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New signatures for octupole deformation in some actinide nuclei
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Energies for three positive and three negative parity bands predicted by the extended coherent state model in
21822023, 2?8Th, 232Th, in four uranium even-mass isotop&&? 238U, and in 2%%Pu, are calculated and used
to point out new signatures for octupole deformation in ground as well gsand y bands. A beat pattern is
found by using a new displacement energy function, which is more appropriate for a spectrum that exhibits
large deviations from a lineal{(J+ 1) dependence.
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The field of negative parity bands became very attractiveextended to two other pairs of bands, which are convention-
especially since the first suggestions for octupole deformaally called 8~ and y~ by assuming that the intrinsic states
tion were advanced by Chassnidn and Moler and NiX2]. z;ssociated t@ z_indy bands, have gilso an octupole deforma-
Chassman predicted parity doublets for several odd mass is§on. The resulting phenomenological scheme was named the
topes of Ac, Th, and PHL] . The lowest doublet constitutes €xtended coherent state mod&@CSM). By simultaneous
of a degenerate ground state corresponding to an equilibriufojection of the angular momentum and parity from each

shape having a reflection symmetry. If the doublet is notuch state, two bands of opposite parities are obtained. We

mathematically degenerate but exhibits a small energy splitWanted to see if specific fingerprints of the octupole defor-

ting, this is a sign of a reflection symmetry breaking. Molermaltr']ot?]i\;vogldeflfﬁ;%giﬁrs '%ﬁggzg(g'tzezg,ggr'ﬁﬁgg%g%
and Nix[2] suggested that some even-even radium isotopes Paper, ' ! '

23 i i i inter-
might have an octupole deformed ground state. Indeed, trEnd "Pu are presented in a new light by using new inter

binding energy of these nuclei gains about 2 MeV when a retation means. Indeed, by studying the dependence of the

oo . . nergies of the three pairs of bands on angular momentum,
octupole deformation is assumed in the mean field. The Maife notices large deviation from t56J+ 1) pattern. In this

achievements in this field have been reviewed in several pgniext it is worth to investigate to what extent an analysis

pers[3—5]. _ , based on a more realistit dependence may suggest new
Since there is no measurable quantity for the octupol§ajyes for angular momentum where the octupole deforma-

deformation, some indirect information about this variabletion shows up.
should be found. Several properties are considered as signa- Aiming at a self-consistent presentation, we first sketch
tures for octupole deformatioii@) The state 1, the head of  the ideas underlying ECSM. ECSM is based on the coherent
the K™=0" band, has a very low position, and this is an state mode(CSM) proposed by Radutet al.to describe the
indication that the potential energy has a flat minimum, as anain properties of the first three collective bands of positive
function of the octupole deformatioth) The parity alternat-  parity, i.e., groundB andy bands[10,11]. The name of the

ing structure in ground and the lowest Bands suggests that formalism comes from the fact that the intrinsic ground state
the two bands may be viewed as being projected from a soli§ described by an axial symmetric coherent function for the
deformed intrinsic state, exhibiting both quadrupole and ocquadrupole bosond}, , while the 8 and y intrinsic states
tupole deformations(c) A nuclear surface with quadrupole are orthogonal polynomial excitations of the intrinsic ground
and octupole deformations might have the center of charge iftate. ECSM assumes that the intrinsic ground state exhibits
a different position than the center of mass, which results ifPoth a quadrupole and an octupole deformation. The other
having an electric dipole moment that may excite the stat®ands,3 and y, also have this property because they are
1~ from the ground state, with a large probability. Of courseexc'te,d from the ground state. The octupolg deformation is
the list is not complete, and thereby any new signature fof€scribed by means of an axially symmetric coherent state
this new nuclear phase deserves a special attention. for the octupole bosor;,. Thus, the intrinsic states for

Few years ago our group considered this subject within gr0und,3, andy bands are

henomenological framework. Thus, in Ref6—8] one of bt b dbl —b At

ES (A.AR) pro%osed a phenomenological model to describe Wg= e P0el00020]0) 5] 0) ), V=¥,
simultaneously the ground state band andKfe=0~ band. v =0ty 1)
The model has been applied to nuclei that are proved to have ~ 7 7 ¢’

octupole deformation, such as the even-even Ra isotopeghere the excitation operators have the expressions
[6,7], as well as for Rn isotoped] whose negative parity

tates are interpreted as octupole vibrational states. Both sets 3d d®
> ’ ' - Q)= (b}blb})o+ —=(bJb})o—

of nuclei were described equally well, which leads to the J14 J70°
conclusion that the proposed model is able to describe in an

unified fashion negative parity spectra of pear shaped and + bt 2,
octupole-nondeformed nuclei. In R¢€] the formalism was ;= (bz03) 221 d \/ 5bap. 2
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The notatior|0) y, stands for the vacuum state of theole In the boson basis of projected states, the only nonvanish-
boson operators. Because the stéigsare mixtures of posi- ing matrix elements of the effective Hamiltonian are relating
tive and negative parity states, they do not have good refleg® and y* (k=+) states. The eigenvalues of the model
tion symmetry. Since in the laboratory frame this symmetryHamiltonian in the boson space generated by the projected
is valid, it should be restored by a projection procedure. Bystate depend on the structure coefficients defining the boson
restoring the two symmetries, rotation and reflection, theHamiltonian and two deformation parametetsand f. Be-
three orthogonal states defined above generate six sets cdiuse there are no experimental data forgheband, we did
mutually orthogonal states: not include the coefficier§, in the fitting procedure. Indeed,
the corresponding term from the Hamiltonian affects this
k==*;i=0,8,v, band exclusively. The remaining eight parameters were fixed
3) by a Ie_ast square procedure in order to fit the experimental
excitation energies.
N are renormalization factors, whiRjy, is the angular ~_For what follows, a short comment on the physical sig-
momentum projection operator. The functiohi(k) is the nlflcance_of these parameters is necessary. We begin Wlth the
component of paritik(=*) of the intrinsic stateP; . deformation parametesandf. They bear these names since

Within the boson space spanned by the projected stateg]e average values of the harm_onic quadrupole and_harmonic
octupole moments are proportional doandf, respectively.

one considers the following effective quadrupole and octu- ;
- The quadrupole deformation parameter has been related to
pole boson Hamiltonian e - )
the nuclear deformatiop in the first paper published on the
CSM model[10,11]. Indeed, therein it was shown that in the
rotational regime the projected states can be written in a
factorized form, one factor being a Wigner function while the

other one a function of the dynamic deformatiggisand .

D= NP WY, Ki=25

Y

H=A; (22N, +50 4, Q4) + A,050,

+BiN3(22N,+ 50,0 5) + BN Q[0 g+ BsNg

> 2 > For ground band states, the second factor mentioned above
+ JoJs+ A% 4 ’ : .
Azaladat A @ depends only o8, and moreover is proportional to
If the angular momentum squaﬁa2 is restricted to the 1 2

F— Ee[d*(kﬁ/v@)] )

angular momentum carried by the quadrupole bo§§n$he
first two terms and the last one from E(f) define the
Hamiltonian used by CSM for groungs, andy bands. The Herek is a parameter determining the relation between the
pure octupole Hamiltonian is a harmonic operator, i.e., th&uadrupole bosons and the quadrupole coordinates:
octupole boson number operator. We assume that the cou-

pling between quadrupole and octupole bosons can be de- —i[b+ +(=)Hb, ] (6)
scribed by a product between the octupole boson number az“_k\/i 2n 2-pd

operator,N;, and the quadrupole boson anharmonic terms S ] ]
that are involved in the CSM Hamiltonian. Also, two scalar In the harmonic liquid drop model, this parameter has a defi-

terms depending on the angu|ar momenta carried by th@lte eXpreSSion in terms of the mass and Stri_ng para_meters.
quadrupole §,) and octupole Js) bosons and on total an- CSM takesk as a free parameter that is consistent with the

- , . ~ known fact that the boson operators are related to the collec-
gular momenturd, respectively, are included. HeN, de- 6 coordinates and their conjugate momenta by a canonical
notes the quadrupole boson number operator@bdstands transformation, determined up to a multiplicative constant.
for the following second-order invariantQ;F(beZ)o The factorF has two extremes in the dynamic quadrupole
—d?/\/5. Arguments supporting this choice for the modeldeformationg. It can be shown that the maximum value is
Hamiltonian are given in Ref$6,9]. reached for a deformatiofiy, which obeys the equation

As shown in Ref[11], the projected states are linear su-
perposition of states with definite¢ quantum number. More- _kBo 1
over, in the asymptotic limit of the deformation parameter, a d= f + 2° @)
single K component is prevailing for each set. Actually, this
property answers the question why one associates the statgs this deformation it corresponds the most likely shape, i.e.,
{68} (i=g,B8,7) to the ground,3, and y bands, respec- the equilibrium one. Thus, our previous analysis suggests
tively. A similar analysis could be performed also for the that in the large deformation regime, the paramdtand the
ECSM states. The result is that, preserving the conventiostatic quadrupole deformatioB, are related by a linear
mentioned above, the set of projected states given by3tq. equation. This relationship is confirmed by our results for the
comprises tw"=0", twoK”=0", oneK"=2", and one  actinide region shown in Fig. 1.
K™=2" subsets. The positive parity bands are the ground, Now, let us address the question “what is the mechanism
B, and y bands, respectively. Conventionally, these nameseponsible for setting on the static octupole deformation?”
will be symbolized byg*, 8", and y*. Correspondingly, Consider first a fourth-order octupole boson Hamiltonian.
the negative parity bands are denotedddy, 87, andy, Since in the laboratory frame this Hamiltonian should be
respectively. invariant to a spatial inversion operation, the third-order term
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q) = ef(bgo_ b30)ed(b£0— b20)| 0>(2) . (8)
4.0 .
B8y The result forH; is
3.5 i Ha=Do+fDy(by+ bz +D,N3+ D33, 9
where the following notations have been used:
3.0 . Do=(22A4;+6.A;)d%+ (Bs+ 22028, + 124;)f2,
D,=B3+22d?B,+124,, D,=D;—124;, Dz=A,.

T 2.5 - (10
SinceHj3 contains a linear term in octupole bosons, it is not
invariant to rotations. One may say that the operation applied

2.04 O quad.def.param. to the model Hamiltonian is equivalent to bringing it to an
——d=11.25+1.1 | intrinsic frame, where the conjugate collective variable may
be defined as
1.5 .
— 1 + u
as,tzkg—\/i[bafr(—) b3 .1,
1.0 . L . ! .
0.0 0.1 0.2 0.3 .
B —iks +
p3,u: [(_)I’Lb?,f,u,_bi%,u,]' (11)
FIG. 1. The quadrupole deformation parametés plotted as a \/E
function of the nuclear deformatiof. The data forB are from . . . .
Refs.[28,29). The collective coordinatess,, can be parametrized in terms

of octupole deformationg; and three anglesy;,vs,vs,

is necessarily missing. Writing the chosen Hamiltonian in thewhose static values are equal to zero. Taking farariables

intrinsic frame it is clear that the corresponding potentialtheir static values, one obtains the following expression for

energy is a biquadratic expression in the octupole deformahe potential energy:

tion B3. Suppose that this potential has a minimum in the

variable 85 for 85=b, with b positive. Under these circum- Vooi= 3 Da(KaB3)?—f\2ks3D; . (12

stances the potential energy, considered as a functigy,of _ _ o

has two degenerate minima separated by a maximurf D20, this function has a minimum for

reached inB;=0. Concluding, for a boson Hamiltonian ex-

hibiting a space reflection symmetry in the laboratory frame, k3,8(3°): f\2

the potential energy might have two degenerate minima. The

larger the strength of the boson two-body interaction, the_ . . . .

higgher the internglediate maximum. Had thg potential energ his equation suggests that the deformatl(_)n paranfeter

a minimum for a vanishing octupole deformation, the nucleaP"oPortional to the static octupole deformation. However, as

shape would preserve the reflection symmetry. Therefore th@e already mentioned, there is no measurable observable

eigenstates of the intrinsic Hamiltonian have definite paritythat could confes{” an experimental value. Consequently,

and moreover, the positive and negative parity states are dé-graph for the octupole deformation parameter analogous to

generate. If the nuclear shape has an octupole static defdhat given in Fig. 1 is not possible. The general features of

mation equal to one of the degenerate minima mentionethe results supplied by the fitting procedure are as follows:

above, the corresponding ground state is an admixture dfor an isotopic chairf,is an increasing function oA. Thus,

components with different parities. The opposite parity comfor uranium isotopes it varies almost linearily from 0.1

ponents interact with each other due to the octupole correlg?*U) to 0.6 ¢3%U). For radium isotoped,has the value 0.3

tions which, as a matter of fact, determine the height of thdor ?%Ra and 0.8 for?®Ra. For all other nuclei the octupole

barrier separating the degenerate minima. Due to this featurdeformation parametdraquired a value equal to 0.3.

one has been attempting to relate the parity energy split with The structure coefficients involved in the model Hamil-

the height of the potential barri€t2]. This picture for octu- tonian (4) have been analyzeid extensoin several papers

pole deformation was formulated by several authors of bosof6,9,11], where the CSM model and its extension have been

description workg4]. formulated. Moreover, the accompanying operators have
Here the situation is essentially different since the effecbeen studied in the restricted collective space in the extreme

tive octupole potential energy is a quadratic polynomial indeformation regimes, vibrational and rotatiofall], both

B3, which might have a single minimum for a nonvanishing analytically and numerically. These extreme regimes confer

octupole deformation. Indeed, let us consider the octupol¢he quoted coefficients a definite significance.

boson HamiltonianH;, obtained by averaging the model = We note that without exception, the terms entering the

Hamiltonian(4) on the state: boson Hamiltonian have been obtained microscopically

14 20 13
. ) w
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TABLE I. The coefficients defining the model Hamiltonian, determined by a least squares fit are given in units of keV. The deformation
parameters are dimensionless.

21834 226R4 228Th 232Th 232 234 236 239 238p
d 1.40 3.00 3.1 3.25 3.4 3.6 3.6 3.90 3.90
f 0.30 0.80 0.3 0.30 0.1 0.3 0.45 0.60 0.30
Ay 16.86 20.29 17.72 14.26 15.7 17.8 17.8 20.64 18.84
A, —23.43 —17.54 —12.66 —8.33 —10.5 —9.58 —8.53 —-9.72 —8.63
A, 1.81 0.49 1.32 2.26 2.08 1.55 1.73 1.55 2.23
A(azs) 18.09 7.17 8.38 11.93 15.9 275 19.67 20.45 10.77
By —7.13 —0.74 —2.63 —6.17 —7.35 —13.56 —9.23 —10.77 —8.39
Bs 786.24 362.84 831.25 2 093.34 2 402.6 4 644. 3 279.55 4 239.42 3 308.60

within a boson expanSion formalism formulated in connecC-of the state I is detemined by théZjB term that is attrac-
tion with a quadrupole-quadrupole plus octupole-octupolgive in the state I, and repulsive in all other negative parity
two-body interaction13—15. The expansion was made in states from th& "=0~ band.
terms of collective and noncollective quasiparticle—random The boson Hamiltonian has novanishing matrix elements
phase approximation bosons. In this context one could Saynly between the pair of statdg ,J; (J even andJy ,J,
that our phenomenological quadrupole-octupole b'oson tern*(sJ odd). The coupling terms contribute to the energy splitting
have microscopic counterparts, and thereby their strenghtgy the states in the parity partner bands but also to the mix-
exhibit a microscopic interpretation. _ tures of the pair of states mentioned before. Also, we have
In what follows, we summarize the results concerning théspown that the anharmonic terms of higher order in octupole
effects of varying these coefficients on the spectrum undefosons have the effect of renormalizing the matrix elements
ponsideratlon. In vibrationald— 0) and rotational I|m|tQ of the terms contained by our model Hamiltonian. The cou-
is large. It was shown thad=3 already means thal is  pjing terms affect the positive and negative bands in a dif-
large) the ground state energies have the expressions ferent manner. For example, for large quadrupole and small
octupole deformation, the bandg , B8, and y— are
E9.vib— 22412 + A3+ 1), pre_ssed down in energptherwise the energy split is small
2 while for the parity partner bands the effect is about the same
as for the ground state, and therefore the excitation energy is
J(J+1) left unchanged. In this region farandf, the average values
Eg‘rOt:2M1W+AJJ(J+1)- of the octupole boson number operator exhibit a linear de-

(14) pendence od(J+1). For smalld andf, the average ol
on states frong~, 87, andy~ bands is almost independent

For vibrational nuclei and low angular momentum, td¢  of angular momentum, while the averages\giN; exhibit a
term is much larger than thé; one. Therefore one could say strong dependence dnConcluding, the energies in negative
that for such a regime, 22, is a good approximation for the parity bands are obtained as a result of the competition be-
energy of the first 2 state. In the rotational limit, this coef- tween the octupole harmonic and quadrupole-octupole inter-
ficient together withA4; determine the kinematic moment of acting terms.
inertia for the ground band. For transitional nuclei, the result  The coefficients depend smoothly on the atomic mass
for the ground state energies lies between the limits denumber. Comparing the coefficients f6#%U and 23%Pu as
scribed above. Actually these energies are obtained by diagevell as for 22U and 2%?Th, one notices a dependence on the
nalizing, for a given angular momentum, &2 matrix; the  charge asymmetry. Actually, a large number of actinide iso-
second eigenvalue is the energy of tigeband state. As topes have been considered and the corresponding structure
shown in Ref[11], the A, term contributes only to the en- coefficients, provided by the fitting procedure, lie on curves
ergies of$3 band states. Due to this feature the CSM fixes itsgiven by fourth-order polynomials iA—(N—2Z)/2. Excep-
strength in order to reproduce the position of the head statgon is for —.4,, which is fitted by a second-order polyno-
of B band relative to the ground state. In the vibrational limit mial.
and harmonic regime, the energy of the lowest Sate is Note that the total number of free parameters is about the
given by theB; term. Departing from this picture, this en- same as in other phenomenological modelse, for ex-
ergy is affected by anharmonicities, i.e., the quadrupoleample, Ref.[16]), although none of them treats simulta-
octupole boson interaction, and by deformation. The twoneously six bands, going up to high and very high spin re-
types of collective degrees of freedom are coupled byidhe gion. To get an idea about the capability of the proposed
term as well as by those terms depending on the angulanodel to describe a large number of data, we just mention
momenta carried by the quadrupole and octupole bosons. limat in Ref.[9], we obtained a quite accurate description of
Ref. [7] we have shown that for an almost vibrational 55 level energies irf>?Th, the deviations being smaller than
nucleus, as for example is the cas€?Ra, the low position 20 keV.
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FIG. 2. The displacement function given by E@6) for ground, 8, and y bands in?'%Ra, 22®Th, 2%2Th, and?®Pu is represented as a
function of angular momentum. Farbands the labdlis used when the statqus the lowest angular momentum state involved in @§),
while I corresponds to the calculation using 2s the first state in the chain. Experimental data were taken from FR{°*°Ra), Ref[21]
(?%8Th), Ref.[19] (**?Th), and Ref[27] (**%Pu).

The parameters yielded by the fitting procedure are listeédingular momentum in the partner bands, where the corre-
in Table 1. sponding moments of inertia become equal to each other.
These parameters determine the excitation energies for tHastead, we shall use a new displacement energy function
six bands. In Ref[9], the results were presented by giving [18], which is suitable for spectra having a quadratic depen-
the dynamic moment of inertia as function of the rotationaldence onJ(J+1):
frequency for some of the nuclei from Table |. Here we want 5
to stress on the fact that the energies in the three pairs of E(J)=Eo+AJJ+1)+B[IJJ+ 1]~ (15
bands exhibit large deviation from HJ+1) pattern, and
therefore the displacement energy function previously use@his depends on the dipolg transition energiess, (1)
by several author$4,17] is not appropriate to predict the =E(l+1)—E(l) and has the expression
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FIG. 3. The same as in Fig. 2 but f6t4U, 23U, 2%, and2%®. Experimental data were taken from RgE2] (2%), Ref.[23] (B),
Ref.[24] (%), and Ref[25] (Z%).

1 have the same parity, whilet 1 are of opposite parities. In
AB,(1)= 75l 6E1,(1) —4E1,(I=1) —4E, ,(1 +1) the case ofy bands this rule is preserved, but we have two
chains depending on whether the first stdte 2) in Eq.(16)
TE1,(1-2)+E,(1+2)]. (16)  is2* or2~. From Figs. 2 and 3 one can see that offiRa,

228Th, 2%%y, and #*%Pu have octupole deformation in the
The functionAE, (1) has been first used by Bonatsetsal. ~ ground bands al=7, J=19,21,J=27, andJ=21,23, re-
[18] for ground and O bands, to analyze the predictions of spectively. Theg band shows an octupole deformation in
the spd f-interacting boson model. 228Th (J=9,11) and®*?Th (J=11,13). By contradistinction,
The energies predicted by our formalism for the threeall y bands, except that 6t®Ra, have octupole deformation
pairs of bands are used in Figs. 2—4 to show the anguldor some values of angular momentum. For the bands where
momentum dependence of the functiaik, ,. The parities the octupole deformation may be noticed, the displacement
associated to the angular momenta, involved in(&6), are  energy function exhibits a beat pattern. The amplitude of
as follows: for ground angB bands the leveld and | +2 beats is different for ground3, andy bands. This remark
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FIG. 4. The same as in Fig. 3 but féf%Ra. Experimental data were taken from R&0].

infers that the octupole deformation may appear at a high

angular momentum. It is clear that the interaction of particle lotting the energies of the parity partner bands as a function

close to the Fermi level plays an important role in stabilizingOf angular momenta, one notices that the bands of distinct

the system against the octupole deformatian]. Indeed, parities lie on different curves up to a certain angular mo-
comparing the figures for the two isotopes of Th, we see thaientum when these bands intersect each other. From this
the last four neutrons iR%2Th remove the octupole deforma- @ngular momentum on, the two bands may form a single
tion in the ground band and shifts the angular momentum oPand for a short interval and then go apart. For the first
B andy bands, where the octupole deformations appear. Thiterval, both derivatives, from the above expression of the
situation for Ra isotopes is different, namefy&Ra has oc- energy displacement function, are positive quantities; and
tupole deformation only in the ground band, whité¢®Ra,  moreover, since the negative parity band is higher in energy
presented in Fig. 4, has octupole deformation in all bands, ghan the parity partner band, the displacement function is a
different angular momenta. The functiaxE is very sensi- positive quantity. Within the third interval mentioned before,
tive even to small deviations of energies, and due to this fadhe negative parity band lies below the positive parity one,
Figs. 2j), and 3d) suggest a very good agreement betweerand therefore the first derivative is negative while the second
computed and experimental energies. term remains positivésince the energy in the positive band

We mention the fact that in order to draw a point corre-is an increasing function of angular momenfuiherefore,
sponding to the angular momentumin one of Figs. 2—4, it the displacement function becomes negative in this interval
is necessary to know the energy levels fer2, I =1, 1, | of angular momentum. Actually, this change of sign for the
+1, 1+2, 1+3. Available data for excited bands, and evendisplacement function has been observed for some isotopes
for ground bands iﬁ38Pu, do not fulfill this condition. How- of Ra and Th. To conclude, the Change of Sign for the energy
ever, the existent data for excitation energies are very welfisplacement function is caused by the fact that the slope of
descrlbed_by the results of our calculations. _ the functionE(J") is smaller than that oE(J*), which

In the interval of angular momentum, where the parity ogts in determining a moment of inertia for the total band
partner bands have an interleaved structure, the states may e sum of the two partner bandsrger than that for the

considered as members of a .sing!e band. In order for this_t ositive parity band. In the present formalism, the moderate
be possible, the moments of inertia of the bands of opposit lope of energy, as function df in the negative parity band

parities must be equal to each other. This restriction is i . X .
achieved if the discrete derivative of energy in terms of'> caused by the; - coupling term which, according to Table

J(J+1) in the composite band is equal to the energy deriva!' is attractive. Indeed, for large values of the quadrupole

tive in the positive parity band. Indeed, the standard defini-d(:“form":ltlon parameter, the normalized energies in the posi-

tion of the energy displacement function can be written in theﬁve, parity band; are almost unchange(_:i by the coupl_ing term,
alternative form: while the negative parity state energies are drastically af-

fected(see Fig. 3 of Ref[9]).
Were the moments of inertia different from each other
and, moreover, independent functions of angular momentum,

EQ)-E[J-D)"] the intersection of the partner bands would take place in a

SE(J7)=2J i . o
2J point and the octupole deformation would not be stabilized.
. . A smooth matching of the energy curves is possible only if
_ E[J+D) " ]-E[J-1)"] (17) one admits that the moments of inertia are angular momen-
2(2J+1) tum dependent functions.
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As a matter of fact, in this belief underlies the proposala common constant limit whehapproaches a certain critical
for a new displacement function. Indeed, equating it to zeroyalueJ,, the static octupole deformation is set on dgrand
one obtains the necessary condition that the two bands atgsts for any larger than,. It seems that this is the case for
characterized by the same coeffici@tefined by Eq(15),  most theoretical models, since they predict energies which,
since the new displacement function is nothing else but th¢or |arge angular momenta, behave li&d(J+1)+b.
difference of the fourth-order derivatives with respect to the  The conclusion of this paper is that studying octupole
angular momentum, of the energies in the partner bands. Trhehapes of nuclei is an appealing subject not only in conjec-
beat pattern feature shown in Figs. 2-4 suggests that thgre of the ground band but also of that of excited bands.
coefficientB quoted above is not a constant but a periodic|,yaed here we showed examples where the ground band
function of angular momentum, which, in fact, is consistenthas no,octupole deformation whereas fhand especially

with the complexJ dependence of partner band energies re- . o .
! bands may acquire such an equilibrium shape for certain an-
vealed by our formalism.

If the moments of inertia in the partner bands converge t(gular momenta.
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