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Quenching of weak interactions in nucleon matter
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We have calculated the one-body Fermi and Gamow-Teller charge-current and vector and axial-vector
neutral-current nuclear matrix elements in nucleon matter at densities of 0.08, 0.16, and O?Zamh‘rproton
fractions ranging from 0.2 to 0.5. The correlated states for nucleon matter are obtained by operating on
Fermi-gas states by a symmetrized product of pair correlation operators determined from variational calcula-
tions with the Argonne-v18 and Urbana-1X two- and three-nucleon interactions. The squares of the charge-
current matrix elements are found to be quenched by 20-25% by the short-range correlations in nucleon
matter. Most of the quenching is due to spin-isospin correlations induced by the pion exchange interactions
which change the isospins and spins of the nucleons. A large part of it can be related to the probability for a
spin-up proton quasiparticle to be a bare spin-up/down proton/neutron. Within the interval considered, the
charge-current matrix elements do not have significant dependence on the matter density, proton fraction, and
magnitudes of nucleon momenta; however, they do depend on momentum transfer. The neutral-current matrix
elements have a significant dependence on the proton fraction. We also calculate the matrix elements of the
nuclear Hamiltonian in the same correlated basis. These provide relatively mild effective interactions that give
the variational energies in the Hartree-Fock approximation. The calculated two-nucleon effective interaction
describes the spin-isospin susceptibilities of nuclear and neutron matter fairly accurately. However terms
greater than or equal to three-body terms are necessary to reproduce the compressibility. Realistic calculations
of weak interaction rates in nucleon matter can presumably be carried out using the effective operators and
interactions studied here. All presented results use the simple two-body cluster approximation to calculate the
correlated basis matrix elements. This allows for a clear discussion of the physical effects in the effective
operators and interactions.
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[. INTRODUCTION Herei is the nucleon number label amgis the momentum
given by the weak boson to the nucleon. The Fermi coupling
Weak interactions in nucleon matter occur during theconstant multiplying these operators is omitted for brevity,
B-decay of nuclei, electron and muon capture reactionsg,, is the electroweak mixing angle, agg is the ratio of the
neutrino-nucleus scattering, and in various astrophysical erweak axial vector and Fermi coupling constants of the
vironments, such as evolving stars, neutron stars, and sup@atucleon. The four operators are called Feri),( Gamow-
novas. They have been studied since Fermi proposed the firseller (GT), neutral-vector(NV), and neutral-axial-vector
theory of 8 decay in 1934. Recently there has been muchNA). In the nonrelativistic domain, neglecting weak pair
interest in weak interactions in the s{ih,2], those of'C, currents, the interaction of low energy neutrinos with nuclei
and °0 due to their use in neutrino detectors searching foand nucleon matter and nuclegrdecay rates are propor-
neutrino oscillationg3—6], and in interactions of neutrinos tional to the square of the matrix elements of these operators
with dense matter in neutron stars and superngvas.ow between initial and final nuclear states.
energy weak interactions proceed mainly via the nuclear ma- Due to the strong forces, nuclear wave functions are

trix elements of the following four one-body operators: highly correlated[8,9], and it is difficult to calculate the
nuclear matrix elements. Using quantum Monte Carlo and
OFZZ OF(i):Z el (1) Faddeev methods to calculate nuclear wave functions from
I I

realistic models of nuclear forces, thigdecay matrix ele-
ments have been calculated for light nuclei with<7
B L C i [10,11). The calculated values fotH, ®He, and ‘Be are
Ogr= QAZ OGT(')_gAZi Toen (2 within 5% of the observed, and better agreement is obtained
after including weak pair currents. The weak muon capture
by 3He has also been calculat¢di2] with realistic wave
Onv= 2 Onv(i) functions with similar success.
: However, complete many-body calculations are not yet
1 _ possible for nuclei such a¥C and heavier, as well as for
=E —sirf Oy + 5(1—2 sirffy) 7 |e'9",  (3)  nucleon matter. Most studies of weak interactions in these
: systems use effective interactions and shell-model and
Fermi-gas wave functions in finite nuclei and nucleon matter,
Ona= QAZ ONA(i):gAE ETizaieiq-ri_ (4) respectively._The rgndom phase approximgtion is commonly
i T2 used. The pioneering work on GT transitions has been re-
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viewed by Arimaet. al[13]. Some of the recent works are in (XIH|Y)Y=(Dy|Ho+H,|Dy), (6)
2C [14,15, in pf shell [16,17, and in neutron stars and
supernova$18]. Typically the calculated rate of weak inter- h2 5
actions is larger than observed; for example, a factor 66 Ho=2 - ﬁvi ' )
brings the calculateghf shell GT transition rates in agree- '
ment with experiment. Recent Liquid Scintillating Neutrino
Detector (LSND) results of charged current reaction cross H=>, vﬁBJr > Vﬁf+~--. (8
sections ofv, [4] and v, [5] on *2C are lower than the i<j i<j<k

; . 0
into account the effects of short range correlations, and no"’tlnd possibly three-nucleon interactions. Even wheinas

the bare operators given by Eq%)—(4), must be used along ﬁ.m% twg-téoiy mtergptlonfr,] the C?htcgn th?ve three- antd dt
with effective interactions as is well known from the works ['9N€r-body terms. since the correlated states are expected 1o

of Arima and collaborator§13]. In nuclei near the line of be close to the eigenstatestdf the nondiagonal matri ele-

stability the observed spectra agddecay rates have been mepts<X¢Y|H!Y) are small. Th|s. implies thqt the CB ef-
flectlve interactions can be used in perturbation expansions

used to model the effective interactions and operators, but f d the Hartree-Fock imati 4 h
neutron stars and supernovas matter we have to calcul:fl})éaSe on he martree-rock approximation. Fowever, the

them from realistic models of nuclear forces.df shell and Irrf)tc-jagec:f re;?';irfégtg;eg Z?Qtjflgf'c'(%g]tliai%%ﬁr{ar;eﬁsirhe
heavier nuclei, the effective interaction is also obtained fro P P a. .
orm the uncorrelated states into the exact eigenstatés of

bare forceg 19]. CB calculations of the optical potential of nucleons in
There are several ways to obtain consistent sets of effec- . op P .
uclear mattef25] including up to second-order terms in

tive operators and interactions starting from a bare nuclea]rﬂ| and of the response of nucleon matter to electromadnetic
Hamiltonian. For example, one can introduce a model space !’ P 9

probes including correlated particle-hole rescatterigg],
have been relatively successful. In these works, as well as
Qere, the three- and higher-body effective interactions are

and employ the Lee-Suzuki similarity transformat{@®] as

in the no core shell model type approd@i]. In this theory
the effective operators and interactions take into account th
truncated Hilbert space. They are used in the retained modE'FgleCted' . . .
space to predict the observables. In the present work we use In the present work we use the static pair correlation op-
the correlated basi€CB) approach[22,23, evolved out of erator:

variational theories of quantum liquid24]. In this theory

the uncorrelated shell-model or Fermi-gas states are trans- Fij= > fp(rij)oﬁ , 9)
formed by correlation operators to CB states without trunca- p=16

tion of the Hilbert space. The effective operators and inter- =16

actions are matrix elements of the bare quantities in the B~ Oif = 1.7 7,07 07,7707 07,5, 7 7S .

states; they take into account the effects of short-range cor- (10
relations. The correlation operators are chosen such that the place of thep=1,6 superscripts we often use the letters

nuclear interactions are relatively mild in the CB. Observ_-T o, o, t, andtr to denote the radial functions associated
ables are calculated using standard many-body perturbath}\’jith these operators. For example

theory methods in CB.

Here we focus on weak interactions in nucleon matter. In P=16p. y=fC fT fo for ft ftr
P . f (rlj) f|J1f|Jvf|]1f|J 1f|Jyf|J . (11)
variational calculationg9], the nuclear matter wave func-
tions are approximated with correlated states: Fi; is obtained by minimizing the energy of symmetric
nuclear matter at density=p,+ p, using hypernetted and
Vo= ST B |®y, 5 operator chaln summation mgthc[@sZ?]. The results qf the'
X ( .H, ”) X © latest[27] variational calculations are briefly summarized in

Sec. VI for completeness. The Argonne v18 two-nucleon
where® are uncorrelated Fermi-gé8G) states andFj; are  [28] and Urbana IX three-nucled29] interactions are used
pair correlation operators. Th8II denotes a symmetrized in these nuclear matter calculations, in studies of weak inter-
product necessary becausg andF;, do not commute. One actions of light nuclef10,11], and in the present work. How-
can also relate uncorrelated shell-model states to correlateVer, improved models o;; are now availablg¢30]. The
states in a similar way. The correlated states obtained fromdariational calculations of nucleon matter also include two
Eq. (5) are not orthogonal; we assume that they are orthonorspin-orbit terms inF;; , which are omitted here for simplic-
malized using a combination of kalin and Schmidt trans- ity. The variationally optimizedF;; can depend on the proton
formations[23] preserving the diagonal matrix elements of fractionx,. However, this dependence seems to be relatively
the Hamiltonian. However, the orthonormalization correc-weak. The effective interaction obtained frd#y in symmet-
tions are of higher order than those considered here. ric nuclear matter gives a fair description of the spin suscep-

Let |X) denote the orthonormal correlated states. The eftibility of pure neutron matter.
fective interactions in the CB perturbation theory are defined Matrix elements of operators between CB states are gen-
such that erally calculated using cluster expansioigl]. We begin
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with the simplest, lowest-order two-nucleon cluster approxi-matter[18]. If we assume that the calculations with effective
mation to study the general properties of the weak one-bodinteractions are implicitly using CB states, then their results
effective operators and of the two-body interactions in CBshould be reduced by a factor 6f0.75 to take into account
for nucleon matter at densitigs=0.08, 0.16, and 0.24 fa?  the quenching of thé= and GT matrix elements by short-
and for proton fractiong,=p,/p= 0.2, 0.3, 0.4, and 0.5. In range correlations. Attempts to calculate the weak interaction
this density range the contributions of clusters wit rates in nucleon matter with the effective operators and CB
nucleons to the energy of symmetric nuclear matter increasdgteraction presented here are in progress.
from 10% to 30% of that of the two-bodj27]; thus the
present results have only qualitative significance. We study 1l. CORRELATED BASIS FERMI MATRIX ELEMENT
the density, proton fraction, and momentum dependence of
the operators and the interactions.

Due to correlations and weak pair currents, the effectiv
weak current operators have two- and many-body terms i )
addition to the leading one-body term we consider here. Th&'€ given by

Let |I) and |F) denote the normalized correlated states
Hbtained by operating on the FG stafés) and|®¢) by the
gorrelation operatoSIIF;; . The CB Fermi matrix elements

lowest-ordex(in cluster expansioreffective one-body, GT, B B

and neutral-current operators are calculated and their results (F|O¢|1)= (Pe|[STIF;; JORLSTIF;; ]| ®1) ,
are presented in Secs. lI-V. As expected, the one-body CB V(DPE|[SITF ;12| D) (D) [ STIF;; 12| D))
matrix elements are smaller in magnitude than those in the (12

arises from pion exchange interactions that change the is J;)]art from the é)_rthogonalityl/ co(;rectiohm] _negflected here.
spins and spins of the nucleons. In the FG wave function, 4 '€ c0rresponding uncorrelated, FG matrix elenie@ME)
nucleon in the single-particle staté¥"x,, , for example, is ' (®¢|O|®)). It is nonzero only when the occupation
a spinT neutron with unit probability. This probability is numbers of the stateB, and®r differ by only one nucleon,

reduced in the CB state by the spin-isospin correlation op-SiInceOF (i:st':\lAEne-bO%y operator. In contI:ast tt?e CB matrix
erators acting on the FG state. In contrast, the spin-isospiﬁ ement( ) can be nonzero even when the occupation

independent spatial correlations induced by the repulsiv@Umpers of®, and &g differ by more than one nucleon.
core in the two-nucleon interaction increase the magnitude of©WeVer, here we consider only the dominant “one-body
F, GT, and NA matrix elements; however, they quench theCBME in whlch they differ by only one nucleon. We define
neutron NV. The CB matrix elements of the charge-currentN® guéenching factor as the ratio of the square of these
operators are found to have a rather small dependence on tH&UX elements|CBME|*/[FGME|". ,
matter density anet, within the range considered. They de- We assume thatb,) has full neutron and proton Fermi
pend primarily on the momentum transfef and only ~SPheres with momenta:, andkg,, and
slightly on the initial or final nucleon momentum. In addition
to these, the neutral-current matrix elements also depend on
Xp. The proton NV matrix element is an exception; it has . )
large cancellations and depends on all the relevant variable¥Neré kKn<kg, and ky>kgp. In the absence of spin-orbit
The squares of thE and GT matrix elements in CB states correlations, .the Fermi matrix elements are nonzero only
are~0.8 and 0.75 times those in FG states at small values o¥hen the spin statg,=x,. The FGME=1 whenk,—k,
q. Thus the present zeroth-ord@r CB H,) two-body cluster — 9 These condmons are also necessary for the CBME to be
calculation predicts a quenching of low energy weak transi10NZero; however, its value can depend on the matter den-
tions in nuclei and nucleon matter by20—25 %. It is likely ~ SIty. proton fraction, and the magnitudes, kp, andq.
that higher-order effects will further reduce the matrix ele- | N€ cluster expansion of the CBME is obtained by replac-
ments and increase the quenching. For example, the occup@d the correlation operator§; by 1+ (Fj;—1) [31] and
tion probability of states with momentak is ~0.9 in cB  €xpanding the numerator and the d%nommat.or in powers of
states, and it decreases+®.8 on including second-order,  (Fij—1). Itis convenient to use th@’, containing only a
correctiong32]. In order to obtain quantitative results, it will Product of single-particle wave functions in which nucleens
be necessary to include contributions of greater than or equaf€ in plane wave states with momentkpand spin-isospin
to three-body clusters to the CB matrix elements neglected ix-(i). in place of the antisymmetri®, and use the antisym-
this initial study. This has been done for symmetric nucleafmetric ®¢. This is equivalent to retaining the antisymmetric
matter[25] with operator chain summation techniques; how-®; and ®¢ and has the advantage that we can associate
ever, they are difficult to use in matter wigy#0.5. Three- nucleon numbers with the state Iabelsfrﬁ. The nucleon in
body cluster contributions in asymmetric matter can now béhe statek, y, of <D|P is labeled ‘a” for active; in uncorre-
calculated using the recently developed matrix methadg lated states onlya participates in the transition. All other
The results for the CB two-nucleon interaction are pre-nucleons in the Fermi spheres are denoted. by
sented in Sec. VI. It gives a fair description of the spin- The cluster expansion of the CBME is represented by
isospin susceptibilities of nucleon matter used to determineliagrams as shown in Fig. 1. The terms in the expansion are
the effective interactions in the Landau-Migdal schdmge  labeled withFnxy, whereF stands for Fermin is the order
It also has the typical features of the effective interactionsof the (F;;—1) correlationsx=d,e for direct and exchange
used in existing calculations of weak interactions in nucleorterms, andy=a,j denoting the nucleon on which the weak

FG states. The dominant term responsible for the quenchin§

|®F>:alpxpaknxn|®l>i (13)
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theory calculation of the direct contributions to the Fermi
ko k . X . ) X .
kn{}kp M a@”j matrix element is reviewed in Appendix A. One can easily
LZ 1 1 identify the analogs oFndy in that familiar theory and ob-
tain relations between the present approach and that of Arima
and coworker$13]. The perturbation theory assumes that the
v ko K, ke K forces are weak, but in reality we cannot expand in powers of
i 1k ke a a i the strong, bare two-nucleon interaction . However, we
M 2 {% <©AA© " M> hope that standard perturbation theoryncan be used in CB
‘ with the effective operators and interactions described here,

FOda Fidj Flg

FldaN FldaD
as mentioned in the Introduction.
The leading zeroth-order term is given

ke K 1ankp< Kn ‘ ko e leading zeroth-order term is given by
e P a a)
G K +q ki ki 3p mi(Knt+q—Kp) -1 +

FleaN FleaD FOda=FGME= d°re'tn 47 %p <Xp(a)|7 (a)|Xn(a)>
Ko K o k =1. (14
( BAL ) a% @1

kn +q k +d The momentum conserving delta functioﬁ(kp—kn—q)

F2dj F2ej and thex,= x,, spin constraint are implied here as well as in

» . ) . ) all terms of the expansion given below. There are no other
. P d U d zeroth-order terms.
kn k i j . - . . - -
C}M@ 3 :;a ’ <QM© + %@> The first-order direct term witlDg(j #a) is given by
+q

F2daN F2daD

Fldj=>, f d3r e 19 Tal
I

Kn K
a j 1 knka a j + a j
ot IR <@' @’> X @D (Fa= D (@)

&
F2eaN F2eaD
=p | dire 19 T2f7(r). 15
FIG. 1. Diagrams illustrating all of the one- and two-body terms pf (r) (15
contributing to the Fermi CBME.

All spin dependent terms ifr,; give zero contribution on
interaction operates. The dots in these diagrams denof&Imming over the spin states of nuclegnand the factor of
nucleons, a thin line specifying the states occupied by th& in the above equation comes from
nucleon inCDf’ and®; passes through each dot. The nucle-
onsaandj occupy statek,, andk; in theCDf’, therefore lines {1-]-+ VT =27 . (16
labeledk, andk; originate from them in all diagrams. Their

termination depends on the exchange pattern, sgeis  From now on theaj subscripts om and F will be dropped

antisymmetric. In direct terms, the state likeemerges and  for previty, and the' dependence of the”'s will be implicit.
ends in dof because the state of nuclepis unchanged. The The contribution ofF 1ej is given by

line with the two labelsk, andk, denotes the weak transi-

tion. In direct diagrams it begins and ends in dotin dia-

grams in whicha andj are exchanged, the transition line Flej=>, fd3rei(kn_kj)'r

begins ata and ends irj, while the state liné; begins from i
j and ends ina. The state and transition lines must form

. . .
closed loops in all diagrams. The dashed line attached to Xxp(@)xDleajl7 (F= 1)} xa(@)x+1))
nucleon i=a or j shows the Fermi operatoOg(i) '

=7€'9". The (F;—1) correlations are indicated by wavy = —J d3re™n [ py€n(r)(f°—1+3f7)

lines. We sum over the spin-isospin statggj) of the

nucleonj, while those ofa (x,, andy,), are specified byb¢ +pplp(n)(F+3f7)], 17
[Eq. (13)].

The equations fOany are given below in the tWO-bOdy Whereeij is the Spin-isospin exchange Operator:
cluster approximation in whicin<2. They show that the

Fnxy are independent of,, k,, andk, whenx,y=d,a; 1

they depend only o whenx,y=d,j; and only onk, and ej=— s (1+7 7)(1+ 0y 0y), (18)
kp in exchange diagramscEe). We also give a simple ex- 4

planation of the importarE2da term responsible for much

of the quenching. The standard second-order perturbatioand the Slater functiond\N=n,p) are
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dk | Ce'=Cl(1+ a5 0pF'F’]. (28)

=—| ——0(ken—k)€" "=3[sin(keyr)

NS (2m) The expressions fo€}] andCY in terms of the correlation

—kent cogkent) 1/ (Kent)3. (199  functionsfP are given in Appendix B.

There is no contribution from the denominator to the

The algebra of the operato@; *° described in Reff31]is ~ termsF2xj. These are given by
very useful in evaluating these contributions.

The two-body terms witltDg(a) have contributions from L 3y A—iq-r .
the numerator of the matrix element, E4.2), as well as FZdJ_; fd re <Xp(a)XT(J)|
normalization corrections introduced through the expansion

En(r)

of the denominator. We denote these BixaN and X(F=1) 7 (F=1)|xn(2)x-(i))
F1xaD, respectively. In Fig. 1 the denominator contribu-
tions are shown as products of two diagrams. The first-order :pf d3reiar 2[C,§1+ Cgl], (29)

direct terms withOg(a) cancel:

Flda=FldaN+F1ldaD=0, (20 Fej= fdsre“""‘ki)”(xp(a)x il
J

while for the exchange terms we obtain . _
Xeq(F—1) 7 (F—1)|xn(a)x-()))
Flea=FleaN+FleaD (21

1 .
= f d*re™n Tp,tn(C— Cgh

. 2
FleaNzE_ fd3re"(k1‘kp)"<Xp(a)XT(j)|
J +2p,t,(CE+CIY]. (30)
xe, {7 (F— i
ea]{'ra (F 1)}|Xn(a))(r(])> The sum
=—f dre"e T ppt (0= 1+3f7) F2da=F2daN+F2daD
+pla(f7+3F97)], (22 :; fd3r<Xp(a)XT(j)|(F_1)7;“:_1)
FleaD=>, —f d3r[e "k Ty (@) x.())] 1 :
J " =57 (F= D% xn(@)xA1)
><eaj(F_ 1)|Xn(a)Xr(j)>
- - 3 11
+e—|(kj—kp)-r<Xp(a)XT(j)| —pf d°r(—4Cy). (31
X €4j(F = 1) xp(a)x+(1))] Note that only them'7,- 7;, which does not commute with
1 the 7, operator, contributes to this sum.
= EJ A3r([fC—1+3f7+f7+3f77] The results presented in the following section show that
the above term gives the largest contribution to the quench-
x[eikn-fpngn+eikp-rppgp]+2[ff+ 3177 ing of the Fermi matrix element in matter. This term simply
e e takes into account the probability for nucleario be a neu-
x[e"nTppt+er o bn]). (23 tron in the initial and a proton in the final state. In the un-

correlated product stategb’”), nucleona is n7; but in the

For calculating the second-order terms, it is convenient % orrelated product statsTIF,|®F), it can be in other
. ij 1/
define nucleon states. We refer to nuclearin the correlated state

F=1+FO+Flr,. 7, (24) as a “quasinucleon.” The probability that it is a neutron is
given by
Fozfc_1+f0—0'a'0'j+ftsaj, (25) 1
(®|[STIF;;15 (1— 2)[STF ;]| ®F)
Flsz+fUTUa'(Tj+ftTSaj. (26) Pl(a:n): | ] 2 a ] |
. (@)|[STIF; 2| @)
Only the spin independent parts of the products of the above (32)
FO and F! contribute to the second-order diagrams. These
are called theC parts in Ref[31]. We define We use the cluster expansion to calculate this probability.
. - The zeroth-order, one-body term is unit, and the two-body
Cq=CL[F'F-], (27)  second-order direct term is
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TABLE I. Correlated basis probabilities for the active quasi-

nucleona to beNT andN| in the initial state forp=(3, 1, 3)p,
and x,=0.5. The listed values include contributions of one- and
two-body direct terms.

' P(a,3p0) P(a.po) P(a,3po)
ni 0.92 0.89 0.87
nj 0.02 0.03 0.03
pT 0.02 0.03 0.03
pl 0.04 0.05 0.07

1
—52 jd3r<Xn(a)XT(j)|(F_1)Tg(F_1)
J
1 )
— S (F- DA xn(@xH()

=pp f d3r(—4cCHh. (33

The two-body first-order direct terms cancel as in Ef).
Neglecting the exchange terms, we obtain the direct part

P,(a=n,d)=1+ppj d3r(—4Cyh. (34)

In a similar way, the direct part of the probability for the
active quasinucleoato be a proton in the final state is given

by

PF(a=p,d)=1+pnf d3r(—4Clh. (35)

Hence
1+F2da=P,(a=n,d)Pg(a=p,d), (36)

neglecting the terms of ordeCf’)?.

PHYSICAL REVIEW C67, 035504 (2003

0.9~ p=0.5p,
0.7
0.9 ‘

. pP=p,

FIG. 2. 7 as a function ofg and proton fractiorx, for ky
=Kkgn . The solid, dashed, dotted, and dash-dot lines show results
for x,=0.5, 0.4, 0.3, and 0.2.

1 )
F2eaD=; - Ef d3rfe 'ki—kn) Ty (@) x. ()]

X €,i(F=1)%| xn(a)x,(j))+e kit
X (xp(@)x+(])] € (F~ 1) xp(@)x+(}))]

1 _
= Zf d3r[(—4C+4Ch) (e p e,

+ekp T £+ (CP+Ci+2CL9 (e p e,

+e'*koTp )], (39

Results for Fermi matrix element

The Fermi matrix elements have been calculated using
correlation functions obtained in R¢B] by minimizing the
energy of symmetric nuclear matter using the Argonne-v18
and Urbana-IX two- and three-nucleon interactions. In Fig. 2

The probabilities for the active quasinucleon to be in thewe present the results fay- , the square of the Fermi CBME

initial spin isospin state$, | n,p have been calculated keep-
ing only the direct terms, at the three densitiesxp# 0.5.

[Eq. (12)], for kn=kg, andkp,=Kegp.
When x,<0.5 the total isospifT; of the statefl) is (N

These are given in Table I. In one-body Fermi transitions—2Z)/2, while that of|F) is (N—Z)/2—1. In the case of
these are also the probabilities for the active quasinucleon tesymmetric nuclear matter thg =0, while Te=1. Thus the

be a spinf, | p,n in the final state.
The second-order exchange term
F2ea=F2eaN+F2eaD (37

has contributions from botR* andF°. They are given by
F2eaN=2 J d®re e xp(@) ()]
i

X &j(F=1)75 (F= 1) xn(2)x(]))

1 .
_ EJ d3relkp-r[pp€p(cg0_ Cél)

+2pnla(CH+CLO], (38)

calculated matrix elements are between states Witk 1.
The Fermi matrix elements fa;=0, between isobaric ana-
log states having the sanfeand T,r=T,,*= 1, are given by
(T+T,)(T=T,+1) in both correlated and uncorrelated
states. We will not discusAT=0 Fermi ME in this paper.

The variation ofyg with proton fraction is less than 3%
at all densities calculated. However, the proton fraction lim-
its the allowed values af through the momentum conserva-
tion relation:q=k,—k,. The variation with total density is
also small within the considered range. This suggests that we
can approximat¢CBME|? by a function ofp andg. In the
small q region,q=<0.5 fm %, it can be well represented by
the quadratic

7= 1:(d—0) + ap(p)g®. (40)
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TABLE Il. Quadratic fit to »y and ngt at smallg. - -
p [(Og)|*(4=0) ap 7e1(d=0) agt I
0.08 0.80 —0.094 0.76 0.259 1*_________ ...... ———
0.16 0.81 —0.075 0.75 0.060 T
0.24 0.86 —0.083 0.78 0.041
=
[y 09

We have fit the calculated values for symmetric nuclear mat-

ter and the results are given in Table II. 0.8
Figure 3 shows the contributions of each term in the clus-

ter expansion of the Fermi matrix element in matter at den-

sity po andx,=0.5. TheFnxa andFnej terms give contri- 0.7, 05 1

butions that are independent gfas can be seen from Egs.

(17), (22), (23), (30), (31), (38), and (39). The dominant

contribution to the quenching of the Fermi CBME comes F|G. 4. Correlation dependence gt for ky=Kkgy and p= po.

from F2da; |1+ F2da|2=0.7 is shown by the dotted line in The dashed line shows results with"=f'"=0, and in addition,

Fig. 3. As discussed in the preceding section this result caff=1 for the dash-dot line. The dotted line shoy, ,Fnxal?

be interpreted in terms of the probabilities for the activewhenf?"=f'"=0. The solid line gives the full result.

guasinucleora to be a neutron in the initial and a proton in o ) )

the final CB states. via the contributions off°~1 correlations toFnxj. The
The exchange term&nea contribute an additional dash-dot line showsy: obtained by further settin®=1. It

~ 0.1 to thegrindependent quenchingg, (Fnxa?=0.61is IS falrly close to one showing that thé&, f7, and f' corre-

shown by the double-dash-dot line. This additional quenchlations have small effects. _

ing is mostly canceled by thEnej terms, as shown by the ~ The Fermi CBME calculated in the two-body cluster ap-

dash-double-dot lind=, [Fnxa+Fnej2=0.71. proxmaypn does_not depend significantly on the magnitudes
The Fndj terms, givén by Eqs(15) and (29), introduce of the initial and fma! n_ucleon mo_menta. The dependence on

the q dependence. Of these, the second-ofe2d j is domi-  Ken—Kn @ndKy—kegp is illustrated in Fig. S. It showsye for

nant as can be seen from the dashed line, which includg®=Po. Xp=0.5 and 0.3, k,=(1,0.75,0.5kg,, and k,

only F1dj and all theg-independent terms. The full line = (1,1.25,1.5kg, as a function ofg. The results for the 18

gives the square of the total matrix element includigj. ~ Possible combinations o, , k,, andk, values differ by less
The contributions of the various correlations to the CBMEthan 0.03.

are shown in Fig. 4. The first- and second-order terms are

|
1.5 2 2.5
q (fm")

dominated by thef‘”(rij)ai o7 and ftr(rij)sij 5T IIl. CORRELATED BASIS GAMOW-TELLER MATRIX
correlations induced mainly by the one pion exchange poten- ELEMENT
tial (OPER. After settingf’’=f'"=0, the|%, ,Fnxa* be- The procedure for the calculation of the GT matrix ele-

comes essentially 1 as shown by the dotted line in Fig. 4. Thehent is similar to that discussed in Sec. Il. We therefore
full CBME exceeds unity in this casesee the dashed line  gjscuss only the differences and give the final expressions.

0.8

0.75
=9}

S 07
0.65

________ \__'__'__\'__'__'_T'__'__'_\_'__'__'T_' N ‘ ‘ ‘

064 0.5 1 1.5 2 2.5 0 1 2 3

q(fmi1 ) CI(fm-l)
FIG. 3. Contributions tope for ky=Kkgy andp=p,. The dash- FIG. 5. Dependence o) on the initial k,) and final k)

double dot line includes all of thg-independent terms, while the momenta fop= p,. Each set contains six lines depicting the results
solid line shows the full result. See text for description of otherfor k,=(0.5,0.75,1kg,, and x,=0.3 and 0.5 for the indicated
curves. value ofkp.
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The operatoiOgt is an axial vector and it is convenient to o 00 clle, 100
express its matrix element using the following two axial vec- GT2€aN=— 2| dre™e{py € [(Fe 2"~ Fea"+Feyd
tors:
0loy\7 = 00 11 10
- Fe,aﬁ )<0'a> + (Fe aA_ Fe aA+ Fe a’A

{o2)=(xp(@)|a(a)7" (a)| xs(a)) (41)
e —FUM{ANT+ 200l (FEY +FE (o)
and
L +(Fed +FedM(ADT (51)
<At>:3raj<‘7a>'raj_<0'a>a (42
GT2eaD={o,)F2eaD. (52)

obtained from the tensor correlations between nuclemns
andj. Note that{A;) depends of; .
We assume thay, in Eq. (13) is spin-up and sum the
square of the GT matrix element for the two final states with
=1,] denoted byF71) and|F|). In FG we get contribu- , ,
Xp Il ) MFT) ~| b . g . FloyF)=F g, ou+ Fi A+ (terms linear inr).
tions only via the operatoo,= o,7, ; only o,(a) contrib- Y (53)
utes to the FGME withy,= T, while o,(a) andoy(a) give

the GT FGME fory,=|. However, in CB theA induces  The remaining parts linear ir; do not contribute after sum-
transitions that are forbidden in FG states. ming over o;. The F2,” and FU;A are the corresponding
The terms in the cluster expansion of the GT CBME Ar€harts of the operator (& oy aJ)F o_yFJ and the expres-
sions forF ;7 andF ;" are given in Appendix B.
As in the Fermi case the second-order direct diagrams,

GT2da can be interpreted in terms of quasinucleon prob-

GToda={a), (43) abilities. The GT2a has cor_1tributions fgom(?r;} onI.y.
When the final proton has spihonly the o term contrib-
_ _ . utes. We consider this simple case for illustration. In this
GTldepJ dre 102(f7 (o) +f1(A)), (44  case, (¥ GT2da) represents the probability that the active
quasinucleon has72=—1 in the initial state and+1 in
the final state. In FG states these are unit probabilities. We
GTlej=— f d¥re’*n " {p €, (f7+ 3t { o)+ pala[(fS—1  use the cluster expansion to calculate them in CB states. The
zeroth-order terms are equal to 1, and the two-body second-

+ 10 209 (o) + (= ) AT, (45) order direct terms are given by

The coefficients;” (y=a,j) andFg;" are defined as the
o, andA; parts of the operatdF'o-ij.

denoted by Gmxy as in the last section. The ratip, of the
axial to vector coupling constants is omitted from then@Y
for brevity. We obtain

. — —1 3 H zZ_Z
GTleaN=—f dErel*e {pnla(f+ 317 (o) + ppt [ (f° +§; fd r(xn(@)x()(F-1)oa7a(F—1)

_ o o o _ftnN/ A 1
LT 2flon) HE-IMAID, - 4 — S {0t (F- DA xn@x.(0))

GTleaD={o,)FleaD, 47)
=p= f d3r(F°°” e Coo
GT2dj=2pf dPre I(FRo+FE) (o) + (FgH?
—3Ci)F (pp—pn); f d3r(Fay +Fay +2F gy

OlA
(AT, (48
—2Ci+2clh, (54)

1 )
GT2ej=—5 | d¥ren{p 0, [(Fo} —Fgi"—Fa}” : -
J Zf {pnlal(Fe; &l &l where the upper and lower signs correspond to the initial and
_ final states, respectively. The first-order direct terms cancel
+Fei) (o) +(FA-FiA =FeSA+FOAAD]  asin Eq (20) Neglecting the exchange terms and those of
orderCyCY™ andF g "F{Y“ we obtain
+2pp p[(Fll(r+ FOl,(r)<0_a>

T (FLALEOIA R, (49) P/(oiri=—1d)Pr(oiri=14d)
- 3, (E000_ 11 00_ o1l
GT2da=p | & (FY~ FiY -~ -3 () “Lop | @y R sl
,a ,a 1
(50) =1+[GT2dal,. (55)
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T T T T 1

FIG. 6. ngt as a function ofg and proton fractiorx, for ky FIG. 7. Contributions to theygt for for ky=kgy andp=pg: the
=kpn. The solid, dashed, dotted, and dash-dot lines show resultdash-double dot line includes all of tigegndependent terms, while
for x,=0.5, 0.4, 0.3, and 0.2. the solid line shows the full result. See text for description of other

curves.

The o%7%=—1 probability is the sum of the| and p|

probabilities listed in Table . results obtained after settinff ’=f'"=0, and in addition

f¢=1, respectively. The central correlations contribute

mostly via the GTej terms; the dotted line close tggt

=1 is obtained by settinf” "= f'"=0 and including only the
The tensor correlations lead to a dependence of the GETnxa terms.

CBME on the direction of the spin quantization axis through The dependence ojgt on k, andk, is shown in Fig. 9.

the (A,) terms. We therefore do not discuss the CBME forlt is small <0.03 as foryp; .

spin-up and -down final states individually. The sum of

|CBME|2 over the final two Spin states determines the tran- IV. CORRELATED BASIS NEUTRAL-VECTOR MATRIX

sition rates and is independent of the chosen axis. This sum ELEMENT

equals 3 for FGME. In the following, we report results for

o= 3([(F110grlI*+[(F||Oar|1)]?). (56)

Results of Gamow-Teller matrix element

n “one-body” NV transitions the final state is

) ) |(I)F>:a: A akiXiN|¢’|>’ (57)
The ngt has been calculated using the correlation func- N

tions as described in Sec. Il and the resultskig=kgy are . .
plotted in Fig. 6. As in the Fermi case, the variationgf whereki <kgy andke>kgy . The NV matrix element is non-

due to changes in proton fraction is less than 3%, but it haéero only when the initial and final spin-isospin staté,sand

moreq dependence. The quadratic[fiqg. (40)] is still valid Xxn are the same.
up tog~0.5 fm 1, and its parameters are given in Table II.

Figure 7 illustrates the relative contributions of the vari-
ous terms topgt. As in the Fermi case, the main quenching L
comes from the GT@a term; approximating théCBME|? i
by |1+ GT2dal? gives 7gr=0.79 (dotted ling. It decreases
to 0.72 on adding the GYea terms(double-dash-dot line
The double-dot-dash line shows the result after including « |
GTnej terms that reduce the quenching. §0_9 n

The main q dependence comes from the first-order
GT1dj term; results obtained after adding this term are
shown by the dashed line. The GdRterm also contributes 0.8
to theq dependencéfull line gives the totalygy).

The dash-dot and the double-dot-dash lines have a barely

visible g dependence coming from the @&y terms. In the 0.7, 0_‘5 i 1ﬁ5 2‘ 2_‘5
Fermi case these exchange terms depend onky,@ndk, ; q (fm™M)

however, in the GT case they introduce a dependenaeg; pf

on the angle betweeky, andk;,. This appears as @depen- FIG. 8. Correlation dependence ofgr for ky=Kkgy and p
dence, but it is very small<0.002). =po. The solid line is forngt with the full F. The dashed line

The relative contributions of various correlations#gt  shows results witti’"=f'"=0, and in additionf®=1 for the dash-
are shown in Fig. 8. The dashed and the dash-dot lines shouet line. The dotted line show&,, ,GTnxal? whenf?"=f'"=0.
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FIG. 9. Dependence of thggt on the initial k,) and final k)

momenta folp= p,. Each set contains six lines depicting the results
for k,=(0.5,0.75,1Kkg,, and x,=0.3 and 0.5 for the indicated

value ofk,.

The terms in the cluster expansion of the NV CBME are

denoted by

NVnxy= —sir?dyNVnxyl+ 3 (1— 2 sirf6,,)NVnxyz
(58)

wheren, X, andy are defined in Sec. Il and 1 aadrespec-
tively, represent contributions &9 and 77€'9""i. For the
NVnxyl terms we obtain

NVOodal=1, (59)

NVIdj1= [ dre 219 1)p+ (= po) (D),
(60
1 |
NViejl= — EJ dBrelk T{(f°— 14317+ 3f7+ 9F77) (p L,

+pnln)+(F6= 1+ 317 £7=3F7) (p €, — pnly)
X(72)}, (61)

NV1idal=0, (62

1 .
NVlieaNl= — Ef direlkrT{(fC—1+3f+3f7+9f77)

X(ppfp-i- pnln) + (€ =1+3f7—f7—3f77)
X(ppfp—pnfn)<7'§>}, (63

1 . .
NVlieaDl= Zf d3r (e i T+ ek [(fC—1+3f7+3f7

+9f7) (ppl ot ppln) +(FC—1+3f7—f7
_3f07)(Pp€p_pn€n)<T;>]a (64)

PHYSICAL REVIEW C67, 035504 (2003

NV2djl= f d3re 19 (CP+3CY)p

+2(CP-CH(pp—pa)(2], (65

1 .
NV2ejl=— Zf dere’i {(CP+6C-3C (ppl)

+pnln) +(CP—2C+5CT) (ppl p—pnln)
><<7-§>}, (66)

NV2dal=0, (67)

1 .
NV2eaNL= — Zf dire’*rT{(CP+6C°-3CyY

X (pplp+ pnln) +(CP—2CL0+5CH

X(Ppgp_PngnxT@}v (68)

1 . .
NV2eaDl= §f d3r(e'i T+ ek n(CP+6C-3CLh

X(pplpt pnln) +(CP—2CH+5C) (py €

_pngn)<72>]: (69)

where (%) =(xn(a)| 73l xn())- |

The NVndal terms are zero fan>0 because'9"" com-
mutes with the static correlation operators. Also note that the
exchange, Nvieal, terms are zero whelik;| = |k;].

The NVnxyzterms are given by

NVOdaz=(72), (70)

Nv1djz=f d3re ™9 T2[(f°~ 1) (pp—pn) + (2],
(77)
1 .
NV]_ejzz—zj dBrefki T (fe—1+3f7+f7+3f77)

X (pplp—pnln)+(FC=1+3f7+f7+3f77)

X(Pp€p+Pn€n)<T§>}’ (72)

NVidaz=0, (73

1 .
NVieaNz — EJ direlkrT{(fC—1+3f7+ 7+ 3f77)
X(pplp—pntn)+(FC=1+3f7+7+3f77)
X(Pp€p+Pn€n)<T§1>}u (74)

NVleaDz=(7%)NVleaD1, (75)
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FIG. 11. Neutronnyy as a function ofj and proton fractiorx,

for ki=k;=kg,,. The solid, dashed, dotted, and dash-dot lines show

results forx,=0.5, 0.4, 0.3, and 0.2.

FIG. 10. Proton NV CBME scaled by FGME as a functiongof
and proton fractiorx, for kj=k;=kg,. The solid, dashed, dotted,
and dash-dot lines show results fgy=0.5, 0.4, 0.3, and 0.2.

proton particle-hole NV CBME scaled by 0.0372, the
NV2djz=f dre 19 (CX-CIY) (py—pn) FGME. Note that the value of the _CBM&Ot[CBMEF) is
shown in this figure. At low densities the first term domi-
nates, and the CBME is negative; however, at higher densi-
ties the second term becomes larger, and the matrix element
1 becomes positive. At~ p, the cancellation of the two terms
NV2ejz=— ZJ d3re'ki T{(CP+2C10+ C(pplp=pnln) is almost exact, and the proton NV CBME is very small.
Fortunately, in this case the FGME is small and the CBME is
+(C4 2¢Oy 0 4 g zy1 7 of the same order in the considered density range. Thus, the
(Ce e T Ce)(pplptputn){ra)} (77 coupling of the proton NV current is not likely to have a
significant contribution to the-nucleus interaction.
NV2daz=f d*r[4C§(pp—pn) —4CTP(7E)], (78) Figure 11 shows the density ang dependence ofyyy
for neutron particle-hole pair excitations. At 3 p, the cor-
relations increase the contribution of the first term and de-

+2(C+Cahp()], (76)

NV2eaNz= — Ef d3rel*rr{(cP+2c+clh crease that of the second term in E81) by a similar mag-
4 nitude. Therefore at smafj and g the NV neutron CBME
X(ppgp_pngn)+(cg0+ 2clo+cly ~ FGME. However, at higher densities it is quenched. As
mentioned earlier these matrix elements have a significant
X (pplpt prla) (e}, (799  dependence absent in the charge current matrix elements.
Figure 12 shows the contributions of the various correla-
NV2eaDz=(7%)NV2eaDLl. (80)  tions to the NV neutron CBME. The CBME is influenced by

contributions of thef®— 1 correlations to N¥ixj1 and those
In symmetric nuclef\r matter the matrix elementsrofare  of the f77(r;;) oy o7 - 7, andf'(r;;) S 7 - ; correlations to
related to those of~. In this case NVixyz=Fnxy. How- ~ NVnxyz terms. The results obtained after settiffgf=f'
ever, wherx,<0.5 the NV matrix elements have additional =0 and in additionf®=1 are shown by dashed and dash-dot

terms dependent op,—p,,, or equivalentlyx, . lines in Fig. 12.
The neutral-vector CBME for a neutron particle-hole pair
Results of neutral-vector matrix element does not depend significantly on the magnitudes of the initial

and final nucleon momenta. Variation lgffrom 0.5 to 1 and

In uncorrelated FG states, the neutral-vector matrix ele
of k; from 1kg to 1.5 changesnyy by less than 3%.

ment is

—sir O+ 3(1—2 sirf6y)(72) = — 0.2314+ 0.2686 V. CORRELATED BASIS NEUTRAL-AXIAL-VECTOR
(81) MATRIX ELEMENT

for the proton and neutron particle-hole pairs, respectively. The operatoOy, is an axial vector and it is convenient to
The above two terms nearly cancel for uncorrelated protongxpress its matrix element using the following two axial vec-
The correlations influence each operator differently and théors, similar to those used for the Gamow-Teller CBK&ec.
final CB result depends sensitively dm, k¢, p, andx,. )

The strong dependence of the proton NV matrix element on ; i

p and x, is shown in Fig. 10 where we have plotted the (o) =(xn(@)|o(a)[xn(2)) (82
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FIG. 12. Correlation dependence of the neutigg, for k;=k;
=kg, and p=p,. The dashed line shows results wiff”=f'

=0, and in addition,f°=1 for the dash-dot line. The solid line

gives the full result.

and

<At>:3':aj<0'a> ) Faj_<0'a1>- (83

We assume tha:t/iN in Eq. (57) is spin up and calculate the
sum of the square of the NA matrix element for the two final
states with)(fN=T,l for bothN=n andp. The terms in the
cluster expansion of the NA CBME are denoted by iNé&

as in Sec. Il, and the facta, is omitted for brevity. We

obtain

NAOda= 3( o, ){7%), (84)

1 )
NALdj = [ dfre 120 (py—pp)(17(0r) + 11(A)

+p(T) (17 o) + (A, (85

1
NA1eJ———f direlki [ (fC—1+ 7+ 17— 3f"")(0o,)
+(ft+3ft7)<At>](Pp p —pnt +[(fc 1+f7+17

+ 5f(”)<0'a> + (ft_ ftT)<At>](pp€p+Pnen)<7—§>}v

(86)
NAlda=0, (87)
1 _
NAleaN= — ZJ dBrel* e {[(fC—1+f7+ 17— 3f7") (o)

+(F+3F ) (AD(pp €p— pnln) H[(FO—1+f7
+ 745177 () + (F= F7) (AN (ppl pt prn)
X(T)} (88)

1
NAleaD= E(oa><r§>NV1eaD1, (89

PHYSICAL REVIEW C67, 035504 (2003

NA2dj= = fd3re—'q L(FSY —FiY ) (oa)+ (FSOA

—FENAN(pp—pn) HL(FEY +FJ}7 +2F54)

X(ag) +(F(lj,j + Fg,le+ ZFé,j )(ApIp(Ta)}, (90

1
NAZeJ:_ gJ’ d3relk r[{(FOOU+3F10,0' FOl,a'_i_ Fllg)

X(a) + (FOOA+ 3FL0A- FOIAL FLIA) (A
X(pplp=pntn) +{(FO —Fe37+3F "+ Fai)
x(ga>+(F00A F10A+3F01A+F11A)<At>}

><(Ppep""pn n <Ta>]' 9D

1
NA2da= fd3r[|:},°”+|:°1“+2|:11” 2(C3-Cch]

X( 02} (pp—pr)+ (FQ7 — F11o— cO—3Clt

x(oa)p(7a)], (92)

1 ‘
NA2eaN=— gf dire*rT{(FeS” —Fe37+3FQi + Foi”

X{ o)+ (Fgf}A F1°A+ 3F°1A+ F”A)(At)}

X(pptp=pnln) +{(F}7+3F 37— Foi”

+Fi (o) + (FOA+3F A - FOMA+ F LA

X<At>}(Pp€p+Pn n)<Ta>]v (93

1
NA2eaD= 5 (e,)(75)NV2eaDL. (94)

Results of neutral-axial-vector matrix element

We discuss only the sum of tH€BME|? over the two
final spin states because it is independent of the chosen spin
guantization axis. This sum equals 3/4 for FGME. In the
following we provide results for

na=5([(FT|Onall)[2+](F | |Onall}]?). (99

The 5y for neutron and proton particle-hole pairs are plot-
ted in Figs. 13 and 14, respectively, for the considered den-
sity and proton fraction values. In these matrix elemdats

= kf = kFN .

The charge-changing and neutral-axial-vector operators
(OgT and Oy,), appropriately scaled, can be interpreted as
the three components of an isospin vector operator. In sym-
metric nuclear matter the expectation values of these three
components are equal, as one cannot quantify the isospin
axis. The stars in Figs. 13 and 14 are results obtaineger
for symmetric nuclear matter with equivalent initial and final
momenta and densities. They are identical to those obtained
for mya for both proton and neutron particle-hole pairs.
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TABLE III. Linear fit to 7y, for x,<<0.5 at smallg.

e
oE P Cp(p) Cn(p)
0.8 = p=05p,
< ‘ | 0.08 1.39 -1.29
= 0.16 153 ~1.46
= T e T T TR 0.24 1.40 -1.38
]
% 0.8 p=p,
J
Z F The correlation dependence and the initial and final mo-

menta dependences studied gt are applicable here and
will not be discussed further.

VI. CORRELATED BASIS INTERACTION

q(fm™)

The expectation value dfl — Trg(X), whereTgg(X) is
FIG. 13. Neutronyy, as a function ofy and proton fractionx, ~ the kinetic energy of the Fermi-gas stdtg, is e_xpa}nded to
for ki=k;=Kg, . The solid, dashed, dotted, and dash-dot lines showcalculate the energy of the correlated statg It is given by

results forx,=0.5, 0.4, 0.3, and 0.2. The stars are resultszfgf
(Px|[STIF;;][H—Tea(X)J[STIF;; ]| Px)

atx,=0.5.

P (X|H[X)= >

. . _ (OX[[SITF;; ]| ®x)

Unlike the results for the GT CBME, there is a noticeable
dependence ofyy, on the proton fraction at all densities +Tra(X), (98)
considered. Thisd,— p,) dependence originates from tlnfe 2
in NAnxj and NAnxa terms. We can approximate the NA Teg(X)= i (99)
results obtained fok,<0.5 by adding a density dependent FG alli occupied in @y 2M’

term proportional to §,— p,) to 7y for symmetric nuclear

matter. For smalt, this approximation is Since®y is an eigenstate of the kinetic energy operalor

=3,—V?Z/2m, with eigenvalueTgg(X), it is not necessary
_ _ to expand the FG kinetic enerdyH — Tr(X)]|X) does not
<0.5= =0.5)— - ; , . .
AP Xp=0-9= 7a(p Xy =0.5 = Cn(p) (pp~ i) (9p  contain terms withV2 operating on|®y). Including only
two-body clusters we obtain

=761(9=0)+ a1’ — Cn(p)(pPp—pn), - 1
er er N P (XIHIX)=Tea(X)+ 2, (ij =ji|Fij| vijFij—=(V?Fy)
(97) i<j m
where we have useglya= 767 atx,=0.5 and Eq(40). The — E(VFij)'V}“j ), (100
values obtained foCy(p) at the three densities considered m
are given in Table Il. B ok ] ) )
where |ij)y=e'kiTi*ki Ty (i)x.(j). The gradient operates

on the relative coordinate, and the surij is over states
r occupied in®dy . The effective correlated basis two-nucleon
' interaction is given bysee Eq(8)]

1 ) 2
vijFij— E(V Fij)— E(VF”)'V (102

CB_
Uij _Fij

in the two-body cluster approximation. The energies of cor-
related statepX) are obtained by using this‘j:B in first-order
with FG wave functionsby, as in the Hartree-Fock approxi-
mation.

The v{® has a momentum dependence via the
(VFj;)-V term that gives contributions to the matter energy
via exchange terms in E¢100). This contribution is much
smaller than that of the momentum independent static terms

in vﬁB defined as

FIG. 14. Protonyy, as a function ofg and proton fractior,

for ki=k;=Kkgp . The solid, dashed, dotted, and dash-dot lines show 1

results forx,=0.5, 0.4, 0.3, and 0.2. The stars are resultszfgf vCBS=F. | . — —V2|F.. . (102
_ ij i ij ij

atx,=0.5. m
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In the present work we have considered only the static
part of F;; as mentioned in the introduction. We therefore 80+
keep only the dominant static part of the full Argonng.

The full vj; is first approximated by ag interaction chosen
such that it equals the isoscalar part of the full interaction in
all SandP waves as well as in théD; wave and its cou-
pling to 3S,. The difference between the full and theg
interactions is small and is treated perturbatively in the quan-
tum Monte Carlo calculation®9]. vg has terms with the six
static operatorsC)i‘}:l'B, and two spin-orbit terms. The later 20
two are omitted to obtain the static part of Argorme. In
this approximation the“BS is a static operator having six

60—

oo (MeV)

E

| | | | | | | J
terms withOP=1¢: % 0.1 0.2 0.3 0.4
p(fm”)
v ®%= :wvng(rij)of}. (103 FIG. 15. E,..(p) (upper set E (p) (middle sel, and E(p)

(lower sej of symmetric nuclear matter. In each set, the uppermost

. o . . . curves are results usirfg; for p=%p0, the middle forp=p,, and
The Landau-Migdal effective interactions used in studiespe jowest forp=2p,. Solid lines show the results foi°® and the

of weak interactions in nucl¢il4] and nucleon mattdi7] are  gashed linewBS Stars denote values obtained fBr(p) from
obtained from the spin-isospin susceptibilities of nucleonariational calculation§27].

matter. We have therefore studied these susceptibilities with

v©® andv “BS. The energy of nucleon matter with densities  We also consider the spin susceptibility of PNM given by
pni andpy, can be expressed as the inverse o£""M(p) defined as

E(p,X,Y,2)=Eq(p) +E(p)X2+E,(p)y?+E,.(p) 2%, EPNM(p,y)=E§"M(p)+ELNM(p)y2. (108

(104
The results obtained with®® andv “®S are shown in Fig. 16
- . along with those obtained from quantum Monte Carlo calcu-
X= Py Py = Ppr = Pp ) (109 lations [35] with the static parts of Argonne-vl18 and
Urbana-IX interactions. The two-body®B, using Fi; of
SNM, gives fairly accurate values &M
Figure 17 shows,(p) andEf“"M(p) calculated from the
vCB at the three values g. The stars in this figure give
— . results of the recent variational calculatid23] with the full
The 7, o, and o7 susceptibilities are proportional 10 Aronney18 and Urbana-IX interactions. At low densities
E; .07 andEo(p) is the energy of symmetric nuclear mat- yhe yo-hody v is not a bad approximation: however,
ter with x=y=z=0. Note thatE (po) is the familiar sym-
metry energy in the liquid drop mass formula. In principle, -
the above expansion is valid at small valuesxpf, andz
however, within the accuracy of available calculations it

Y=(pni=Pni+Ppr—Pp)) P, (106

z=(pn1=pn, = Ppi T Pp) ! p. (107)

seems to be valid up to=1 [33,34. 100
We have calculated, ,, ,.(p) using thev“® obtained o

from Fj; atp=(3,1,3)po. The results obtained with“® are 2

given by full lines in Fig. 15, while those with the simpler ~

vCBS are given by dashed lines. The momentum dependentE 5o

part of v©B gives rather small contributions, which may be
neglected in the first approximation® has a density de-
pendence due to that &f; . However, it has very little effect
on E, and E,,; the results obtained from the

(3,1.3)pov°P's essentially overlap. The density dependence 0%
of v°® has a small but noticeable effect on the symmetry
The stars on Fig. 15 show the valueskf(p) extracted FIG. 16. E,(p) for pure neutron matter. The solid line shows
from recent variational calculation$27] of symmetric  results obtained using®® and the dashed for the"BS. The results
nuclear mattekSNM) and pure neutron matt¢éPNM) with  optained withF; for p=(3,1,3)p, are essentially indistinguish-
the Argonne-v18 and Urbana-IX interactions, assuming thaiple. Stars denote values obtained &}"“(p) from quantum

Eq. (104 is valid up tox=1 for y=z=0. The two-body Monte Carlo calculation§35]. The dash-dot line is the Fermi-gas
v°B seems to provide a fair approximation EQ. E,(p).
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40 — —16 MeV, and an incompressibility of 240 MeV. The differ-
ence between the calculated and the empirical values is
likely to reduce when the more realistic Illinoig;, [30] is
used in place of the Urbana-I1X. However, a part of this dif-
ference is due to the approximations in the calculation.

Next we consider the nondiagonal CB interaction. Let a
Fermi-gas statg®¢) differ from |®,) in the occupation
numbers of two single-particle states:

E,(p) (MeV)
=]
T

ol |y =alalaa|P)). (109
L The matrix element oH between the CB states is given by
| | | | |
40 005 01 015 02 025 I (De|[STIF; THLSTIF;;]| @)

o(im) FIRID= G TSTTF, Aon @ [STTF, Foy)
(110

FIG. 17. Eo(p) for symmetric nuclear matteflower set of

curves and pure neutron mattéupper set of curvesin each set,  The numerator of this matrix element contains terms in

the uppermost curves are results usifgfor p=73po, the middle  \hich the kinetic energy operator acts @n. These give
for p=pg, and the lowest fop= %po. Solid lines show the results

for v°B and the dashed linas"®S, Stars denote values obtained for (De|[STTF;; [ SITF; 1T|®,)
Eo(p) from variational calculationg27]. 5 5
W P|[STTF 1| @ ) (D[ STTF ;17 P, )

=Tea((FII).

11
Eq(p) obtained from it does not show a minimumggt The (113

three-body interaction and cluster contributions are repulsiv@yhen the correlated states are orthogonalized, this term is

and are essential to obtain the minimum. zero. Neglecting it the two-body cluster approximation of the
The two-bodyv B is more accurate in predicting the sus- ghove matrix element is obtained as

ceptibilities than the equation of stalg(p). This is partly

because the contributions ot andv B to E.., ,.(p) add. 1

The contribution ofT¢ to EPN is shown in Fig. 16 itis  (FIH[)=(mn|| v©ES- AV (FVOF+F(VE)- Vi ]i])

about half of the total. For this reason, even relatively simple

estimateg36] of EZN™ are not too different from the current ={(mn|v®8lij). (112

state of the arf{35]. In contrast, in SNM the large negative

(v°B) cancelsTg to produce a relatively small binding en- V' operates to the left whil& to the right. When the mo-

ergy. Therefore the many-body clusters are relatively morgnentum dependent term is negligible, this matrix is just the

important in the calculation dEq(p). Fourier transform ofy©BS. Using the algebra of operators
The results of the recent SNM calculations, which pro-O%, *® and Eqs(102) and(103), we obtain

vided F;; used here, are summarized in Table IV. The one-

and two-body cluster contributions are calculated exactly. 6

The calculation of the three-body cluster contributions from v o= 2, {9 fsKIKIP— 3 Efq( Vi — (8

the static part of;; are also exact. However, the three-body arst=1 95718 r

contributions from spin-orbit correlations and forces, the

=4-body contributions and the difference between the varia- + 8s6)

tional and the ground state energies are estimated. The em-

pirical Eq(p) assumes pp=0.16 fm 3,  Egy(po)=

fSK ISP, (113

Here we have used

TABLE IV. Contributions to the ground state energy of SNM
from Argonnev;; and Urbanaj; in MeV per nucleon.

V2 (ri)S; :Sij( - %ft(rij)+vzft(rij)) (114

Density (fi 3) 0.08 0.16 0.24 !

1-b Teg 13.9 221 20.1 and theKP9" matrices are given in Ref31]. The Fourier
2-b all _59 437 562 transforms ofu;®® are given in Figs. 18—20. Note th&y,
3-b static 4.9 10.9 19.1 =30;q0;q— 0;- oy iIn momentum space.

3-b LS + =4—b all -2.2 -1.7 0.8 The effectivev “BSis weaker than the bare, particularly
(Eo—Ey) -06 -1.8 -33 at large values o€, as shown in Figs. 18—20. Perturbative
CalculatedE, ~-99 —14.2 ~-10.6 corrections typically involve a loop integration over the mo-
Empirical E, ~121 ~16.0 —129 mentum transfeq with a g> phase-space factor. Hence in

these figures we compacgv ;2Xq) with g?v,(q).
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FIG. 18. The Fourier transform of the central angd o; com- FIG. 20. The Fourier transform of th8; and z- 7;S; compo-

CBS CBS

. . _ l g
ponents ofy©BS usingF;; obtained ap=(3,13)p, are shown by ~Nents ofv="=using F;; obtained atp=(3,13)po are shown by
dotted, solid, and dash-dot lines, respectively. The dashed lindotted, solid, and dash-dot lines, respectively. The dashed line
shows the Fourier transform of the corresponding bare interactionShows the Fourier transform of the corresponding bare interaction.

VIl. CONCLUSIONS pendent reduction is given by the product of the probabilities
for the active quasinucleon to be initially a neutron and fi-
We have calculated the effect of short-range correlationgally a proton. A similar interpretation is also applicable for
on nuclear weak interaction matrix elements. At low energieshe GT matrix elements.
and small values of}, the charge current, weak transition  |n contrast to charge current, neutral-current matrix ele-
rates are quenched by20-25% in the simplest two-body ments have a significant dependence on the proton fraction.
cluster approximation in the zeroth order CB theory. ThisThe neutron-NV matrix element also depends on the total
quenching is relatively independent of the density and protorjensity, while the proton-NV matrix element is very small
fraction of nucleon matter as well as the momenta of nucleand varies with all relevant parameters.
ons in the —32)p, range. However, it depends on the mo- We have also studied the effective nuclear interaction in
mentum transfeq. the same CB used to calculate the weak interaction matrix
The dominant part of the quenching is due to spin-isospirelements. The dominant static part of the lowest-order two-
correlations induced by the OPEP in the bare interaction. Theody v “® gives fairly accurate results for the spin, isospin,
OPEP changes the isospin of nucleons. For example, in th@nd spin-isospin susceptibilities of nucleon matter. However,
n—p weak transition between uncorrelated states the activéé iS necessary to include at least three-body effects to obtain
nucleon is initially a neutron and finally a proton with unit the minimum in theEq(p) of symmetric nuclear mattes.“®
probability. In correlated states, these probabilities are lests much weaker than the base and presumably can be used
than unit, and they reduce the weak interaction matrix elein perturbation theory formalism.

ments. In particular, for the Fermi case, most of thimde- All calculations of weak transition rates using effective
interactions must, in principle, use the quenched matrix ele-
400 ments calculated in the same basis. We plan to calculate the
E 300f weak interaction rates in nucleon matter using the present
= 200k effective operators and interactions. To obtain more accurate
2 100 - predictions, it will be necessary to include terms greater than
s 0 equal to three-body terms in the cluster expansion of the CB
E’:-;gg effective operators and interactions.
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q(fml ) APPENDIX A: SECOND-ORDER PERTURBATION
THEORY

FIG. 19. The Fourier transform of the-7 and oy- o7 7

components o °®° usingF; obtained ap=(3,1,3)po are shown Standard perturbation theory is applicable when the bare
by dotted, solid, and dash-dot lines, respectively. The dashed lin#teractionv;; is weak. We then havel=Hy+H,, Ho=T,
shows the Fourier transform of the corresponding bare interactionand
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Q Q
Hl_z vij (A1) dea_hEN (kp tnlvay g = Or(@) g~
Xv,ilkn,hn) — 5 (Kp ,hy| O —Q
Let |®y) be the unperturbed FG state. The perturbed, nor- VajlKn ) 5( p:IN|Or(@)v ) Eo—Hy
malized state up to second order is given by
Q Q
o XE—H, = Vajlkn,hn) — <kpvhN|Uajm
1 (Py[H|Px)
=13 2 :
( XY) vaajOp(a)lkn,hN> ) (A7)
Do+ |b m where Eq=e(k,) +e(hy), o=e(k,) —e(ky), Q is the pro-
Y#X Exy jection operator to ensure Pauli exclusion in intermediate
states, andhy are any occupied proton or neutron states. We
+ z |®Y><¢Y|H'|®Z> (Dz[H | Px) use e(k) to denote single-particle energies; whelR=T,

v.ZEx ESy EYs e(k) =k?/2m.
In order to make a connection with the correlated basis
theory, we see that in perturbation theory the unnormalized

S 1o <¢Y|H |Dx) (Px|H | Dx)
- |Dy) two-body wave function is given by

Y#X Exy Exy

, (A2)

0 . . . . |\I’> 1+2 UIJ |(D> (A8)
Exy=Trc(X) —Tgg(Y). In this approximation the Fermi
matrix element is given byF|Og|l), where®, and® are
given by Eq.(13).

We are concerned only with two-body effects and there-
fore consider only the interactions,; in H,. The last two Q
terms of the abovgX) can be combined with the second by (Fj—1)~ E—foVi
replacingu ,; by an effective interaction; hence we will omit (Eo=Ho)
them. The direct terms dfF|Og|l) can be written as

Comparing it with the correlated wave functipiag. (5)] we
can identify

(A9)

when the interaction is weak. In reality,; is strong and Eq.
(A9) is not useful. The correlation operator is determined
variationally and itsw dependence is neglected assuming
(F| 2 Or(i)|1)girect= FOda+ F1dj+F2dj+F2da, that the average value &,—H, is much larger.

! It can be verified that all of thEndy terms in Sec. Il are
(A3) obtained by replacing

Q Q

sinceF0dj andF1da are zeroFnxy is defined as in Sec. Il E 1 Vai and VaiE 7w H- (A10)

with the exception thah here refers to the order ¢f,. We o "' 0 0

obtain in Egs.(A4)—(A7) by (F,;—1), sinceF=F.
FOda=(kp|OF(a)|kn)=1 (A4) APPENDIX B: THE C AND F COEFFICIENTS

The C parts required to calculate the effective weak vector
operators in CB are obtained as follows: R&tY,Z be op-

. . Q
Fidj=>, (Kp,h O () m—rvajlkn ) erators of type
P Eo—Ho
Q _ X= > x,0P. (B1)
o p=1,6
+th <kp th|va] E0+w— HOOF(J)“(H !hN> ’
(AB) The C part of the product of operators is then given by
CXYD= X X X¥ezKPIK™®, (B2
Q p,g=1,6r,5=1,6
Fadj= ky,h i——Og(j
: % (ko Mfva Eotw—Hg (1) whereO°=1 and theKP9" are given in Ref[31]. The results
0 are listed below.
E H Uaj|kn !hN> (AG) Célj.l:(ff)2+ 3(f(r1')2+ G(ftT)Z, (83)
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Cal=C=(f*~ D) +3f7fo+6f'f", (B4 Fa =Faii=(fo- D) fr+ f17— fofr—fifom 4 2f 117,
(B20)
Cel=(fe—1)2+3(f")2+6(f")?, (B5)
Fai/ =217 —2f77f174 2(f17)2, (B21)

C’=(f°=1)2=3(f")2+12(f)2+6(f°~1)f’, (B6)
FOO7=(fc—1)2+2(f°—1)f7+(f7)2—4(f)2, (B22)
CHl=(f7)2—3(f")2+12(f'")2+6f 77, (B7)
FOlo'_(fc l)fT_(fC_1)f0’7’+3f0’f7’+fU’fU’T_4ftftT,

Co'=C0=(fo—1)f 7= 3f o+ 12f "7+ 3(f—1)f " (B23)
+3f7f7. (BS) Fé%’f::af(”(fc—1)+fT(fC—l)-f—fUTf‘r—fo(r—4ftTft,
The o, andA, parts of a product obr,- oy, S;j, 0, and (B24)
o operators is obtained by repeated use of the Pauli identity: F(lalaa: 2897F T4 (£7) 2+ (£77)2— 4(17)2 (B25)
o-Bo-C=B-C+io-BXC (B9
) FOOA=2(f°—1)f'+ 2f7f 4+ 4(f")2, (B26)
to reduce it to terms linear ior,, 0. Terms linear ino; go
to zero on summing ovér The remaining terms linear ior, Folt=2(fc—1)f'"—2f7f'"+ 4f'f o+ 4f'f'", (B27)
are expressed in terms of the operatatsand A, to obtain
the following equations: Feoft=—2fo7fl+ 4f7f o+ 2f 7fL+ 4F7f!,  (B28)
FOO,O' ( fc— 1)2_(f0')2_2(ft)2, (BlO) FglaA: 2fOTFIT L ofTElT L 4(ft7)2, (829)

10;0' Olo’ c__ fT—fofoT— tetr
Fa =(F-Dr-er-2rry, - (Bl FO07— (£0—1)22f7+ (f°—1)— 4(1)2+(f7)?, (B30)

ll,(r ™N2__ (f0T\2__ tm 2

(f ) (f ) 2(f ) (Blz) ng,(r:(fc_l)fr_’_ 3(fC_1)fl)’T_fleT_4ftftT+fU‘f0‘T,
FOOA= 4f7ft42(f1)2, (B13) (B3D
Fal7=1o7(fo— 1)+ £7(f0— 1) —4f'7f'+ fo7f 7+ 3F7f7,

10A_ p01A_ oftr tfor tetr
Faa =Fgqq =2f7F 7+ 2ff77+ 277, (B14) (B32)

llA oTftT try 2
F =4f77f +2(f ) ’ (815) Fllo’ 2fO'TfT+(fT)2 4(ft7)2+(f0'7)2 (833)
Fa}7=2(f°—1)f7+4(f7)?—4(f")?, (B16)

FOdA=2f'(fe—1)+2f7f'+ 4(f")2, (B34)
FlOa' FOlﬂ c_ DFo ™+ fof7+ 2fcrfm'_2ftft7,
(=D (B17) Foifi=afofirr2f'f7—2f'f "+ 4f'f'",  (B3H)
11,0' —2fTfoT 4 2(1:0'7)2 2(f'[1')2 (518) FégA: 2ft7(fc— 1)+4f{r7ft—2ftrf{r+4f”ft, (836)
Fa=2(fe—1)f'=2f7f'+2(f12, (B19) Foi/ =217+ 261717+ 4(17)2, (B37)
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