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Liquid-gas coexistence and critical behavior in boxed neutral, isosymmetric pseudo-Fermi matte
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A schematic model is presented that allows one to study the behavior of interacting neutral isosymmetric
pseudo-Fermi matter, locked in a thermostatic box. As a function of the box volume and temperature, the
matter is seen to show all of the familiar characteristics of a van der Waals gas, which include the coexistence
of two phases under certain circumstances and the presence of a critical point.
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I. INTRODUCTION

The possibility that a liquid-gas phase transition in fin
nuclei may manifest itself via copious production
intermediate-mass fragments in energetic heavy-ion re
tions has driven both, theoretical and experimental studie
nuclear multifragmentation over more than a decade
prominent role in theoretical considerations is played by
concept of a freezeout configuration@1,2#. This concept im-
plies the existence of a definite volume, within which t
system reaches a state close to thermal equilibrium. W
the existence of an effective freezeout volume may be de
able, the concept itself is useful for understanding the p
sible behavior of nuclear matter under various conditio
With such a didactic strategy in mind, and as an extensio
earlier studies modeling the behavior of finite Fermi syste
@3–5#, the present study considers neutral, isosymme
pseudo-Fermi matter confined to a box of definite volume
evaluates the isothermal behavior of such matter and its
pendence on box volume and temperature. The utmost
plicity of the formalism allows one to gain insight into phys
cal phenomena that may be obscured in more rigor
approaches.

While the present formalism can be readily extended
include isoasymmetric matter, inclusion of a Coulomb int
action would require a number of qualitative changes,
resulting from the long range of the Coulomb interactio
Notably, the presence of a Coulomb interaction renders
cial extensive thermodynamic quantities nonadditive. For
ample, the Helmholtz free energy of a charged two-ph
system is no longer equal to the sum of free energies o
separated gaseous and liquid parts. Furthermore, neithe
pressure nor the density of charged matter is constant
the volume of any single phase, depending not only on
geometrical configuration assumed by this phase, but als
that of the coexisting phase. The above, highly nonlin
features make it very difficult in the present formalism
include the Coulomb interaction in a satisfactory manner
common practice, this interaction is also disregarded in m
rigorous approaches to the liquid-gas coexistence~see, e.g.,
Ref. @6#, and references therein!.

II. THEORETICAL FORMALISM

The present study considers a scenario of neutral, isos
metric pseudo-Fermi matter of mass numberA, locked in a
spherical box of a volumeV, and kept at constant temper
0556-2813/2003/67~4!/044307~4!/$20.00 67 0443
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tureT. In the proposed formalism, thermostatic properties
the matter are modeled by two equations, the isochoric
loric equation of state and the zero-temperature equatio
state. The equilibrium state of the system is then found a
function of V andT, based on the requirement that the fr
energy of the system is minimal.

First, we consider homogeneous systems with cons
density throughout their volume, i.e., systems in states wh
only one phase is present. The isochoric caloric equation
state for such a system is taken in a simple form adequate
low-temperature Fermi gases

Etherm* 5aT2, ~1!

whereEtherm* is the thermal energy anda is the level density
parameter. The latter parameter is assumed to depen
matter density as

a5aoS r

ro
D 22/3

, ~2!

in accordance with the low-temperature Fermi gas mode
It is worthwhile keeping in mind that, for Fermi gase

Eq. ~1! is a good approximation only for temperatures th
are small compared to the Fermi energy, i.e., forT
!EFermi . Notably, for diluted or very hot Fermi system
with a matter density approaching zero,r→0, or for high
temperatures,T→`, the isochoric caloric equation of stat
approaches asymptotically that of a classical gas:

Etherm* 5
3

2
AT. ~3!

For the sake of simplicity and without loss of generali
the present study uses Eq.~1! over the full range of matter
densities and temperatures considered. The term ‘‘pseu
Fermi’’ matter is used to distinguish the matter conside
here from true Fermi matter. Note that for a noninteract
Fermi gas, the Fermi energy scales with the density
EFermi'39(r/ro)2/3 MeV. For interacting Fermi gases, th
energy is even higher, as it scales with the inverse of
effective nucleonic mass. Accordingly, the present concep
pseudo-Fermi matter provides a reasonably good approx
tion of true Fermi matter, in the most interesting domains
the plots discussed in Sec. III, notably, in the vicinity of th
critical point (Tc'10 MeV,EFermi,c'22 MeV).

The second defining equation, the zero-temperature e
tion of state, expresses the compressional~potential! energy
of the system as a function of the system volume or a
function of matter density. The present study adopts a h
©2003 The American Physical Society07-1
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monic approximation in the form used in the expandi
emitting source model@7#. Here, the in-medium nucleoni
~potential! energy changes quadratically with the relative d
viation of the actual matter density from the ground-st
density by an amount

ecompr5eBS 12
r

ro
D 2

. ~4!

In Eq. ~4!, ecompr andeB are compressional and groun
state binding energies per nucleon, respectively, andr and
ro are the actual and the ground-state matter densities
spectively. Equation~4! implies an effective ground-state in
compressibility constant ofKo518eB . Assuming eB
58 MeV, the effective incompressibility, including the e
fects of surface tension, equalsKo5144 MeV. Note that, for
infinite nuclear matter characterized byeB'16 MeV, the in-
compressibility constant turns out to be equal toKo
'288 MeV, in this harmonic approximation. The latt
value places the present harmonic approximation ‘‘neutra
between the currently considered limits of ‘‘soft’’ and ‘‘hard
equations of state for nuclear matter.

While the two defining equations~1! and~4! may be con-
sidered rather crude approximations, they do contain the
sential physics responsible for first-order phase transiti
and critical phenomena. Given these two equations, one
write expressions for all thermodynamic quantities charac
izing the system, including the Helmholtz free energyF. The
state of the system can then be found by minimizing the f
energy, for any box volumeV and temperatureT.

Based on Eq.~1!, one can write for the entropyS of a
homogeneous system

S5E
0

E* 1

T
de52AaEtherm* . ~5!

The free energyF for a homogeneous, single-phase sy
tem is given by

F5Etotal* 2ST5Ecompr* 1Etherm* 22aT25Ecompr* 2aT2. ~6!

For the sake of simplicity, the free energy is expressed
Eq. ~6! relative to a constant ground-state energy of the s
tem. Furthermore, using Eqs.~2! and ~4!, the free energy
@Eq. ~6!# can be rewritten in a form revealing explicitly th
important dependence on the matter densityr, i.e.,

F5EBS 12
r

ro
D 2

2aoS r

ro
D 22/3

T2. ~7!

Equation~7! allows one to write expressions for the sy
tem pressurep and the chemical potentialm as functions of
volume ~matter density! and temperature.

The pressurep can be expressed generally as the nega
partial derivative of the free energyF with respect to volume
V, at fixed number of nucleonsA and fixed temperatureT,
i.e.,

p52S ]F

]VD
A,T

5
1

A
r2S ]F

]r D
A,T

. ~8!
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Thus, for the case of pseudo-Fermi matter conside
here, one obtains, based on Eqs.~7! and ~8!,

p522eBroS 12
r

ro
D S r

ro
D 2

1
2

3
aoroS r

ro
D 1/3

T2, ~9!

whereeB andao are the binding energy per nucleon and t
level-density parameter per nucleon, respectively.

The chemical potentialm can be expressed generally
the partial derivative of the free energyF with respect to the
number of nucleonsA, taken at fixed volumeV and fixed
temperatureT, i.e.,

m5S ]F

]AD
V,T

. ~10!

Using Eqs.~7! and ~10! and noting further thatr5A/V,
EB5AeB andao5Aao , one obtains for the chemical poten
tial

m5eBF124
r

ro
13S r

ro
D 2G2

1

3
aoS r

ro
D 22/3

T2. ~11!

It is worth noting in Eq.~11! that, as a result of the re
quirement thatV is a constant, the magnitude of the chemic
potential differs significantly from the value of the free e
ergy per nucleon. For example, the contribution of therm
excitation to the chemical potential is only one-third of wh
constitutes the thermal part of the free energy per nucleo

III. LIQUID-GAS COEXISTENCE

Confined to a thermostatic box, matter will eventually fi
the available volumeV entirely such that the free energy o
the system is minimized. For noninteracting matter, the m
mum free energy always corresponds to a uniform den
distribution. This is generally not true for an interacting sy
tem. In particular, for interacting pseudo-Fermi matter at
minimum free energy, low-density and high-density pha
coexist.

For a two-phase system ofA nucleons at temperatureT
confined to a volumeV, the free energy can be written as
function of two variables, e.g., in terms of the volume of t
gaseous phaseVgas and the number of nucleons contained
this phase,Agas,

F5Fgas1Fliquid . ~12!

Inserting forFgas andFliquid the expressions given by Eq
~7! for the corresponding numbers of nucleons,Agas and
Aliquid , respectively, one obtains

Fgas5AgaseBS 12
Agas

Vgasro
D 2

2AgasaoS Agas

Vgasro
D 22/3

T2 ~13!

and

Fliquid5~A2Agas!eBF12
A2Agas

~V2Vgas!ro
G2

2~A2Agas!aoF A2Agas

~V2Vgas!ro
G22/3

T2. ~14!
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The condition for the minimum free energy can be e
pressed in form of two equations, reflecting requirements
dynamical and chemical equilibrium, respectively,

S ]F

]Vgas
D

T,Agas

5S ]Fgas

]Vgas
D

T,Agas

2S ]Fliquid

]Vliquid
D

T,Aliquid

5pgas2pliquid50 ~15!

and

S ]F

]Agas
D

T,Vgas

5S ]Fgas

]Agas
D

T,Vgas

2S ]Fliquid

]Aliquid
D

T,Vliquid

5mgas2m l iquid50. ~16!

Results of a numerical minimization of the free energy
a two-phase system are shown in Figs. 1–4. Figure 1
sents system isotherms, as predicted by the present for
ism, in a representation of system pressurep versus system
volume V. Note that Eqs.~13! and ~14! represent single-
phase states as special cases. A pure liquid/gas state is
among the possible outcomes of the calculations w
Agas/ l iquid50. As seen in Fig. 1, the isotherms feature se
ments representing pure liquid, pure gas, or, notably
liquid-gas coexistence ‘‘plateau.’’ The presence of such
existence plateaus does not come as a surprise, sinc
harmonic interaction term of Eq.~4! has the salient charac
teristics of a van der Waals interaction.

It is worth noting that the coexistence plateaus in t
calculation result naturally from the actual minimization
the free energy and are not obtained via the well-known p
nomenological Maxwell construct. Isotherms for hypothe
cal single-phase states are shown as dotted lines. These
isotherms feature domains of spinodal instability charac
ized by negative compressibility. The dashed curve in Fig
illustrates the boundary of the liquid-gas coexistence
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FIG. 1. Isotherms calculated for an197Au-like system. Dotted
lines illustrate isotherms for hypothetical single-phase matter, w
the dashed line visualizes the boundary of the liquid-gas coe
ence domain.
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main. The ‘‘summit’’ point of this curve represents the crit
cal point for the system and corresponds to a critical te
perature ofTc'10.0 MeV. At temperatures higher thanTc ,
the system can reside only in a single-phase, vapor state

A different representation of the liquid-gas coexisten
line is illustrated in Fig. 2. In this case, the temperatureT is
plotted versus the matter density, for points along the bou
ary of the liquid-gas coexistence line~dashed line in Fig. 1!.
In the domain below this curve, the system is in a two-ph
state. In this coexistence domain, the densities of gase
and liquid phases at a given temperature are defined by
intersection points of the coexistence curve with the horiz
tal line for T5const. On the left shoulder of the curve and
the domain further left to it, the system is in a pure gase
state, while on the right shoulder and in the domain furth
right to it, the system is in a pure liquid state. The differen

le
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FIG. 2. Liquid-gas coexistence line in the temperature ver
matter density representation, as predicted by the present
malism.
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FIG. 3. Isochoric caloric curves for boxed pseudo-Fermi mat
calculated for different volumes of the confining box, as indica
by labels.
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between liquid and gaseous phases vanishes for tempera
aboveT5Tc510.0 MeV.

The search for the minimum free energy for a given te
peratureT and a given volumeV yields the total excitation
energyEtotal* of the boxed matter, along with the correspon
ing volumesVgas/ l iquid and densitiesrgas/ l iquid of gaseous
and liquid phases. This allows one to construct isocho
caloric curves for the modeled system at different volumes
the confining box. A set of such caloric curves is illustrat
in Fig. 3. As expected, these curves do not feature plateau
the kind reported in various experimental studies@8#, but
show rather inconspicuous kinks at the locations on
boundary of the coexistence domain.

IV. CRITICAL BEHAVIOR

One of the salient features of critical behavior in van d
Waals systems is the presence of a singularity at the cri
point. When the system temperatureT approaches the critica
temperatureTc from below, the difference between the de
sities of coexisting liquid and gaseous phases is predicte
vanish according to a power law

r l iquid2rgas5C~Tc2T!b. ~17!
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FIG. 4. Critical behavior of densities of coexisting liquid an
gaseous phases at temperatures close to~and below! the critical
temperatureTc .
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In Eq. ~17!, C is a constant andb is the critical exponent.
The magnitude of the critical exponent can be extracted c
veniently by fitting a straight line to a double-logarithm
plot of (r l iquid2rgas) versus (Tc2T). Such a plot, obtained
in the present calculations, is shown in Fig. 4. The plot fe
tures, indeed, an approximately 2-MeV-wide linear dom
extending from the critical temperatureTc down to lower
temperatures. A linear fit to this domain allows one to extr
the ‘‘coordinates’’ of the critical point ofTc510.0 MeV, and
rc /ro50.42. Furthermore, it yields a value ofb50.51 for
the critical exponent.

Given the schematic nature of the present formalism,
predicted characteristics of the critical point are well within
reasonable domain that can be inferred from more soph
cated, but less transparent calculations.

V. DISCUSSION

A simple formalism has been presented that allows on
model the behavior of interacting neutral, isosymmet
pseudo-Fermi matter under the conditions of controlled v
ume and temperature. The formalism is shown to capture
essential physics of a first-order liquid-gas phase transit
The calculation demonstrates the characteristics of a nuc
liquid-gas coexistence in a certain domain of system par
eters and the presence of a critical point. While such cha
teristics are well expected, based on the similarity of
utilized form of the nuclear interaction to that of the van d
Waals interaction, the present formalism offers many did
tic benefits. For example, due to its simplicity, it offers cle
insight into physical phenomena it purports to describe an
relatively strict test bench for possible qualitative or ‘‘han
waving’’ arguments. The results obtained, while almo
trivial, may alert one to possible challenges found by mo
complete models.

The formalism presented here leaves ample room
further refinements, such as a more strict modeling
dilute Fermi matter, or the inclusion of isotopic and, pe
haps, Coulomb effects. At any rate, it offers a conveni
didactic tool to achieve a better understanding of nucl
thermodynamics.
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