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Simple correlated wave functions for the ground and some excited states ofl shell nuclei
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Trial wave functions including angular momentum projection and deformation with central Jastrow and
linear-type correlations are calculated to study the ground state rotational band?R&e*Mg, 2%Si, %S,
and %%Ar nuclei and the ground state dfCa. A systematic analysis of the competition among different
correlation mechanisms on the binding energy and other properties such as the root mean square radius and the
transition amplitudes of the rotational band is carried out. The one- and two-body radial densities and the
momentum distribution are obtained. All the calculations have been performed by means of the variational
Monte Carlo method.
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[. INTRODUCTION shell nuclei[5,6]. One of the factors of such a trial wave
function is built starting from the lowest order of the coupled
A thorough study of nuclear bound states starting fromcluster theory by imposing translational invariance and ne-
nucleon-nucleon interactions requires the inclusion of bothglecting quadratic terms in the correlation functiaf}. This
short-range and medium- and large-range effects. Shorteads to a linear factor times a model wave function written
range correlations are due to the highly repulsive core of th@s a Slater determinant. This term can be understood as a
nucleon-nucleon potential and are very important to reprocompact way of doing a configuration interaction expansion
duce correctly not only binding energies or internucleonicof the model wave function. The model is completed by
densities but also the tail of the momentum distribution,means of a Jastrow factor that includes higher order correla-
while at low momentum the mean field effects give the mostions. This scheme has been further generalized in order to
important contribution[1]. The long-range effects are in- better account for long-range effects by exploiting the free-
duced by collective excitations, pairing effects and/or meartlom given by the model part of the trial wave function. For
field deformations. A microscopic description where bothsp nuclei, model wave functions built using a deformed
short- and long- and medium-range effects are included simean field with angular momentum projecti8] and in-
multaneously is highly desirable. Typically and within the cluding a-clustering effectd9,10] have shown to improve
variational approach, these mechanisms are uncoupled inrwt only the binding energy but also other properties, giving
factored trial wave function written as a correlation factorrise to a qualitative better description of the nuclear bound
times a shell model term. The former is suited to take care o$tates. Finally, it is worth mentioning here a recent work for
short-range correlations while the latter, usually namedsp shell nuclei where no Jastrow factor is used but the next
model wave function, is antisymmetric, provides the angulaorder (quadrati¢ in the translationally invariant coupled
momentum of the state, and accounts for long-range effectsluster method has been implementédi].
In some approximations the correlation factor is taken to be For medium and heavy nuclei, only Fermi hypernetted
of Jastrow typg2,3] and the model function is a Slater de- chain (FHNC) [12,13 and cluster expansion calculations
terminant built from a given shell model. with correlated wave functions have been carried [ddt—
One of the major drawbacks of this scheme is the compul6]. The aim of this work is to extend previous studiesth
tational difficulties involved in the calculation of the differ- shell spin and isospin saturated nuclei. This will provide a
ent expectation values. The technical problems have corfully microscopic calculation for these nuclei by using a
veyed to the use of compact and simple wave functionssemirealistic nucleon-nucleon interaction ©f type. Accu-
Often the simplifications have been focused on the modelate variational wave functions including a Jastrow term and
wave function. In many cases its role has been limited to bea linear factor times a model wave function are obtained. The
antisymmetric and to confine the nucleons. This gives rise tonodel wave function is built such that it provides the total
a poor description of medium- and long-range effects whichangular momentum of the state under study and describes
are hard to account by means of the correlation factor. On theollective effects such as nuclear deformation. We shall fo-
other hand, a wide variety of models including efficiently cus on the interplay between the different correlation mecha-
medium- and long-range effects have been devised as, farisms induced in the trial wave function. Several nuclear
example, the SU3 Elliot mod¢#]. These models, however, properties such as the one- and two-body radial distributions
have been mainly applied by using effective interactions withand the single-particle momentum density are obtained, and
no core explicitly present. the effects of the nucleon-nucleon correlations are discussed.
Within the framework of the variational approach a fac- The calculations are done for the ground state and its rota-
tored trial wave function has been recently applied $pr  tional band of the nuclef’Ne, ?*Mg, 28Si, 32S, and 3°Ar
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TABLE 1. Configuration and Shape of the different nuclei stud- correlation factorgzj and FE are taken to be rotationa“y

led. The orbitals are represented in the Cartesian bagisit,nz)-  invariant and therefore commute with the projection opera-
O stands for the core (004)100)*(010)*(001)". tors. The possible values fét andJ depend on the transfor-

, , mation properties under rotations of the intrinsic wave func-
Nucleus Configuration Shape tion ®.
20N e 160, (002 Prolate To construct the Slater determinahtin Eq. (2), we use
24\g 160, (101f(002)* Triaxial the orbitals obtained from a Cartesian harmonic oscillator
28g; 160, (110¥(200)(020)* Oblate potential. The three Cartesian oscillator coefficients
32g 160, (110f(101)*(200)*(020)* Triaxial (.ax ,ay.,az)' are treat_ed as variational parameters. Each spa-
36pr 160, (110f(101)*(011)*(200)*(020)* Oblate tial orbital is filled with four nucleons because we are deal-

ing with the ground state and its rotational band for
=4n, N=Z nuclei. All of these states have total s 0

and total isospim =0. In Table | we show the configuration
and also for the ground state 8fCa. All the calculations and symmetry considered for thg nuclei studied in this work.
performed in this work are done by means of the variationall "€y Provide the lowest energy in a deformed Hartree-Fock
Monte Carlo(VMC) method. framgwork Wlth eﬁec_:nve nucle_on-nuc_:leon mtergctl({r_lss]

The structure of this work is as follows. In Sec. II, we and in a microscopic calculation using the Brink-Boecker
show in detail the variational trial wave function used. Sec-nteraction[16]. The configurations in Table I have in gen-
tion Il is devoted to the technical aspects involved in the€'@l nonspherical intrinsic shapes, even if the harmonic os-
calculation of the different properties. The results are preillator wave functions have spherical symmetry. For a more
sented and discussed in Sec. IV. Finally, the conclusions argPMPlete and coherent description we consider the three pos-

perspectives of the present work can be found in Sec. V. sible casesi{a) for spherical shape, a harmonic oscillator
with a=a,=a,=a,, (b) for axial symmetry, a deformed

harmonic oscillator withh= a,= @ # a, With either prolate,

a,<a, or oblate,a,> «, shape andc) for triaxial shape, a
The trial wave functiortV ;\y employed is factored into deformed harmonic oscillator with all the three parameters

three terms and is built to have the total angular momentundifferent. For the axially symmetric nuclei we use the defor-

4ca 160, (110f(101)*(011)*(200)*(020)*(002)* Spherical

Il. TRIAL WAVE FUNCTION AND NUCLEAR POTENTIAL

of the state under study, mation parameted=«,/a whereas for triaxial nuclei we
usedy=ay/a, andd,=a,/ay.
Vokm(L, ..o A) The ® proposed in Table | for the different nuclei is not
—F (L.  AFAL .. ADym(l, ... A), an eigenstate of the total angular momentum operator except

for the spherical nucleu&’Ca. The ground state wave func-
(1) tion is obtained for all nuclei by using E¢R) with K=0 and
J=0. In addition, for nonspherical configurations, tthe
where J,K,M are angular momentum quantum numbers tof ‘on h I action foK — d1=2
be specified belowr ; andF , stand for the Jastrow and the unction has no-null projection QK_O andJ=2,4.6, . . . .
7 £ that we have used here to describe the ground state rotational

Lﬁf?;gg;eﬁfg Isgf:?i%;esjlpr?:té\gerlr)&:%nK’\f/lagit,c;r;sl:ﬁ()e Issuitetiand of the corresponding nuclei. All the states here consid-
) red have even parity becaudeis an even function.

to deal with the short and medium correlation effects while

. . The Jastrow factoF ; is suited to account for the short-
the model wave function accounts for the antisymmetry and . : : ;
range correlations, whereas the linear fadtgris obtained
the angular momentum of the state.

The model wave functionb (1, ... A) is obtained Lror;: the _Iowelst order olf t_he ci‘quple_d cluster theory when
through standard projection methdd] as oth rotational and translational invariances are imp¢3éd
Then, the linear factor can be thought as a compact way of
Dyem(l, ... A) carrying out a configuration interaction expansion of the trial
wave function or as a linearization of the Jastrow term.

2J+1 These two correlation factors are taken here as

2

f do Dy (O)R(O)D(L, ... A),

8

A A
@ Fj(l,...A):L[jf(rij), F[;(l,...A)=iZj g(ri)).

where®(1, ... A) is a Slater determinant that is the gen- ©
erator of the projected wave function and that we have calle®oth correlation functions(r) and g(r) are obtained by
intrinsic wave function, andR(®) is the rotation operator, minimizing the expectation value of the nuclear Hamil-
D(0) is the rotation matrix and® represents the Euler tonian. To accomplish this, the following parametrization has
angles. The quantum numbérgives the total angular mo- been employed:
mentum K is its projection along the nucleaaxis, andM is N A M
the projection along th& axis of the laboratory fixed frame. _ —br2 _ —d r?
The resulting model wave functio® jcu(1, ... A) is an f(r)_1+n§1 B& g(r)—(z +mE:1 Cm®
eigenfunction of the total angular momentum operator. The (4)
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wherea,, b,, andd,, are nonlinear variational parameters

fixed by using a simplex algorithifl9]. The variational en- (), J d7f(7) (1)

ergy is a quadratic form in,,, and therefore these parameters = , (6)
are calculated by solving a generalized eigenvalue problem. (9)o f drg(7)w(7)

In this work, we have found that convergence within the

statistical error is achieved with=2 andM =2. In addition
a good approximation is to tak#,=b,,, which will be the
approximation used except in the modg| described below.

where 7 stands for both the spatial and intrinsic degrees of

freedom of the nucleons and the Euler angles, afd) is

o ! Co ) the so called probability density distribution which is re-

Qnothtle_r p05.3|b|.llty tl":cathWI|\|] be studf|ed Is to considef as a quired to be positive in the integration domain. The different
irect linearization of the Jastrow factor. terms in the integrals of Eq5) are not positive in the do-

For the n_uclear Interaction we use .thE_} r_nod|f|eo_l Afna_m'main, and therefore a selection fel(7) must be done. We
Tang potential MS3. This is a semirealistic interaction with have verified that a suitable choice is

an important repulsive core which has been developed to

reproduce thes-wave scattering data up to about 60 MeV for o(l,...A;0)=|OF F, FF,R(O)D|. (7)
the a particle[20]. It was originally defined only in the even

channels and it was modified later §21] by adding a re- This scheme is also valid to calculate the expectation value
pulsive part in the singlet- and triplet- odd components. Thisf operators that do not transform as scalar under rotations.
is av,-type potential containing spin exchange, isospin ex-The algorithm, however, requires some modifications when
change, and spin-isospin exchange channels. It is a relativeBxpectation values between different wave functions are
simple potential that allows for accurate calculatigfss]  computed. This is the case of the reduced transition probabil-
and provides a reasonable description of light and mediunity between the excited state"2and the ground state given
nuclei. These interactions are also useful to carry out a syy

tematic analysis of the effects of the different correlation

mechanisms included in the different properties calculated. B(2*—0%":2)=
An insightful analysis of the importance of the nuclear force ' 2J;+1
models in the spectra of light nuclei, up to ten nucleons, from ) )
simple interactions that are purely central scalar to realisti®VhereQy is the quadrupole operator. In this case the prob-

can be found in Ref.22]. the two states involved in the calculation.

Further quantities that are evaluated in this work are the
ground state spherically averaged one- and two-body radial

(W ol|Qaol | ¥ 2)|2, (8)

IlI. VMC CALCULATION OF THE MATRIX ELEMENTS distribution functions defined as
The optimization of the energy and the calculation of the Aq L
different nuclear properties studied in this work has been (v = o(r=[r—RD|¥)
carried out by means of the variational Monte Carlo method. ()= 1 = 9
The integral involved in the angular momentum projection, P1 A (¥|7) ’

Eq. (2), is partially done by using the VMC algorithm. This

gives rise to some differences with respect to standard imple- Aq .
mentationg 23]. (W2 = 8(r— W)

The expectation value of the Hamiltoni&hcan be writ- po(F1p) = 2 = T (10)
ten after some analytic manipulations as 2P AA-) (W|w) ’

whereR=1/A3" r; is the center of mass coordinate. These
f de DE,J(),*(G)(d)IFJFLHFEFJR(®)|¢>> fpnc_tions provide the probability density distribution for
E— ' 5) finding a nucleon _around the center of mass of the system or
9)* around another given nucleon, respectively. These densities
fd® Dyo (O)PIF 4 FFR(O)D) are calculated here by using the algorithm previously de-
scribed.
The momentum distribution function is defined as the
This expression can be obtaing8] by using the general Fourier transform of the one-body density matrix
properties of the rotation matrices and operators and by tak-
ing into account that both the Hamiltonian and the norm are
zero rank tensors. If thé function has an axial symmetry
the integration over ther and y Euler angles is performed
analytically, and there only remains the integration over thel© calculate the spherically averaged momentum density we
B angle around thg axis to be done with the VMC method. have worked as in Ref6]. For largek values, the numerical
The integrals in Eq(5) not evaluated analytically will be ~€stimation of the momentu@ djstribution is affected by os-
calculated by using the VMC method. In doing so, it is con-cillations because of the ski{(—r'|) term in the integral. In
venient to use the following notation: order to get a reliable description in that region we have

n<|2>=f drydrip(ry,rp)e (i), (11)
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TABLE II. Ground state energgin MeV) and root mean square
radius (in femtometey for the ?°“Ne nucleus. The calculation has
been done for the MS3 potential. The Jastrow parametardy)
=(0.56,0.75) and d,,b,)=(—1.20,1.53) are the same in th# 0.012
and JL£, models. The oscillator parameteris in fm~1, and the
parameterd, andd, in fm~2. ¢ stands for the statistical error on
each quantity.

0.015

p(r)(f )

Exo NCRETS a d, 0008
J —126.42-0.17 2.65-0.07 0.65 0.79
L —83.08+0.15 2.68-0.07 0.65 0.79 0,003
Lo —100.34-0.27 2.790.07 0.61 0.81
JLs —127.33:0.11 2.66£0.07 0.65 0.79
0
(cq,dy) (cz,dy)
L (0.56,0.75) ¢1.20,1.53)
L, (0.67,0.82) ¢1.56,1.66) 0.005

TLo (—0.0068,0.75)  {0.056,1.53)

fitted the VMC calculated momentum distribution to a linear
combination of products of Gaussian functions by powers in
k. This functional form for the momentum distribution arises
when noncorrelated wave functions are used and also in cor- Vi
related schemes with a Jastrow factor in both, when using a ***| /
natural orbital representation at the lowest orders for the cor-
related wave function24] and at the second order of the oo/
cluster expansiof25]. This scheme has shown to work prop-
erly for nuclei up to*®0 [6] and for the electronic distribu- ‘ ‘ ‘ ‘
tion of atoms[26] but with a different parametrization be- 0 1 rp(fm s 4 5
cause of the different form of the interaction.

B(r,) (fm3)

FIG. 1. Spherically averaged one- and two-body densities for
V. RESULTS 20Ne calculated from different approximations.

The linear correlation factdf . in Eq. (3) can be under- to those provided by a full optimization. The results are
stood as a linear approximation to the Jastrow factor. In ordeshown only for ?°Ne because the conclusions that can be
to elucidate the relation between these two correlation termdrawn for this case are similar to those for the other nuclei.
we have carried out a set of calculations with different trial  The wave functionZ; provides 65% of the binding en-

wave functions that are particular cases of Eqg. First, an ergy while £, provides 80%. This may indicate that there
optimization of a variational wave function including only a are some important effects in the linear correlation term not
Jastrow factor has been performed and the results are dgecounted by a straightforward linearization of the Jastrow
noted as7. Second, two different calculations with only the t5ct0r, A more detailed analysis of the results shows that this
linear correlation factor have been carried out. The first onegitterence is mainly due to the enhancement of the nuclear
labeled.;, is done by a straightforward linearization of the size in the£, approximation that favors the core of the in-

Jastrow factor obtained previously. In the second case, dqéraction to be avoided. A comparison of tieand JL
. 0

notgd.EO, all the freg parameters of the linear factor are fu.IIy binding energies shows that the mechanisms included by the
optimized along with the model wave function. This wil linear term and not by the Jastrow factor have very little

inform us about the validity of considering the linear factor.

o i e
simply as a linear approximation to the Jastrow term. Finally,'nﬂuence' lower than 1% in this case.

these results are compared with the full trial wave function 1€ Study of the one- and two-body radial densities give
containing both the linear and the Jastrow terig, . The us further insight on t'he different corrglatlon mechanisms
ground state energy, the root mean square radius, and tifécluded by the variational wave functions. The one- and
parameters of the different trial wave functions are reportedWo-body densities for™Ne calculated from the different

in Table 1. Note that the Jastrow factor used in i€, @approximations analyzed here are plotted in the upper and
model is the same as in th& model and that the nonlinear lower panels of Fig. 1, respectively.

parameters of , in the J£, model are taken ad,=b,, The one-body density is similar for the different approxi-
m=1,2. Therefore only the linear parameters in the lineamations with the exception of th&, model. This is because
correlation function are again optimized. This does not corthe parameters which characterize both the shell model and
respond to a complete optimization of the wave function, buthe correlation factor are very different in this model as com-
we have verified that the results so obtained are very similapared to the othertsee Table ), leading to a redistribution
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TABLE IIl. Ground state energyin MeV) and root mean square radi(ia femtometey. The oscillator

parametelr, is in fm~L. o stands for the statistical error on each quantity.

Nucleus Approx. ay dy d, Exo N(RETS
Mg Tne 0.59 1.12 0.86 —155.12-0.25 2.80-0.09
TLne 0.59 1.12 0.86 —156.31-0.23 2.81+0.09

J 0.58 1.17 0.84 —155.49-0.21 2.84-0.09

TLo 0.58 1.17 0.84 —156.51+0.19 2.85-0.09

285 Tne 0.52 1.0 1.30 —192.40-0.17 2.94-0.05
TLne 0.52 1.0 1.30 —193.89+0.14 2.95-0.05

J 0.54 1.0 1.30 —194.54-0.17 2.89-0.05

JLy 0.54 1.0 1.30 —195.25-0.19 2.87-0.05

EES Tne 0.52 1.10 1.23 —229.28-0.33 2.88-0.09
TLne 0.52 1.10 1.23 —232.35-0.35 2.93-0.10

J 0.53 1.10 1.33 —232.42+0.28 2.92-0.08

TLo 0.53 1.10 1.33 —233.11+0.27 2.90-0.09

36Ar Tne 0.56 1.0 1.11 —280.29-0.30 2.88-0.10
TLne 0.56 1.0 1.11 —284.54+0.36 2.92-0.11

J 0.58 1.0 1.15 —284.92+0.26 2.83-0.08

TILo 0.58 1.0 1.15 —285.95-0.34 2.84r0.08

4ca Tne 0.57 1.0 1.0 —336.21+0.19 2.93-0.03
TLne 0.57 1.0 1.0 —341.63-0.17 2.97-0.03

J 0.61 1.0 1.0 —345.34-0.19 2.87-0.03

TLo 0.61 1.0 1.0 —346.53-0.20 2.85-0.03

of the nucleons to avoid the core of the potential, which is?°Ne, the binding energy is very small. In this table two sets

not killed by a Jastrow factor. of results are reported. The first one consists/&f, and
‘The two-body density shows a minimum located at the 7 and corresponds to a calculation in which the Jastrow

origin and a maximum around;;=1 fm, i.e., where the cqqrelation factor obtained fofNe has been used for the

nuclear potential is stronger. The two models including the&eqt of the nuclei. In thegzy, model the linear coefficients
Jastrow factor provide a very similar two-body density, of the linear correlation factor are the only ones optimized.

which is very different from that obtained in any of the other.l.he second set comprisggand 7L, . The Jastrow correla-

origin is noticeably greater than in the other two cases befi_lon factor has been optimized for each nucleus. Then it has

cause the linear correlation factor is not as efficient as thgeen used in thg/L, model in which the linear coefficients

Jastrow term to deal with the core of the nuclear interaction®! the linear correlation factor are again optimized. It is

The £, model, where the best linear factor is employed, Worth noting that the correlation factor éfNe provides ac-
gives a two-body density that is closer to that provided bycurate results for the other nuclei, but, as it could be ex-
the wave functions including the Jastrow term, showing aP€cted, the quality of the results obtained by using this cor-
substantial reduction of the value at the origin as comparefelation factor decreases with the increase of number of
with the result fromZ; . Another interesting feature is that nucleons, being the greater relative difference of 1.5% for
for large nucleon-nucleon distances the pair distribution®®Ar and 3% for *°Ca if the 7y, model is considered. How-
function calculated from thel, model is the biggest one. ever, the results from the modglCy,. approach much more
Finally, the effect of the linear term when the Jastrow factorto the full optimized results, except fdt’Ca for which a
is present is given by comparing the results provided/igy ~ difference of~5 MeV still remains. For this nucleus there
and 7. The pair distribution is reduced for short nucleon- exists a FHNC calculatiofil2] obtained by using the same
nucleon separations when the linear term is present while thgotential employed here. The result for the energy reported
opposite holds at large distances. in that work, E=—340.1 MeV, is consistent with ours.
In Table 1, we report the results obtained for both the Therefore, the linear correlation factor can adapt itself to the
ground state energy and the root mean square radius of tHestrow factor of thé’Ne nucleus to provide results for the
rest of the nuclei studied here. We have not included thenergy of similar quality as in theg/£, model. However,
values without the Jastrow term because, as we have seen filvere appears some appreciable differences in the root mean
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0.015 T T T T

0.012

p(r) (fm?)

0.006

0.003

03

0 1 T, (M 3 s

FIG. 2. Optimal Jastrow function for the different nuclei studied
in this work.

square radius. To better illustrate the dependence of the cor-
relation factor on the number of nucleons, we compare in
Fig. 2 the Jastrow function for the different nuclei studied.
As can be seen the dependence of this functiol @ very
small.

In the upper panel of Fig. 3 we plot the one-body density
for all the nuclei considered. We show the results obtained
starting from the best variational wave function obtained in
this work, i.e., 7L, . In the lower panel we plot the radial
difference function

-0.002 L L L L
o JL ne 0 1 2 r (f n’) 4 5 6
Apy(r)=rlp°(r)=p1(r)], (12 o
FIG. 3. Upper panel: One-body density for all the nuclei studied
calculated from the best wave function obtained in this wgfR, .

JLo nc _ .
where P1 (r) and p3(r) stand for the one-body density Lower panel: radial difference functiafp,(r).

calculated fromJL, and from the uncorrelated trial wave
function, respectively. This uncorrelated wave function isthe difference function, the main effects of correlations are at
simply the model wave function of thgL, parametrization. short distances as should be expected. There is also an ap-

As it is known, the correlation effects are very small for preciable mass distribution at medium and long separations
the one-body density. For the lighter nuclei the correlatedhat is different for each nucleus.
single-particle density is higher than the uncorrelated one for We have also calculated the spherically averaged momen-
low values ofr and smaller for higher values of As the  tum distributionn(k), and analyzed the effects that correla-
number of nucleons increases, the contrary tends to holdions have on it. In Fig. 5 we plot the momentum distribution
Therefore, the single-particle density is mainly fixed by theat low k for the nuclei here studied obtained from th&,
model wave function, giving rise to quite different values for trial wave function.
the different nuclear species. These results support the use of In this region, the momentum distribution is governed by
harmonic oscillator parameters fixed by fitting the root mearthe model part of the wave function giving rise to important
square radius or another single-particle quantity to the eithedifferences between the different nuclei. For the configura-
experimental values or to the results from accurate realistiions here used the greater the momentum density at the
calculations. origin, the smaller the number of nucleons, except¥ig.

In Fig. 4 we plot the two-body density for all of the nuclei  As it is known [1], the most important effects of the
studied calculated from thg’Z, trial wave function. In the nucleon-nucleon short-range correlations on the momentum
lower plot we show the difference between this density andiistribution take place for largkvalues. In Fig. 6 we plot in
the uncorrelated one, i.e\p,/r3,. a semilogarithmic scale the momentum distribution for the

The qualitative behavior of both the two-body density anddifferent nuclei here studied calculated from th&, trial
the difference function is the same for all of the nuclei con-wave function. For*°Ca we also plot the experimental re-
sidered. The two-body density has a minimumrgi=0,  sults taken from Refl24]. For the nuclei®*Mg to *°Ca we
with a value that is nearly independent of the number ofalso show the theoretical results of Moustakidis and Massen
nucleons. The maximum is located in the region where th¢25] calculated analytically at the second order of the cluster
potential is stronger. The strength of such a maximum deexpansion from a wave function including a Jastrow factor
creases as the number of nucleons increases. With respectdnd a model function part. In that calculation both terms
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w

n(k) (fme)

.

0.001

00 055 k (f ﬁql) 15 - 2

FIG. 5. Momentum distribution for all the nuclei studied calcu-
lated from the best wave function obtained in this wafi(,, .

function and the effects of the former were analyzed.

E

N 29Ne 1 Finally, the influence of the nuclear potential in the results
a~ 28’\5/9 o can be estimated by comparing the results of this work for
< 225 i the one- and two-body densities and the momentum distribu-
_ 40& T tion with those of Refs[13,28 for “°Ca obtained from the

FHNC at the single operator chain approximation by using

the realistic Argonne g andv 14 two-nucleon potentials and

the three-nucleon potentials of the Urbana class. The quali-

1 tative structure of the momentum distribution is the same

with small quantitative differences as, for example, the posi-

0,008 1 s s 1 tion of the point where the change in slope occurs, which is
° ' Fe (fM s ¢ °  shifted to lowerk values when realistic potentials are used.

FIG. 4. Upper panel: Two-body density for all the nuclei studied In Table IV, we show the excitation energy of some states

<)
o
S
@

-0.004

calculated from the best wave function obtained in this WoF&, . Cs)g the ground state rotational band for the nucféie to
Lower panel: difference function p, /r2, for all the nuclei consid-  Ar calculated from the7L, wave function. We also show
ered. the reduced transition probability between thé and the

ground state. The results are compared with the experimental

were parametrized and the values were fixed by fitting thélata[29], and with the noncorrelated values of the different
experimental charge form factor. guantities. With respect to the excitation energies, they com-

The results of Ref.25] present a good agreement with the Pare better with the experimental ones if correlations among
fully microscopic results of this work. Fok=2 fm~* the  the nucleons are considered. In general the agreement with
effects of the correlations are more important, in such a wayhe experimental data can be considered as good, although in
that the uncorrelated density is several order of magnitud€ome cases the differences are appreciable. For example, the
lower than the corresponding correlated value. The correla€nergy of the 2 state coincides, within the statistical error,
tions are also responsible for the change in the slople at for all the nuclei considered and does not follow the experi-
~2 fm~L. It is also worth mentioning the good agreementment?“ trend. This is due to the limitations of the trial wave
with the experimental results fdPCa in spite of the fact that functlc_)n used he_re_ and also to the fact that the r_luclear force
the nucleon-nucleon force employed in this work cannot paised is not realistic and therefore cannot provide accurate
considered as realistic. predictions. Nevertheless, the qualitative trend is reproduced.

State dependent correlations are not included in the varithiS is not the case for the reduced tr_ansition probabi]ity that
tional trial wave function used here. Their effect will be to iS almost unchanged when correlations are taken into ac-
enhance the tail of the momentum distribution with respecgount. This quantity depends mainly on the model part of the
to the results provided by wave functions containing onlywave function.
scalar correlation factors. This can be verified f8€a by
comparing with the results of Reff27] where an extensive
analysis of state-dependent correlations on both the nucleon
density and momentum distribution was performed. In Ref. A variational study of the ground state and some members
[6] the momentum distribution fasp nuclei was calculated of its rotational band for spin-isospin saturated shell nu-
by using the same nuclear potential and starting from botlelei has been carried out. Trial wave functions including sev-
state dependent and state independent variational trial waexal aspects of the nuclear dynamics have been obtained and

V. CONCLUSIONS
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FIG. 6. Momentum distribution for all the nuclei studied calculated from afh (jl) and noncorrelatethc) wave functions. Fof*Mg,
283, 325, 36Ar, and *°Ca, the two-body cluster expansion results of R25] (crossesare shown. Fof°Ca the experimental resultsircles
taken from Ref[24] are also plotted. The units &fare fm 2,

used to compute different properties. Short-range correlanduced by the latter not included in the former are small.
tions are accounted by means of both a Jastrow and a linedhe results for the one-body density show that this distribu-
correlation term. The model wave function includes defor-tion function is governed by the model part of the trial func-
mation and provides the correct angular momentum quanturtion with a minor influence of the correlation factor. The
numbers of the nuclear state. Angular momentum projectiomwo-body distribution presents stronger correlation effects, as
has been carried out by rotating the intrinsic state and inteit should be expected, with a structure that is similar for all
grating over all angles weighted by the corresponding rotaef the cases considered here. A calculation for heavier nuclei
tion matrix. The intrinsic states are built starting from the using the optimal correlation factor obtained fNe gave
SU3 model. accurate results. This is due to the fact that the correlation
One- and two-body radial densities have been calculatediepends strongly on the nuclear interaction and the influence
A systematic analysis of the different correlation mecha-of the number of particles is less important for the nuclei
nisms included in our trial wave function has been carriedstudied here. The momentum distribution has been also cal-
out, focusing on the interplay between the Jastrow and theulated and the important effects of the nucleon-nucleon cor-
linear correlation terms. The results indicate that the effectselations for largek values have been discussed. The results
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TABLE IV. Excitation energiegin MeV) for some members of the ground state rotational band and reduced probability transition in
fm~* between the 2 and the ground state calculated from &, trial wave function. The results are compared with the experimental ones
(expt of Ref.[29] and with the noncorrelateghc) values.

20Ne 24Mg ZSSi 325 36Ar
E(2")expt 1.63 1.37 1.78 2.23 1.97
E(2%), 1.16£0.11 1.14-0.20 1.08:0.20 1.35:0.28 1.22:0.36
E(2)ne 0.66+0.17 0.72-0.25 0.69-0.22 0.72-0.30 1.06-0.29
E(4") expt 4.25 4.12 4.62 4.46 4.41
E(4%), 4.34+0.18 3.76:0.24 3.610.25 4.55-0.32 4.82-0.40
E(4%)ne 2.65+0.23 2.6%:0.29 2.34:0.24 2.52:0.39 3.8720.45
E(6")expt 8.78 8.11 8.54 9.68
E(6%) 10.00+0.38 7.76-0.50 7.870.32 9.74-0.56 12.7¢0.97
E(6")ne 6.82+-0.51 6.110.56 5.210.36 6.09-0.74 10.x1.3
E(8")expt 16.75 14.15
E(8%) 21.8t1.4 13.62-1.1 14.30-0.64 11.5:1.6 31.7#45
E(8")nc 14.7+2.1 11.9-1.5 10.32-0.78 13.5-1.9 27.0-4.9
B(2"—0";2)expt 96+18 101+17 63+6 84+8
B(2*—0%;2), 55.0£0.4 94.6:0.9 89.24:0.8 87.2-0.8 46.8:0.5
B(2*—0":2)nc 58.3+0.4 99.8:0.9 94.8£0.7 88.8£0.8 48.2:0.5
show a good agreement with previous calculations and with ACKNOWLEDGMENTS

the experimental results where available. Finally, the excita-
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ground state is nearly independent of this part of the wavé&nowledges the Italian MURST for financial support from
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