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Simple correlated wave functions for the ground and some excited states ofsd shell nuclei
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Trial wave functions including angular momentum projection and deformation with central Jastrow and
linear-type correlations are calculated to study the ground state rotational band of the20Ne, 24Mg, 28Si, 32S,
and 36Ar nuclei and the ground state of40Ca. A systematic analysis of the competition among different
correlation mechanisms on the binding energy and other properties such as the root mean square radius and the
transition amplitudes of the rotational band is carried out. The one- and two-body radial densities and the
momentum distribution are obtained. All the calculations have been performed by means of the variational
Monte Carlo method.
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I. INTRODUCTION

A thorough study of nuclear bound states starting fr
nucleon-nucleon interactions requires the inclusion of b
short-range and medium- and large-range effects. Sh
range correlations are due to the highly repulsive core of
nucleon-nucleon potential and are very important to rep
duce correctly not only binding energies or internucleo
densities but also the tail of the momentum distributio
while at low momentum the mean field effects give the m
important contribution@1#. The long-range effects are in
duced by collective excitations, pairing effects and/or me
field deformations. A microscopic description where bo
short- and long- and medium-range effects are included
multaneously is highly desirable. Typically and within th
variational approach, these mechanisms are uncoupled
factored trial wave function written as a correlation fac
times a shell model term. The former is suited to take care
short-range correlations while the latter, usually nam
model wave function, is antisymmetric, provides the angu
momentum of the state, and accounts for long-range effe
In some approximations the correlation factor is taken to
of Jastrow type@2,3# and the model function is a Slater d
terminant built from a given shell model.

One of the major drawbacks of this scheme is the com
tational difficulties involved in the calculation of the diffe
ent expectation values. The technical problems have c
veyed to the use of compact and simple wave functio
Often the simplifications have been focused on the mo
wave function. In many cases its role has been limited to
antisymmetric and to confine the nucleons. This gives ris
a poor description of medium- and long-range effects wh
are hard to account by means of the correlation factor. On
other hand, a wide variety of models including efficien
medium- and long-range effects have been devised as
example, the SU3 Elliot model@4#. These models, howeve
have been mainly applied by using effective interactions w
no core explicitly present.

Within the framework of the variational approach a fa
tored trial wave function has been recently applied forsp
0556-2813/2003/67~4!/044301~10!/$20.00 67 0443
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shell nuclei @5,6#. One of the factors of such a trial wav
function is built starting from the lowest order of the coupl
cluster theory by imposing translational invariance and
glecting quadratic terms in the correlation function@7#. This
leads to a linear factor times a model wave function writt
as a Slater determinant. This term can be understood
compact way of doing a configuration interaction expans
of the model wave function. The model is completed
means of a Jastrow factor that includes higher order corr
tions. This scheme has been further generalized in orde
better account for long-range effects by exploiting the fre
dom given by the model part of the trial wave function. F
sp nuclei, model wave functions built using a deforme
mean field with angular momentum projection@8# and in-
cluding a-clustering effects@9,10# have shown to improve
not only the binding energy but also other properties, giv
rise to a qualitative better description of the nuclear bou
states. Finally, it is worth mentioning here a recent work
sp shell nuclei where no Jastrow factor is used but the n
order ~quadratic! in the translationally invariant couple
cluster method has been implemented@11#.

For medium and heavy nuclei, only Fermi hypernett
chain ~FHNC! @12,13# and cluster expansion calculation
with correlated wave functions have been carried out@14–
16#. The aim of this work is to extend previous studies tosd
shell spin and isospin saturated nuclei. This will provide
fully microscopic calculation for these nuclei by using
semirealistic nucleon-nucleon interaction ofv4 type. Accu-
rate variational wave functions including a Jastrow term a
a linear factor times a model wave function are obtained. T
model wave function is built such that it provides the to
angular momentum of the state under study and descr
collective effects such as nuclear deformation. We shall
cus on the interplay between the different correlation mec
nisms induced in the trial wave function. Several nucle
properties such as the one- and two-body radial distributi
and the single-particle momentum density are obtained,
the effects of the nucleon-nucleon correlations are discus
The calculations are done for the ground state and its r
tional band of the nuclei20Ne, 24Mg, 28Si, 32S, and 36Ar
©2003 The American Physical Society01-1
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and also for the ground state of40Ca. All the calculations
performed in this work are done by means of the variatio
Monte Carlo~VMC! method.

The structure of this work is as follows. In Sec. II, w
show in detail the variational trial wave function used. Se
tion III is devoted to the technical aspects involved in t
calculation of the different properties. The results are p
sented and discussed in Sec. IV. Finally, the conclusions
perspectives of the present work can be found in Sec. V

II. TRIAL WAVE FUNCTION AND NUCLEAR POTENTIAL

The trial wave functionCJKM employed is factored into
three terms and is built to have the total angular momen
of the state under study,

CJKM~1, . . . ,A!

5FJ ~1, . . . ,A!FL~1, . . . ,A!FJKM~1, . . . ,A!,

~1!

whereJ,K,M are angular momentum quantum numbers
be specified below.FJ andFL stand for the Jastrow and th
linear correlation factor, respectively, andFJKM(1, . . . ,A) is
the model wave function. The correlation factors are sui
to deal with the short and medium correlation effects wh
the model wave function accounts for the antisymmetry a
the angular momentum of the state.

The model wave functionFJKM(1, . . . ,A) is obtained
through standard projection methods@17# as

FJKM~1, . . . ,A!

5
2J11

8p2 E dQ D MK
J* ~Q!R~Q!F~1, . . . ,A!,

~2!

whereF(1, . . . ,A) is a Slater determinant that is the ge
erator of the projected wave function and that we have ca
intrinsic wave function, andR(Q) is the rotation operator
D MK

J* (Q) is the rotation matrix andQ represents the Eule
angles. The quantum numberJ gives the total angular mo
mentum,K is its projection along the nuclearz axis, andM is
the projection along theZ axis of the laboratory fixed frame
The resulting model wave functionFJKM(1, . . . ,A) is an
eigenfunction of the total angular momentum operator. T

TABLE I. Configuration and shape of the different nuclei stu
ied. The orbitals are represented in the Cartesian basis (nx ,ny ,nz).
16O stands for the core (000)4(100)4(010)4(001)4.

Nucleus Configuration Shape

20Ne 16O, (002)4 Prolate
24Mg 16O, (101)4(002)4 Triaxial
28Si 16O, (110)4(200)4(020)4 Oblate
32S 16O, (110)4(101)4(200)4(020)4 Triaxial
36Ar 16O, (110)4(101)4(011)4(200)4(020)4 Oblate
40Ca 16O, (110)4(101)4(011)4(200)4(020)4(002)4 Spherical
04430
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correlation factorsFJ and FL are taken to be rotationally
invariant and therefore commute with the projection ope
tors. The possible values forK andJ depend on the transfor
mation properties under rotations of the intrinsic wave fun
tion F.

To construct the Slater determinantF in Eq. ~2!, we use
the orbitals obtained from a Cartesian harmonic oscilla
potential. The three Cartesian oscillator coefficien
(ax ,ay ,az) are treated as variational parameters. Each s
tial orbital is filled with four nucleons because we are de
ing with the ground state and its rotational band forA
54n, N5Z nuclei. All of these states have total spinS50
and total isospinT50. In Table I we show the configuratio
and symmetry considered for the nuclei studied in this wo
They provide the lowest energy in a deformed Hartree-F
framework with effective nucleon-nucleon interactions@18#
and in a microscopic calculation using the Brink-Boeck
interaction@16#. The configurations in Table I have in gen
eral nonspherical intrinsic shapes, even if the harmonic
cillator wave functions have spherical symmetry. For a m
complete and coherent description we consider the three
sible cases:~a! for spherical shape, a harmonic oscillat
with a[ax5ay5az , ~b! for axial symmetry, a deformed
harmonic oscillator witha[ax5ayÞaz with either prolate,
az,a, or oblate,az.a, shape and~c! for triaxial shape, a
deformed harmonic oscillator with all the three paramet
different. For the axially symmetric nuclei we use the def
mation parameterd5az /a whereas for triaxial nuclei we
usedy5ay /ax anddz5az /ax .

The F proposed in Table I for the different nuclei is no
an eigenstate of the total angular momentum operator ex
for the spherical nucleus40Ca. The ground state wave func
tion is obtained for all nuclei by using Eq.~2! with K50 and
J50. In addition, for nonspherical configurations, theF
function has no-null projection forK50 andJ52,4,6, . . .
that we have used here to describe the ground state rotat
band of the corresponding nuclei. All the states here con
ered have even parity becauseF is an even function.

The Jastrow factorFJ is suited to account for the shor
range correlations, whereas the linear factorFL is obtained
from the lowest order of the coupled cluster theory wh
both rotational and translational invariances are imposed@7#.
Then, the linear factor can be thought as a compact wa
carrying out a configuration interaction expansion of the tr
wave function or as a linearization of the Jastrow ter
These two correlation factors are taken here as

FJ ~1, . . . ,A!5)
i , j

A

f ~r i j !, FL~1, . . . ,A!5(
i , j

A

g~r i j !.

~3!

Both correlation functionsf (r ) and g(r ) are obtained by
minimizing the expectation value of the nuclear Ham
tonian. To accomplish this, the following parametrization h
been employed:

f ~r !511 (
n51

N

ane2bnr 2
, g~r !5S A

2 D 21

1 (
m51

M

cme2dmr 2
,

~4!
1-2
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SIMPLE CORRELATED WAVE FUNCTIONS FOR THE . . . PHYSICAL REVIEW C 67, 044301 ~2003!
wherean , bn , anddm are nonlinear variational paramete
fixed by using a simplex algorithm@19#. The variational en-
ergy is a quadratic form incm and therefore these paramete
are calculated by solving a generalized eigenvalue probl
In this work, we have found that convergence within t
statistical error is achieved withN52 andM52. In addition
a good approximation is to takedm5bm , which will be the
approximation used except in the modelLo described below.
Another possibility that will be studied is to considerFL as a
direct linearization of the Jastrow factor.

For the nuclear interaction we use the modified Afna
Tang potential MS3. This is a semirealistic interaction w
an important repulsive core which has been developed
reproduce thes-wave scattering data up to about 60 MeV f
thea particle@20#. It was originally defined only in the eve
channels and it was modified later on@21# by adding a re-
pulsive part in the singlet- and triplet- odd components. T
is a v4-type potential containing spin exchange, isospin
change, and spin-isospin exchange channels. It is a relat
simple potential that allows for accurate calculations@5,6#
and provides a reasonable description of light and med
nuclei. These interactions are also useful to carry out a
tematic analysis of the effects of the different correlati
mechanisms included in the different properties calcula
An insightful analysis of the importance of the nuclear for
models in the spectra of light nuclei, up to ten nucleons, fr
simple interactions that are purely central scalar to reali
models with 18 channels and accurate three-body poten
can be found in Ref.@22#.

III. VMC CALCULATION OF THE MATRIX ELEMENTS

The optimization of the energy and the calculation of t
different nuclear properties studied in this work has be
carried out by means of the variational Monte Carlo meth
The integral involved in the angular momentum projectio
Eq. ~2!, is partially done by using the VMC algorithm. Th
gives rise to some differences with respect to standard im
mentations@23#.

The expectation value of the HamiltonianH can be writ-
ten after some analytic manipulations as

E5

E dQ D0,0
(J)* ~Q!^FuFJFLHFLFJR~Q!uF&

E dQ D0,0
(J)* ~Q!^FuFJFLFLFJR~Q!uF&

. ~5!

This expression can be obtained@8# by using the genera
properties of the rotation matrices and operators and by
ing into account that both the Hamiltonian and the norm
zero rank tensors. If theF function has an axial symmetr
the integration over thea and g Euler angles is performed
analytically, and there only remains the integration over
b angle around they axis to be done with the VMC method

The integrals in Eq.~5! not evaluated analytically will be
calculated by using the VMC method. In doing so, it is co
venient to use the following notation:
04430
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^ f &v

^g&v
5

E dt f ~t!v~t!

E dtg~t!v~t!

, ~6!

wheret stands for both the spatial and intrinsic degrees
freedom of the nucleons and the Euler angles, andv(t) is
the so called probability density distribution which is r
quired to be positive in the integration domain. The differe
terms in the integrals of Eq.~5! are not positive in the do-
main, and therefore a selection forv(t) must be done. We
have verified that a suitable choice is

v~1, . . . ,A;Q!5uFFJFL FLFJR~Q!Fu. ~7!

This scheme is also valid to calculate the expectation va
of operators that do not transform as scalar under rotatio
The algorithm, however, requires some modifications wh
expectation values between different wave functions
computed. This is the case of the reduced transition proba
ity between the excited state 21 and the ground state give
by

B~21→01;2!5
1

2Ji11
u^C0uuQ20uuC2&u2, ~8!

whereQ20 is the quadrupole operator. In this case the pro
ability distribution function includes the wave functions
the two states involved in the calculation.

Further quantities that are evaluated in this work are
ground state spherically averaged one- and two-body ra
distribution functions defined as

r1~r !5
1

A

^Cu(
i 51

A
1

r 2
d~r 2urW i2RW u!uC&

^CuC&
, ~9!

r2~r 12!5
2

A~A21!

^Cu(
i , j

A
1

r 12
2

d~r 122urW i j u!uC&

^CuC&
, ~10!

whereRW 51/A( i 51
A rW i is the center of mass coordinate. The

functions provide the probability density distribution fo
finding a nucleon around the center of mass of the system
around another given nucleon, respectively. These dens
are calculated here by using the algorithm previously
scribed.

The momentum distribution function is defined as t
Fourier transform of the one-body density matrix

n~kW !5E drW1drW18r~rW1 ,rW18!eıkW•(rW12rW18). ~11!

To calculate the spherically averaged momentum density
have worked as in Ref.@6#. For large-k values, the numerica
estimation of the momentum distribution is affected by o
cillations because of the sin(kurW2rW8u) term in the integral. In
order to get a reliable description in that region we ha
1-3
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fitted the VMC calculated momentum distribution to a line
combination of products of Gaussian functions by powers
k. This functional form for the momentum distribution aris
when noncorrelated wave functions are used and also in
related schemes with a Jastrow factor in both, when usin
natural orbital representation at the lowest orders for the
related wave function@24# and at the second order of th
cluster expansion@25#. This scheme has shown to work pro
erly for nuclei up to16O @6# and for the electronic distribu
tion of atoms@26# but with a different parametrization be
cause of the different form of the interaction.

IV. RESULTS

The linear correlation factorFL in Eq. ~3! can be under-
stood as a linear approximation to the Jastrow factor. In or
to elucidate the relation between these two correlation te
we have carried out a set of calculations with different tr
wave functions that are particular cases of Eq.~1!. First, an
optimization of a variational wave function including only
Jastrow factor has been performed and the results are
noted asJ. Second, two different calculations with only th
linear correlation factor have been carried out. The first o
labeledLj , is done by a straightforward linearization of th
Jastrow factor obtained previously. In the second case,
notedLo , all the free parameters of the linear factor are fu
optimized along with the model wave function. This w
inform us about the validity of considering the linear fact
simply as a linear approximation to the Jastrow term. Fina
these results are compared with the full trial wave funct
containing both the linear and the Jastrow terms,JLo . The
ground state energy, the root mean square radius, and
parameters of the different trial wave functions are repor
in Table II. Note that the Jastrow factor used in theJLo
model is the same as in theJ model and that the nonlinea
parameters ofFL in the JLo model are taken asdm5bm ,
m51,2. Therefore only the linear parameters in the lin
correlation function are again optimized. This does not c
respond to a complete optimization of the wave function,
we have verified that the results so obtained are very sim

TABLE II. Ground state energy~in MeV! and root mean squar
radius ~in femtometer! for the 20Ne nucleus. The calculation ha
been done for the MS3 potential. The Jastrow parameters (a1 ,b1)
5(0.56,0.75) and (a2 ,b2)5(21.20,1.53) are the same in theJ
and JLo models. The oscillator parametera is in fm21, and the
parametersbk anddk in fm22. s stands for the statistical error o
each quantity.

E6s A^r 2&6s a dz

J 2126.4260.17 2.6560.07 0.65 0.79
Lj 283.0860.15 2.6860.07 0.65 0.79
Lo 2100.3460.27 2.7960.07 0.61 0.81
JLo 2127.3360.11 2.6660.07 0.65 0.79

(c1 ,d1) (c2 ,d2)
Lj (0.56,0.75) (21.20,1.53)
Lo (0.67,0.82) (21.56,1.66)
JLo (20.0068,0.75) (20.056,1.53)
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to those provided by a full optimization. The results a
shown only for 20Ne because the conclusions that can
drawn for this case are similar to those for the other nuc

The wave functionLj provides 65% of the binding en
ergy while Lo provides 80%. This may indicate that the
are some important effects in the linear correlation term
accounted by a straightforward linearization of the Jastr
factor. A more detailed analysis of the results shows that
difference is mainly due to the enhancement of the nuc
size in theLo approximation that favors the core of the in
teraction to be avoided. A comparison of theJ and JLo

binding energies shows that the mechanisms included by
linear term and not by the Jastrow factor have very lit
influence, lower than 1% in this case.

The study of the one- and two-body radial densities g
us further insight on the different correlation mechanis
included by the variational wave functions. The one- a
two-body densities for20Ne calculated from the differen
approximations analyzed here are plotted in the upper
lower panels of Fig. 1, respectively.

The one-body density is similar for the different approx
mations with the exception of theLo model. This is because
the parameters which characterize both the shell model
the correlation factor are very different in this model as co
pared to the others~see Table II!, leading to a redistribution

0

0.003

0.006

0.012

0.015

0 1 3 4 5

J
Lj
Lo
JLo

r (fm)

ρ 1(
r
)(
f
m-
3
)

0

0.001

0.002

0.005

0 1 3 4 5

J

Lj
Lo
JLo

r12(fm)

ρ 2(
r 1

2)
(
f
m
-
3
)

FIG. 1. Spherically averaged one- and two-body densities
20Ne calculated from different approximations.
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TABLE III. Ground state energy~in MeV! and root mean square radius~in femtometer!. The oscillator
parameterax is in fm21. s stands for the statistical error on each quantity.

Nucleus Approx. ax dy dz E6s A^r 2&6s

24Mg JNe 0.59 1.12 0.86 2155.1260.25 2.8060.09
JLNe 0.59 1.12 0.86 2156.3160.23 2.8160.09

J 0.58 1.17 0.84 2155.4960.21 2.8460.09
JLo 0.58 1.17 0.84 2156.5160.19 2.8560.09

28Si JNe 0.52 1.0 1.30 2192.4060.17 2.9460.05
JLNe 0.52 1.0 1.30 2193.8960.14 2.9560.05

J 0.54 1.0 1.30 2194.5460.17 2.8960.05
JLo 0.54 1.0 1.30 2195.2560.19 2.8760.05

32S JNe 0.52 1.10 1.23 2229.2860.33 2.8860.09
JLNe 0.52 1.10 1.23 2232.3560.35 2.9360.10

J 0.53 1.10 1.33 2232.4260.28 2.9260.08
JLo 0.53 1.10 1.33 2233.1160.27 2.9060.09

36Ar JNe 0.56 1.0 1.11 2280.2960.30 2.8860.10
JLNe 0.56 1.0 1.11 2284.5460.36 2.9260.11

J 0.58 1.0 1.15 2284.9260.26 2.8360.08
JLo 0.58 1.0 1.15 2285.9560.34 2.8460.08

40Ca JNe 0.57 1.0 1.0 2336.2160.19 2.9360.03
JLNe 0.57 1.0 1.0 2341.6360.17 2.9760.03

J 0.61 1.0 1.0 2345.3460.19 2.8760.03
JLo 0.61 1.0 1.0 2346.5360.20 2.8560.03
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of the nucleons to avoid the core of the potential, which
not killed by a Jastrow factor.

The two-body density shows a minimum located at
origin and a maximum aroundr 1251 fm, i.e., where the
nuclear potential is stronger. The two models including
Jastrow factor provide a very similar two-body densi
which is very different from that obtained in any of the oth
two linear models. In those linear models the minimum at
origin is noticeably greater than in the other two cases
cause the linear correlation factor is not as efficient as
Jastrow term to deal with the core of the nuclear interacti
The Lo model, where the best linear factor is employe
gives a two-body density that is closer to that provided
the wave functions including the Jastrow term, showing
substantial reduction of the value at the origin as compa
with the result fromLj . Another interesting feature is tha
for large nucleon-nucleon distances the pair distribut
function calculated from theLo model is the biggest one
Finally, the effect of the linear term when the Jastrow fac
is present is given by comparing the results provided byJLo
and J. The pair distribution is reduced for short nucleo
nucleon separations when the linear term is present while
opposite holds at large distances.

In Table III, we report the results obtained for both t
ground state energy and the root mean square radius o
rest of the nuclei studied here. We have not included
values without the Jastrow term because, as we have see
04430
s

e

e
,

e
-
e
.

,
y
a
d

n

r

he

he
e
for

20Ne, the binding energy is very small. In this table two s
of results are reported. The first one consists ofJNe and
JLNe, and corresponds to a calculation in which the Jastr
correlation factor obtained for20Ne has been used for th
rest of the nuclei. In theJLNe model the linear coefficients
of the linear correlation factor are the only ones optimize
The second set comprisesJ andJLo . The Jastrow correla-
tion factor has been optimized for each nucleus. Then it
been used in theJLo model in which the linear coefficient
of the linear correlation factor are again optimized. It
worth noting that the correlation factor of20Ne provides ac-
curate results for the other nuclei, but, as it could be
pected, the quality of the results obtained by using this c
relation factor decreases with the increase of number
nucleons, being the greater relative difference of 1.5%
36Ar and 3% for 40Ca if theJNe model is considered. How
ever, the results from the modelJLNe approach much more
to the full optimized results, except for40Ca for which a
difference of'5 MeV still remains. For this nucleus ther
exists a FHNC calculation@12# obtained by using the sam
potential employed here. The result for the energy repor
in that work, E52340.1 MeV, is consistent with ours
Therefore, the linear correlation factor can adapt itself to
Jastrow factor of the20Ne nucleus to provide results for th
energy of similar quality as in theJLo model. However,
there appears some appreciable differences in the root m
1-5
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square radius. To better illustrate the dependence of the
relation factor on the number of nucleons, we compare
Fig. 2 the Jastrow function for the different nuclei studie
As can be seen the dependence of this function onA is very
small.

In the upper panel of Fig. 3 we plot the one-body dens
for all the nuclei considered. We show the results obtain
starting from the best variational wave function obtained
this work, i.e.,JLo . In the lower panel we plot the radia
difference function

Dr1~r !5r 2@r1
JLo~r !2r1

nc~r !#, ~12!

where r1
JLo(r ) and r1

nc(r ) stand for the one-body densit
calculated fromJLo and from the uncorrelated trial wav
function, respectively. This uncorrelated wave function
simply the model wave function of theJLo parametrization.

As it is known, the correlation effects are very small f
the one-body density. For the lighter nuclei the correla
single-particle density is higher than the uncorrelated one
low values ofr and smaller for higher values ofr. As the
number of nucleons increases, the contrary tends to h
Therefore, the single-particle density is mainly fixed by t
model wave function, giving rise to quite different values f
the different nuclear species. These results support the u
harmonic oscillator parameters fixed by fitting the root me
square radius or another single-particle quantity to the ei
experimental values or to the results from accurate real
calculations.

In Fig. 4 we plot the two-body density for all of the nucl
studied calculated from theJLo trial wave function. In the
lower plot we show the difference between this density a
the uncorrelated one, i.e.,Dr2 /r 12

2 .
The qualitative behavior of both the two-body density a

the difference function is the same for all of the nuclei co
sidered. The two-body density has a minimum atr 1250,
with a value that is nearly independent of the number
nucleons. The maximum is located in the region where
potential is stronger. The strength of such a maximum
creases as the number of nucleons increases. With respe

0.3

0.5

0.9

1.1

0 1 3 4

20Ne
24Mg
28Si
32S
36Ar
40Ca

r12 (fm)

f
(
r 1

2)

FIG. 2. Optimal Jastrow function for the different nuclei studi
in this work.
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the difference function, the main effects of correlations are
short distances as should be expected. There is also an
preciable mass distribution at medium and long separat
that is different for each nucleus.

We have also calculated the spherically averaged mom
tum distributionn(k), and analyzed the effects that correl
tions have on it. In Fig. 5 we plot the momentum distributi
at low k for the nuclei here studied obtained from theJLo
trial wave function.

In this region, the momentum distribution is governed
the model part of the wave function giving rise to importa
differences between the different nuclei. For the configu
tions here used the greater the momentum density at
origin, the smaller the number of nucleons, except for24Mg.

As it is known @1#, the most important effects of th
nucleon-nucleon short-range correlations on the momen
distribution take place for large-k values. In Fig. 6 we plot in
a semilogarithmic scale the momentum distribution for t
different nuclei here studied calculated from theJLo trial
wave function. For40Ca we also plot the experimental re
sults taken from Ref.@24#. For the nuclei24Mg to 40Ca we
also show the theoretical results of Moustakidis and Mas
@25# calculated analytically at the second order of the clus
expansion from a wave function including a Jastrow fac
and a model function part. In that calculation both term

0
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0.006
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0.015

0 1 3 4 5
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28Si
32S
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40Ca

r (fm)

ρ 1(
r
)
(
f
m-

3
)

-0.002

-0.001

0

0.001
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0 1 2 4 5 6

20Ne
24Mg
28Si
32S
36Ar
40Ca

r (fm)

∆
ρ 1(
r
)
(
f
m-

1
)

FIG. 3. Upper panel: One-body density for all the nuclei stud
calculated from the best wave function obtained in this work,JLo .
Lower panel: radial difference functionDr1(r ).
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were parametrized and the values were fixed by fitting
experimental charge form factor.

The results of Ref.@25# present a good agreement with th
fully microscopic results of this work. Fork*2 fm21 the
effects of the correlations are more important, in such a w
that the uncorrelated density is several order of magnit
lower than the corresponding correlated value. The corr
tions are also responsible for the change in the slopek
;2 fm21. It is also worth mentioning the good agreeme
with the experimental results for40Ca in spite of the fact tha
the nucleon-nucleon force employed in this work cannot
considered as realistic.

State dependent correlations are not included in the va
tional trial wave function used here. Their effect will be
enhance the tail of the momentum distribution with resp
to the results provided by wave functions containing o
scalar correlation factors. This can be verified for40Ca by
comparing with the results of Ref.@27# where an extensive
analysis of state-dependent correlations on both the nuc
density and momentum distribution was performed. In R
@6# the momentum distribution forsp nuclei was calculated
by using the same nuclear potential and starting from b
state dependent and state independent variational trial w

0
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0 2 4 6

20Ne
24Mg
28Si
32S
36Ar
40Ca

r12 (fm)

ρ 2
(
r 1

2)
(
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r 12 (fm)

r
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2

-
2

∆ρ
2(
r 1
2
)(
f
m-
3
)

FIG. 4. Upper panel: Two-body density for all the nuclei studi
calculated from the best wave function obtained in this work,JLo .
Lower panel: difference functionDr2 /r 12

2 for all the nuclei consid-
ered.
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function and the effects of the former were analyzed.
Finally, the influence of the nuclear potential in the resu

can be estimated by comparing the results of this work
the one- and two-body densities and the momentum distr
tion with those of Refs.@13,28# for 40Ca obtained from the
FHNC at the single operator chain approximation by us
the realistic Argonnev88 andv14 two-nucleon potentials and
the three-nucleon potentials of the Urbana class. The qu
tative structure of the momentum distribution is the sa
with small quantitative differences as, for example, the po
tion of the point where the change in slope occurs, which
shifted to lowerk values when realistic potentials are use

In Table IV, we show the excitation energy of some sta
of the ground state rotational band for the nuclei20Ne to
36Ar calculated from theJLo wave function. We also show
the reduced transition probability between the 21 and the
ground state. The results are compared with the experime
data@29#, and with the noncorrelated values of the differe
quantities. With respect to the excitation energies, they co
pare better with the experimental ones if correlations am
the nucleons are considered. In general the agreement
the experimental data can be considered as good, althoug
some cases the differences are appreciable. For example
energy of the 21 state coincides, within the statistical erro
for all the nuclei considered and does not follow the expe
mental trend. This is due to the limitations of the trial wa
function used here and also to the fact that the nuclear fo
used is not realistic and therefore cannot provide accu
predictions. Nevertheless, the qualitative trend is reproduc
This is not the case for the reduced transition probability t
is almost unchanged when correlations are taken into
count. This quantity depends mainly on the model part of
wave function.

V. CONCLUSIONS

A variational study of the ground state and some memb
of its rotational band for spin-isospin saturatedsd shell nu-
clei has been carried out. Trial wave functions including s
eral aspects of the nuclear dynamics have been obtained

0

1

3

4

0 0.5 1.5 2

20Ne
24Mg
28Si
32S
36Ar
40Ca

k (fm-1)

n
(
k
)
(
f
m
3
)

FIG. 5. Momentum distribution for all the nuclei studied calc
lated from the best wave function obtained in this work,JLo .
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J. PRAENA, E. BUENDı´A, F. J. GÁLVEZ, AND A. SARSA PHYSICAL REVIEW C67, 044301 ~2003!
-5

-4

-3

0

1

0 1 2 4 5

20Ne-jl
20Ne-nc

k (fm-1)

l
o
g
1
0
[
n
(
k
)
]

-5

-4

-3

0

1

0 1 2 4 5

24Mg-jl
24Mg-nc

k (fm-1)

l
o
g
1
0
[
n
(
k
)
]

-5

-4

-3

0

1

0 1 2 4 5

28Si-jl
28Si-nc

k (fm-1)

l
o
g
1
0
[
n
(
k
)
]

-5

-4

-3

0

1

0 1 2 4 5

32S-jl
32S-nc

k (fm-1)

l
o
g
1
0
[
n
(
k
)
]

-5

-4

-3

0

1

0 1 2 4 5

36Ar-jl
36Ar-nc

k (fm-1)

l
o
g
1
0
[
n
(
k
)
]

-5

-4

-3

0

1

0 1 2 4 5

40Ca-jl
40Ca-nc

k (fm-1)

l
o
g
1
0
[
n
(
k
)
]

FIG. 6. Momentum distribution for all the nuclei studied calculated from bothJLo ~jl ! and noncorrelated~nc! wave functions. For24Mg,
28Si, 32S, 36Ar, and 40Ca, the two-body cluster expansion results of Ref.@25# ~crosses! are shown. For40Ca the experimental results~circles!
taken from Ref.@24# are also plotted. The units ofk are fm21.
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used to compute different properties. Short-range corr
tions are accounted by means of both a Jastrow and a li
correlation term. The model wave function includes def
mation and provides the correct angular momentum quan
numbers of the nuclear state. Angular momentum projec
has been carried out by rotating the intrinsic state and i
grating over all angles weighted by the corresponding ro
tion matrix. The intrinsic states are built starting from t
SU3 model.

One- and two-body radial densities have been calcula
A systematic analysis of the different correlation mech
nisms included in our trial wave function has been carr
out, focusing on the interplay between the Jastrow and
linear correlation terms. The results indicate that the effe
04430
a-
ar
-
m
n

e-
-

d.
-
d
e

ts

induced by the latter not included in the former are sm
The results for the one-body density show that this distri
tion function is governed by the model part of the trial fun
tion with a minor influence of the correlation factor. Th
two-body distribution presents stronger correlation effects
it should be expected, with a structure that is similar for
of the cases considered here. A calculation for heavier nu
using the optimal correlation factor obtained for20Ne gave
accurate results. This is due to the fact that the correla
depends strongly on the nuclear interaction and the influe
of the number of particles is less important for the nuc
studied here. The momentum distribution has been also
culated and the important effects of the nucleon-nucleon c
relations for large-k values have been discussed. The resu
1-8
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TABLE IV. Excitation energies~in MeV! for some members of the ground state rotational band and reduced probability transit
fm24 between the 21 and the ground state calculated from theJLo trial wave function. The results are compared with the experimental o
~expt! of Ref. @29# and with the noncorrelated~nc! values.

20Ne 24Mg 28Si 32S 36Ar

E(21)expt 1.63 1.37 1.78 2.23 1.97
E(21)o 1.1660.11 1.1460.20 1.0860.20 1.3560.28 1.2260.36
E(21)nc 0.6660.17 0.7260.25 0.6960.22 0.7260.30 1.0660.29
E(41)expt 4.25 4.12 4.62 4.46 4.41
E(41)o 4.3460.18 3.7060.24 3.6160.25 4.5560.32 4.8260.40
E(41)nc 2.6560.23 2.6960.29 2.3460.24 2.5260.39 3.8760.45
E(61)expt 8.78 8.11 8.54 9.68
E(61) 10.0060.38 7.7660.50 7.8760.32 9.7460.56 12.7060.97
E(61)nc 6.8260.51 6.1160.56 5.2160.36 6.0960.74 10.161.3
E(81)expt 16.75 14.15
E(81) 21.861.4 13.6261.1 14.3060.64 11.561.6 31.764.5
E(81)nc 14.762.1 11.961.5 10.3260.78 13.561.9 27.064.9
B(21→01;2)expt 96618 101617 6366 8468
B(21→01;2)o 55.060.4 94.660.9 89.2460.8 87.260.8 46.860.5
B(21→01;2)nc 58.360.4 99.860.9 94.860.7 88.860.8 48.260.5
i
ita
tt
u

av
n

e
.

m
ns
show a good agreement with previous calculations and w
the experimental results where available. Finally, the exc
tion energies of the ground state rotational band are be
reproduced as correlations are taken into account, altho
the reduced transition probability between the 21 and the
ground state is nearly independent of this part of the w
function. Also the experimental trend of the excitation e
ergy of this state is not well described.
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