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Three-body systems with Lagrange-mesh techniques in hyperspherical coordinates
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We apply the Lagrange-mesh technique to three-body systems defined in hyperspherical coordinates. The
method is applied t6He (described as+n+n) and *°C (described ast+ a+ «), and is shown to be fast
and accurate. To deal with two-body forbidden states, we compare the usual projection method with the use of
supersymmetric equivalent potentials. Both approaches provide similar spectroscopic properties, although the
wave functions can be quite different. We also show that an accurate description of the three-body asymptotics
requires bases with large hypermomenta.
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[. INTRODUCTION approach can be chosen to solve this problem. Either the
potential is expanded in multipol¢8] or the Jacobi coordi-
The hyperspherical coordinates and their main propertiesates undergo a pseudorotation that transforms the hyper-
for three-particle systems are available for a long tihe  spherical harmonics into another basis &t As we are
The hyperspherical harmonics meth@dHM) was first ap- interested in a method where only numerical values of the
plied in the context of nuclear reactions by DelN&$ and  potential should be used, we choose to apply the latter tech-
the main tools of its mathematical formalism for three andnique. One important advantage of the HHM is that forces
more particles were derived by SmifB,4]. The HHM al-  depending on angular momentum, which are often encoun-
lows transforming a many-body Scliinger equation into a tered in nuclear physics, or three-body forces, can be treated
set of coupled differential equations depending on the singlavithout any modification of this approach.
dimensional coordinate, the hyper-radius. In order to calculate bound-state wave functions and en-
The HHM has a long story with many applications in ergies by solving the coupled hyperrradial equations, we em-
atomic and nuclear physi¢5,6]. In the following, we focus ploy the Lagrange-mesh methdd0-14. The Lagrange-
on three-body problems. Besides the important three-nucleomesh method is an approximate variational calculation that
problem, the interest for the HHM has been renewed irresembles a mesh calculation. This property is obtained by
nuclear physics with the discovery of halo nuclei with a two-using a basis of Lagrange functions, i.e., indefinitely differ-
neutron hald7]. In first approximation, these systems can beentiable orthonormal functions that vanish at all points ex-
treated as a three-body system composed of an inert core andpt one of an associated mesh. This basis corresponds to a
of two “halo” neutrons. The accurate study of the bound truncation of a complete basis. The simplification comes
state and continuum properties of these exotic nuclei is curfrom the use of the Gauss quadrature approximation corre-
rently a problem of high interest. sponding to this mesh. Because of this Gauss quadrature, the
A number of methods are able to treat three-body probpotential matrix elements are replaced by their values at the
lems. In the HHM, the wave function is expanded in a seriesnesh points. Strikingly, in spite of its simplicity, the
of hyperspherical harmonics, a complete basis set definedagrange-mesh method appears to be as accurate as the cor-
over a compact domain. The hyperspherical harmonics deesponding variational calculatidii4]. For the hyperradial
pend on four angles giving the spatial orientation of twocoordinate, the selected Lagrange mesh involves the zeros of
Jacobi coordinates and one dimensionless variable related taguerre polynomials and the Lagrange functions are regu-
their ratio, known as the hyperangle. With this expansion, amarized, i.e., multiplied by some power of the hyper-radius
infinite system of coupled differential equations is obtainedallowing a good representation of wave function properties
which must be approximately solved with an appropriatenear the origif11,13. The resulting method is mathemati-
truncation. In this system, matrix elements of the potentiakcally equivalent to, but simpler than, a hyperspherical-
appear between hyperspherical harmonics. Calculating thesermonics calculation with an expansion based on Laguerre
matrix elements is rendered complicated by the fact that onlpolynomials for the hyperradial coordinate. In order to estab-
one of the two-body relative coordinates appearing in thdish the validity of the present approach, we compare it with
potential can enter the Jacobi-coordinate set, which serves treference calculation performed with such a Laguerre ba-
define the hyperspherical-coordinate system. Two types dis, i.e., polynomials multiplied by a decreasing exponential.
The calculation is performed in a numerically exact way.
The Lagrange-mesh method is illustrated with two ex-
*Present address: Optoelectronics Group, Cavendish Laboratorgmples. The first one is th&He halo nucleus described as a
Madingley Road, Cambridge CB3 OHE, United Kingdom. three-body system made up of anparticle and two neu-
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trons. This physical example is interesting because of itperspherical coordinates, dependingkoithis set of coordi-
small binding energy that implies a large spatial extension ohates is known to be well adapted to the three-body Schro
the wave function and hence a slow convergence. It alsdinger equation.

raises the problem of the forbidden state that appears in each Assuming two-body forces only, the Hamiltonian of the
a-n subsystem, and which will be removed by two differentsystem is given by

techniques. The second example is the triplesystem,

where eachy is a pointlike boson interacting with the other 3

ones throughe-a effective forces. A 3 description of'%C H :izl Ti+i2< Vij(rj=ri), (4)

has been used by several authors, using different methods N .
[15-17. This problem is more academic because it does naj,

provide an accurate description of the “shell-model” states,,jes interaction. For the sake of clarity, only the radial

of *C. However, it is well known[15,17 that this defi- dependence is written. Howevev;; may also depend on
ciency can be eliminated by using an appropriate three-bodyor coordinates, such as momentum or sientral and
force to simulate nonlocal effects. In addition, it is Interest-gyin_orbit components are included in our applicatjors

ing as a test because it involvgs several forbidden states f. e hyperspherical system, this Hamiltonian is rewritten as
each subsystem, the Coulomb interaction, and full symmetri-

ereT,; is the kinetic energy of particle andV;; a nucleus-

zation. We also analyze the limits of validity of that model X
for the description of*’C. H=Tomt Tyt > Vi L (5)
In Sec. Il, the HHM is summarized. In Sec. lll, the regu- i<j \/I
larized Lagrange-mesh method based on Laguerre polynomi-
als is described. Applications ttHe and'°C are presented WhereT,, is the center of mas&.m) kinetic energy.
and discussed in Sec. IV. Section V is devoted to the Let us define the set of angles
asymptotic properties of three-body wave functions. Con-
cluding remarks are presented in Sec. VI. Q5= (a;, 0,0y, (6)
Il. THEORETICAL BACKGROUND which enables us to rewrite the kinetic-energy term of
Hamiltonian(5) as
A. Hyperspherical formalism
The theory of the HHM is well known; we refer the h2 [ 9> 5 9 K2AQg)
reader to Refs[9,7,18 for details. Here, we define the no- To=- Z_mN ﬁJ’; %_ 2 ' @)
tation and present the basic properties of the hyperspherical P P
formalism.

whereK? is a five-dimensional angular moment(i§9]. Its
eigenfunctions, with eigenvalud§(K+4), are the hyper-
spherical harmonics, and are written as

Let us consider three nuclei with mass numb&rgex-
pressed in units of the nucleon masg), and space coordi-
natesr;. We define a set of Jacobi coordinates

€yt bt LM
Xe= iy (= 17), yKL,\yAL(Qs)—fﬁK y(a)[Yex(Qx)@’Yey(Qy)] L. (8
Airi+Ar; The quantum numbef is the hypermomentum, and extends
Yi= VGjk| Tk™ A+A] ) (1) the concept of angular momentum to three-body sysf@hs

The set of hyperspherical coordinafee., the value ok in
where {,j,k) is an even permutation of (1,2,3), and whereEd. (1)] can be chosen freely. Here we will be dealing with

the (dimensionlessreduced masses are defined as systems involving a zero-spin cokgeneralization can be
found in Ref.[20]), defined as particle 1. Hence the natural
mij=AA(A+A), set of coordinates isxg,y;), and indexk=1 will be dropped

hereafter. In Eq(8), we have[9]
k= (Ai+ADAT(A+A+AY). 2
. . . . ¢£X€V(a):J\/"ley(COSa)'x(Sina)'VP'nyH’ZJ” 1/2(COS o),
Equations(1) define six coordinates that are transformed to (9)
the hyperspherical coordinates as

and the normalization facto¥/ erey is given by

PP=XE Yk,
Vi Ay 2nH(K+2)(n+ 1+ 1,+1)1 ]2
a= arctanx— , (3 K 3 3 '
k r n+|x+§1“ n+Iy+§
where the hyper-radius is independent ok, and wherex,
varies between 0 and/2. With the angular variable@Xk ~K=6,—¢y 10
=(0x.0x) andQy =(6y,,¢y,), Egs.(3) define a set of hy- n= 2 ' (10

044309-2



THREE-BODY SYSTEMS WITH LAGRANGE-MESH . . . PHYSICAL REVIEW @7, 044309 (2003

wheren is a positive integer, anB'nVHmX+ Y2(x) is a Jacobi m=myama(— 1)t b= mmay(— 1)K, (18)

polynomial [21]. Introducing the spin componentSMs

yields the basis functions with total angular-momentym ~ Where is the parity of particle. If particles 2 and 3 are

identical, we have the selection rule

IM o Oyl
ny(Q5)_[yKLy(QS)®XS]JMI (11) (_1)€X+S+T:_1’ (19)
where indexy stands for {,{,LS). _ S andT being the total spin and isospin of the system com-
Wave functiong11) are used to expand the solution of the hnqeq hy these particles. In this case, partial waves which do
three-body Schidinger equation not satisfy Eq(19) are removed from the basis. F&iC, all
particles are identical, which means that the wave function
Xk t be invariant for any particle permutation. In other
T,+ > Vi —E|WwM7=0, 12) Mus rany p b on. :
’ 2‘1 N */Mij (12 ¥vords the wave function must be replaced by its symmetric
orm

as
\I’JMﬂ(pa‘()’S)_)’\PJMW(p!Q&l)+\IIJM7T(p195,2)

\PJMW(p,Qs):p—S’ZEK XR(PYIW(Qs), (13 +WIMT(5 O ), (20)
v

. . . . and the wave function is symmetrized through further
where 7 is the parity, and where the radial wave functions Raynal-Revai transformations.

XJ(p) are to be determined. The role of the>? factor is
to cancel out the first derivative in the kinetic ener@y.
Next, expansiorf13) is inserted in the Schoinger equation

(12), which leads to a set of coupled differential equations  In microscopic cluster models, where antisymmetrization
between all nucleons is taken into account, the existence of

forbidden states in nucleus-nucleus systems is well estab-
Xok(p) lished[22,23. The role of forbidden states can be simulated
by additional(unphysical states in the nucleus-nucleus po-
tential[23]. In two-body systems, these additional states are
+ Z VJK7,TY, Ky(p)XJyTK,(p)zo, (14 not considered for investigating properties of the system.
K’y ' However, for three-body systems, a special treatment is nec-
essary to remove forbidden states, as they would introduce
unphysical eigenvalues of the Hamiltonian. The effect of
Pauli blocking in three-body models has been addressed in
detail by Thompsoret al. [18], who investigate different
techniques to remove two-body forbidden states.
Since coordinate, is adapted to the first term, it is deter-  Here, we consider two methods to deal with forbidden
mined directly as statesi(i) the projection techniqu24] and(ii) a supersym-
metric transform of the nucleus-nucleus poterted]. In the
projection method, the nucleus-nucleus potentig(x) is
YIR(Q5)dQs. replaced by

(16)

B. Removal of Pauli forbidden states

—E

A% [ d®2  (K+3/2(K+5/2)
2my d_p2 p?

where the potential term is given by

Jm Jm(1 Jm(2 Jm(3
VK’V’,Ky(p):VK’Ey’),Ky(p)+VK’Ey’),K7(p)+VK’Ey’),Ky(p()i5)

p COS

V23

Ve (0= [ 9V

Vi (0= Vi 0+ A [ 00X (0], (D)
The second and third terms are first determined inxthand f
X3 coordinate systems,_ and the_n transformed tocgheystem wheref runs over all two-body forbidden-state(x); in
with the Raynal-Revai coefficientst, £y ¢xty)k [9]- We  particular, it may include different angular momenta. In Eq.
have (21), A is a constant energy, taken much larger than the
oo cha(;glcteristic energies of the systeftypically A~10°
Ity () )= e’ <y (00). (1 —10° MeV). The role of the projector in E¢21) is to move
yKLML( ) ezf: <€X€y|€X€y>KLyKLML( B the forbidden states up to very high energies. The final re-
sults must be, up to the accuracy of the model, insensitive to
In practice, the integrations ovél, and (), are performed the choice ofA.
analytically, whereas integration over is carried out nu- The second method considered here is to replace potential
merically with the Gauss-Legendre approximation. For largeV;;(x) by its supersymmetric partner
p values, matrix elements of the potential vary rapidly with

X7y

the hyperangler. Typically, we use 60 points for the Gauss- Vij(x)—W/ij(x). (22

Legendre quadrature, which provides a very good accuracy 5

for all considerec values. PotentialV;;(x) is phase equivalent td;;(x), i.e., the phase
The parity of the system is given by shifts are identical, but does not contain unphysical states.
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The role of forbidden states is simulated by a short-range
repulsive core. As long as scattering cross sections are con- fi(u)=(-1)

cernedV;;(x) andvij(x) provide identical results. However,
the associated wave functions are different since supersymvhereLy(u) is a Laguerre polynomial, and where the mesh
metric wave functions do not present nodes corresponding tpointsu, to uy are given by

the forbidden states. The study of three-body systems there-

fore offers a good opportunity to analyze the differences be- Ln(uj)=0. (29)
tween both approaches.

- apbn(u)
|ui1/2 e—u/2

u—u; ' 28)

The Gauss-Laguerre quadrature is then obtained with the

weights[21]
Ill. LAGRANGE-MESH TECHNIQUES WITH
HYPERSPHERICAL COORDINATES eui
. Ni=——— . (30
A. General definitions ui[|_,’\l(ui)]2

In the preceding section the coordinatélenotes a hyper- : . . .
radius andx a relative coordinate between two particles. Inggsisbﬁjsr']i(tfﬁés dgor;/(\;(ta\é)eerhg?/zIniireesrtllngthserLZIFS?s?;ﬁﬁe?e
order to treat them simultaneously, the coordinate in the . properly at :
Therefore, we introduce a regularization fac{dd,12]

resent section is denoted @as . : X
P A Lagrange basi10] is defined in relation with a set of which can be fitted to each case. We consider the Lagrange-
Laguerre basis defined by

mesh pointsu; e(0,2), called a Lagrange mesh. The
Lagrange functions arll orthonormal functiond;(u) veri- R u\n
fying at theN mesh pointsy; the Lagrange conditions fi(u)=(J) fi(u), (32)
I
(Ui ) =N"2s . . . .
fiCui) =\ “0ir, @3 with u; given by Eq.(29). This basis is not exactly orthogo-
nal but is still orthogonal at the Gauss approximation. Notice

i.e., each functiorf;(u) vanishes at all mesh points except atthat the Lagrange conditiof®3) is still satisfied.

u; . The constanty; appearing in Eq(23) are the weights of

fo G\ 1%
the Gauss quadrature approximation associated with the 1€ Gauss approximatiof, =—A{"f,(u;) for the
mesh, kinetic-energy matrix elements leads after a straightforward

calculation to

N
f g(uydu~ >, A g(uy). (24) TC=(12u?) " —12n%+24n— 8+ (4N+2)u; — U?]
0 k=1 (32)

As a result of the Lagrange conditio(®3), the basis func- and, fori#i’,
tions f;(u) are orthogonal at the Gauss approximation. They

are even exactly orthonormal when the Gauss quadrature is . i ui“,_‘?’/2 (2n=3)u; —(2n—1)u;
exact for products of Lagrange functions, T =(=1) 12 (w—u)? . (33
i i — Ui
foofi(u)fi,(u)du: Sir. (25)  Atthe Gauss approximation, the centrifugal term is given for
0 anyn by
This is, for example, the case when Lagrange functions are *q PP —2
constructed from orthogonal polynomidtk0]. o fitwu=fi (Wdu=u; “4;, (34)

The Gauss approximation is applied to the potential ma-
trix elements. The approximate potential matrix is then diagwhich is exact fom=3/2. We shall make use of Eq&1) to
onal, (34) in two particular cases.
Near theI olriginr=0, two-body relative wave functions
” behave as' !, wherel is the relative orbital momentum.
Jo VT (Wdu=V(u) g . (28 This behavior is well simulated by an expansion in basis
functions (31) with n=1 [13,14. Indeed, this basis is ex-
The kinetic-energy matrix elements of the operatoractly equivalent to a set of Laguerre polynomials multiplied
—d?/du? can also be calculated at the Gauss approximatioly u exp(—u/2), whose linear combinations are able to re-
as produceu'"? for small u provided that the basis sizé is
large enough, i.e., larger than
TO ==\ (). (27) The functions of the hyper-radiyg)z(p) behave near the
origin aspX "2 which cannot be reproduced with a combi-
The resulting expressions only depend ondhandu;,, but  nation of polynomials. Hence, in this case, we use ithe
are not necessarily symmetric. =3/2 regularization. The basis is then exactly equivalent to a
Let us first define the Lagrange-Laguerre basis set of Laguerre polynomials multiplied by*?exp(—u/2).
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Linear combinations of these basis functions are able to reafter integration over angle, involve the potential at the
produce auk "2 behavior for smalli provided that the basis mesh points only; they are diagonal with respect. to
sizeN is large enough, i.e., larger th&h+ 1. The choicen
=5/2 might seem more obvious but for this value the matrix

TC is not symmetric. It is thus preferable to choose 3/2.

C. Treatment of forbidden states

As mentioned before, Pauli forbidden states are accounted
Forn=23/2 as well as fon=1, the kinetic-energy matrix is for in two ways. Using a supersymmetric transformation to

symmetric at the Gauss approximation. Moreover, the cent!® Nucleus-nucleus potentials in quite simplgs in Eq.
trifugal matrix element¢34) are exact. This would not be (16) is replaced by,; as explained in Sec. 11 B. The treat-

true forn>3/2. ment of the Pauli projection is more tedious, and is outlined
For n=3/2, the exact overlaps are given by in this section.
The projector involved in Eq(21) explicitly depends on
, 2N+ 1+ uj+u; coordinatex; accordingly the basis wave functions should be
J' fiwt (udu=8;,+(-1)"" T expressed in systenxy) in place of (p,{s). Let us define
I!
39 DUy =YW Qo) (o), (40)

The exact kinetic-energy matrix elements read . .
and introduce the projector

oty e lTum
! ” 4Uiui/ P:{ZJ P€j1 (41)

Equationg35) and(36) are rather easily established with the
technique explained in the appendix of REil1]. For n
=1, the exact overlaps and kinetic-energy matrix elements

T, are given in Refs[11,14). PeF% |10 Y IMQ) ) (S0 YEIM(Q,) .
(42

wherePy; is given by

B. Matrix elements

Let us expand the hyperradial funct|0|j|é/K(p) in the Iq this definitign,¢€5j(x) is the r_aglial part o_f the Pauli for-
Lagrange basis as bidden states; we do not explicitly write indéx Angular

functionsY‘sIm(Q,) are given by
Xox(p)=h" 1’22 CIxifip/h), (37) YEIMQ,) =Y (20X, (43

whereN is the number of Lagrange functions, ané scal- X* being a spinor with spirs. The radial part is expanded
ing parameter that should be optimized according to th&Ver & set of Lagrange functioms(x/h,) as

physics of the problem. WheN is large enough, the sensi- N,

tivity with respect toh should be negligible. In practice, this 0Siron _ —1/2 esjn

scaling parameter is used to reduce the number of basis Po(x)=h, gl Di'gk(x/hy), (44)
states. Numerical examples will be shown in the following

section. Inserting expansid@B7) in the Schrdinger equation  whereN, andh, are the number of functions and the scale
(12) provides factor adapted to the two-body problem. According to the

discussion of Sec. IIIAE;k are Lagrange functions defined

> (HyKI ki~ Edyy 5KK,5“,)C377K,V:0, (3g)  with n=1. We, therefore, introduce two different Lagrange
y'K'i! meshes: one for the three-body wave functions and another

for the two-body forbidden states. Since the proje®gy is

multiplied by a large constant, slight numerical inaccura-

cies in the two-body forbidden states are amplified. A precise
ii.e description of thay*sI(x) function is therefore required. Us-
p2 i ing a Lagrange expansion for the forbidden states is not nec-
essary, but enables us to simplify integrals involving those
wave functions. Technical details are given in Appendix A.

where matrixH’™ reads

2
HJﬂ' _ h
'yKi,'y’K’i’_ZmN

(K+3/2)(K+5/2)
+

2
i

yK err(X)5u’ (39)

OkK'
yy' UKK
X

IV. APPLICATION TO °®He AND %C
+V A. Conditions of the calculations
with x;=hu; . In this definition, the kinetic-energy matrix Here we apply the Lagrange-mesh technique to two sys-
elements are given by Eq82) and(33). Matrix elements of tems: (i) the ®He nucleus is a well-established three-body
the potential term are computed according to Bd) and, system with a low binding energy, which has been studied by

044309-5



P. DESCOUVEMONT, C. DANIEL, AND D. BAYE PHYSICAL REVIEW (57, 044309 (2003

TABLE |. Energies and rms radii ofHe and *°C. \(r?) is .0.54 \ \
i i - i i 12 +
obtained with 1.47 fm for thex-particle radius. L C (02)
-0.56 |
Projection Supersymmetry
6 — — — —
He A=1 A=1.0044 \=1 A=1.027 058 b
E(MeV) -0.87 -0.97 -038  —097 " (@)
(p?) (fm) 5.20 5.11 5.72 5.21 -0.60 ' ' : ' : '
V(r?y (fm) 2.44 2.41 2.63 2.44 0 0.2 0.4 0.6 0.8
¢ A=1 A=1.096 A=1 A=1.088
-7.20 | 12 N+
E(MeV) 026  -729  —-101  -7.29 L 7C ()
V(p?) (fm) 8.24 6.36 8.24 6.84 % a4 r
V(r?y (fm) 2.80 2.35 2.80 2.46 S 728}
W 73|
many authors{ii) the *2C nucleus is strongly bound with r ) . . . . .
respect to the @ threshold 7.27 MeV) and therefore 136 o 02 04 06 08

should be considered as a compact system. The aim of the

next sections is to illustrate the Lagrange-mesh technique  _geg
and to discuss its numerical accuracy. Only bound states of
®He and '°C will be considered. We usei?/2 amu
=20.9008 MeV frm, m,=4.0026 amu and  my
=1.0087 amu.

For ®He the a-neutron potentialV,, is taken from
Kanadaet al. [26]. This potential contains one forbidden
state for¢ =0. Then-n potential is chosen as the Minnesota -0.968
interaction[27]. For the a-a potential, used for*?C, we
adopt the force derived by Buak al.[23], which accurately h (fm)
reproduces thea-a phase shifts up to 20 MeV. This
¢-independent potential involves two forbidden statesfor FIG. 1. Energies off?C (0;) (a), **C (g.s) (b), and ®He (c)
=0, and one fo =2. The screened Coulomb interaction is with respect to the three-particle threshold versus the Lagrange pa-
a point-sphere function, used according to R28]. rametersN and h. The projection method is used to remove two-

body forbidden states.

-0.967

0 0.2 0.4 0.6 0.8 1

B. Accuracy of the Lagrange-mesh method . . . . .
y grang in both works for different coordinates. This can easily be

The main parameters in the method are the number ofhecked by dropping any angular-momentum dependence in
functionsN and the scale parameterThe results should be poth calculations. Then the converged results coincide.
independent of their values, but they can be optimized to For 1°C, the a-o potential must be renormalized by a
deal with bases as small as possible. As it is well knownarger factor\ to reproduce the experimental binding energy.
[18], three-body calculations underpredict the binding enerThjs is not surprising for a compact system where nonlocal
gies. For halo nuclei, the wave function sensitively dependgffects are expected to play a role. Notice that this procedure
on the binding energy, and a correction to the potential mushffects the two-body asymptotics sinBe is slightly bound
be performed to reproduce the three-body state. with A=1.096. This problem can be avoided by introducing

First, calculations are performed with=30 andh=0.3 3 three-body forc§17,18, which will be discussed in Sec.
fm (typical values ofN, andh, are similay. We useK,,x v B. Without renormalization, théHe energy is higher with
=24 and 30 for®He and **C, respectively. Energies and sypersymmetry than with the projection method, whereas the
radii are given in Table I. The rms radiu§r?) is calculated  sjtuation is reversed fof’C. Qualitatively, both techniques
from the \{p?) expectation value by assuming theparticle  of forbidden-state removal yield similar results: the energies
radius \(r?),=1.47 fm[19]. and rms radii do not differ significantly. In Fig. 1, we illus-

For ®He, the renormalization factor of the a-n interac-  trate the accuracy of the Lagrange-mesh method with differ-
tion is very close to unity, as expected for a Borromean sysentN andh values. As expectgd 0], a plateau occurs, which
tem, where the three particles are located far from each othelere is located arounkl=0.3 fm for *“C andh=0.4 fm for
For \=1, the obtained energy 0.87 MeV is close but not SHe. This plateau gets broader when the number of functions
identical to the value-0.73 MeV obtained in Ref13], un- N increasesN=40 provides a wide range of acceptable
der exactly the same model conditions. The reason of thgalues. The size of the basis can be reduced$a30 with-
difference lies in the angular-momentum dependence of theut any loss of accuracy. Notice that, when the accuracy is
a-n potentials, which is not treated exactly when the core{poor, the energy can bleelow the correct valuegsee, for
nucleon system of coordinates is employed, as in R&. It  example, values foN=20). This is not possible in exact
is not due to the Lagrange-mesh approximation that is usedariational calculations, but appears here from the Gauss ap-
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-0.960 1 2
I ——exact, N=20 II
-0.962 | —@— exact, N=30 | 0
— o — B — Gauss, N=20 1
% -0.964 r - © — Gauss, N=30 II S\ 2
2 I \ | @)
w -0.966 \ é
L \ w 4
-0.968 AN
L & 6
_0970 I 1 I 1 I 1 I 1
0 0.2 0.4 0.6 0.8 1 8 L L
0 10 20 30
h (fm)
8

FIG. 2. ®He binding energy as a function of the mesh dize
with the exact calculatiorifull symbolg and with the Gauss ap-
proximation(open symbols ForN=30, the exact and approximate 6 r 06— O—0—0—0—0—0—0—90
results are almost superimposed.

—--rms —-o-Q -=B(E2)

proximation used to compute the matrix elements. i
To test the validity of the Gauss approximation, we have -
calculated the®He binding energywithout this approxima-
tion. The overlap and kinetic energy are calculated with Egs.
(35 and(36), respectively; the potential matrix elements are 0 : ! : !
obtained from an accurate numerical integration over the 0 10 20 30
hyper-radius. The results, which correspond to an exact
variational calculation, are presented in Fig. 2. Near the
variational minimum (~0.4 fm), the Gauss approximation  rG, 3. Convergence of the energypper panéland of the rms
is accurate within 10°. With N=30, the differences are radius,Q(2") and B(E2,2"—07) in 12C (lower panel with re-
insignificant in a wide range dfi values. As expected, the spect toK,,,,. Quadrupole moments, rms radii, aBE2) values
validity of the Gauss approximation is more limited fnr are given ine fm?2, fm, and Wu, respectively.
=20. Notice that the exact variational calculation requires
much longer computer times. The matrix is not anymore di- As mentioned before, one of our aims is to compare two
agonal, and each matrix element is an integral, in place of &ethods to remove forbidden states. The projection tech-
single evaluation of the potential at the mesh points. In adnique does not affect the nucleus-nucleus potential, but in-
dition the overlap matrix is not unity, which may raise accu-troduces nonlocality in the three-body Hamiltonian. In Fig.
racy problems. For large bases, the increase of computé; we display the convergence versus the projection ampli-
times is at least a factor of 10. tude A. Since®He contains one forbidden state in baim
Figure 3 shows the convergence with respecKtq,, of  potentials, the convergence is reached with ratherAowal-
the 0" states in®He and'2C, including the § excited state ues. Conversely, the-« potential involves three forbidden
of 2C. Since®He contains a spin-orbit component, the num-states which makes project(®1) quite complicated. In such
ber of basis function® ., [in other words, the number of Case, very accurate numerical conditions are required. In par-
'}/K Va|ues in Eq(ls)] increases qu|ck|y With(max- We tiCUIar the a-a forbidden states must be described with a

have as follows: high accuracy[28].

Nmax= (Kmaxt 2)(Kmax+4)/8 for SHe 0
=(Kpmaxt4)?/16 for 12C (Kpa/2 even ol
=(Kmaxt 2)(Kmaxt 6)/16 for %C (Kpa/2 0dd.

(45)

FCO)

E (MeV)

For the largesK ., considered hereK(,,,= 24 for ’He, FCOD
Kmax=30 for 12C), we haveN =91 andN,=72, re-
spectively. These values are quite reasonable to have a good
convergence, but are not optimized for thg 6tate of 1°C ‘ ‘ ‘ ‘ ‘
which would requireK ,,,, significantly larger than 30. The o 102 10° 10° 10 10° 102

rms radii, illustrated in the lower panel of Fig. 3 reach con- A

vergence for rather low values &f,,,,; for both systems

Kmax= 12 provides the rms radii with an accuracy better than FIG. 4. Convergence of the energy with respect to the projection
1%. amplitudeA.
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exp projection super C. Spectra and wave functions

e 0 The spectrum of*?C is illustrated in Fig. 5. With the

0r o o* nonrenormalizedv-a potential A =1) the ground-state en-

0" ergy is far from experimenit29]. Introducing the renormal-
ization factors given in Table | provides more realistic ener-
gies although the spectra are too compressed. Further tests of

4t ot the wave functions will be provided by electromagnetic tran-

L e 2" sition probabilities(see Sec. IV D

2 The ®He and '?C wave functions are plotted in Figs. 6

o and 7, respectively. The probabili®(x,y) is defined as

210

E (MeV)

M aeLoss sl a-ioss P70y [ dodo vy,

FIG. 5. Energy spectrum of’C with and without renormaliza-
tion factors. Energies are given with respect to the tBreshold.

_ which is plotted as a function of the relative coordinates
Dashed lines correspond to the use of a three-body force.

(r,_n=+2x andr ., ,= \3/4y for ®He, andr,.,=x/+/2 and
F o-aa= 213y for 12C).

For ®He, we obtain the well known wave function, with
two maxima. This wave function is similar to the wave func-

Y
RN

IS R ==
SN .
OO

i
T

,,”, tion obtained by Voroncheet al. [30] who find a maximum
7 SRS BN R

7 R
) R

R at larger ,.,, values(“dineutron” configuration, and one at
large r,, values(“cigar” configuration). The amplitude of

NS

=

T
s
R

i i the first maximum is larger by about 50%.
< = Both methods of forbidden-state removal provide very
similar wave functions, and would be undistinguishable at
the scale of the figure. The situation is different f€ (Fig.
FIG. 6. ®He probabilityP [see Eq.(46)] for the S=0 compo- 7, th_ere the projection tech_niqug is re;ponsible for several
nent. Distances are given in fm. node lines in the wave function; in particular, the @ave
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QNS

Projection Supersymmetry
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FIG. 7. 1C probability P [see Eq(46)] for the ground and D states. Distances are given in fm.
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TABLE Il. Weights of K components irfHe and**C.

K SHe 2c (o)) 2C (03)
Projection Super. Projection Super. Projection Super.

0 3.64x10°? 3.44x10°2 2.21x10° 1 6.41< 101 2.44x10°1 5.54x 1071
2 9.28<10° ! 9.20x 107! 0 0 0 0

4 2.62x10°3 7.86x10°2 3.09x 10! 3.39x 101! 7.49x<10°2 2.11x10°1
6 2.45< 10?2 2.72x107°2 2.26x10°2 3.01x10°8 2.56x10° 1 2.07x10° 1
8 4.78<1073 6.19x 102 1.35x10°! 1.57x 102 1.01x10°* 8.42x 108
10 2.50< 1072 2.85x10°° 2.50x 107t 1.11x10°3 3.23x10°2 8.98x 108
12 7.8610°4 1.07x10°3 2.83x10°2 4.74<10°4 2.03x10° 1 7.58<10° 8
14 2.92x10°4 3.34x 1074 2.37x10°2 6.97x10°° 6.81x10° 2 7.37x10°4
16 2.34x 1074 3.03x10°4 6.90x 1073 2.02x10°5 2.86x10°2 5.94x 104

18 577105 6.42<10°° 2.49x10°° 5.12x10°° 3.94x 1072 5.60x 104
20 5.06<10°° 6.35<10° 8.43x 1074 1.55x 108 4.78x10°3 9.01x10°°
22 2.10<10°° 2.34x10°° 3.00x10° 4 5.50< 10"’ 4.84x10°3 8.74x10°°
24 1.56<10°° 1.76x10°° 9.57x10 ° 2.35x10° 7 4.15x10°° 9.99x 10 °

function presents many local maxima and minima. Usings in both cases underestimated by the model. From these
supersymmetric potentials for the ground state provides eesults we conclude that rms radii a&@ properties do not
smooth density distribution with a maximum neaj,  provide a definite distinction between the forbidden-state re-
waa~3 fm. This result is consistent with the micro- moval methods. Most likely, other properties probing the de-
scopic tripleer description of'C, which succeeds in repro- tails of the wave function, are necessary. In this context,
ducing the low-energy spectrum and spectroscopic properticectromagnetic form factors might be more severe con-
with an equilateral-triangle structure of size close to 3 fmStraints.
[31].

Table Il shows the weights of the differelitcomponents V. ASYMPTOTIC PROPERTIES
in the ®He and °C wave functions. For®He, the K=2
component represents about 90% of the wave function. The

projection and supersymmetry methods provide very similar Many physical processes essentially rely on asymptotic
results. For'?C, the weights are spread over sevetaial- ~ Properties of the wave functiorisee, e.g., Refl.33). The

ues. TheK=2 component vanishes, as a consequence of thiresent work oﬁers a good opportu'nity to inyestigate these
symmetry of the system ' properties along with the asymptotic behavior related to a

three-body potential. In Fig. 8 we present diagonal and non-
diagonal potentials for théHe system. Calculations are
D. Electromagnetic transition probabilities done by using the projection technique, and for typical val-

Spectroscopic properties of’C are complemented by U€S of yK. The centrifugal term is not included. A striking
electromagnetic matrix elements, given in Table I1l. Informa-f€ature is that the decrease of the diagonal part is very slow

tion concerning the calculation in the hyperspherical frame i€t I;;lrge distance. As expected, most potentials decrease as
provided in Appendix B. As mentioned previously for the 1/p” [18]. Very largep values(typically p>40 fm) must be

rms radii, the quadrupole moment of the &tate and the considered to have negligible contributions, if one compares
B(E2,2" —0") value do not significantly depend on the with the low binding energy ofHe. Qn the other hgnd, a
method adopted to remove forbidden states. The supersyrgimilar property holds for the nondiagonal potentials that
metric approach gives a slightly stronger deformation, buf@nnot be neglected fpr<40 fm. This supports the conclu-

both methods provide results consistent with experimentSion that manyK values must be considered to get a good
The difference is larger for thB(E2,0; —2*) value which accuracy[6]. The corresponding wave functions are given in
Fig. 8 in a linear scale. As expected, tie=-2 component is

i 0, 0,
TABLE Ill. Electromagnetic properties ot’C with the renor- dominant. It represents 71./0 and 21% of Be 0 and S
=1 wave functions, respectiveligee Table I\

malized potentials. The bracketed values are obtained with a three- . g .
body potentiaksee Sec. V B Let us discuss the asymptotic properties of the wave func-
tions. When all potentials are negligible, EG4) gives, for

Projection Supersymmetry Experimént largep values,

~r

A. Three-body potentials and wave functions

Q(2")(e.fm?) 52(4.6  60(63 63 k()= AP K4 a(Kp), (47
B(E2,2"—07) (Wi 4.1(2.2 5.5(5.9 4.65+0.26
BEE2’0§—>2‘1*; EWE)) 3 553 3; 0 951 0; 80+11 where « is the wave numberK(x) is a modified Bessel

function of ordern, and A“;{{ is the amplitude of the wave
®Referencd 32]. function at large distances. Asymptotically,(x) tends to

044309-9



P. DESCOUVEMONT, C. DANIEL, AND D. BAYE PHYSICAL REVIEW (57, 044309 (2003

o I
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o
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V(p) (MeV)

o

(@) (fm™*?)

(b)

'
(4]

22,4

0.2 . .
0 5  p(fm) 10 15

p (fm)

FIG. 8. (a) Diagonal potentials ofHe (without the centrifugal P . )
term). The labels stand for¢(, ¢, ,K). (b) Nondiagonal potentials; FIG. 9. Modulus of°He wave functions for differentf(, ¢, ,K)
the curves correspond to the coupling with (0,0,0). The diagonaY2!ues- The values df ., are given as labels.

potential (0,0,0)Xincluding the centrifugal terins shown as a dot- . ) .
ted line.(c) ®He partial wave functions. sis shows that higher components require lafgg, values

to get a good accuracy on their asymptotic behavior. This
property is not typical of the Lagrange-mesh method, and is
expected to hold in any three-body method using hyper-
spherical coordinates. In particular, the supersymmetry ap-
oach presents the same behavior.

In order to go deeper in this analysis, we have calculated
the wave functions in a Gaussian basis,

Ko (X)— m/2x exp(—X). (48)

In Fig. 9 we show the radial wave functioa&]/’,{(p) in a r
logarithmic scale, which provides more detail concerning thé3
long-range part. Fof,=¢,=0,2,4, we have taken the com-
ponentn=0 and repeated the calculation for sevefa|,,
values Knhax=4 to 24 by readjusting the strength of the M

potential in order to reproduce the experimental binding en- Xor(p)=pKTS2Y, Clriexp(—vip?), (49
ergy of ®He. For{,=¢,=0, the asymptotic behavior is al- =1
most linear in the logarithmic scale, as expected from Egs. . ; :
(47) and(48). The amplitudesAf/}z slightly depend orK . ».. \grr(])zrreest?i?)n\/vldth parameters are chosen in a geometric
On the contrary, components withy=¢,#0 behave in a

different way. All these components present a node at large 1IN =ax . (50)
distance, beyond 10 fm. This node is pushed up to larger

values asK, increases, and tends to infinity. For lower Of course, this method does not present the advantages of the
values ofK . (say K ax=16) the slope of the wave func- Lagrange-mesh techniqusee the discussion in Sec. I\,B

tion between 5 and 20 fm is quite sensitiveKkq,,,. Even  but the differences with the Lagrange ba@% would show

with K,.,= 24 which provides the binding energy with an up possible deficiencies in the long-range region. With typi-
accuracy of 10% MeV, this external node plays a role. cal values =20, ag=0.3 fm, xo=1.3), energies and
When ¢, andK,,,, increase, the accuracy of the long-rangewave functions are identical to those of Fig. 9 with a very
wave function requires even more basis functions. Of courshigh accuracy. In particular, the nodes observed in Fig. 9 are
these problems do not arise for the domindpt=¢,=0 obtained at the same location. The wave functions with both
terms in the wave functions. However, our numerical analy-bases are undistinguishable at the scale of Fig. 9.
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0.6 versely, the introduction of a three-body force does not sig-
1 nificantly affect the wave function, as soon as the binding
o4t a . supersymmetry energy is reproduced.
Eoatf /RN VI. CONCLUSION
= LA/ Prolection TR In this work, we have used the Lagrange-mesh method to
_\// v \/ solve the three-body Schiimger equation in hyperspherical
. . coordinates. This method has been used in several other
02 o 5 10 15 fields of nuclear and atomic physics, and is fast and accurate.

Matrix elements of the potential do not require any integral
p (fm) over the hyper-radius, but a calculation of the potential value
at the mesh points. In addition, the basis functions are or-
thogonal to each other, which strongly reduces numerical
problems due to the accuracy of the method.
The technique has been applied %e and **C, which
are typical of weakly bound and strongly bound nuclei, re-
) ) ) spectively. We have addressed the problem of two-body for-
As discussed in Sec. IV, three-body calculations usuallyyigden states, which must be removed in the three-body cal-
underestimate the binding energy if one uses originakyation. The projection technique has been compared with
nucleus-nucleus potentials. The experimental energies hayge supersymmetric approach, by calculating rms radii, quad-
been reproduced by renormalizing the two-body interactionrupme moments andE2 transition probabilities in°C.
This procedure is widely used in microscopic calculationsthese quantities do not enable us to discriminate between
where the force between free nucleons must be modified tgoth the techniques. Other observables, such as electromag-
account for the presence of other nucleons inside th@etic form factors should help in probing the wave functions
nucleus; it provides effective forces that are adapted tQuith more detail. With the originak-e potential of Buck
several-nucleon systems. Renormalized nucleus—nuclgtgt al.[23], the ground-state energy &fC is strongly under-

forces, however, m;)dify two-body asymptotics. This is obvi-gstimated. Introducing a renormalization factor is equivalent
ous here with the”C nucleus wheré’Be becomes bound 4 using an effectiven-a potential and provides realistic

with the renormalization factor required to reproduce tf@  (esyits for spectroscopic properties.
binding energy. ForfHe, this factor is quite close to unity, In a numerical point of view the projection method re-

and the changes on the-n phase shift are not significant. quires high accuracy as exemplified in Sec. IV. This problem
Another approach has been suggested by Fedorov and Jenggmot significant when the number of forbidden states is
[17], who introduce a three-body force in the Hamiltonian, smgaji, as in®He, but gets more important for a larger num-

without modifying the original two-body interaction. The per of forbidden states. The treatment of heavier systems,

FIG. 10. '°C radial wave functions fof,=¢,=K=0. The full
curves correspond to the renormalization of ther potential, and
the dotted curves to the use of a three-body force.

B. Use of three-body forces

three-body force/;4p) is chosen as such as*®O+ a+ «, for example, involves many two-body
forbidden states and is expected to raise important numerical
Viodp)=— L (51) prob!ems due to _the_accurac_y. In_this rgspect, the. supersym-
1+(plps3)® metric approach is simpler since it avoids the projector.

The asymptotic behavior of the partial components pre-

wherepg is taken as 5 fnj18], andV; is fitted to reproduce sents some remarkable features. Fpr€,=0, it is consis-
the three-body binding energy. tent with the expected modified Bessel function. For other

For ®He, the renormalization factor }s= 1.0044 or 1.027 components, it systematically displays a node which moves
according to the projection methddee Table )l Accord-  to larger distances wheld,,,, increases. This feature does
ingly, very smallV; values are needed/g=0.2 MeV and not depend on the basis, as exemplified by our second cal-
V3;=0.1 MeV, respectively The changes in the wave func- culation with a Gaussian basis.
tions are negligible. SincéC requires larger renormaliza- The Lagrange-mesh method also offers a good opportu-
tion factors, V5 is more important(see Ref.[17]): V5 nity to investigate continuum three-body stafdd]. To this
=19.3 MeV with the projection method, ané;=23 MeV  end, the complex scaling method, limited to resonances, or
with the supersymmetric method. The spectra are given a$e R-matrix method are ideal complements to the present
dotted lines in Fig. 5, and spectroscopic properties in Tablstudy for the description of three-body continuum states.
[ll. Qualitatively, the energy spectrum is not different from
the renormalization approach. Except for tiB{E2,2"
—07) value, the differences between the two procedures are
less than 10%. This is confirmed by an analysis of the wave This text presents research results of the Belgian program
functions. In Fig. 10 we plotygeop) for the *2C ground  P5/07 on interuniversity attraction poles initiated by the
state. As discussed previously, the projection method and thBelgian-state Federal Services for Scientific, Technical, and
supersymmetric method provide very different wave func-Cultural Affairs. P.D. acknowledges the support of the Na-
tions, although spectroscopic properties are similar. Contional Fund for Scientific ReseardRNRS), Belgium.
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APPENDIX A 1.0

In this appendix we provide some information about the
calculation of matrix elements of the project@?). In the
basis, Eq.(40), the coupling scheme ist(f,)L(s,s,)SJ,
which is well adapted to the potential, but not to the operator
(42). We denote the spins of particles 2 and 3saands,,
respectively(we assume here that the core has a spin)zero
Using usual transformation coefficients, we have

30 40
(DITY )Y EIM(Q,))

02
=8¢, 2 (imiyM—m|IM) o | i=30
Ty .
XW(,s,j,€y,sy,]y,L,S,J) é 0.0
X Y fySyiym y(Q) )‘PyK| ](y), (A1) ol b
where coefficientdV and functionsey”; ;(y) are obtained 0.2 : ' '
from 0 10 20 30 40

y (fm)

W(€X*S><’j><’€y’sy 'jy*L*S*‘J) FIG. 11. Functionsp®"(y) involved in the matrix elements of

_ ; ; the forbidden-state projectgsee Eq(A4)]. The calculation is per-
= + + +
[@h+ D2y + D@L +1) formed for °He, ¢,=¢,=S=0, and for differenn values(labels.
€ Sy iy Indexi refers to the Lagrange function associated with the hyper-
12 . radius.
X (2S+1)1Y €y sy y (A2)
L S J
< i/'\KAlW|P€J|(DJ’>AK7Tr|r>
and . .,
:(anw;(sfyg;JZ W(€,s,j,¢y,Sy,iy,L",S",J)
y
Jmr
@5k i(Y) . .
7 oy XW(€,s,j,€y,Sy.jy,L,SJ)
:Nuny y 12+ 12 XY | .
K 0 (x2+y2)(fx+€y)/2 X2+y2 X f yZ‘PyT(-l J(y)QD.}/K/i/'j(y)dy' (AS)
L (XY
X | ——— | ¢*Si(x)dx. (A3)
h The integral ovelry is evaluated numerically by using the

trapeze method.
As mentioned in Sec. IlIC, two-body forbidden-states An example is shown in Fig. 11 where we present some
J'I(x) are expanded over a Lagrange basis, and the Gaussnctions ¢(y) involved in the calculation of the projector
approximation is used to evaluate this integral; we have  matrix element$see Eqs(A3) and(A4)]. The calculation is
performed for®He, with N=30 andh=0.3 fm. The lower
(y) and upper panels correspond to Lagrange functions 30 and
VK'I 15, respectively. These functions vanish at the 30 mesh
+2y(y points except one. This makes functiog$y) oscillating
A'x th/ZE )\1/2DfSJk— with a maximum, which is at large distances for high-order

(Xg+y?) bt functions. This requires the-« forbidden-state§y/ () in
Eq. (A3)] to be very accurate in a wide range.
ly+ 1720+ 112 X— Y2\ [ VXicty?
XPn > 2 f; h (A4)
Xty

APPENDIX B

with x,=h,u,. The use of Lagrange meshes therefore re- In this appendix, we briefly describe the calculation of the
duces this integral to a simple sum. Finally, the matrix ele-electromagnetic matrix elements. For three particles, the
ment of the projectoP; is computed as electric and magnetic operators read
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3
M E#: eEi Z; | ri— Rc.m.l)\Y';\L(Qri _Rc.m.)’

[33 [ z
MJ’\./IPL: EEI |:MNK:€ilL+MiSilL

where R; , is the center of mass coordinatg, is the
nuclear magnetony(y=efi/2myc) and u; is the magnetic

: (B1)

moment of particld. For magnetic operators we limit our-

PHYSICAL REVIEW @7, 044309 (2003

A

y
M5 (y)= Y{(Qy), (B3)
Y Weean M
and constanty, reads
B 4 (2N +1)! 12 B4
KT 2k + 1)1 (2N — 2k + 1)! (B4)

selves to d|p0|e components since, in practice’ other mu|t|l.f the external partiCleS are identical, matrix elements involv-

polarities are not used.

ing crossed terms vanish for=2, and only the first two

By using Eq. (1), we have, for the electric operators terms of the right-hand side of E¢B2) remain.

(Zo3=Z,+2Z3,A5=A,+A;) as follows:

E —Ar . Az . E
MNLGY) =€ Zog ——| +Zy| =] | ML)
2| 22| 2 22| e
+elZ, A_23 +2Z3 A_23 M)\,U-(X)

A1 k A—k
—A; —A3>
+e — |Z
kzo axk( A ) [ 2( Aoz

+Z3

Az A—k
A—ZS) }[M@(y)wfkﬂ(x)w,
(B2)

where the relative operators are defined as

N

M, (0= YHQ,),

X
VHM23

A similar calculation for theM 1 operator provides

3 Z, AT+ Z1A5,
MY (xy) =/ E[ MNW€

Z,A%+ ng§€
+un——HCy ,+
PN A ARy Y N

X,

A1A2A3( Z,
AZA A,

_A_z (Xxpy+yxpx)ﬂ+§i: /uisi,u,]a (BS)
wherep, andp, are the momenta associated witlandy.

The matrix elements of these operators between basis
functions are calculated as described in Sec. Il B. Integration
over (Q,€,) is performed analytically, and integration over
the hyperangle is performed numerically. Owing to the
Gauss approximation, integration over the hyper-radius is
trivial.
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