh
the octupole deformation may be noticed, the displacem
energy function exhibits a beat pattern. The amplitude
beats is different for ground,b, and g bands. This remark
2-6
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FIG. 4. The same as in Fig. 3 but for226Ra. Experimental data were taken from Ref.@30#.
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infers that the octupole deformation may appear at a hig
angular momentum. It is clear that the interaction of partic
close to the Fermi level plays an important role in stabilizi
the system against the octupole deformation@20#. Indeed,
comparing the figures for the two isotopes of Th, we see
the last four neutrons in232Th remove the octupole deforma
tion in the ground band and shifts the angular momentum
b andg bands, where the octupole deformations appear.
situation for Ra isotopes is different, namely,218Ra has oc-
tupole deformation only in the ground band, while226Ra,
presented in Fig. 4, has octupole deformation in all bands
different angular momenta. The functionDE is very sensi-
tive even to small deviations of energies, and due to this
Figs. 2~j!, and 3~d! suggest a very good agreement betwe
computed and experimental energies.

We mention the fact that in order to draw a point cor
sponding to the angular momentumI, in one of Figs. 2–4, it
is necessary to know the energy levels forI 22, I 21, I , I
11, I 12, I 13. Available data for excited bands, and ev
for ground bands in238Pu, do not fulfill this condition. How-
ever, the existent data for excitation energies are very w
described by the results of our calculations.

In the interval of angular momentum, where the par
partner bands have an interleaved structure, the states m
considered as members of a single band. In order for thi
be possible, the moments of inertia of the bands of oppo
parities must be equal to each other. This restriction
achieved if the discrete derivative of energy in terms
J(J11) in the composite band is equal to the energy deri
tive in the positive parity band. Indeed, the standard defi
tion of the energy displacement function can be written in
alternative form:

dE~J2!52JFE~J2!2E@~J21!1#

2J

2
E@~J11!1#2E@~J21!1#

2~2J11! G . ~17!
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Plotting the energies of the parity partner bands as a func
of angular momenta, one notices that the bands of dist
parities lie on different curves up to a certain angular m
mentum when these bands intersect each other. From
angular momentum on, the two bands may form a sin
band for a short interval and then go apart. For the fi
interval, both derivatives, from the above expression of
energy displacement function, are positive quantities; a
moreover, since the negative parity band is higher in ene
than the parity partner band, the displacement function
positive quantity. Within the third interval mentioned befor
the negative parity band lies below the positive parity o
and therefore the first derivative is negative while the sec
term remains positive~since the energy in the positive ban
is an increasing function of angular momentum!. Therefore,
the displacement function becomes negative in this inte
of angular momentum. Actually, this change of sign for t
displacement function has been observed for some isoto
of Ra and Th. To conclude, the change of sign for the ene
displacement function is caused by the fact that the slop
the functionE(J2) is smaller than that ofE(J1), which
results in determining a moment of inertia for the total ba
~the sum of the two partner bands! larger than that for the
positive parity band. In the present formalism, the moder
slope of energy, as function ofJ, in the negative parity band
is caused by theB1- coupling term which, according to Tabl
I, is attractive. Indeed, for large values of the quadrup
deformation parameter, the normalized energies in the p
tive parity bands are almost unchanged by the coupling te
while the negative parity state energies are drastically
fected~see Fig. 3 of Ref.@9#!.

Were the moments of inertia different from each oth
and, moreover, independent functions of angular moment
the intersection of the partner bands would take place i
point and the octupole deformation would not be stabiliz
A smooth matching of the energy curves is possible only
one admits that the moments of inertia are angular mom
tum dependent functions.
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As a matter of fact, in this belief underlies the propos
for a new displacement function. Indeed, equating it to ze
one obtains the necessary condition that the two bands
characterized by the same coefficientB defined by Eq.~15!,
since the new displacement function is nothing else but
difference of the fourth-order derivatives with respect to
angular momentum, of the energies in the partner bands.
beat pattern feature shown in Figs. 2–4 suggests that
coefficientB quoted above is not a constant but a perio
function of angular momentum, which, in fact, is consiste
with the complexJ dependence of partner band energies
vealed by our formalism.

If the moments of inertia in the partner bands converge
v.

.

v.

v.

le

le

sc

04431
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,
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e
e
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he
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t
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o

a common constant limit whenJ approaches a certain critica
valueJ0, the static octupole deformation is set on forJ0 and
lasts for anyJ larger thanJ0. It seems that this is the case fo
most theoretical models, since they predict energies wh
for large angular momenta, behave likeaJ(J11)1b.

The conclusion of this paper is that studying octupo
shapes of nuclei is an appealing subject not only in con
ture of the ground band but also of that of excited ban
Indeed, here we showed examples where the ground b
has no octupole deformation whereas theb and especiallyg
bands may acquire such an equilibrium shape for certain
gular momenta.
ys.
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