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Liquid-gas coexistence and critical behavior in boxed neutral, isosymmetric pseudo-Fermi matter
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A schematic model is presented that allows one to study the behavior of interacting neutral isosymmetric
pseudo-Fermi matter, locked in a thermostatic box. As a function of the box volume and temperature, the
matter is seen to show all of the familiar characteristics of a van der Waals gas, which include the coexistence
of two phases under certain circumstances and the presence of a critical point.
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[. INTRODUCTION tureT. In the proposed formalism, thermostatic properties of
the matter are modeled by two equations, the isochoric ca-
The possibility that a liquid-gas phase transition in finite loric equation of state and the zero-temperature equation of
nuclei may manifest itself via copious production of state. The equilibrium state of the system is then found as a
intermediate-mass fragments in energetic heavy-ion readunction of V and T, based on the requirement that the free
tions has driven both, theoretical and experimental studies afnergy of the system is minimal.
nuclear multifragmentation over more than a decade. A First, we consider homogeneous systems with constant
prominent role in theoretical considerations is played by thelensity throughout their volume, i.e., systems in states where
concept of a freezeout configuratiph,2]. This concept im- only one phase is present. The isochoric caloric equation of
plies the existence of a definite volume, within which thestate for such a system is taken in a simple form adequate for
system reaches a state close to thermal equilibrium. Whiléow-temperature Fermi gases
the existence of an effective freezeout volume may be debat- x -
able, the concept itself is useful for understanding the pos- therm=2aT", @
sible behavior of nuclear matter under various conditionsyhereEy,,,,, is the thermal energy aralis the level density

With such a didactic strategy in mind, and as an extension gharameter. The latter parameter is assumed to depend on
earlier studies modeling the behavior of finite Fermi systemsnatter density as

[3-5], the present study considers neutral, isosymmetric _o
pseudo-Fermi matter confined to a box of definite volume. It a=a, ﬁ) 2
evaluates the isothermal behavior of such matter and its de- Po ’

pendence on box volume and temperature. The utmost sinjy accordance with the low-temperature Fermi gas model.

plicity of the formalism allows one to gain insight into physi- |t is worthwhile keeping in mind that, for Fermi gases,
cal phenomena that may be obscured in more rigorougq. (1) is a good approximation only for temperatures that
approaches. are small compared to the Fermi energy, i.e., for

~ While the present formalism can be readily extended ta<g__ .. Notably, for diluted or very hot Fermi systems,
include isoasymmetric matter, inclusion of a Coulomb inter-yitn 3 matter density approaching zego,-0, or for high
action would require a number of qualitative changes, a“temperatures]’—m, the isochoric caloric equation of state

resulting from the long range of the Coulomb interaction.anproaches asymptotically that of a classical gas:
Notably, the presence of a Coulomb interaction renders cru-

cial extensive thermodynamic quantities nonadditive. For ex- Ex =§AT ®)
ample, the Helmholtz free energy of a charged two-phase therm—2 =% 7
system is no longer equal to the sum of free energies of itS Eq the sake of simplicity and without loss of generality,
separated gaseous and liquid parts. Furthermore, neither thge present study uses Eq) over the full range of matter
pressure nor the density of charged matter is constant ovefensities and temperatures considered. The term “pseudo-
the volume of any single phase, depending not only on thggrmj» matter is used to distinguish the matter considered
geometrical configuration assumed by this phase, but also Qfkre from true Fermi matter. Note that for a noninteracting
that of the coexisting phase. The above, highly nonlineagg m; gas, the Fermi energy scales with the density as
features make it very difficult in the present formalism to Erermi~39(0/po)?® MeV. For interacting Fermi gases, this
include the Coulomb interaction in a satisfactory manner. "bnergy is even higher, as it scales with the inverse of the
common practice, this interaction is also disregarded in morggsective nucleonic mass. Accordingly, the present concept of
rigorous approaches to the liquid-gas coexiste(se®, €.9., pseudo-Fermi matter provides a reasonably good approxima-
Ref. [6], and references thergin tion of true Fermi matter, in the most interesting domains of
the plots discussed in Sec. lll, notably, in the vicinity of the
critical point (T,~10 MeV<Eggni.~22 MeV).

The second defining equation, the zero-temperature equa-

The present study considers a scenario of neutral, isosyntion of state, expresses the compressidpatentia) energy
metric pseudo-Fermi matter of mass numBerdocked in a  of the system as a function of the system volume or as a
spherical box of a volum¥, and kept at constant tempera- function of matter density. The present study adopts a har-

II. THEORETICAL FORMALISM
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monic approximation in the form used in the expanding Thus, for the case of pseudo-Fermi matter considered
emitting source mod€l7]. Here, the in-medium nucleonic here, one obtains, based on EG&.and(8),
(potentia) energy changes quadratically with the relative de-

2 1/3
viation of the actual matter density from the ground-state p=—2e€apo 1_ﬂ) ﬁ) +anpo<£) T2, (9
density by an amount Po) \ Po 3 Po
p\2 whereeg and«,, are the binding energy per nucleon and the
€compr= €a| 1— p—) (4)  level-density parameter per nucleon, respectively.
[0}

The chemical potentigh can be expressed generally as

In Eq. (4), €compr and g are compressional and ground- the partial derivative of the free energywith respect to the
state binding energies per nucleon, respectively, arahd ~ nhumber of nucleong\, taken at fixed volume/ and fixed
po are the actual and the ground-state matter densities, réemperature, i.e.,

spectively. Equatiori4) implies an effective ground-state in- 9F
compressibility constant ofK,=18eg. Assuming eg n= _A) . (10
=8 MeV, the effective incompressibility, including the ef- IR\

fects of surface tension, equdds =144 MeV. Note that, for Using Egs.(7) and (10) and noting further thap=A/V,

infinite nuplt_aar matter characterized by~16 MeV, the in- Eg=Aes anda,=Aa,, one obtains for the chemical poten-
compressibility constant turns out to be equal K ;

~288 MeV, in this harmonic approximation. The latter

value places the present harmonic approximation “neutrally” p p\?l 1 [p\%R,
between the currently considered limits of “soft” and “hard” K=¢s 1_4_O+3 ool | 3%\ 0, ™ 1
equations of state for nuclear matter. . L

While the two defining equationd) and(4) may be con- It is worth noting in Eq.(11) that, as a result of the re-

sidered rather crude approximations, they do contain the eQuirement thav'is a constant, the magnitude of the chemical
sential physics responsible for first-order phase transitionBotential differs significantly from the value of the free en-
and critical phenomena. Given these two equations, one caf9y Per nucleon. For example, the contribution of thermal
write expressions for all thermodynamic quantities charactereXcitation to the chemical potential is only one-third of what
izing the system, including the Helmholtz free enefgyThe constitutes the thermal part of the free energy per nucleon.
state of the system can then be found by minimizing the free
energy, for any box volum¥ and temperaturg. 1. LIQUID-GAS COEXISTENCE

Based on Eq(1), one can write for the entrop$ of a

Confined to a thermostatic box, matter will eventually fill
homogeneous system

the available volumé/ entirely such that the free energy of
E* 1 the system is minimized. For noninteracting matter, the mini-

S=f $d€:2\/aE?herm- (5  mum free energy always corresponds to a uniform density
0 distribution. This is generally not true for an interacting sys-

The free energyF for a homogeneous, single-phase sys-tem. In particular, for interacting pseudo-Fermi matter at the

tem is given by minimum free energy, low-density and high-density phases
coexist.
F=Efota~ ST=Efomprt Efherm 28T?=Efomp—aT?. (6) For a two-phase system @f nucleons at temperatufe

confined to a volume/, the free energy can be written as a

For the sake of simplicity, the free energy is expressed iffunction of two variables, e.g., in terms of the volume of the
Eq. (6) relative to a constant ground-state energy of the sysgaseous phasé,,s and the number of nucleons contained in
tem. Furthermore, using Eq§2) and (4), the free energy this phaseAg;s,
[Eq. (6)] can be rewritten in a form revealing explicitly the F—F  4+F. . (12)
important dependence on the matter dengity.e., gas ™ T liquid -

—213 Inserting forF 4,s andFiqiq the expressions given by Eq.
ﬁ) T2, ) (7) for the corresponding numbers of nucleows,,s and

Po Aliquid » respectively, one obtains

2
—-a,

F=EB(1—£

Po

Equation(7) allows one to write expressions for the sys- Agas s | 728
tem pressur@ and the chemical potential as functions of Fg,s= Agasfs( 1- v 9 ) —Agasao(VL> T2 (13
volume (matter densityand temperature. gasfo gas’o

The pressur@ can be expressed generally as the negative, 4
partial derivative of the free enerdgywith respect to volume

V, at fixed number of nucleon& and fixed temperaturé, A—Agas |2
ie., Fiiquia= (A—Agad€p| 1 — m}
gas/Po
JF 1 JF A—A —2/3
p:_(_> :_pz(_> ' ® —(A-A 9 T2 (14
Vv AT A ap AT ( gas) %o (V=Vgadpo 19
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FIG. 1. Isotherms calculated for ai’Au-like system. Dotted o ] o
lines illustrate isotherms for hypothetical single-phase matter, while T!G- 2. Liquid-gas coexistence line in the temperature versus
the dashed line visualizes the boundary of the liquid-gas coexistM@ttér density representation, as predicted by the present for-

ence domain. malism.

main. The “summit” point of this curve represents the criti-
gal point for the system and corresponds to a critical tem-
perature ofT .~10.0 MeV. At temperatures higher thap,

the system can reside only in a single-phase, vapor state.

The condition for the minimum free energy can be ex-
pressed in form of two equations, reflecting requirements o
dynamical and chemical equilibrium, respectively,

IF IF gas F liquid ~ A different representation of the liquid-gas coexistence
(av =(av _(&V- ' ) line is illustrated in Fig. 2. In tr_ns case, '.the temperatuiis
9as/ T A o 938/ T,Agas lauid/ 7 A i plotted versus the matter density, for points along the bound-
ary of the liquid-gas coexistence liidashed line in Fig. 1
=Pgas~ Piiquia =0 15 |n'the domain below this curve, the system is in a two-phase
state. In this coexistence domain, the densities of gaseous
and and liquid phases at a given temperature are defined by the
JF JF Pr=a intersection points of the coexistence curve with the horizon-
( :( gas _( "q“'d> tal line for T=const. On the left shoulder of the curve and in
9Agas TWgas 9Agas TVgas IAiiquid TV)iquid the doma_in further Igft to it, the system isin a pure gaseous
state, while on the right shoulder and in the domain further
= Mgas™ Mliquid= 0. (16)  right to it, the system is in a pure liquid state. The difference

Results of a numerical minimization of the free energy of
a two-phase system are shown in Figs. 1-4. Figure 1 pre- 15
sents system isotherms, as predicted by the present formal-
ism, in a representation of system presspingersus system
volume V. Note that Eqs(13) and (14) represent single-
phase states as special cases. A pure liquid/gas state is thus
among the possible outcomes of the calculations with
Agasiiquia=0. As seen in Fig. 1, the isotherms feature seg- 3
ments representing pure liquid, pure gas, or, notably, a= 6
liquid-gas coexistence “plateau.” The presence of such co-+
existence plateaus does not come as a surprise, since the 4

10

harmonic interaction term of Eq4) has the salient charac-
teristics of a van der Waals interaction.

It is worth noting that the coexistence plateaus in this
calculation result naturally from the actual minimization of
the free energy and are not obtained via the well-known phe-
nomenological Maxwell construct. Isotherms for hypotheti-
cal single-phase states are shown as dotted lines. These latter
isotherms feature domains of spinodal instability character-

—— Phase Coexistence
- - - Single Phase

illustrates the boundary of the liquid-gas coexistence doby labels.
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_ _  Of lara FIG. 3. Isochoric caloric curves for boxed pseudo-Fermi matter,
ized by negative compressibility. The dashed curve in Fig. kalculated for different volumes of the confining box, as indicated
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In Eqg. (17), Cis a constant ang is the critical exponent.
The magnitude of the critical exponent can be extracted con-
veniently by fitting a straight line to a double-logarithmic
plot of (pjiquia— Pgas) Versus T.—T). Such a plot, obtained
in the present calculations, is shown in Fig. 4. The plot fea-
tures, indeed, an approximately 2-MeV-wide linear domain
extending from the critical temperatuiie, down to lower
temperatures. A linear fit to this domain allows one to extract
the “coordinates” of the critical point of ;=10.0 MeV, and
pclpo=0.42. Furthermore, it yields a value gf=0.51 for
the critical exponent.

Given the schematic nature of the present formalism, the
0.505 predicted characteristics of the critical point are well within a
reasonable domain that can be inferred from more sophisti-
cated, but less transparent calculations.

(PrPy) (MeV/im’)

® Model
— Fit: pl—pg=0.429(Tc—T)

1 L1 11 || 1 1 1 L1 11 |+
2 3 4567 2 3 4567
0.1 1 10
(T.-T) (MeV) V. DISCUSSION
c

A simple formalism has been presented that allows one to
FIG. 4. Critical behavior of densities of coexisting liquid and model the behavior of interacting neutral, isosymmetric
gaseous phases at temperatures closeamd below the critical  pseudo-Fermi matter under the conditions of controlled vol-
temperaturel . . ume and temperature. The formalism is shown to capture the
o ) essential physics of a first-order liquid-gas phase transition.
between liquid and gaseous phases vanishes for temperatufgse calculation demonstrates the characteristics of a nuclear
aboveT=T,=10.0 MeV. _ liquid-gas coexistence in a certain domain of system param-
The search for the minimum free energy for a given teM-gters and the presence of a critical point. While such charac-
peratureT and a given volume/ yields the total excitation teristics are well expected, based on the similarity of the
energyE{,, of the boxed matter, along with the correspond-tjlized form of the nuclear interaction to that of the van der
ing volumesVgagiiquia and densitiegpgagiiquia Of gaseous  \waals interaction, the present formalism offers many didac-
and liquid phases. This allows one to construct isochorigic benefits. For example, due to its simplicity, it offers clear
caloric curves for the modeled system at different volumes Ofnsight into physica| phenomena it purports to describe and a
the confining box. A set of such caloric curves is illustratedrelatively strict test bench for possible qualitative or “hand-
in Fig. 3. As expected, these curves do not feature plateaus @faving” arguments. The results obtained, while almost
the kind reported in various experimental studi@3 but trivial, may alert one to possible challenges found by more
show rather inconspicuous kinks at the locations on theomplete models.

boundary of the coexistence domain. The formalism presented here leaves ample room for
further refinements, such as a more strict modeling of
IV. CRITICAL BEHAVIOR dilute Fermi matter, or the inclusion of isotopic and, per-

haps, Coulomb effects. At any rate, it offers a convenient
idactic tool to achieve a better understanding of nuclear
&hermodynamics.

One of the salient features of critical behavior in van der
Waals systems is the presence of a singularity at the critic
point. When the system temperatdrapproaches the critical
temperatureT . from below, the difference between the den-
sities of coexisting liquid and gaseous phases is predicted to ACKNOWLEDGMENT

vanish according to a power law .
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