
PHYSICAL REVIEW C 67, 044309 ~2003!
Three-body systems with Lagrange-mesh techniques in hyperspherical coordinates
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We apply the Lagrange-mesh technique to three-body systems defined in hyperspherical coordinates. The
method is applied to6He ~described asa1n1n) and 12C ~described asa1a1a), and is shown to be fast
and accurate. To deal with two-body forbidden states, we compare the usual projection method with the use of
supersymmetric equivalent potentials. Both approaches provide similar spectroscopic properties, although the
wave functions can be quite different. We also show that an accurate description of the three-body asymptotics
requires bases with large hypermomenta.
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I. INTRODUCTION

The hyperspherical coordinates and their main proper
for three-particle systems are available for a long time@1#.
The hyperspherical harmonics method~HHM! was first ap-
plied in the context of nuclear reactions by Delves@2# and
the main tools of its mathematical formalism for three a
more particles were derived by Smith@3,4#. The HHM al-
lows transforming a many-body Schro¨dinger equation into a
set of coupled differential equations depending on the sin
dimensional coordinate, the hyper-radius.

The HHM has a long story with many applications
atomic and nuclear physics@5,6#. In the following, we focus
on three-body problems. Besides the important three-nuc
problem, the interest for the HHM has been renewed
nuclear physics with the discovery of halo nuclei with a tw
neutron halo@7#. In first approximation, these systems can
treated as a three-body system composed of an inert core
of two ‘‘halo’’ neutrons. The accurate study of the boun
state and continuum properties of these exotic nuclei is
rently a problem of high interest.

A number of methods are able to treat three-body pr
lems. In the HHM, the wave function is expanded in a ser
of hyperspherical harmonics, a complete basis set defi
over a compact domain. The hyperspherical harmonics
pend on four angles giving the spatial orientation of tw
Jacobi coordinates and one dimensionless variable relate
their ratio, known as the hyperangle. With this expansion,
infinite system of coupled differential equations is obtain
which must be approximately solved with an appropri
truncation. In this system, matrix elements of the poten
appear between hyperspherical harmonics. Calculating t
matrix elements is rendered complicated by the fact that o
one of the two-body relative coordinates appearing in
potential can enter the Jacobi-coordinate set, which serve
define the hyperspherical-coordinate system. Two types

*Present address: Optoelectronics Group, Cavendish Labora
Madingley Road, Cambridge CB3 0HE, United Kingdom.
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approach can be chosen to solve this problem. Either
potential is expanded in multipoles@8# or the Jacobi coordi-
nates undergo a pseudorotation that transforms the hy
spherical harmonics into another basis set@9#. As we are
interested in a method where only numerical values of
potential should be used, we choose to apply the latter te
nique. One important advantage of the HHM is that forc
depending on angular momentum, which are often enco
tered in nuclear physics, or three-body forces, can be tre
without any modification of this approach.

In order to calculate bound-state wave functions and
ergies by solving the coupled hyperrradial equations, we e
ploy the Lagrange-mesh method@10–14#. The Lagrange-
mesh method is an approximate variational calculation t
resembles a mesh calculation. This property is obtained
using a basis of Lagrange functions, i.e., indefinitely diffe
entiable orthonormal functions that vanish at all points e
cept one of an associated mesh. This basis corresponds
truncation of a complete basis. The simplification com
from the use of the Gauss quadrature approximation co
sponding to this mesh. Because of this Gauss quadrature
potential matrix elements are replaced by their values at
mesh points. Strikingly, in spite of its simplicity, th
Lagrange-mesh method appears to be as accurate as th
responding variational calculation@14#. For the hyperradial
coordinate, the selected Lagrange mesh involves the zero
Laguerre polynomials and the Lagrange functions are re
larized, i.e., multiplied by some power of the hyper-radi
allowing a good representation of wave function propert
near the origin@11,13#. The resulting method is mathemat
cally equivalent to, but simpler than, a hyperspheric
harmonics calculation with an expansion based on Lagu
polynomials for the hyperradial coordinate. In order to est
lish the validity of the present approach, we compare it w
a reference calculation performed with such a Laguerre
sis, i.e., polynomials multiplied by a decreasing exponent
The calculation is performed in a numerically exact way.

The Lagrange-mesh method is illustrated with two e
amples. The first one is the6He halo nucleus described as
three-body system made up of ana particle and two neu-
ry,
©2003 The American Physical Society09-1
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trons. This physical example is interesting because of
small binding energy that implies a large spatial extension
the wave function and hence a slow convergence. It a
raises the problem of the forbidden state that appears in
a-n subsystem, and which will be removed by two differe
techniques. The second example is the triple-a system,
where eacha is a pointlike boson interacting with the othe
ones througha-a effective forces. A 3a description of12C
has been used by several authors, using different meth
@15–17#. This problem is more academic because it does
provide an accurate description of the ‘‘shell-model’’ sta
of 12C. However, it is well known@15,17# that this defi-
ciency can be eliminated by using an appropriate three-b
force to simulate nonlocal effects. In addition, it is intere
ing as a test because it involves several forbidden state
each subsystem, the Coulomb interaction, and full symme
zation. We also analyze the limits of validity of that mod
for the description of12C.

In Sec. II, the HHM is summarized. In Sec. III, the reg
larized Lagrange-mesh method based on Laguerre polyn
als is described. Applications to6He and 12C are presented
and discussed in Sec. IV. Section V is devoted to
asymptotic properties of three-body wave functions. C
cluding remarks are presented in Sec. VI.

II. THEORETICAL BACKGROUND

A. Hyperspherical formalism

The theory of the HHM is well known; we refer th
reader to Refs.@9,7,18# for details. Here, we define the no
tation and present the basic properties of the hypersphe
formalism.

Let us consider three nuclei with mass numbersAi ~ex-
pressed in units of the nucleon massmN), and space coordi
natesr i . We define a set of Jacobi coordinates

xk5Am i j ~r j2r i !,

yk5Am ( i j )kS rk2
Air i1Aj r j

Ai1Aj
D , ~1!

where (i , j ,k) is an even permutation of (1,2,3), and whe
the ~dimensionless! reduced masses are defined as

m i j 5AiAj /~Ai1Aj !,

m ( i j )k5~Ai1Aj !Ak /~Ai1Aj1Ak!. ~2!

Equations~1! define six coordinates that are transformed
the hyperspherical coordinates as

r25xk
21yk

2 ,

ak5arctan
yk

xk
, ~3!

where the hyper-radiusr is independent ofk, and whereak
varies between 0 andp/2. With the angular variablesVxk

5(uxk
,wxk

) andVyk
5(uyk

,wyk
), Eqs.~3! define a set of hy-
04430
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perspherical coordinates, depending onk. This set of coordi-
nates is known to be well adapted to the three-body Sch¨-
dinger equation.

Assuming two-body forces only, the Hamiltonian of th
system is given by

H5(
i 51

3

Ti1(
i , j

Vi j ~r j2r i !, ~4!

whereTi is the kinetic energy of particlei, andVi j a nucleus-
nucleus interaction. For the sake of clarity, only the rad
dependence is written. However,Vi j may also depend on
other coordinates, such as momentum or spin~central and
spin-orbit components are included in our applications!. In
the hyperspherical system, this Hamiltonian is rewritten a

H5Tc.m.1Tr1(
i , j

Vi j S xk

Am i j
D , ~5!

whereTc.m. is the center of mass~c.m.! kinetic energy.
Let us define the set of angles

V5i5~a i ,Vxi
,Vyi

!, ~6!

which enables us to rewrite the kinetic-energy term
Hamiltonian~5! as

Tr52
\2

2mN
S ]2

]r2
1

5

r

]

]r
2

K2~V5i !

r2 D , ~7!

whereK2 is a five-dimensional angular momentum@3,9#. Its
eigenfunctions, with eigenvaluesK(K14), are the hyper-
spherical harmonics, and are written as

Y KLML

,x,y ~V5!5fK
,x,y~a!@Y,x

~Vx! ^ Y,y
~Vy!#LML. ~8!

The quantum numberK is the hypermomentum, and extend
the concept of angular momentum to three-body systems@3#.
The set of hyperspherical coordinates@i.e., the value ofk in
Eq. ~1!# can be chosen freely. Here we will be dealing wi
systems involving a zero-spin core~generalization can be
found in Ref.@20#!, defined as particle 1. Hence the natu
set of coordinates is (x1 ,y1), and indexk51 will be dropped
hereafter. In Eq.~8!, we have@9#

fK
,x,y~a!5N K

l xl y~cosa! l x~sina! l yPn
l y11/2,l x11/2

~cos 2a!,
~9!

and the normalization factorN K
,x,y is given by

N K
l xl y5F 2n! ~K12!~n1 l x1 l y11!!

GS n1 l x1
3

2DGS n1 l y1
3

2D G 1/2

,

n5
K2,x2,y

2
, ~10!
9-2
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wheren is a positive integer, andPn
l y11/2,l x11/2(x) is a Jacobi

polynomial @21#. Introducing the spin componentxSMS

yields the basis functions with total angular-momentumJ,

Y gK
JM~V5!5@Y KL

,x,y~V5! ^ xS#JM, ~11!

where indexg stands for (,x,yLS).
Wave functions~11! are used to expand the solution of th

three-body Schro¨dinger equation

FTr1(
i , j

Vi j S xk

Am i j
D 2EGCJMp50, ~12!

as

CJMp~r,V5!5r25/2(
gK

xgK
Jp ~r!Y gK

JM~V5!, ~13!

wherep is the parity, and where the radial wave functio
xgK

Jp (r) are to be determined. The role of ther25/2 factor is
to cancel out the first derivative in the kinetic energy~7!.
Next, expansion~13! is inserted in the Schro¨dinger equation
~12!, which leads to a set of coupled differential equation

F2
\2

2mN
S d2

dr2
2

~K13/2!~K15/2!

r2 D 2EGxgK
Jp ~r!

1 (
K8g8

VK8g8,Kg
Jp

~r!xg8K8
Jp

~r!50, ~14!

where the potential term is given by

VK8g8,Kg
Jp

~r!5VK8g8,Kg
Jp(1)

~r!1VK8g8,Kg
Jp(2)

~r!1VK8g8,Kg
Jp(3)

~r!.
~15!

Since coordinatex1 is adapted to the first term, it is dete
mined directly as

VK8g8,Kg
Jp(1)

~r!5E Y g8K8
JM* ~V5!V23S r cosa

Am23
DY gK

JM~V5!dV5 .

~16!

The second and third terms are first determined in thex2 and
x3 coordinate systems, and then transformed to thex1 system
with the Raynal-Revai coefficientŝ,x8,y8u,x,y&KL @9#. We
have

Y KLML

,x,y ~V5 j !5 (
,x8,y8

^,x8,y8u,x,y&KLY KLML

,x8,y8 ~V5!. ~17!

In practice, the integrations overVx and Vy are performed
analytically, whereas integration overa is carried out nu-
merically with the Gauss-Legendre approximation. For la
r values, matrix elements of the potential vary rapidly w
the hyperanglea. Typically, we use 60 points for the Gaus
Legendre quadrature, which provides a very good accur
for all consideredr values.

The parity of the system is given by
04430
e

cy

p5p1p2p3~21!,x1,y5p1p2p3~21!K, ~18!

wherep i is the parity of particlei. If particles 2 and 3 are
identical, we have the selection rule

~21!,x1S1T521, ~19!

S andT being the total spin and isospin of the system co
posed by these particles. In this case, partial waves which
not satisfy Eq.~19! are removed from the basis. For12C, all
particles are identical, which means that the wave funct
must be invariant for any particle permutation. In oth
words the wave function must be replaced by its symme
form

CJMp~r,V5!→CJMp~r,V5,1!1CJMp~r,V5,2!

1CJMp~r,V5,3!, ~20!

and the wave function is symmetrized through furth
Raynal-Revai transformations.

B. Removal of Pauli forbidden states

In microscopic cluster models, where antisymmetrizat
between all nucleons is taken into account, the existenc
forbidden states in nucleus-nucleus systems is well es
lished@22,23#. The role of forbidden states can be simulat
by additional~unphysical! states in the nucleus-nucleus p
tential @23#. In two-body systems, these additional states
not considered for investigating properties of the syste
However, for three-body systems, a special treatment is n
essary to remove forbidden states, as they would introd
unphysical eigenvalues of the Hamiltonian. The effect
Pauli blocking in three-body models has been addresse
detail by Thompsonet al. @18#, who investigate different
techniques to remove two-body forbidden states.

Here, we consider two methods to deal with forbidd
states:~i! the projection technique@24# and ~ii ! a supersym-
metric transform of the nucleus-nucleus potential@25#. In the
projection method, the nucleus-nucleus potentialVi j (x) is
replaced by

Vi j ~x!→Vi j ~x!1L(
f

uc f~x!&^c f~x!u, ~21!

where f runs over all two-body forbidden-statesc f(x); in
particular, it may include different angular momenta. In E
~21!, L is a constant energy, taken much larger than
characteristic energies of the system~typically L;105

2109 MeV). The role of the projector in Eq.~21! is to move
the forbidden states up to very high energies. The final
sults must be, up to the accuracy of the model, insensitiv
the choice ofL.

The second method considered here is to replace pote
Vi j (x) by its supersymmetric partner

Vi j ~x!→Ṽi j ~x!. ~22!

PotentialṼi j (x) is phase equivalent toVi j (x), i.e., the phase
shifts are identical, but does not contain unphysical sta
9-3
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The role of forbidden states is simulated by a short-ra
repulsive core. As long as scattering cross sections are
cerned,Vi j (x) andṼi j (x) provide identical results. Howeve
the associated wave functions are different since supers
metric wave functions do not present nodes correspondin
the forbidden states. The study of three-body systems th
fore offers a good opportunity to analyze the differences
tween both approaches.

III. LAGRANGE-MESH TECHNIQUES WITH
HYPERSPHERICAL COORDINATES

A. General definitions

In the preceding section the coordinater denotes a hyper
radius andx a relative coordinate between two particles.
order to treat them simultaneously, the coordinate in
present section is denoted asu.

A Lagrange basis@10# is defined in relation with a set ofN
mesh points uiP(0,̀ ), called a Lagrange mesh. Th
Lagrange functions areN orthonormal functionsf i(u) veri-
fying at theN mesh pointsui the Lagrange conditions

f i~ui 8!5l i
21/2d i i 8 , ~23!

i.e., each functionf i(u) vanishes at all mesh points except
ui . The constantsl i appearing in Eq.~23! are the weights of
the Gauss quadrature approximation associated with
mesh,

E
0

`

g~u!du'(
k51

N

lkg~uk!. ~24!

As a result of the Lagrange conditions~23!, the basis func-
tions f i(u) are orthogonal at the Gauss approximation. Th
are even exactly orthonormal when the Gauss quadratu
exact for products of Lagrange functions,

E
0

`

f i~u! f i 8~u!du5d i i 8 . ~25!

This is, for example, the case when Lagrange functions
constructed from orthogonal polynomials@10#.

The Gauss approximation is applied to the potential m
trix elements. The approximate potential matrix is then di
onal,

E
0

`

f i~u!V~u! f i 8~u!du'V~ui !d i i 8 . ~26!

The kinetic-energy matrix elements of the opera
2d2/du2 can also be calculated at the Gauss approxima
as

Tii 8
G

52l i
1/2f i 8

9 ~ui !. ~27!

The resulting expressions only depend on theui andui 8 , but
are not necessarily symmetric.

Let us first define the Lagrange-Laguerre basis
04430
e
n-

m-
to
re-
-

e

t

he

y
is

re

-
-

r
n

f i~u!5~21! iui
1/2LN~u!

u2ui
e2u/2, ~28!

whereLN(u) is a Laguerre polynomial, and where the me
pointsu1 to uN are given by

LN~ui !50. ~29!

The Gauss-Laguerre quadrature is then obtained with
weights@21#

l i5
eui

ui@LN8 ~ui !#
2

. ~30!

The basis~28! is however not interesting here because
basis functions do not behave properly at small distance

Therefore, we introduce a regularization factor@11,12#
which can be fitted to each case. We consider the Lagran
Laguerre basis defined by

f̂ i~u!5S u

ui
D n

f i~u!, ~31!

with ui given by Eq.~29!. This basis is not exactly orthogo
nal but is still orthogonal at the Gauss approximation. Not
that the Lagrange condition~23! is still satisfied.

The Gauss approximationT̂ii 8
G

52l i
1/2f̂ i 8

9 (ui) for the
kinetic-energy matrix elements leads after a straightforw
calculation to

T̂ii
G5~12ui

2!21@212n2124n281~4N12!ui2ui
2#

~32!

and, for iÞ i 8,

T̂ii 8
G

5~21! i 2 i 8
ui 8

n23/2

ui
n21/2

~2n23!ui 82~2n21!ui

~ui2ui 8!
2

. ~33!

At the Gauss approximation, the centrifugal term is given
any n by

E
0

`

f̂ i~u!u22 f̂ i 8~u!du'ui
22d i i 8 , ~34!

which is exact forn<3/2. We shall make use of Eqs.~31! to
~34! in two particular cases.

Near the originr 50, two-body relative wave functions
behave asr l 11, where l is the relative orbital momentum
This behavior is well simulated by an expansion in ba
functions ~31! with n51 @13,14#. Indeed, this basis is ex
actly equivalent to a set of Laguerre polynomials multipli
by u exp(2u/2), whose linear combinations are able to r
produceul 11 for small u provided that the basis sizeN is
large enough, i.e., larger thanl.

The functions of the hyper-radiusxgK
Jp (r) behave near the

origin asrK15/2, which cannot be reproduced with a comb
nation of polynomials. Hence, in this case, we use then
53/2 regularization. The basis is then exactly equivalent t
set of Laguerre polynomials multiplied byu3/2exp(2u/2).
9-4
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Linear combinations of these basis functions are able to
produce auK15/2 behavior for smallu provided that the basis
sizeN is large enough, i.e., larger thanK11. The choicen
55/2 might seem more obvious but for this value the ma
T̂G is not symmetric. It is thus preferable to choosen53/2.
For n53/2 as well as forn51, the kinetic-energy matrix is
symmetric at the Gauss approximation. Moreover, the c
trifugal matrix elements~34! are exact. This would not be
true for n.3/2.

For n53/2, the exact overlaps are given by

E
0

`

f̂ i~u! f̂ i 8~u!du5d i i 81~21! i 2 i 8
2N111ui1ui 8

uiui 8

.

~35!

The exact kinetic-energy matrix elements read

T̂ii 85T̂ii 8
G

1~21! i 2 i 8
2N112ui2ui 8

4uiui 8

. ~36!

Equations~35! and~36! are rather easily established with th
technique explained in the appendix of Ref.@11#. For n
51, the exact overlaps and kinetic-energy matrix eleme
T̂ii 8 are given in Refs.@11,14#.

B. Matrix elements

Let us expand the hyperradial functionsxgK
Jp (r) in the

Lagrange basis as

xgK
Jp ~r!5h21/2(

i 51

N

CgKi
Jp f̂ i~r/h!, ~37!

whereN is the number of Lagrange functions, andh a scal-
ing parameter that should be optimized according to
physics of the problem. WhenN is large enough, the sens
tivity with respect toh should be negligible. In practice, thi
scaling parameter is used to reduce the number of b
states. Numerical examples will be shown in the followi
section. Inserting expansion~37! in the Schro¨dinger equation
~12! provides

(
g8K8 i 8

~HgKi ,g8K8 i 8
Jp

2Edgg8dKK8d i i 8!Cg8K8 i 8
Jp

50, ~38!

where matrixHJp reads

HgKi ,g8K8 i 8
Jp

5
\2

2mN
F 1

h2
T̂ii 8

G

1
~K13/2!~K15/2!

xi
2

d i i 8Gdgg8dKK8

1VgK,g8K8
Jp

~xi !d i i 8 ~39!

with xi5hui . In this definition, the kinetic-energy matri
elements are given by Eqs.~32! and~33!. Matrix elements of
the potential term are computed according to Eq.~15! and,
04430
e-

x

n-
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e
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after integration over anglea, involve the potential at the
mesh points only; they are diagonal with respect toi.

C. Treatment of forbidden states

As mentioned before, Pauli forbidden states are accoun
for in two ways. Using a supersymmetric transformation
the nucleus-nucleus potentials in quite simple:V23 in Eq.
~16! is replaced byṼ23 as explained in Sec. II B. The trea
ment of the Pauli projection is more tedious, and is outlin
in this section.

The projector involved in Eq.~21! explicitly depends on
coordinatex; accordingly the basis wave functions should
expressed in system (x,y) in place of (r,V5). Let us define

F̃gKi
JMp~x,y!5Y gK

JM~V5! f̂ i~r/h!, ~40!

and introduce the projector

P5(
, j

P, j , ~41!

whereP, j is given by

P, j5(
m

uc,s j~x!Y,s jm~Vx!&^c
,s j~x!Y,s jm~Vx!u.

~42!

In this definition,c,s j(x) is the radial part of the Pauli for
bidden states; we do not explicitly write indexf. Angular
functionsY,s jm(Vx) are given by

Y,s jm~Vx!5@Y,~Vx! ^ xs# jm, ~43!

xs being a spinor with spins. The radial part is expande
over a set of Lagrange functionsĝi(x/h2) as

c,s j~x!5h2
21/2(

k51

N2

Dk
,s jĝk~x/h2!, ~44!

whereN2 andh2 are the number of functions and the sca
factor adapted to the two-body problem. According to t
discussion of Sec. III A,ĝk are Lagrange functions define
with n51. We, therefore, introduce two different Lagrang
meshes: one for the three-body wave functions and ano
for the two-body forbidden states. Since the projectorP, j is
multiplied by a large constantL, slight numerical inaccura-
cies in the two-body forbidden states are amplified. A prec
description of thec,s j(x) function is therefore required. Us
ing a Lagrange expansion for the forbidden states is not n
essary, but enables us to simplify integrals involving tho
wave functions. Technical details are given in Appendix A

IV. APPLICATION TO 6He AND 12C

A. Conditions of the calculations

Here we apply the Lagrange-mesh technique to two s
tems: ~i! the 6He nucleus is a well-established three-bo
system with a low binding energy, which has been studied
9-5
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many authors;~ii ! the 12C nucleus is strongly bound with
respect to the 3a threshold (27.27 MeV) and therefore
should be considered as a compact system. The aim o
next sections is to illustrate the Lagrange-mesh techni
and to discuss its numerical accuracy. Only bound state
6He and 12C will be considered. We use\2/2 amu
520.9008 MeV fm2, ma54.0026 amu and mN
51.0087 amu.

For 6He the a-neutron potentialVan is taken from
Kanadaet al. @26#. This potential contains one forbidde
state for,50. Then-n potential is chosen as the Minneso
interaction @27#. For the a-a potential, used for12C, we
adopt the force derived by Bucket al. @23#, which accurately
reproduces thea-a phase shifts up to 20 MeV. Thi
,-independent potential involves two forbidden states fo,
50, and one for,52. The screened Coulomb interaction
a point-sphere function, used according to Ref.@23#.

B. Accuracy of the Lagrange-mesh method

The main parameters in the method are the numbe
functionsN and the scale parameterh. The results should be
independent of their values, but they can be optimized
deal with bases as small as possible. As it is well kno
@18#, three-body calculations underpredict the binding en
gies. For halo nuclei, the wave function sensitively depe
on the binding energy, and a correction to the potential m
be performed to reproduce the three-body state.

First, calculations are performed withN530 andh50.3
fm ~typical values ofN2 and h2 are similar!. We useKmax
524 and 30 for 6He and 12C, respectively. Energies an
radii are given in Table I. The rms radiusA^r 2& is calculated
from theA^r2& expectation value by assuming thea-particle
radiusA^r 2&a51.47 fm @19#.

For 6He, the renormalization factorl of thea-n interac-
tion is very close to unity, as expected for a Borromean s
tem, where the three particles are located far from each o
For l51, the obtained energy20.87 MeV is close but not
identical to the value20.73 MeV obtained in Ref.@13#, un-
der exactly the same model conditions. The reason of
difference lies in the angular-momentum dependence of
a-n potentials, which is not treated exactly when the co
nucleon system of coordinates is employed, as in Ref.@13#. It
is not due to the Lagrange-mesh approximation that is u

TABLE I. Energies and rms radii of6He and 12C. A^r 2& is
obtained with 1.47 fm for thea-particle radius.

Projection Supersymmetry
6He l51 l51.0044 l51 l51.027

E(MeV) 20.87 20.97 20.38 20.97
A^r2& (fm) 5.20 5.11 5.72 5.21
A^r 2& (fm) 2.44 2.41 2.63 2.44

12C l51 l51.096 l51 l51.088

E(MeV) 20.26 27.29 21.01 27.29
A^r2& (fm) 8.24 6.36 8.24 6.84
A^r 2& (fm) 2.80 2.35 2.80 2.46
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in both works for different coordinates. This can easily
checked by dropping any angular-momentum dependenc
both calculations. Then the converged results coincide.

For 12C, the a-a potential must be renormalized by
larger factorl to reproduce the experimental binding energ
This is not surprising for a compact system where nonlo
effects are expected to play a role. Notice that this proced
affects the two-body asymptotics since8Be is slightly bound
with l51.096. This problem can be avoided by introduci
a three-body force@17,18#, which will be discussed in Sec
V B. Without renormalization, the6He energy is higher with
supersymmetry than with the projection method, whereas
situation is reversed for12C. Qualitatively, both technique
of forbidden-state removal yield similar results: the energ
and rms radii do not differ significantly. In Fig. 1, we illus
trate the accuracy of the Lagrange-mesh method with dif
entN andh values. As expected@10#, a plateau occurs, which
here is located aroundh50.3 fm for 12C andh50.4 fm for
6He. This plateau gets broader when the number of functi
N increases,N540 provides a wide range of acceptableh
values. The size of the basis can be reduced toN530 with-
out any loss of accuracy. Notice that, when the accurac
poor, the energy can bebelow the correct values~see, for
example, values forN520). This is not possible in exac
variational calculations, but appears here from the Gauss

-7.36

-7.32

-7.28

-7.24

-7.20

0 0.2 0.4 0.6 0.8

(b)

-0.60

-0.58

-0.56

-0.54

0 0.2 0.4 0.6 0.8

-0.968

-0.967

-0.966

0 0.2 0.4 0.6 0.8

N=20
N=30

N=40

(c)

h (fm)

E
 (

M
eV

)

(a)

1

FIG. 1. Energies of12C (02
1) ~a!, 12C ~g.s.! ~b!, and 6He ~c!

with respect to the three-particle threshold versus the Lagrange
rametersN and h. The projection method is used to remove tw
body forbidden states.
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proximation used to compute the matrix elements.
To test the validity of the Gauss approximation, we ha

calculated the6He binding energywithout this approxima-
tion. The overlap and kinetic energy are calculated with E
~35! and~36!, respectively; the potential matrix elements a
obtained from an accurate numerical integration over
hyper-radius. The results, which correspond to an ex
variational calculation, are presented in Fig. 2. Near
variational minimum (h'0.4 fm), the Gauss approximatio
is accurate within 1026. With N530, the differences are
insignificant in a wide range ofh values. As expected, th
validity of the Gauss approximation is more limited forN
520. Notice that the exact variational calculation requi
much longer computer times. The matrix is not anymore
agonal, and each matrix element is an integral, in place
single evaluation of the potential at the mesh points. In
dition the overlap matrix is not unity, which may raise acc
racy problems. For large bases, the increase of comp
times is at least a factor of 10.

Figure 3 shows the convergence with respect toKmax of
the 01 states in6He and12C, including the 02

1 excited state
of 12C. Since6He contains a spin-orbit component, the nu
ber of basis functionsNmax @in other words, the number o
gK values in Eq.~13!# increases quickly withKmax. We
have as follows:

Nmax5~Kmax12!~Kmax14!/8 for 6He

5~Kmax14!2/16 for 12C ~Kmax/2 even!

5~Kmax12!~Kmax16!/16 for 12C ~Kmax/2 odd!.

~45!

For the largestKmax considered here (Kmax524 for 6He,
Kmax530 for 12C), we haveNmax591 andNmax572, re-
spectively. These values are quite reasonable to have a
convergence, but are not optimized for the 02

1 state of 12C
which would requireKmax significantly larger than 30. The
rms radii, illustrated in the lower panel of Fig. 3 reach co
vergence for rather low values ofKmax; for both systems
Kmax512 provides the rms radii with an accuracy better th
1%.

-0.970

-0.968

-0.966

-0.964

-0.962

-0.960

0 0.2 0.4 0.6 0.8

h (fm)

E
 (

M
eV

)
exact, N=20

exact, N=30

Gauss, N=20

Gauss, N=30

1

FIG. 2. 6He binding energy as a function of the mesh sizeh,
with the exact calculation~full symbols! and with the Gauss ap
proximation~open symbols!. ForN530, the exact and approximat
results are almost superimposed.
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As mentioned before, one of our aims is to compare t
methods to remove forbidden states. The projection te
nique does not affect the nucleus-nucleus potential, but
troduces nonlocality in the three-body Hamiltonian. In F
4, we display the convergence versus the projection am
tudeL. Since 6He contains one forbidden state in botha-n
potentials, the convergence is reached with rather lowL val-
ues. Conversely, thea-a potential involves three forbidden
states which makes projector~21! quite complicated. In such
case, very accurate numerical conditions are required. In
ticular the a-a forbidden states must be described with
high accuracy@28#.
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0

2

0 10 20 30

E
 (

M
eV

)

0

2

4

6

8

0 10 20 30

Kmax

rms Q B(E2)

FIG. 3. Convergence of the energy~upper panel! and of the rms
radius,Q(21) and B(E2,21→01) in 12C ~lower panel! with re-
spect toKmax. Quadrupole moments, rms radii, andB(E2) values
are given ine fm2, fm, and Wu, respectively.
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102 10101081061041 1012

FIG. 4. Convergence of the energy with respect to the projec
amplitudeL.
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-6
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-2
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2+ 
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0+ 

2+ 

0+ 

exp projection

λ=1 λ=1.096 λ=1 λ=1.088

E
 (

M
eV

)

 0

0+ 

0+ 

0+ 

0+ 

2+ 

2+ 

super

FIG. 5. Energy spectrum of12C with and without renormaliza-
tion factors. Energies are given with respect to the 3a threshold.
Dashed lines correspond to the use of a three-body force.

rn-nr α−nn

P

FIG. 6. 6He probabilityP @see Eq.~46!# for the S50 compo-
nent. Distances are given in fm.
04430
C. Spectra and wave functions

The spectrum of12C is illustrated in Fig. 5. With the
nonrenormalizeda-a potential (l51) the ground-state en
ergy is far from experiment@29#. Introducing the renormal-
ization factors given in Table I provides more realistic en
gies although the spectra are too compressed. Further tes
the wave functions will be provided by electromagnetic tra
sition probabilities~see Sec. IV D!.

The 6He and 12C wave functions are plotted in Figs.
and 7, respectively. The probabilityP(x,y) is defined as

PJp~x,y!5E dVxdVyuCJMp~x,y!u2, ~46!

which is plotted as a function of the relative coordinat
(r n2n5A2x andr a-nn5A3/4y for 6He, andr a-a5x/A2 and
r a-aa5A2/3y for 12C).

For 6He, we obtain the well known wave function, wit
two maxima. This wave function is similar to the wave fun
tion obtained by Voronchevet al. @30# who find a maximum
at larger a-nn values~‘‘dineutron’’ configuration!, and one at
large r nn values~‘‘cigar’’ configuration!. The amplitude of
the first maximum is larger by about 50%.

Both methods of forbidden-state removal provide ve
similar wave functions, and would be undistinguishable
the scale of the figure. The situation is different for12C ~Fig.
7!, where the projection technique is responsible for seve
node lines in the wave function; in particular, the 02

1 wave
Projection Supersymmetry

0+
2

0+
1

0+
2

0+
1

r α−α

rα−α
rα−α

r α−α

r α−αα rα−αα

r α−ααr α−αα

FIG. 7. 12C probabilityP @see Eq.~46!# for the ground and 02
1 states. Distances are given in fm.
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TABLE II. Weights of K components in6He and12C.

K 6He 12C (01
1) 12C (02

1)
Projection Super. Projection Super. Projection Super

0 3.6431022 3.4431022 2.2131021 6.4131021 2.4431021 5.5431021

2 9.2831021 9.2031021 0 0 0 0
4 2.6231023 7.8631023 3.0931021 3.3931021 7.4931022 2.1131021

6 2.4531022 2.7231022 2.2631022 3.0131023 2.5631021 2.0731021

8 4.7831023 6.1931023 1.3531021 1.5731022 1.0131021 8.4231023

10 2.5031023 2.8531023 2.5031021 1.1131023 3.2331022 8.9831023

12 7.8631024 1.0731023 2.8331022 4.7431024 2.0331021 7.5831023

14 2.9231024 3.3431024 2.3731022 6.9731025 6.8131023 7.3731024

16 2.3431024 3.0331024 6.9031023 2.0231025 2.8631022 5.9431024

18 5.7731025 6.4231025 2.4931023 5.1231026 3.9431022 5.6031024

20 5.0631025 6.3531025 8.4331024 1.5531026 4.7831023 9.0131025

22 2.1031025 2.3431025 3.0031024 5.5031027 4.8431023 8.7431025

24 1.5631025 1.7631025 9.5731025 2.3531027 4.1531023 9.9931025
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function presents many local maxima and minima. Us
supersymmetric potentials for the ground state provide
smooth density distribution with a maximum nearr a-a
'r a-aa'3 fm. This result is consistent with the micro
scopic triple-a description of12C, which succeeds in repro
ducing the low-energy spectrum and spectroscopic prope
with an equilateral-triangle structure of size close to 3
@31#.

Table II shows the weights of the differentK components
in the 6He and 12C wave functions. For6He, the K52
component represents about 90% of the wave function.
projection and supersymmetry methods provide very sim
results. For12C, the weights are spread over severalK val-
ues. TheK52 component vanishes, as a consequence of
symmetry of the system.

D. Electromagnetic transition probabilities

Spectroscopic properties of12C are complemented b
electromagnetic matrix elements, given in Table III. Inform
tion concerning the calculation in the hyperspherical fram
provided in Appendix B. As mentioned previously for th
rms radii, the quadrupole moment of the 21 state and the
B(E2,21→01) value do not significantly depend on th
method adopted to remove forbidden states. The supers
metric approach gives a slightly stronger deformation,
both methods provide results consistent with experime
The difference is larger for theB(E2,02

1→21) value which

TABLE III. Electromagnetic properties of12C with the renor-
malized potentials. The bracketed values are obtained with a th
body potential~see Sec. V B!.

Projection Supersymmetry Experimenta

Q(21)(e.fm2) 5.2 ~4.6! 6.0 ~6.3! 663
B(E2,21→01

1) ~Wu! 4.1 ~2.2! 5.5 ~5.9! 4.6560.26
B(E2,02

1→21) (Wu) 3.5 ~3.3! 0.9 ~1.0! 8.061.1

aReference@32#.
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is in both cases underestimated by the model. From th
results we conclude that rms radii andE2 properties do not
provide a definite distinction between the forbidden-state
moval methods. Most likely, other properties probing the d
tails of the wave function, are necessary. In this conte
electromagnetic form factors might be more severe c
straints.

V. ASYMPTOTIC PROPERTIES

A. Three-body potentials and wave functions

Many physical processes essentially rely on asympt
properties of the wave functions~see, e.g., Ref.@33#!. The
present work offers a good opportunity to investigate th
properties along with the asymptotic behavior related to
three-body potential. In Fig. 8 we present diagonal and n
diagonal potentials for the6He system. Calculations ar
done by using the projection technique, and for typical v
ues ofgK. The centrifugal term is not included. A strikin
feature is that the decrease of the diagonal part is very s
at large distance. As expected, most potentials decreas
1/r3 @18#. Very larger values~typically r.40 fm) must be
considered to have negligible contributions, if one compa
with the low binding energy of6He. On the other hand, a
similar property holds for the nondiagonal potentials th
cannot be neglected forr<40 fm. This supports the conclu
sion that manyK values must be considered to get a go
accuracy@6#. The corresponding wave functions are given
Fig. 8 in a linear scale. As expected, theK52 component is
dominant. It represents 71% and 21% of theS50 and S
51 wave functions, respectively~see Table II!.

Let us discuss the asymptotic properties of the wave fu
tions. When all potentials are negligible, Eq.~14! gives, for
larger values,

xgK
Jp ~r!→AgK

Jp r1/2KK12~kr!, ~47!

where k is the wave number,Kn(x) is a modified Besse
function of ordern, and AgK

Jp is the amplitude of the wave
function at large distances. AsymptoticallyKn(x) tends to

e-
9-9
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Kn~x!→Ap/2x exp~2x!. ~48!

In Fig. 9 we show the radial wave functionsxgK
Jp (r) in a

logarithmic scale, which provides more detail concerning
long-range part. For,x5,y50,2,4, we have taken the com
ponentn50 and repeated the calculation for severalKmax
values (Kmax54 to 24! by readjusting the strength of th
potential in order to reproduce the experimental binding
ergy of 6He. For,x5,y50, the asymptotic behavior is a
most linear in the logarithmic scale, as expected from E
~47! and~48!. The amplitudesAgK

Jp slightly depend onKmax.
On the contrary, components with,x5,yÞ0 behave in a
different way. All these components present a node at la
distance, beyond 10 fm. This node is pushed up to lar
values asKmax increases, and tends to infinity. For low
values ofKmax ~sayKmax<16) the slope of the wave func
tion between 5 and 20 fm is quite sensitive toKmax. Even
with Kmax524 which provides the binding energy with a
accuracy of 1024 MeV, this external node plays a role
When,x andKmax increase, the accuracy of the long-ran
wave function requires even more basis functions. Of cou
these problems do not arise for the dominant,x5,y50
terms in the wave functions. However, our numerical ana
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V
( ρ

) 
(M

eV
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eV
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0,0,16

0,0,8
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FIG. 8. ~a! Diagonal potentials of6He ~without the centrifugal
term!. The labels stand for (,x ,,y ,K). ~b! Nondiagonal potentials
the curves correspond to the coupling with (0,0,0). The diago
potential (0,0,0)~including the centrifugal term! is shown as a dot-
ted line.~c! 6He partial wave functions.
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sis shows that higher components require largeKmax values
to get a good accuracy on their asymptotic behavior. T
property is not typical of the Lagrange-mesh method, and
expected to hold in any three-body method using hyp
spherical coordinates. In particular, the supersymmetry
proach presents the same behavior.

In order to go deeper in this analysis, we have calcula
the wave functions in a Gaussian basis,

xgK
Jp ~r!5rK15/2(

i 51

M

CgKi
Jp exp~2n ir

2!, ~49!

where the width parametersn i are chosen in a geometri
progression

1/An i5a0x0
i 21 . ~50!

Of course, this method does not present the advantages o
Lagrange-mesh technique~see the discussion in Sec. IV B!,
but the differences with the Lagrange basis~37! would show
up possible deficiencies in the long-range region. With ty
cal values (M520, a050.3 fm, x051.3), energies and
wave functions are identical to those of Fig. 9 with a ve
high accuracy. In particular, the nodes observed in Fig. 9
obtained at the same location. The wave functions with b
bases are undistinguishable at the scale of Fig. 9.

al
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FIG. 9. Modulus of6He wave functions for different (,x ,,y ,K)
values. The values ofKmax are given as labels.
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B. Use of three-body forces

As discussed in Sec. IV, three-body calculations usu
underestimate the binding energy if one uses origi
nucleus-nucleus potentials. The experimental energies h
been reproduced by renormalizing the two-body interacti
This procedure is widely used in microscopic calculatio
where the force between free nucleons must be modifie
account for the presence of other nucleons inside
nucleus; it provides effective forces that are adapted
several-nucleon systems. Renormalized nucleus-nuc
forces, however, modify two-body asymptotics. This is ob
ous here with the12C nucleus where8Be becomes bound
with the renormalization factor required to reproduce the12C
binding energy. For6He, this factor is quite close to unity
and the changes on thea-n phase shift are not significan
Another approach has been suggested by Fedorov and Je
@17#, who introduce a three-body force in the Hamiltonia
without modifying the original two-body interaction. Th
three-body forceV123(r) is chosen as

V123~r!52
V3

11~r/r3!3
, ~51!

wherer3 is taken as 5 fm@18#, andV3 is fitted to reproduce
the three-body binding energy.

For 6He, the renormalization factor isl51.0044 or 1.027
according to the projection method~see Table I!. Accord-
ingly, very smallV3 values are needed (V350.2 MeV and
V350.1 MeV, respectively!. The changes in the wave func
tions are negligible. Since12C requires larger renormaliza
tion factors, V3 is more important~see Ref. @17#!: V3
519.3 MeV with the projection method, andV3523 MeV
with the supersymmetric method. The spectra are given
dotted lines in Fig. 5, and spectroscopic properties in Ta
III. Qualitatively, the energy spectrum is not different fro
the renormalization approach. Except for theB(E2,21

→01) value, the differences between the two procedures
less than 10%. This is confirmed by an analysis of the w
functions. In Fig. 10 we plotx000(r) for the 12C ground
state. As discussed previously, the projection method and
supersymmetric method provide very different wave fun
tions, although spectroscopic properties are similar. C

-0.2

0

0.2

0.4

0.6

0 5 10 15

ρ (fm)

χ(
ρ)

 (f
m

-1
/2

) supersymmetry

projection

FIG. 10. 12C radial wave functions for,x5,y5K50. The full
curves correspond to the renormalization of thea-a potential, and
the dotted curves to the use of a three-body force.
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versely, the introduction of a three-body force does not s
nificantly affect the wave function, as soon as the bind
energy is reproduced.

VI. CONCLUSION

In this work, we have used the Lagrange-mesh metho
solve the three-body Schro¨dinger equation in hyperspherica
coordinates. This method has been used in several o
fields of nuclear and atomic physics, and is fast and accur
Matrix elements of the potential do not require any integ
over the hyper-radius, but a calculation of the potential va
at the mesh points. In addition, the basis functions are
thogonal to each other, which strongly reduces numer
problems due to the accuracy of the method.

The technique has been applied to6He and 12C, which
are typical of weakly bound and strongly bound nuclei,
spectively. We have addressed the problem of two-body
bidden states, which must be removed in the three-body
culation. The projection technique has been compared w
the supersymmetric approach, by calculating rms radii, qu
rupole moments andE2 transition probabilities in12C.
These quantities do not enable us to discriminate betw
both the techniques. Other observables, such as electro
netic form factors should help in probing the wave functio
with more detail. With the originala-a potential of Buck
et al. @23#, the ground-state energy of12C is strongly under-
estimated. Introducing a renormalization factor is equival
to using an effectivea-a potential and provides realisti
results for spectroscopic properties.

In a numerical point of view the projection method r
quires high accuracy as exemplified in Sec. IV. This probl
is not significant when the number of forbidden states
small, as in6He, but gets more important for a larger num
ber of forbidden states. The treatment of heavier syste
such as16O1a1a, for example, involves many two-bod
forbidden states and is expected to raise important nume
problems due to the accuracy. In this respect, the supers
metric approach is simpler since it avoids the projector.

The asymptotic behavior of the partial components p
sents some remarkable features. For,x5,y50, it is consis-
tent with the expected modified Bessel function. For oth
components, it systematically displays a node which mo
to larger distances whenKmax increases. This feature doe
not depend on the basis, as exemplified by our second
culation with a Gaussian basis.

The Lagrange-mesh method also offers a good oppo
nity to investigate continuum three-body states@34#. To this
end, the complex scaling method, limited to resonances
the R-matrix method are ideal complements to the pres
study for the description of three-body continuum states.
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APPENDIX A

In this appendix we provide some information about t
calculation of matrix elements of the projector~42!. In the
basis, Eq.~40!, the coupling scheme is (,x,y)L(sxsy)SJ,
which is well adapted to the potential, but not to the opera
~42!. We denote the spins of particles 2 and 3 assx andsy ,
respectively~we assume here that the core has a spin ze!.
Using usual transformation coefficients, we have

^F̃gKi
JMp~x,y!uc,s j~x!Y,s jm~Vx!&

5d,,x(j y

^ jm jyM2muJM&

3W~,,s, j ,,y ,sy , j y ,L,S,J!

3Y,ysyj ymy~Vy!wgKi , j
Jp ~y!, ~A1!

where coefficientsW and functionswKg i , j
Jp (y) are obtained

from

W~,x ,sx , j x ,,y ,sy , j y ,L,S,J!

5@~2 j x11!~2 j y11!~2L11!

3~2S11!#1/2H ,x sx j x

,y sy j y

L S J
J ~A2!

and

wgKi , j
Jp ~y!

5N K
l xl yE

0

` x,x12y,y

~x21y2!(,x1,y)/2
Pn

l y11/2,l x11/2S x22y2

x21y2D
3 f̂ i SAx21y2

h Dc,s j~x!dx. ~A3!

As mentioned in Sec. III C, two-body forbidden-stat
c,s j(x) are expanded over a Lagrange basis, and the G
approximation is used to evaluate this integral; we have

wgKi , j
Jp ~y!

5N K
l xl yh2

1/2(
k51

N2

l2k
1/2Dk

,s j
xk

,x12y,y

~xk
21y2!(,x1,y)/2

3Pn
l y11/2,l x11/2S xk

22y2

xk
21y2D f̂ i SAxk

21y2

h
D ~A4!

with xk5h2uk . The use of Lagrange meshes therefore
duces this integral to a simple sum. Finally, the matrix e
ment of the projectorP, j is computed as
04430
r

ss

-
-

^F̃gKi
JMpuP, j uF̃g8K8 i 8

JMp &

5d,,x
d,,

x8
d,y,

y8(j y

W~,,s, j ,,y ,sy , j y ,L8,S8,J!

3W~,,s, j ,,y ,sy , j y ,L,S,J!

3E y2wgKi , j
Jp ~y!wg8K8 i 8, j

Jp
~y!dy. ~A5!

The integral overy is evaluated numerically by using th
trapeze method.

An example is shown in Fig. 11 where we present so
functionsw(y) involved in the calculation of the projecto
matrix elements@see Eqs.~A3! and~A4!#. The calculation is
performed for6He, with N530 andh50.3 fm. The lower
and upper panels correspond to Lagrange functions 30
15, respectively. These functions vanish at the 30 m
points except one. This makes functionsw(y) oscillating
with a maximum, which is at large distances for high-ord
functions. This requires thea-a forbidden-states@c,s j(x) in
Eq. ~A3!# to be very accurate in a wide range.

APPENDIX B

In this appendix, we briefly describe the calculation of t
electromagnetic matrix elements. For three particles,
electric and magnetic operators read

y (fm)

i=30

0

1

5

4

i=15

0

1

4

FIG. 11. Functionsw01(y) involved in the matrix elements o
the forbidden-state projector@see Eq.~A4!#. The calculation is per-
formed for 6He, ,x5,y5S50, and for differentn values~labels!.
Index i refers to the Lagrange function associated with the hyp
radius.
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M lm
E 5e(

i

3

Zi ur i2Rc.m.ulYl
m~V r i2Rc.m.

!,

M 1m
M 5A 3

4p(
i

3 FmN

Zi

Ai
, im1m isimG , ~B1!

where Rc.m. is the center of mass coordinate,mN is the
nuclear magneton (mN5e\/2mNc) and m i is the magnetic
moment of particlei. For magnetic operators we limit ou
selves to dipole components since, in practice, other m
polarities are not used.

By using Eq. ~1!, we have, for the electric operato
(Z235Z21Z3 ,A235A21A3) as follows:

M lm
E ~x,y!5eFZ23S 2A1

A D l

1Z1S A23

A D lGM lm
E ~y!

1eFZ2S 2A3

A23
D l

1Z3S A2

A23
D lGM lm

E ~x!

1e(
k.0

l21

alkS 2A1

A D kFZ2S 2A3

A23
D l2k

1Z3S A2

A23
D l2kG@M km

E ~y! ^ M l2km
E ~x!#lm,

~B2!

where the relative operators are defined as

M lm
E ~x!5S x

Am23
D l

Yl
m~Vx!,
s

-

04430
i-

M lm
E ~y!5S y

Am (23)1
D l

Yl
m~Vy!, ~B3!

and constantalk reads

alk5F 4p~2l11!!

~2k11!! ~2l22k11!! G
1/2

. ~B4!

If the external particles are identical, matrix elements invo
ing crossed terms vanish forl52, and only the first two
terms of the right-hand side of Eq.~B2! remain.

A similar calculation for theM1 operator provides

M 1m
M ~x,y!5A 3

4pH mN

Z23A1
21Z1A23

2

AA23A1
,x,m

1mN

Z2A3
21Z3A2

2

A2A3A23
,y,m1mNAA1A2A3

A23
2 A

S Z2

A2

2
Z3

A3
D ~x3py1y3px!m1(

i
m isimJ , ~B5!

wherepx andpy are the momenta associated withx andy.
The matrix elements of these operators between b

functions are calculated as described in Sec. II B. Integra
over (Vx ,Vy) is performed analytically, and integration ove
the hyperangle is performed numerically. Owing to t
Gauss approximation, integration over the hyper-radius
trivial.
.
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