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Quenching of weak interactions in nucleon matter

S. Cowell and V. R. Pandharipande
Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801

~Received 5 November 2002; published 28 March 2003!

We have calculated the one-body Fermi and Gamow-Teller charge-current and vector and axial-vector
neutral-current nuclear matrix elements in nucleon matter at densities of 0.08, 0.16, and 0.24 fm23 and proton
fractions ranging from 0.2 to 0.5. The correlated states for nucleon matter are obtained by operating on
Fermi-gas states by a symmetrized product of pair correlation operators determined from variational calcula-
tions with the Argonne-v18 and Urbana-IX two- and three-nucleon interactions. The squares of the charge-
current matrix elements are found to be quenched by 20–25 % by the short-range correlations in nucleon
matter. Most of the quenching is due to spin-isospin correlations induced by the pion exchange interactions
which change the isospins and spins of the nucleons. A large part of it can be related to the probability for a
spin-up proton quasiparticle to be a bare spin-up/down proton/neutron. Within the interval considered, the
charge-current matrix elements do not have significant dependence on the matter density, proton fraction, and
magnitudes of nucleon momenta; however, they do depend on momentum transfer. The neutral-current matrix
elements have a significant dependence on the proton fraction. We also calculate the matrix elements of the
nuclear Hamiltonian in the same correlated basis. These provide relatively mild effective interactions that give
the variational energies in the Hartree-Fock approximation. The calculated two-nucleon effective interaction
describes the spin-isospin susceptibilities of nuclear and neutron matter fairly accurately. However terms
greater than or equal to three-body terms are necessary to reproduce the compressibility. Realistic calculations
of weak interaction rates in nucleon matter can presumably be carried out using the effective operators and
interactions studied here. All presented results use the simple two-body cluster approximation to calculate the
correlated basis matrix elements. This allows for a clear discussion of the physical effects in the effective
operators and interactions.

DOI: 10.1103/PhysRevC.67.035504 PACS number~s!: 21.30.Fe, 23.40.Hc, 26.50.1x
he
n
e
p
fi
c

fo
s

m

ing
ity,

he

ir
lei
-
tors

are

nd
rom

ned
ure

yet
r
ese
and
ter,
nly
re-
I. INTRODUCTION

Weak interactions in nucleon matter occur during t
b-decay of nuclei, electron and muon capture reactio
neutrino-nucleus scattering, and in various astrophysical
vironments, such as evolving stars, neutron stars, and su
novas. They have been studied since Fermi proposed the
theory of b decay in 1934. Recently there has been mu
interest in weak interactions in the sun@1,2#, those of 12C,
and 16O due to their use in neutrino detectors searching
neutrino oscillations@3–6#, and in interactions of neutrino
with dense matter in neutron stars and supernovas@7#. Low
energy weak interactions proceed mainly via the nuclear
trix elements of the following four one-body operators:
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Here i is the nucleon number label andq is the momentum
given by the weak boson to the nucleon. The Fermi coupl
constant multiplying these operators is omitted for brev
uW is the electroweak mixing angle, andgA is the ratio of the
weak axial vector and Fermi coupling constants of t
nucleon. The four operators are called Fermi (F), Gamow-
Teller ~GT!, neutral-vector~NV!, and neutral-axial-vector
~NA!. In the nonrelativistic domain, neglecting weak pa
currents, the interaction of low energy neutrinos with nuc
and nucleon matter and nuclearb-decay rates are propor
tional to the square of the matrix elements of these opera
between initial and final nuclear states.

Due to the strong forces, nuclear wave functions
highly correlated@8,9#, and it is difficult to calculate the
nuclear matrix elements. Using quantum Monte Carlo a
Faddeev methods to calculate nuclear wave functions f
realistic models of nuclear forces, theb-decay matrix ele-
ments have been calculated for light nuclei withA<7
@10,11#. The calculated values for3H, 6He, and 7Be are
within 5% of the observed, and better agreement is obtai
after including weak pair currents. The weak muon capt
by 3He has also been calculated@12# with realistic wave
functions with similar success.

However, complete many-body calculations are not
possible for nuclei such as12C and heavier, as well as fo
nucleon matter. Most studies of weak interactions in th
systems use effective interactions and shell-model
Fermi-gas wave functions in finite nuclei and nucleon mat
respectively. The random phase approximation is commo
used. The pioneering work on GT transitions has been
©2003 The American Physical Society04-1
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viewed by Arimaet. al @13#. Some of the recent works are i
12C @14,15#, in p f shell @16,17#, and in neutron stars an
supernovas@18#. Typically the calculated rate of weak inte
actions is larger than observed; for example, a factor of;0.6
brings the calculatedp f shell GT transition rates in agree
ment with experiment. Recent Liquid Scintillating Neutrin
Detector ~LSND! results of charged current reaction cro
sections ofne @4# and nm @5# on 12C are lower than the
theoretical expectations by up to 20%.

This is not surprising since effective operators that ta
into account the effects of short range correlations, and
the bare operators given by Eqs.~1!–~4!, must be used along
with effective interactions as is well known from the wor
of Arima and collaborators@13#. In nuclei near the line of
stability the observed spectra andb-decay rates have bee
used to model the effective interactions and operators, bu
neutron stars and supernovas matter we have to calc
them from realistic models of nuclear forces. Inp f shell and
heavier nuclei, the effective interaction is also obtained fr
bare forces@19#.

There are several ways to obtain consistent sets of ef
tive operators and interactions starting from a bare nuc
Hamiltonian. For example, one can introduce a model sp
and employ the Lee-Suzuki similarity transformation@20# as
in the no core shell model type approach@21#. In this theory
the effective operators and interactions take into account
truncated Hilbert space. They are used in the retained m
space to predict the observables. In the present work we
the correlated basis~CB! approach@22,23#, evolved out of
variational theories of quantum liquids@24#. In this theory
the uncorrelated shell-model or Fermi-gas states are tr
formed by correlation operators to CB states without trun
tion of the Hilbert space. The effective operators and in
actions are matrix elements of the bare quantities in the
states; they take into account the effects of short-range
relations. The correlation operators are chosen such tha
nuclear interactions are relatively mild in the CB. Obse
ables are calculated using standard many-body perturba
theory methods in CB.

Here we focus on weak interactions in nucleon matter
variational calculations@9#, the nuclear matter wave func
tions are approximated with correlated states:

CX5S S)
i , j

Fi j DFX , ~5!

whereFX are uncorrelated Fermi-gas~FG! states andFi j are
pair correlation operators. TheSP denotes a symmetrize
product necessary becauseFi j andFik do not commute. One
can also relate uncorrelated shell-model states to correl
states in a similar way. The correlated states obtained f
Eq. ~5! are not orthogonal; we assume that they are orthon
malized using a combination of Lo¨wdin and Schmidt trans
formations@23# preserving the diagonal matrix elements
the Hamiltonian. However, the orthonormalization corre
tions are of higher order than those considered here.

Let uX& denote the orthonormal correlated states. The
fective interactions in the CB perturbation theory are defin
such that
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HereH is the nuclear Hamiltonian containing realistic tw
and possibly three-nucleon interactions. Even whenH has
only two-body interactions, the CBH I can have three- and
higher-body terms. Since the correlated states are expect
be close to the eigenstates ofH, the nondiagonal matrix ele
ments^XÞYuHuY& are small. This implies that the CB ef
fective interactions can be used in perturbation expans
based on the Hartree-Fock approximation. However,
first-order results are often not sufficiently accurate. T
product of pair correlation operators@Eq. ~5!# cannot trans-
form the uncorrelated states into the exact eigenstates oH.
CB calculations of the optical potential of nucleons
nuclear matter@25# including up to second-order terms i
H I , and of the response of nucleon matter to electromagn
probes including correlated particle-hole rescattering@26#,
have been relatively successful. In these works, as wel
here, the three- and higher-body effective interactions
neglected.

In the present work we use the static pair correlation
erator:

Fi j 5 (
p51,6

f p~r i j !Oi j
p , ~9!

Oi j
p51,651,ti•tj ,si•sj ,ti•tjsi•sj ,Si j ,ti•tjSi j .

~10!

In place of thep51,6 superscripts we often use the lettersc,
t, s, st, t, andtt to denote the radial functions associat
with these operators. For example,

f p51,6~r i j ![ f i j
c , f i j

t , f i j
s , f i j

st , f i j
t , f i j

tt . ~11!

Fi j is obtained by minimizing the energy of symmetr
nuclear matter at densityr5rn1rp using hypernetted and
operator chain summation methods@9,27#. The results of the
latest@27# variational calculations are briefly summarized
Sec. VI for completeness. The Argonne v18 two-nucle
@28# and Urbana IX three-nucleon@29# interactions are used
in these nuclear matter calculations, in studies of weak in
actions of light nuclei@10,11#, and in the present work. How
ever, improved models ofVi jk are now available@30#. The
variational calculations of nucleon matter also include t
spin-orbit terms inFi j , which are omitted here for simplic
ity. The variationally optimizedFi j can depend on the proto
fractionxp . However, this dependence seems to be relativ
weak. The effective interaction obtained fromFi j in symmet-
ric nuclear matter gives a fair description of the spin susc
tibility of pure neutron matter.

Matrix elements of operators between CB states are g
erally calculated using cluster expansions@31#. We begin
4-2
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QUENCHING OF WEAK INTERACTIONS IN NUCLEON MATTER PHYSICAL REVIEW C67, 035504 ~2003!
with the simplest, lowest-order two-nucleon cluster appro
mation to study the general properties of the weak one-b
effective operators and of the two-body interactions in C
for nucleon matter at densitiesr50.08, 0.16, and 0.24 fm23

and for proton fractionsxp5rp /r5 0.2, 0.3, 0.4, and 0.5. In
this density range the contributions of clusters with>3
nucleons to the energy of symmetric nuclear matter increa
from 10% to 30% of that of the two-body@27#; thus the
present results have only qualitative significance. We st
the density, proton fraction, and momentum dependenc
the operators and the interactions.

Due to correlations and weak pair currents, the effect
weak current operators have two- and many-body term
addition to the leading one-body term we consider here.
lowest-order~in cluster expansion! effective one-bodyF, GT,
and neutral-current operators are calculated and their re
are presented in Secs. II–V. As expected, the one-body
matrix elements are smaller in magnitude than those in
FG states. The dominant term responsible for the quenc
arises from pion exchange interactions that change the
spins and spins of the nucleons. In the FG wave functio
nucleon in the single-particle stateeik•rxn↑ , for example, is
a spin ↑ neutron with unit probability. This probability is
reduced in the CB state by the spin-isospin correlation
erators acting on the FG state. In contrast, the spin-iso
independent spatial correlations induced by the repuls
core in the two-nucleon interaction increase the magnitud
F, GT, and NA matrix elements; however, they quench
neutron NV. The CB matrix elements of the charge-curr
operators are found to have a rather small dependence o
matter density andxp within the range considered. They d
pend primarily on the momentum transferq, and only
slightly on the initial or final nucleon momentum. In additio
to these, the neutral-current matrix elements also depen
xp . The proton NV matrix element is an exception; it h
large cancellations and depends on all the relevant variab

The squares of theF and GT matrix elements in CB state
are;0.8 and 0.75 times those in FG states at small value
q. Thus the present zeroth-order~in CB H I) two-body cluster
calculation predicts a quenching of low energy weak tran
tions in nuclei and nucleon matter by;20–25 %. It is likely
that higher-order effects will further reduce the matrix e
ments and increase the quenching. For example, the occ
tion probability of states with momenta&kF is ;0.9 in CB
states, and it decreases to;0.8 on including second-orderH I
corrections@32#. In order to obtain quantitative results, it wi
be necessary to include contributions of greater than or e
to three-body clusters to the CB matrix elements neglecte
this initial study. This has been done for symmetric nucl
matter@25# with operator chain summation techniques; ho
ever, they are difficult to use in matter withxpÞ0.5. Three-
body cluster contributions in asymmetric matter can now
calculated using the recently developed matrix methods@27#.

The results for the CB two-nucleon interaction are p
sented in Sec. VI. It gives a fair description of the sp
isospin susceptibilities of nucleon matter used to determ
the effective interactions in the Landau-Migdal scheme@7#.
It also has the typical features of the effective interactio
used in existing calculations of weak interactions in nucle
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matter@18#. If we assume that the calculations with effectiv
interactions are implicitly using CB states, then their resu
should be reduced by a factor of;0.75 to take into accoun
the quenching of theF and GT matrix elements by shor
range correlations. Attempts to calculate the weak interac
rates in nucleon matter with the effective operators and
interaction presented here are in progress.

II. CORRELATED BASIS FERMI MATRIX ELEMENT

Let uI & and uF& denote the normalized correlated stat
obtained by operating on the FG statesuF I& anduFF& by the
correlation operatorSPFi j . The CB Fermi matrix elements
are given by

^FuOFuI &5
^FFu@SPFi j #OF@SPFi j #uF I&

A^FFu@SPFi j #
2uFF&^F I u@SPFi j #

2uF I&
,

~12!

apart from the orthogonality corrections@23# neglected here.
The corresponding uncorrelated, FG matrix element~FGME!
is ^FFuOFuF I&. It is nonzero only when the occupatio
numbers of the statesF I andFF differ by only one nucleon,
sinceOF is a one-body operator. In contrast the CB mat
element~CBME! can be nonzero even when the occupat
numbers ofF I and FF differ by more than one nucleon
However, here we consider only the dominant ‘‘one-bod
CBME in which they differ by only one nucleon. We defin
the quenching factorh as the ratio of the square of thes
matrix elements,uCBMEu2/uFGMEu2.

We assume thatuF I& has full neutron and proton Ferm
spheres with momentakFn andkFp , and

uFF&5akpxp

† aknxn
uF I&, ~13!

where kn<kFn and kp.kFp . In the absence of spin-orbi
correlations, the Fermi matrix elements are nonzero o
when the spin statexn5xp . The FGME51 when kp2kn
5q. These conditions are also necessary for the CBME to
nonzero; however, its value can depend on the matter d
sity, proton fraction, and the magnitudeskn , kp , andq.

The cluster expansion of the CBME is obtained by repl
ing the correlation operatorsFi j by 11(Fi j 21) @31# and
expanding the numerator and the denominator in power
(Fi j 21). It is convenient to use theF I

P , containing only a
product of single-particle wave functions in which nucleoni
are in plane wave states with momentumk i and spin-isospin
xt( i ), in place of the antisymmetricF I and use the antisym
metricFF . This is equivalent to retaining the antisymmetr
F I and FF and has the advantage that we can assoc
nucleon numbers with the state labels inF I

P . The nucleon in
the stateknxn of F I

P is labeled ‘‘a’’ for active; in uncorre-
lated states onlya participates in the transition. All othe
nucleons in the Fermi spheres are denoted byj.

The cluster expansion of the CBME is represented
diagrams as shown in Fig. 1. The terms in the expansion
labeled withFnxy, whereF stands for Fermi,n is the order
of the (Fi j 21) correlations,x5d,e for direct and exchange
terms, andy5a, j denoting the nucleon on which the wea
4-3
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interaction operates. The dots in these diagrams de
nucleons, a thin line specifying the states occupied by
nucleon inF I

P andFF passes through each dot. The nuc
onsa andj occupy stateskn andk j in theF I

P , therefore lines
labeledkn andk j originate from them in all diagrams. The
termination depends on the exchange pattern, sinceFF is
antisymmetric. In direct terms, the state linek j emerges and
ends in dotj because the state of nucleonj is unchanged. The
line with the two labelskn andkp denotes the weak trans
tion. In direct diagrams it begins and ends in dota. In dia-
grams in whicha and j are exchanged, the transition lin
begins ata and ends inj, while the state linek j begins from
j and ends ina. The state and transition lines must for
closed loops in all diagrams. The dashed line attached
nucleon i 5a or j shows the Fermi operatorOF( i )
5ti

1eiq•r i. The (Fi j 21) correlations are indicated by wav
lines. We sum over the spin-isospin statesxt( j ) of the
nucleonj, while those ofa (xn andxp), are specified byFF
@Eq. ~13!#.

The equations forFnxy are given below in the two-body
cluster approximation in whichn<2. They show that the
Fnxy are independent ofq, kn , and kp when x,y5d,a;
they depend only onq whenx,y5d, j ; and only onkn and
kp in exchange diagrams (x5e). We also give a simple ex
planation of the importantF2da term responsible for much
of the quenching. The standard second-order perturba
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+
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FIG. 1. Diagrams illustrating all of the one- and two-body term
contributing to the Fermi CBME.
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theory calculation of the direct contributions to the Fer
matrix element is reviewed in Appendix A. One can eas
identify the analogs ofFndy in that familiar theory and ob-
tain relations between the present approach and that of Ar
and coworkers@13#. The perturbation theory assumes that t
forces are weak, but in reality we cannot expand in power
the strong, bare two-nucleon interactionv i j . However, we
hope that standard perturbation theory can be used in
with the effective operators and interactions described h
as mentioned in the Introduction.

The leading zeroth-order term is given by

F0da5FGME5E d3rei (kn1q2kp)•r^xp~a!ut1~a!uxn~a!&

51. ~14!

The momentum conserving delta functiond3(kp2kn2q)
and thexn5xp spin constraint are implied here as well as
all terms of the expansion given below. There are no ot
zeroth-order terms.

The first-order direct term withOF( j Þa) is given by

F1d j5(
j
E d3r a je

2 iq•ra j

3^xp~a!xt~ j !u$tj
1 ,~Fa j21!%uxn~a!xt~ j !&

5rE d3re2 iq•r2 f t~r !. ~15!

All spin dependent terms inFa j give zero contribution on
summing over the spin states of nucleonsj, and the factor of
2 in the above equation comes from

$tj
1 ,tj•ta%52ta

1 . ~16!

From now on thea j subscripts onr andF will be dropped
for brevity, and ther dependence of thef p’s will be implicit.

The contribution ofF1e j is given by

F1e j5(
j
E d3rei (kn2k j )•r

3^xp~a!xt~ j !uea j$tj
1 ,~F21!%uxn~a!xt~ j !&

52E d3reikn•r@rn,n~r !~ f c2113 f s!

1rp,p~r !~ f t13 f ts!#, ~17!

whereei j is the spin-isospin exchange operator:

ei j 52
1

4
~11ti•tj !~11si•sj !, ~18!

and the Slater functions (N5n,p) are
4-4
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,N~r !5
2

rN
E d3k

~2p!3
u~kFN2k!eik•r53@sin~kFNr !

2kFNr cos~kFNr !#/~kFNr !3. ~19!

The algebra of the operatorsOa j
p51,6 described in Ref.@31# is

very useful in evaluating these contributions.
The two-body terms withOF(a) have contributions from

the numerator of the matrix element, Eq.~12!, as well as
normalization corrections introduced through the expans
of the denominator. We denote these byF1xaN and
F1xaD, respectively. In Fig. 1 the denominator contrib
tions are shown as products of two diagrams. The first-or
direct terms withOF(a) cancel:

F1da5F1daN1F1daD50, ~20!

while for the exchange terms we obtain

F1ea5F1eaN1F1eaD ~21!

F1eaN5(
j
E d3re2 i (k j 2kp)•r^xp~a!xt~ j !u

3ea j$ta
1 ,~F21!%uxn~a!xt~ j !&

52E d3reikp•r@rp,p~ f c2113 f s!

1rn,n~ f t13 f st!#, ~22!

F1eaD5(
j

2E d3r @e2 i (k j 2kn)•r^xn~a!xt~ j !u

3ea j~F21!uxn~a!xt~ j !&

1e2 i (k j 2kp)•r^xp~a!xt~ j !u

3ea j~F21!uxp~a!xt~ j !&#

5
1

2E d3r ~@ f c2113 f s1 f t13 f st#

3@eikn•rrn,n1eikp•rrp,p#12@ f t13 f st#

3@eikn•rrp,p1eikp•rrn,n# !. ~23!

For calculating the second-order terms, it is convenien
define

F511F01F1ta•tj , ~24!

F05 f c211 f ssa•sj1 f tSa j , ~25!

F15 f t1 f stsa•sj1 f ttSa j . ~26!

Only the spin independent parts of the products of the ab
F0 and F1 contribute to the second-order diagrams. The
are called theC parts in Ref.@31#. We define

Cd
IJ5C@FIFJ#, ~27!
03550
n
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e
e

Ce
IJ5C@~11sa•sj !F

IFJ#. ~28!

The expressions forCd
IJ andCe

IJ in terms of the correlation
functions f p are given in Appendix B.

There is no contribution from the denominator to t
termsF2x j . These are given by

F2d j5(
j
E d3re2 iq•r^xp~a!xt~ j !u

3~F21!tj
1~F21!uxn~a!xt~ j !&

5rE d3re2 iq•r 2@Cd
111Cd

01#, ~29!

F2e j5(
j
E d3rei (kn2k j )•r^xp~a!xt~ j !u

3ea j~F21!tj
1~F21!uxn~a!xt~ j !&

52
1

2E d3reikn•r@rn,n~Ce
002Ce

11!

12rp,p~Ce
111Ce

01!#. ~30!

The sum

F2da5F2daN1F2daD

5(
j
E d3r ^xp~a!xt~ j !u~F21!ta

1~F21!

2
1

2
$ta

1 ,~F21!2%uxn~a!xt~ j !&

5rE d3r ~24Cd
11!. ~31!

Note that only theF1ta•tj , which does not commute with
the ta

1 operator, contributes to this sum.
The results presented in the following section show t

the above term gives the largest contribution to the quen
ing of the Fermi matrix element in matter. This term simp
takes into account the probability for nucleona to be a neu-
tron in the initial and a proton in the final state. In the u
correlated product stateuF I

P&, nucleona is n↑; but in the
correlated product stateSPFi j uF I

P&, it can be in other
nucleon states. We refer to nucleona in the correlated state
as a ‘‘quasinucleon.’’ The probability that it is a neutron
given by

PI~a5n!5

^F I u@SPFi j #
1

2
~12ta

z!@SPFi j #uF I
P&

^F I u@SPFi j #
2uF I

P&
.

~32!

We use the cluster expansion to calculate this probabi
The zeroth-order, one-body term is unit, and the two-bo
second-order direct term is
4-5
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2
1

2 (
j
E d3r ^xn~a!xt~ j !u~F21!ta

z~F21!

2
1

2
$ta

z ,~F21!2%uxn~a!xt~ j !&

5rpE d3r ~24Cd
11!. ~33!

The two-body first-order direct terms cancel as in Eq.~20!.
Neglecting the exchange terms, we obtain the direct par

PI~a5n,d!511rpE d3r ~24Cd
11!. ~34!

In a similar way, the direct part of the probability for th
active quasinucleona to be a proton in the final state is give
by

PF~a5p,d!511rnE d3r ~24Cd
11!. ~35!

Hence

11F2da5PI~a5n,d!PF~a5p,d!, ~36!

neglecting the terms of order (Cd
11)2.

The probabilities for the active quasinucleon to be in
initial spin isospin states↑,↓n,p have been calculated keep
ing only the direct terms, at the three densities forxp50.5.
These are given in Table I. In one-body Fermi transitio
these are also the probabilities for the active quasinucleo
be a spin↑,↓p,n in the final state.

The second-order exchange term

F2ea5F2eaN1F2eaD ~37!

has contributions from bothF1 andF0. They are given by

F2eaN5(
j
E d3rei (kp2k j )•r^xp~a!xt~ j !u

3ea j~F21!ta
1~F21!uxn~a!xt~ j !&

52
1

2E d3reikp•r@rp,p~Ce
002Ce

11!

12rn,n~Ce
111Ce

10!#, ~38!

TABLE I. Correlated basis probabilities for the active qua

nucleona to beN↑ andN↓ in the initial state forr5( 1
2 , 1, 3

2 )r0

and xp50.5. The listed values include contributions of one- a
two-body direct terms.

I P(a, 1
2 r0) P(a,r0) P(a, 3

2 r0)

n↑ 0.92 0.89 0.87
n↓ 0.02 0.03 0.03
p↑ 0.02 0.03 0.03
p↓ 0.04 0.05 0.07
03550
e

s
to

F2eaD5(
j

2
1

2E d3r @e2 i (k j 2kn)•r^xn~a!xt~ j !u

3ea j~F21!2uxn~a!xt~ j !&1e2 i (k j 2kp)•r

3^xp~a!xt~ j !uea j~F21!2uxp~a!xt~ j !&#

5
1

4E d3r @~24Ce
1114Ce

10!~eikn•rrp,p

1eikp•rrn,n!1~Ce
001Ce

1112Ce
10!~eikn•rrn,n

1eikp•rrp,p!#. ~39!

Results for Fermi matrix element

The Fermi matrix elements have been calculated us
correlation functions obtained in Ref.@9# by minimizing the
energy of symmetric nuclear matter using the Argonne-v
and Urbana-IX two- and three-nucleon interactions. In Fig
we present the results forhF , the square of the Fermi CBME
@Eq. ~12!#, for kn5kFn andkp5kFp .

When xp,0.5 the total isospinTI of the stateuI & is (N
2Z)/2, while that of uF& is (N2Z)/221. In the case of
symmetric nuclear matter theTI50, while TF51. Thus the
calculated matrix elements are between states withDT51.
The Fermi matrix elements forq50, between isobaric ana
log states having the sameT andTzF5TzI61, are given by
(T7TzI)(T6TzI11) in both correlated and uncorrelate
states. We will not discussDT50 Fermi ME in this paper.

The variation ofhF with proton fraction is less than 3%
at all densities calculated. However, the proton fraction li
its the allowed values ofq through the momentum conserva
tion relation:q5kp2kn . The variation with total density is
also small within the considered range. This suggests tha
can approximateuCBMEu2 by a function ofr andq. In the
small q region,q&0.5 fm21, it can be well represented b
the quadratic

hF5hF~q→0!1aF~r!q2. ~40!

0.7

0.8

0.9

0.7

0.8

0.9

η F

0 0.5 1 1.5 2 2.5 3

q ( fm
-1
)

0.7

0.8

0.9

ρ = 0.5ρ
0

ρ = ρ
0

ρ = 1.5ρ
0

FIG. 2. hF as a function ofq and proton fractionxp for kN

5kFN . The solid, dashed, dotted, and dash-dot lines show res
for xp50.5, 0.4, 0.3, and 0.2.
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QUENCHING OF WEAK INTERACTIONS IN NUCLEON MATTER PHYSICAL REVIEW C67, 035504 ~2003!
We have fit the calculated values for symmetric nuclear m
ter and the results are given in Table II.

Figure 3 shows the contributions of each term in the cl
ter expansion of the Fermi matrix element in matter at d
sity r0 andxp50.5. TheFnxa andFne j terms give contri-
butions that are independent ofq as can be seen from Eq
~17!, ~22!, ~23!, ~30!, ~31!, ~38!, and ~39!. The dominant
contribution to the quenching of the Fermi CBME com
from F2da; u11F2dau250.7 is shown by the dotted line in
Fig. 3. As discussed in the preceding section this result
be interpreted in terms of the probabilities for the act
quasinucleona to be a neutron in the initial and a proton
the final CB states.

The exchange termsFnea, contribute an additiona
; 0.1 to theq-independent quenching;u(n,xFnxau250.61 is
shown by the double-dash-dot line. This additional quen
ing is mostly canceled by theFne j terms, as shown by the
dash-double-dot line;u(n,xFnxa1Fne ju250.71.

The Fnd j terms, given by Eqs.~15! and ~29!, introduce
the q dependence. Of these, the second-orderF2d j is domi-
nant as can be seen from the dashed line, which inclu
only F1d j and all theq-independent terms. The full line
gives the square of the total matrix element includingF2d j .

The contributions of the various correlations to the CBM
are shown in Fig. 4. The first- and second-order terms
dominated by thef st(r i j )si•sjti•tj and f tt(r i j )Si j ti•tj
correlations induced mainly by the one pion exchange po
tial ~OPEP!. After setting f st5 f tt50, the u(n,xFnxau2 be-
comes essentially 1 as shown by the dotted line in Fig. 4.
full CBME exceeds unity in this case~see the dashed line!

TABLE II. Quadratic fit tohF andhGT at smallq.

r u^OF&u2(q50) aF hGT(q50) aGT

0.08 0.80 20.094 0.76 0.259
0.16 0.81 20.075 0.75 0.060
0.24 0.86 20.083 0.78 0.041

0 0.5 1 1.5 2 2.5

q (fm
-1
)

0.6

0.65

0.7

0.75

0.8

η F

FIG. 3. Contributions tohF for kN5kFN andr5r0. The dash-
double dot line includes all of theq-independent terms, while th
solid line shows the full result. See text for description of oth
curves.
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via the contributions off c21 correlations toFnx j. The
dash-dot line showshF obtained by further settingf c51. It
is fairly close to one showing that thef t, f s, and f t corre-
lations have small effects.

The Fermi CBME calculated in the two-body cluster a
proximation does not depend significantly on the magnitu
of the initial and final nucleon momenta. The dependence
kFn2kn andkp2kFp is illustrated in Fig. 5. It showshF for
r5r0 , xp50.5 and 0.3, kn5(1,0.75,0.5)kFn , and kp
5(1,1.25,1.5)kFp as a function ofq. The results for the 18
possible combinations ofxp , kn , andkp values differ by less
than 0.03.

III. CORRELATED BASIS GAMOW-TELLER MATRIX
ELEMENT

The procedure for the calculation of the GT matrix e
ment is similar to that discussed in Sec. II. We therefo
discuss only the differences and give the final expressio

r

0 0.5 1 1.5 2 2.5

q ( fm
-1
)

0.7

0.8

0.9

1

1.1

η F

FIG. 4. Correlation dependence ofhF for kN5kFN andr5r0.
The dashed line shows results withf st5 f tt50, and in addition,
f c51 for the dash-dot line. The dotted line showsu(n,xFnxau2

when f st5 f tt50. The solid line gives the full result.

0.7

0.8

0.9

0.7

0.8

0.9

η F

0 1 2
q ( fm

-1
 )

0.7

0.8

0.9

k

p

= k
F p

k

p

=1.25 k
F p

k
p
=1.5 k

F p

3

FIG. 5. Dependence ofhF on the initial (kn) and final (kp)
momenta forr5r0. Each set contains six lines depicting the resu
for kn5(0.5,0.75,1)kFn , and xp50.3 and 0.5 for the indicated
value ofkp .
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The operatorOGT is an axial vector and it is convenient t
express its matrix element using the following two axial ve
tors:

^sã&5^xp~a!us~a!t1~a!uxn~a!& ~41!

and

^A t̃&53r̂a j^sã&• r̂a j2^sã&, ~42!

obtained from the tensor correlations between nucleona

and j. Note that^A t̃& depends onr̂a j .
We assume thatxn in Eq. ~13! is spin-up and sum the

square of the GT matrix element for the two final states w
xp5↑,↓ denoted byuF↑& anduF↓&. In FG we get contribu-
tions only via the operatorsã5sata

1 ; only sz(a) contrib-
utes to the FGME withxp5↑, while sx(a) andsy(a) give
the GT FGME forxp5↓. However, in CB theA t̃ induces
transitions that are forbidden in FG states.

The terms in the cluster expansion of the GT CBME a
denoted by GTnxy as in the last section. The ratiogA of the
axial to vector coupling constants is omitted from the GTnxy
for brevity. We obtain

GT0da5^sã&, ~43!

GT1d j5rE d3re2 iq•r2~ f st^sã&1 f tt^A t̃&!, ~44!

GT1e j52E d3reikn•r$rp,p~ f t13 f st!^sã&1rn,n@~ f c21

1 f s12 f st!^sã&1~ f t2 f tt!^A t̃&#%, ~45!

GT1eaN52E d3reikp•r$rn,n~ f t13 f st!^sã&1rp,p@~ f c

211 f s12 f st!^sã&1~ f t2 f tt!^A t̃&#%, ~46!

GT1eaD5^sã&F1eaD, ~47!

GT2d j52rE d3re2 iq•r@~Fd, j
11,s1Fd, j

01,s!^sã&1~Fd, j
11,A

1Fd, j
01,A!^A t̃&#, ~48!

GT2e j52
1

2E d3reikn•r$rn,n@~Fe, j
00,s2Fe, j

11,s2Fe, j
10,s

1Fe, j
01,s!^sã&1~Fe, j

00,A2Fe, j
11,A2Fe, j

10,A1Fe, j
01,A!^A t̃&#

12rp,p@~Fe, j
11,s1Fe, j

01,s!^sã&

1~Fe, j
11,A1Fe, j

01,A!^A t̃&#%, ~49!

GT2da5rE d3r ~Fd,a
00,s2Fd,a

11,s2Cd
0023Cd

11!^sã&,

~50!
03550
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GT2eaN52
1

2E d3reikp•r$rp,p@~Fe,a
00,s2Fe,a

11,s1Fe,a
10,s

2Fe,a
01,s!^sã&1~Fe,a

00,A2Fe,a
11,A1Fe,a

10,A

2Fe,a
01,A!^A t̃&#12rn,n@~Fe,a

11,s1Fe,a
10,s!^sã&

1~Fe,a
11,A1Fe,a

10,A!^A t̃&#%, ~51!

GT2eaD5^sã&F2eaD. ~52!

The coefficientsFd,y
IJ,s (y5a, j ) andFd,y

IJ,A are defined as the
sa andAt parts of the operatorFIsyF

J:

FIsyF
J5Fd,y

IJ,ssa1Fd,y
IJ,AAt1~ terms linear insj !.

~53!

The remaining parts linear insj do not contribute after sum
ming over sj . The Fe,y

IJ,s and Fe,y
IJ,A are the corresponding

parts of the operator (11sa•sj )F
IsyF

J, and the expres-
sions forFx,y

IJ,s andFx,y
IJ,A are given in Appendix B.

As in the Fermi case, the second-order direct diagra
GT2da can be interpreted in terms of quasinucleon pro
abilities. The GT2da has contributions from̂ sã& only.
When the final proton has spin↑ only thesa

z term contrib-
utes. We consider this simple case for illustration. In t
case, (11GT2da) represents the probability that the activ
quasinucleon hassa

zta
z521 in the initial state and11 in

the final state. In FG states these are unit probabilities.
use the cluster expansion to calculate them in CB states.
zeroth-order terms are equal to 1, and the two-body seco
order direct terms are given by

7
1

2 (
j
E d3r ^xn~a!xt~ j !u~F21!sa

zta
z~F21!

2
1

2
$sa

zta
z , ~F21!2%uxn~a!xt~ j !&

5r
1

2E d3r ~Fd,a
00,s2Fd,a

11,s2Cd
00

23Cd
11!7~rp2rn!

1

2E d3r ~Fd,a
10,s1Fd,a

01,s12Fd,a
11,s

22Cd
1012Cd

11!, ~54!

where the upper and lower signs correspond to the initial
final states, respectively. The first-order direct terms can
as in Eq.~20!. Neglecting the exchange terms and those
orderCd

IJCd
MN andFd,a

IJ,sFd,a
MN,s we obtain

PI~sa
zta

z521,d!PF~sa
zta

z51,d!

511rE d3r ~Fd,a
00,s2Fd,a

11,s2Cd
0023Cd

11!

511@GT2da#z . ~55!
4-8



G
gh
fo
o

an
su
r

nc

ha

II.
ri-
ng

in

e
re

re

ho

te

u
er

QUENCHING OF WEAK INTERACTIONS IN NUCLEON MATTER PHYSICAL REVIEW C67, 035504 ~2003!
The sa
zta

z521 probability is the sum of then↑ and p↓
probabilities listed in Table I.

Results of Gamow-Teller matrix element

The tensor correlations lead to a dependence of the
CBME on the direction of the spin quantization axis throu
the ^A t̃& terms. We therefore do not discuss the CBME
spin-up and -down final states individually. The sum
uCBMEu2 over the final two spin states determines the tr
sition rates and is independent of the chosen axis. This
equals 3 for FGME. In the following, we report results fo

hGT[ 1
3 ~ u^F↑uOGTuI &u21u^F↓uOGTuI &u2!. ~56!

The hGT has been calculated using the correlation fu
tions as described in Sec. II and the results forkN5kFN are
plotted in Fig. 6. As in the Fermi case, the variation ofhGT
due to changes in proton fraction is less than 3%, but it
moreq dependence. The quadratic fit@Eq. ~40!# is still valid
up to q;0.5 fm21, and its parameters are given in Table

Figure 7 illustrates the relative contributions of the va
ous terms tohGT . As in the Fermi case, the main quenchi
comes from the GT2da term; approximating theuCBMEu2

by u11GT2dau2 giveshGT50.79 ~dotted line!. It decreases
to 0.72 on adding the GTnea terms~double-dash-dot line!.
The double-dot-dash line shows the result after includ
GTne j terms that reduce the quenching.

The main q dependence comes from the first-ord
GT1d j term; results obtained after adding this term a
shown by the dashed line. The GT2d j term also contributes
to theq dependence~full line gives the totalhGT).

The dash-dot and the double-dot-dash lines have a ba
visible q dependence coming from the GTney terms. In the
Fermi case these exchange terms depend only onkn andkp ;
however, in the GT case they introduce a dependence ofhGT
on the angle betweenkn andkp . This appears as aq depen-
dence, but it is very small (,0.002).

The relative contributions of various correlations tohGT
are shown in Fig. 8. The dashed and the dash-dot lines s

0.75

0.8

0.85

0.9

0.75

0.8

0.85

0.9

η G
T

0 0.5 1 1.5 2 2.5 3

q ( fm
-1
)

0.75

0.8

0.85

0.9

ρ = 0.5ρ
0

ρ = ρ
0

ρ = 1.5ρ
0

FIG. 6. hGT as a function ofq and proton fractionxp for kN

5kFN . The solid, dashed, dotted, and dash-dot lines show res
for xp50.5, 0.4, 0.3, and 0.2.
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results obtained after settingf st5 f tt50, and in addition
f c51, respectively. The central correlations contribu
mostly via the GTne j terms; the dotted line close tohGT
51 is obtained by settingf st5 f tt50 and including only the
GTnxa terms.

The dependence ofhGT on kn andkp is shown in Fig. 9.
It is small ,0.03 as forhF .

IV. CORRELATED BASIS NEUTRAL-VECTOR MATRIX
ELEMENT

In ‘‘one-body’’ NV transitions the final state is

uFF&5ak fxN
f

†
akixN

i uF I&, ~57!

whereki<kFN andkf.kFN . The NV matrix element is non-
zero only when the initial and final spin-isospin statesxN

f and
xN

i are the same.

lts

0 0.5 1 1.5 2 2.5

q (fm
-1
)

0.75

0.8

0.85

η G
T

FIG. 7. Contributions to thehGT for for kN5kFN andr5r0: the
dash-double dot line includes all of theq-independent terms, while
the solid line shows the full result. See text for description of oth
curves.

0 0.5 1 1.5 2 2.5

q ( fm
-1
)

0.7

0.8

0.9

1

1.1

η G
T

FIG. 8. Correlation dependence ofhGT for kN5kFN and r
5r0. The solid line is forhGT with the full F. The dashed line
shows results withf st5 f tt50, and in addition,f c51 for the dash-
dot line. The dotted line showsu(n,xGTnxau2 when f st5 f tt50.
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The terms in the cluster expansion of the NV CBME a
denoted by

NVnxy52sin2uWNVnxy11 1
2 ~122 sin2uW!NVnxyz,

~58!

wheren, x, andy are defined in Sec. II and 1 andz, respec-
tively, represent contributions ofeiq•r i and t i

zeiq•r i. For the
NVnxy1 terms we obtain

NV0da151, ~59!

NV1d j15E d3re2 iq•r2@~ f c21!r1 f t~rp2rn!^ta
z&#,

~60!

NV1e j152
1

2E d3reiki•r$~ f c2113 f s13 f t19 f st!~rp,p

1rn,n!1~ f c2113 f s2 f t23 f st!~rp,p2rn,n!

3^ta
z&%, ~61!

NV1da150, ~62!

NV1eaN152
1

2E d3reik f•r$~ f c2113 f s13 f t19 f st!

3~rp,p1rn,n!1~ f c2113 f s2 f t23 f st!

3~rp,p2rn,n!^ta
z&%, ~63!

NV1eaD15
1

4E d3r ~eiki•r1eik f•r !@~ f c2113 f s13 f t

19 f st!~rp,p1rn,n!1~ f c2113 f s2 f t

23 f st!~rp,p2rn,n!^ta
z&#, ~64!

0.75

0.9

0.75

0.9

η G
T

0 1 2
q ( fm

-1
 )

0.75

0.9

k
p
= k

F p

k
p
=1.25 k

F p

k
p
=1.5 k

F p

3

FIG. 9. Dependence of thehGT on the initial (kn) and final (kp)
momenta forr5r0. Each set contains six lines depicting the resu
for kn5(0.5,0.75,1)kFn , and xp50.3 and 0.5 for the indicated
value ofkp .
03550
NV2d j15E d3re2 iq•r@~Cd
0013Cd

11!r

12~Cd
102Cd

11!~rp2rn!^ta
z&#, ~65!

NV2e j152
1

4E d3reiki•r$~Ce
0016Ce

1023Ce
11!~rp,p

1rn,n!1~Ce
0022Ce

1015Ce
11!~rp,p2rn,n!

3^ta
z&%, ~66!

NV2da150, ~67!

NV2eaN152
1

4E d3reik f•r$~Ce
0016Ce

1023Ce
11!

3~rp,p1rn,n!1~Ce
0022Ce

1015Ce
11!

3~rp,p2rn,n!^ta
z&%, ~68!

NV2eaD15
1

8E d3r ~eiki•r1eik f•r !@~Ce
0016Ce

0123Ce
11!

3~rp,p1rn,n!1~Ce
0022Ce

0115Ce
11!~rp ,p

2rn,n!^ta
z&#, ~69!

where^ta
z&5^xN

f (a)uta
zuxN

i (a)&.
The NVnda1 terms are zero forn.0 becauseeiq•r i com-

mutes with the static correlation operators. Also note that
exchange, NVnea1, terms are zero whenuk i u5uk f u.

The NVnxyz terms are given by

NV0daz5^ta
z&, ~70!

NV1d jz5E d3re2 iq•r2@~ f c21!~rp2rn!1 f tr^ta
z&#,

~71!

NV1e jz52
1

2E d3reiki•r$~ f c2113 f s1 f t13 f st!

3~rp,p2rn,n!1~ f c2113 f s1 f t13 f st!

3~rp,p1rn,n!^ta
z&%, ~72!

NV1daz50, ~73!

NV1eaNz52
1

2E d3reik f•r$~ f c2113 f s1 f t13 f st!

3~rp,p2rn,n!1~ f c2113 f s1 f t13 f st!

3~rp,p1rn,n!^ta
z&%, ~74!

NV1eaDz5^ta
z&NV1eaD1, ~75!
4-10
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QUENCHING OF WEAK INTERACTIONS IN NUCLEON MATTER PHYSICAL REVIEW C67, 035504 ~2003!
NV2d jz5E d3re2 iq•r@~Cd
002Cd

11!~rp2rn!

12~Cd
101Cd

11!r^ta
z&#, ~76!

NV2e jz52
1

4E d3reiki•r$~Ce
0012Ce

101Ce
11!~rp,p2rn,n!

1~Ce
0012Ce

101Ce
11!~rp,p1rn,n!^ta

z&%, ~77!

NV2daz5E d3r @4Cd
11~rp2rn!24Cd

11r^ta
z&#, ~78!

NV2eaNz52
1

4E d3reik f•r$~Ce
0012Ce

101Ce
11!

3~rp,p2rn,n!1~Ce
0012Ce

101Ce
11!

3~rp,p1rn,n!^ta
z&%, ~79!

NV2eaDz5^ta
z&NV2eaD1. ~80!

In symmetric nuclear matter the matrix elements oftz are
related to those oft6. In this case NVnxyz5Fnxy. How-
ever, whenxp,0.5 the NV matrix elements have addition
terms dependent onrn2rp , or equivalentlyxp .

Results of neutral-vector matrix element

In uncorrelated FG states, the neutral-vector matrix e
ment is

2sin2uW1 1
2 ~122 sin2uW!^ta

z&520.231460.2686
~81!

for the proton and neutron particle-hole pairs, respectiv
The above two terms nearly cancel for uncorrelated proto
The correlations influence each operator differently and
final CB result depends sensitively onki , kf , r, and xp .
The strong dependence of the proton NV matrix element
r and xp is shown in Fig. 10 where we have plotted th
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FIG. 10. Proton NV CBME scaled by FGME as a function ofq
and proton fractionxp for ki5kf5kFp . The solid, dashed, dotted
and dash-dot lines show results forxp50.5, 0.4, 0.3, and 0.2.
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proton particle-hole NV CBME scaled by 0.0372, th
FGME. Note that the value of the CBME~not uCBMEu2) is
shown in this figure. At low densities the first term dom
nates, and the CBME is negative; however, at higher de
ties the second term becomes larger, and the matrix elem
becomes positive. Atr;r0 the cancellation of the two term
is almost exact, and the proton NV CBME is very sma
Fortunately, in this case the FGME is small and the CBME
of the same order in the considered density range. Thus
coupling of the proton NV current is not likely to have
significant contribution to then-nucleus interaction.

Figure 11 shows the density andxp dependence ofhNV
for neutron particle-hole pair excitations. Atr5 1

2 r0 the cor-
relations increase the contribution of the first term and
crease that of the second term in Eq.~81! by a similar mag-
nitude. Therefore at smallr and q the NV neutron CBME
; FGME. However, at higher densities it is quenched.
mentioned earlier these matrix elements have a significanxp
dependence absent in the charge current matrix elemen

Figure 12 shows the contributions of the various corre
tions to the NV neutron CBME. The CBME is influenced b
contributions of thef c21 correlations to NVnx j1 and those
of the f st(r i j )si•sjti•tj and f tt(r i j )Si j ti•tj correlations to
NVnxyz terms. The results obtained after settingf st5 f tt

50 and in additionf c51 are shown by dashed and dash-d
lines in Fig. 12.

The neutral-vector CBME for a neutron particle-hole p
does not depend significantly on the magnitudes of the in
and final nucleon momenta. Variation ofki from 0.5 to 1 and
of kf from 1kF to 1.5kF changeshNV by less than 3%.

V. CORRELATED BASIS NEUTRAL-AXIAL-VECTOR
MATRIX ELEMENT

The operatorONA is an axial vector and it is convenient t
express its matrix element using the following two axial ve
tors, similar to those used for the Gamow-Teller CBME~Sec.
III !:

^sa&5^xN
f ~a!us~a!uxN

i ~a!& ~82!
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FIG. 11. NeutronhNV as a function ofq and proton fractionxp

for ki5kf5kFn . The solid, dashed, dotted, and dash-dot lines sh
results forxp50.5, 0.4, 0.3, and 0.2.
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and

^At&53r̂a j^sa&• r̂a j2^sa&. ~83!

We assume thatxN
i in Eq. ~57! is spin up and calculate th

sum of the square of the NA matrix element for the two fin
states withxN

f 5↑,↓ for both N5n andp. The terms in the
cluster expansion of the NA CBME are denoted by NAnxy
as in Sec. II, and the factorgA is omitted for brevity. We
obtain

NA0da5 1
2 ^sa&^ta

z&, ~84!

NA1d j5
1

2E d3re2 iq•r2@~rp2rn!~ f s^sa&1 f t^At&!

1r^ta
z&~ f st^sa&1 f tt^At&!#, ~85!

NA1e j52
1

4E d3reiki•r$@~ f c211 f s1 f t23 f st!^sa&

1~ f t13 f tt!^At&#~rp,p2rn,n!1@~ f c211 f s1 f t

15 f st!^sa&1~ f t2 f tt!^At&#~rp,p1rn,n!^ta
z&%,

~86!

NA1da50, ~87!

NA1eaN52
1

4E d3reik f•r$@~ f c211 f s1 f t23 f st!^sa&

1~ f t13 f tt!^At&#~rp ,p2rn,n!1@~ f c211 f s

1 f t15 f st!^sa&1~ f t2 f tt!^At&#~rp,p1rn,n!

3^ta
z&%, ~88!

NA1eaD5
1

2
^sa&^ta

z&NV1eaD1, ~89!

0 0.5 1 1.5 2 2.5 3

q ( fm
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)
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FIG. 12. Correlation dependence of the neutronhNV for ki5kf

5kFn and r5r0. The dashed line shows results withf st5 f tt

50, and in addition,f c51 for the dash-dot line. The solid line
gives the full result.
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NA2d j5
1

2E d3re2 iq•r$@~Fd, j
00,s2Fd, j

11,s!^sa&1~Fd, j
00,A

2Fd, j
11,A!^At&#~rp2rn!1@~Fd, j

10,s1Fd, j
01,s12Fd, j

11,s!

3^sa&1~Fd, j
10,A1Fd, j

01,A12Fd, j
11,A!^At&#r^ta

z&%, ~90!

NA2e j52
1

8E d3reiki•r@$~Fe, j
00,s13Fe, j

10,s2Fe, j
01,s1Fe, j

11,s!

3^sa&1~Fe, j
00,A13Fe, j

10,A2Fe, j
01,A1Fe, j

11,A!^At&%

3~rp,p2rn,n!1$~Fe, j
00,s2Fe, j

10,s13Fe, j
01,s1Fe, j

11,s!

3^sa&1~Fe, j
00,A2Fe, j

10,A13Fe, j
01,A1Fe, j

11,A!^At&%

3~rp,p1rn,n!^ta
z&#, ~91!

NA2da5
1

2E d3r @Fd, j
10,s1Fd, j

01,s12Fd, j
11,s22~Cd

012Cd
11!#

3^sa&~rp2rn!1~Fd, j
00,s2Fd, j

11,s2Cd
0023Cd

11!

3^sa&r^ta
z&], ~92!

NA2eaN52
1

8E d3reik f•r@$~Fe, j
00,s2Fe, j

10,s13Fe, j
01,s1Fe, j

11,s!

3^sa&1~Fe, j
00,A2Fe, j

10,A13Fe, j
01,A1Fe, j

11,A!^At&%

3~rp,p2rn,n!1$~Fe, j
00,s13Fe, j

10,s2Fe, j
01,s

1Fe, j
11,s!^sa&1~Fe, j

00,A13Fe, j
10,A2Fe, j

01,A1Fe, j
11,A!

3^At&%~rp,p1rn,n!^ta
z&#, ~93!

NA2eaD5
1

2
^sa&^ta

z&NV2eaD1. ~94!

Results of neutral-axial-vector matrix element

We discuss only the sum of theuCBMEu2 over the two
final spin states because it is independent of the chosen
quantization axis. This sum equals 3/4 for FGME. In t
following we provide results for

hNA[ 4
3 ~ u^F↑uONAuI &u21u^F↓uONAuI &u2!. ~95!

The hNA for neutron and proton particle-hole pairs are plo
ted in Figs. 13 and 14, respectively, for the considered d
sity and proton fraction values. In these matrix elementski
5kf5kFN .

The charge-changing and neutral-axial-vector opera
(OGT and ONA), appropriately scaled, can be interpreted
the three components of an isospin vector operator. In s
metric nuclear matter the expectation values of these th
components are equal, as one cannot quantify the iso
axis. The stars in Figs. 13 and 14 are results obtained forhGT
for symmetric nuclear matter with equivalent initial and fin
momenta and densities. They are identical to those obta
for hNA for both proton and neutron particle-hole pairs.
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Unlike the results for the GT CBME, there is a noticeab
dependence ofhNA on the proton fraction at all densitie
considered. This (rp2rn) dependence originates from thet j

z

in NAnx j and NAnxa terms. We can approximate the N
results obtained forxp,0.5 by adding a density depende
term proportional to (rp2rn) to hNA for symmetric nuclear
matter. For smallq, this approximation is

hNA~r,xp,0.5!5hNA~r,xp50.5!2CN~r!~rp2rn!
~96!

5hGT~q50!1aGTq22CN~r!~rp2rn!,

~97!

where we have usedhNA5hGT at xp50.5 and Eq.~40!. The
values obtained forCN(r) at the three densities considere
are given in Table III.
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FIG. 13. NeutronhNA as a function ofq and proton fractionxp

for ki5kf5kFn . The solid, dashed, dotted, and dash-dot lines sh
results forxp50.5, 0.4, 0.3, and 0.2. The stars are results forhGT

at xp50.5.
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FIG. 14. ProtonhNA as a function ofq and proton fractionxp

for ki5kf5kFp . The solid, dashed, dotted, and dash-dot lines sh
results forxp50.5, 0.4, 0.3, and 0.2. The stars are results forhGT

at xp50.5.
03550
The correlation dependence and the initial and final m
menta dependences studied forhGT are applicable here an
will not be discussed further.

VI. CORRELATED BASIS INTERACTION

The expectation value ofH2TFG(X), whereTFG(X) is
the kinetic energy of the Fermi-gas stateFX , is expanded to
calculate the energy of the correlated stateuX&. It is given by

^XuHuX&5
^FXu@SPFi j #@H2TFG~X!#@SPFi j #uFX&

^FXu@SPFi j #
2uFX&

1TFG~X!, ~98!

TFG~X!5 (
all i occupied in FX

ki
2

2m
. ~99!

SinceFX is an eigenstate of the kinetic energy operatorT
5( i2¹ i

2/2m, with eigenvalueTFG(X), it is not necessary
to expand the FG kinetic energy.@H2TFG(X)#uX& does not
contain terms with¹ i

2 operating onuFX&. Including only
two-body clusters we obtain

^XuHuX&5TFG~X!1(
i , j

^ i j 2 j i uFi j Fv i j Fi j 2
1

m
~¹2Fi j !

2
2

m
~“Fi j !•“G u i j &, ~100!

where u i j &5ei (ki•r i1k j •r j )xt( i )xt( j ). The gradient operate
on the relative coordinate, and the sumi , j is over states
occupied inFX . The effective correlated basis two-nucleo
interaction is given by@see Eq.~8!#

v i j
CB5Fi j Fv i j Fi j 2

1

m
~¹2Fi j !2

2

m
~“Fi j !•“G ~101!

in the two-body cluster approximation. The energies of c
related statesuX& are obtained by using thisv i j

CB in first-order
with FG wave functionsFX , as in the Hartree-Fock approx
mation.

The v i j
CB has a momentum dependence via t

(“Fi j )•“ term that gives contributions to the matter ener
via exchange terms in Eq.~100!. This contribution is much
smaller than that of the momentum independent static te
in v i j

CB defined as

v i j
CBS5Fi j S v i j 2

1

m
¹2DFi j . ~102!

w

w

TABLE III. Linear fit to hNA for xp,0.5 at smallq.

r Cp(r) Cn(r)

0.08 1.39 21.29
0.16 1.53 21.46
0.24 1.40 21.38
4-13
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In the present work we have considered only the st
part of Fi j as mentioned in the introduction. We therefo
keep only the dominant static part of the full Argonnev i j .
The full v i j is first approximated by av88 interaction chosen
such that it equals the isoscalar part of the full interaction
all S and P waves as well as in the3D1 wave and its cou-
pling to 3S1. The difference between the full and thev88
interactions is small and is treated perturbatively in the qu
tum Monte Carlo calculations@29#. v88 has terms with the six
static operators,Oi j

p51,6, and two spin-orbit terms. The late
two are omitted to obtain the static part of Argonnev i j . In
this approximation thevCBS is a static operator having si
terms withOp51,6:

v i j
CBS5 (

p51,6
vp

CBS~r i j !Oi j
p . ~103!

The Landau-Migdal effective interactions used in stud
of weak interactions in nuclei@14# and nucleon matter@7# are
obtained from the spin-isospin susceptibilities of nucle
matter. We have therefore studied these susceptibilities
vCB andvCBS. The energy of nucleon matter with densiti
rN↑ andrN↓ can be expressed as

E~r,x,y,z!5E0~r!1Et~r!x21Es~r!y21Est~r!z2,
~104!

x5~rn↑1rn↓2rp↑2rp↓!/r, ~105!

y5~rn↑2rn↓1rp↑2rp↓!/r, ~106!

z5~rn↑2rn↓2rp↑1rp↓!/r. ~107!

The t, s, and st susceptibilities are proportional t
Et,s,st

21 , andE0(r) is the energy of symmetric nuclear ma
ter with x5y5z50. Note thatEt(r0) is the familiar sym-
metry energy in the liquid drop mass formula. In princip
the above expansion is valid at small values ofx, y, andz;
however, within the accuracy of available calculations
seems to be valid up tox51 @33,34#.

We have calculatedEt,s,st(r) using thevCB obtained

from Fi j at r5( 1
2 ,1,3

2 )r0. The results obtained withvCB are
given by full lines in Fig. 15, while those with the simple
vCBS are given by dashed lines. The momentum depend
part of vCB gives rather small contributions, which may b
neglected in the first approximation.vCB has a density de
pendence due to that ofFi j . However, it has very little effec
on Es and Est ; the results obtained from th

( 1
2 ,1,32 )r0vCB’s essentially overlap. The density dependen

of vCB has a small but noticeable effect on the symme
energyEt(r).

The stars on Fig. 15 show the values ofEt(r) extracted
from recent variational calculations@27# of symmetric
nuclear matter~SNM! and pure neutron matter~PNM! with
the Argonne-v18 and Urbana-IX interactions, assuming t
Eq. ~104! is valid up to x51 for y5z50. The two-body
vCB seems to provide a fair approximation toEt .
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We also consider the spin susceptibility of PNM given
the inverse ofEs

PNM(r) defined as

EPNM~r,y!5E0
PNM~r!1Es

PNM~r!y2. ~108!

The results obtained withvCB andvCBS are shown in Fig. 16
along with those obtained from quantum Monte Carlo cal
lations @35# with the static parts of Argonne-v18 an
Urbana-IX interactions. The two-bodyvCB, using Fi j of
SNM, gives fairly accurate values ofEs

PNM .
Figure 17 showsE0(r) andE0

PNM(r) calculated from the
vCB at the three values ofr. The stars in this figure give
results of the recent variational calculations@27# with the full
Argonne-v18 and Urbana-IX interactions. At low densiti
the two-body vCB is not a bad approximation; howeve

0 0.1 0.2 0.3 0.4

ρ ( fm
-3
)

0

20

40

60

80

E
στ

,τ
,σ

(ρ
) 

(M
e
V
)

FIG. 15. Est(r) ~upper set!, Et(r) ~middle set!, and Es(r)
~lower set! of symmetric nuclear matter. In each set, the upperm
curves are results usingFi j for r5

1
2 r0, the middle forr5r0, and

the lowest forr5
3
2 r0. Solid lines show the results forvCB and the

dashed linesvCBS. Stars denote values obtained forEt(r) from
variational calculations@27#.

0 0.1 0.2 0.3 0.4

ρ ( fm
-3
)

0

50

100

E
σ(ρ

)
(M

e
V
)

FIG. 16. Es(r) for pure neutron matter. The solid line show
results obtained usingvCB and the dashed for thevCBS. The results

obtained withFi j for r5( 1
2 ,1,32 )r0 are essentially indistinguish

able. Stars denote values obtained forEs
PNM(r) from quantum

Monte Carlo calculations@35#. The dash-dot line is the Fermi-ga
Es(r).
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E0(r) obtained from it does not show a minimum atr0. The
three-body interaction and cluster contributions are repuls
and are essential to obtain the minimum.

The two-bodyvCB is more accurate in predicting the su
ceptibilities than the equation of stateE0(r). This is partly
because the contributions ofTFG andvCB to Et,s,st(r) add.
The contribution ofTFG to Es

PNM is shown in Fig. 16 it is
about half of the total. For this reason, even relatively sim
estimates@36# of Es

PNM are not too different from the curren
state of the art@35#. In contrast, in SNM the large negativ
^vCB& cancelsTFG to produce a relatively small binding en
ergy. Therefore the many-body clusters are relatively m
important in the calculation ofE0(r).

The results of the recent SNM calculations, which p
vided Fi j used here, are summarized in Table IV. The o
and two-body cluster contributions are calculated exac
The calculation of the three-body cluster contributions fro
the static part ofFi j are also exact. However, the three-bo
contributions from spin-orbit correlations and forces, then
>4-body contributions and the difference between the va
tional and the ground state energies are estimated. The
pirical E0(r) assumes r050.16 fm23, E0(r0)5

0 0.05 0.1 0.15 0.2 0.25

ρ ( fm
-3
)

-40

-20

0

20

40
E
0
(ρ
)
(M

e
V
)

FIG. 17. E0(r) for symmetric nuclear matter~lower set of
curves! and pure neutron matter~upper set of curves!. In each set,
the uppermost curves are results usingFi j for r5

3
2 r0, the middle

for r5r0, and the lowest forr5
1
2 r0. Solid lines show the results

for vCB and the dashed linesvCBS. Stars denote values obtained f
E0(r) from variational calculations@27#.

TABLE IV. Contributions to the ground state energy of SN
from Argonnev i j and UrbanaVi jk in MeV per nucleon.

Density (fm23) 0.08 0.16 0.24

1-b TFG 13.9 22.1 29.1
2-b all 225.9 243.7 256.2
3-b static 4.9 10.9 19.1
3-b LS 1 >42b all 22.2 21.7 0.8
(E02EV) 20.6 21.8 23.3
CalculatedE0 29.9 214.2 210.6
Empirical E0 212.1 216.0 212.9
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216 MeV, and an incompressibility of 240 MeV. The diffe
ence between the calculated and the empirical value
likely to reduce when the more realistic IllinoisVi jk @30# is
used in place of the Urbana-IX. However, a part of this d
ference is due to the approximations in the calculation.

Next we consider the nondiagonal CB interaction. Le
Fermi-gas stateuFF& differ from uF I& in the occupation
numbers of two single-particle states:

uFF&5an
†am

† ajai uF I&. ~109!

The matrix element ofH between the CB states is given b

^FuHuI &5
^FFu@SPFi j #H@SPFi j #uF I&

A^FFu@SPFi j #
2uFF&^F I u@SPFi j #

2uF I&
.

~110!

The numerator of this matrix element contains terms
which the kinetic energy operator acts onF I . These give

^FFu@SPFi j #@SPFi j #TuF I&

A^FFu@SPFi j #
2uFF&^F I u@SPFi j #

2uF I&
5TFG~ I !^FuI &.

~111!

When the correlated states are orthogonalized, this term
zero. Neglecting it the two-body cluster approximation of t
above matrix element is obtained as

^FuHuI &5^mnuFvCBS2
1

m
$“8•~F“8!F1F~“F !•“%G u i j &

5^mnuvCBu i j &. ~112!

“8 operates to the left while“ to the right. When the mo-
mentum dependent term is negligible, this matrix is just
Fourier transform ofvCBS. Using the algebra of operator
O12

p51,6 and Eqs.~102! and ~103!, we obtain

vp
CBS5 (

q,r ,s,t51,6
f qv r f sKqrtKtsp2 (

q,s51,6

1

m
f qS ¹22

6

r 2
~ds5

1ds6!D f sKqsp. ~113!

Here we have used

¹2f t~r i j !Si j 5Si j S 2
6

r i j
2

f t~r i j !1¹2f t~r i j !D ~114!

and theKpqr matrices are given in Ref@31#. The Fourier
transforms ofvp

CBS are given in Figs. 18–20. Note thatSi j

53si q̂sj q̂2si•sj in momentum space.
The effectivevCBS is weaker than the barev, particularly

at large values ofq, as shown in Figs. 18–20. Perturbativ
corrections typically involve a loop integration over the m
mentum transferq with a q2 phase-space factor. Hence
these figures we compareq2vp

CBS(q) with q2vp(q).
4-15
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VII. CONCLUSIONS

We have calculated the effect of short-range correlati
on nuclear weak interaction matrix elements. At low energ
and small values ofq, the charge current, weak transitio
rates are quenched by;20–25 % in the simplest two-bod
cluster approximation in the zeroth order CB theory. T
quenching is relatively independent of the density and pro
fraction of nucleon matter as well as the momenta of nuc

ons in the (12 –3
2 )r0 range. However, it depends on the m

mentum transferq.
The dominant part of the quenching is due to spin-isos

correlations induced by the OPEP in the bare interaction.
OPEP changes the isospin of nucleons. For example, in
n→p weak transition between uncorrelated states the ac
nucleon is initially a neutron and finally a proton with un
probability. In correlated states, these probabilities are
than unit, and they reduce the weak interaction matrix e
ments. In particular, for the Fermi case, most of theq inde-
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FIG. 18. The Fourier transform of the central andsi•sj com-

ponents ofvCBS usingFi j obtained atr5( 1
2 ,1,32 )r0 are shown by

dotted, solid, and dash-dot lines, respectively. The dashed
shows the Fourier transform of the corresponding bare interact
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FIG. 19. The Fourier transform of theti•tj and si•sjti•tj

components ofvCBS usingFi j obtained atr5( 1
2 ,1,32 )r0 are shown

by dotted, solid, and dash-dot lines, respectively. The dashed
shows the Fourier transform of the corresponding bare interact
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pendent reduction is given by the product of the probabilit
for the active quasinucleon to be initially a neutron and
nally a proton. A similar interpretation is also applicable f
the GT matrix elements.

In contrast to charge current, neutral-current matrix e
ments have a significant dependence on the proton frac
The neutron-NV matrix element also depends on the to
density, while the proton-NV matrix element is very sma
and varies with all relevant parameters.

We have also studied the effective nuclear interaction
the same CB used to calculate the weak interaction ma
elements. The dominant static part of the lowest-order tw
body vCB gives fairly accurate results for the spin, isosp
and spin-isospin susceptibilities of nucleon matter. Howev
it is necessary to include at least three-body effects to ob
the minimum in theE0(r) of symmetric nuclear matter.vCB

is much weaker than the barev, and presumably can be use
in perturbation theory formalism.

All calculations of weak transition rates using effectiv
interactions must, in principle, use the quenched matrix e
ments calculated in the same basis. We plan to calculate
weak interaction rates in nucleon matter using the pres
effective operators and interactions. To obtain more accu
predictions, it will be necessary to include terms greater th
equal to three-body terms in the cluster expansion of the
effective operators and interactions.
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APPENDIX A: SECOND-ORDER PERTURBATION
THEORY

Standard perturbation theory is applicable when the b
interactionv i j is weak. We then haveH5H01HI , H05T,
and

e
n.

ne
n.
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FIG. 20. The Fourier transform of theSi j andti•tjSi j compo-

nents ofvCBS using Fi j obtained atr5( 1
2 ,1,32 )r0 are shown by

dotted, solid, and dash-dot lines, respectively. The dashed
shows the Fourier transform of the corresponding bare interact
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HI5(
i , j

v i j , ~A1!

Let uFX& be the unperturbed FG state. The perturbed, n
malized state up to second order is given by

uX&5S 12
1

2 (
YÞX

u^FYuHI uFX&u2

~EXY
0 !2 D

3S uFX&1 (
YÞX

uFY&
^FYuHI uFX&

EXY
0

1 (
Y,ZÞX

uFY&
^FYuHI uFZ&

EXY
0

^FZuHI uFX&

EXZ
0

2 (
YÞX

uFY&
^FYuHI uFX&

EXY
0

^FXuHI uFX&

EXY
0 D , ~A2!

EXY
0 5TFG(X)2TFG(Y). In this approximation the Ferm

matrix element is given bŷFuOFuI &, whereF I andFF are
given by Eq.~13!.

We are concerned only with two-body effects and the
fore consider only the interactionsva j in HI . The last two
terms of the aboveuX& can be combined with the second b
replacingva j by an effective interaction; hence we will om
them. The direct terms of̂FuOFuI & can be written as

^Fu(
i

OF~ i !uI &direct5F0da1F1d j1F2d j1F2da,

~A3!

sinceF0d j andF1da are zero.Fnxy is defined as in Sec. I
with the exception thatn here refers to the order ofHI . We
obtain

F0da5^kpuOF~a!ukn&51, ~A4!

F1d j5(
hN

^kp ,hNuOF~ j !
Q

E02H0
va jukn ,hN&

1(
hN

^kp ,hNuva j

Q

E01v2H0
OF~ j !ukn ,hN& ,

~A5!

F2d j5(
hN

^kp ,hNuva j

Q

E01v2H0
OF~ j !

3
Q

E02H0
va jukn ,hN&, ~A6!
03550
r-

-

F2da5(
hN

F ^kp ,hNuva j

Q

E01v2H0
OF~a!

Q

E02H0

3va jukn ,hN&2
1

2
^kp ,hNuOF~a!va j

Q

E02H0

3
Q

E02H0
va jukn ,hN&2

1

2
^kp ,hNuva j

Q

E01v2H0

3
Q

E01v2H0
va jOF~a!ukn ,hN&G , ~A7!

where E05e(kn)1e(hN),v5e(kp)2e(kn), Q is the pro-
jection operator to ensure Pauli exclusion in intermedi
states, andhN are any occupied proton or neutron states.
use e(k) to denote single-particle energies; whenH05T,
e(k)5k2/2m.

In order to make a connection with the correlated ba
theory, we see that in perturbation theory the unnormali
two-body wave function is given by

uC&5S 11(
i , j

Q

E02H0
v i j D uF&. ~A8!

Comparing it with the correlated wave function@Eq. ~5!# we
can identify

~Fi j 21!;
Q

~E02H0!
v i j ~A9!

when the interaction is weak. In reality,v i j is strong and Eq.
~A9! is not useful. The correlation operator is determin
variationally and itsv dependence is neglected assumi
that the average value ofE02H0 is much larger.

It can be verified that all of theFndy terms in Sec. II are
obtained by replacing

Q

E02H0
va j and va j

Q

E01v2H0
~A10!

in Eqs.~A4!–~A7! by (Fa j21), sinceF†5F.

APPENDIX B: THE C AND F COEFFICIENTS

TheC parts required to calculate the effective weak vec
operators in CB are obtained as follows: LetX,Y,Z be op-
erators of type

X5 (
p51,6

xpOp. ~B1!

The C part of the product of operators is then given by

C~XYZ!5 (
p,q51,6

(
r ,s51,6

xpyqzrK
pqsKsrc, ~B2!

whereOc[1 and theKpqr are given in Ref.@31#. The results
are listed below.

Cd
115~ f t!213~ f st!216~ f tt!2, ~B3!
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Cd
015Cd

105~ f c21! f t13 f s f st16 f t f tt, ~B4!

Cd
005~ f c21!213~ f s!216~ f t!2, ~B5!

Ce
005~ f c21!223~ f s!2112~ f t!216~ f c21! f s, ~B6!

Ce
115~ f t!223~ f st!2112~ f tt!216 f t f st, ~B7!

Ce
015Ce

105~ f c21! f t23 f s f st112f t f tt13~ f c21! f st

13 f s f t. ~B8!

The sa andAt parts of a product ofsa•sj , Sa j , sa and
sj operators is obtained by repeated use of the Pauli iden

s•Bs•C5B•C1 i s•B3C ~B9!

to reduce it to terms linear insa ,sj . Terms linear insj go
to zero on summing overj. The remaining terms linear insa
are expressed in terms of the operatorssa andAt to obtain
the following equations:

Fd,a
00,s5~ f c21!22~ f s!222~ f t!2, ~B10!

Fd,a
10,s5Fd,a

01,s5~ f c21! f t2 f s f st22 f t f tt, ~B11!

Fd,a
11,s5~ f t!22~ f st!222~ f tt!2, ~B12!

Fd,a
00,A54 f s f t12~ f t!2, ~B13!

Fd,a
10,A5Fd,a

01,A52 f s f tt12 f t f st12 f t f tt, ~B14!

Fd,a
11,A54 f st f tt12~ f tt!2, ~B15!

Fd, j
00,s52~ f c21! f s14~ f s!224~ f t!2, ~B16!

Fd, j
10,s5Fd, j

01,s5~ f c21! f st1 f s f t12 f s f st22 f t f tt,
~B17!

Fd, j
11,s52 f t f st12~ f st!222~ f tt!2, ~B18!

Fd, j
00,A52~ f c21! f t22 f s f t12~ f t!2, ~B19!
-

o

as

, R

03550
y:

Fd, j
10,A5Fd, j

01,A5~ f c21! f tt1 f t f t2 f s f tt2 f t f st12 f t f tt,
~B20!

Fd, j
11,A52 f t f tt22 f st f tt12~ f tt!2. ~B21!

Fe,a
00,s5~ f c21!212~ f c21! f s1~ f s!224~ f t!2, ~B22!

Fe,a
01,s5~ f c21! f t2~ f c21! f st13 f s f t1 f s f st24 f t f tt,

~B23!

Fe,a
10,s53 f st~ f c21!1 f t~ f c21!1 f st f s2 f t f s24 f tt f t,

~B24!

Fe,a
11,s52 f st f t1~ f t!21~ f st!224~ f tt!2, ~B25!

Fe,a
00,A52~ f c21! f t12 f s f t14~ f t!2, ~B26!

Fe,a
01,A52~ f c21! f tt22 f s f tt14 f t f st14 f t f tt, ~B27!

Fe,a
10,A522 f st f t14 f tt f s12 f t f t14 f tt f t, ~B28!

Fe,a
11,A52 f st f tt12 f t f tt14~ f tt!2, ~B29!

Fe, j
00,s5~ f c21!22 f s1~ f c21!24~ f t!21~ f s!2, ~B30!

Fe, j
01,s5~ f c21! f t13~ f c21! f st2 f s f t24 f t f tt1 f s f st,

~B31!

Fe, j
10,s5 f st~ f c21!1 f t~ f c21!24 f tt f t1 f st f s13 f t f s,

~B32!

Fe, j
11,s52 f st f t1~ f t!224~ f tt!21~ f st!2, ~B33!

Fe, j
00,A52 f t~ f c21!12 f s f t14~ f t!2, ~B34!

Fe, j
01,A54 f s f tt12 f t f t22 f t f st14 f t f tt, ~B35!

Fe, j
10,A52 f tt~ f c21!14 f st f t22 f tt f s14 f tt f t, ~B36!

Fe, j
11,A52 f st f tt12 f tt f t14~ f tt!2. ~B37!
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