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Radiative corrections to low-energy neutrino reactions
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We show that the radiative corrections to charged current~CC! nuclear reactions with an electron~positron!
in the final state are described by a universal function. The consistency of our treatment of the radiative
corrections with the procedure used to extract the value of the axial coupling constantgA is discussed. To
illustrate we apply our results to~anti! neutrino deuterium disintegration and topp fusion in the sun. The limit
of vanishing electron mass is considered, and a simple formula sufficiently accurate forEobs*1 MeV is
obtained. The size of the nuclear structure-dependent effects is also discussed. Finally, we consider CC tran-
sitions with an electron~positron! in the initial state and discuss some applications to electron capture reac-
tions.
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I. INTRODUCTION

The physics of neutrino flavor oscillations has entere
new era. There is now a consensus that the observation o
atmospheric neutrinos@1# can be interpreted as an eviden
that muon neutrinos born in the atmosphere oscillate into
neutrinos. At the same time, numerous measurements o
lar electron neutrino fluxes have been pointing toward n
trino oscillations ever since the Homestake experiment@2#.
The evidence for oscillation of solar neutrinos has be
strengthened recently with the results from Sudbury Neutr
Observatory~SNO! @3,4# that are independent of the sol
model~SSM!. With the evidence for oscillations at hand, th
accurate determination of the neutrino masses and fla
mixing angles is the most important task for neutrino phys
at present. Carrying out the above program requires accu
knowledge of the cross sections of the reactions used
neutrino detection, and the standard model~SM! radiative
corrections, which typically shift the leading~tree! order val-
ues by 3–4%, must be taken into account.

Complete one-loop SM radiative corrections to t
charged current~CC! and neutral current deuteron disintegr
tion by electron neutrinos used in SNO measurements h
been calculated in Refs.@5,6#. We have shown in Ref.@5#
that while the differential CC cross section depends on
actual detector properties~e.g., on the bremsstrahlung dete
tion thresholdEg

min) the total cross section is a detecto
independent quantity as long as the final state electro
always detected, i.e., the total number of the neutrino in
actions is determined. In a simple case, whenEg

min→0 one
finds

dsCC~Eobs!5dsCC
Tree~Eobs!S 11

a

p
g~Eobs! D , ~1!

where dsCC
Tree(Eobs) and dsCC(Eobs) are, respectively, the

leading and the next to leading order ina differential cross
sections,Eobs is the energy observed in the detector~charged
lepton energy plus possible bremsstrahlung photon ene!,
andg(Eobs) is given by Eq.~3! below. It is understood tha
the cross sectiondsCC

Tree(Eobs) includes the Fermi function
0556-2813/2003/67~3!/035502~12!/$20.00 67 0355
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F(Z,A,Eobs) to account for the distortion of the final sta
electron wave function by the Coulomb field of the fin
nucleus~see, e.g., Ref.@7#!. While a similar approach to the
treatment of radiative corrections has long been used in
analysis of nuclearb decay@8,9#, here we extend it to a wide
class of reactions involving neutrinos, and formulate the c
ditions for its applicability.1 Specifically, we generalize the
results of Ref.@5# and analyze the following four features o
the radiative corrections.

a. Universality. The functiong(E) is universalfor a class
of nuclear reactions involving neutrinos. In particular, it c
be used to evaluate the radiative corrections to the total c
sections of reactions that have an electron~positron! in the
final state. It is applicable not only to neutron and nucleab
decays, but also to the antineutrino capture reactions, l
energy CC neutrino-nucleus disintegration, nuclear fusion
actions accompanied by the electron~positron! emission, etc.
For illustration, we consider the following CC processes
volving two nucleon systems:

ne1d→p1p1e2,

n̄e1d→n1n1e1,

p1p→d1e11ne . ~2!

For reactions where the electron spectrum is narrow~precise
conditions are given in Sec. II!, we provide a simple and
accurate way to calculate the correction to the total cr
section without the complicated integration over the outg
ing electron or positron spectrum.

In order to demonstrate one of the possible application
our results, note that the last reaction in Eq.~2! is the main
reaction for thepp chain that powers the sun~see, e.g., Ref.
@10#!. The total rate of this reaction is, therefore, constrain
by the known solar luminosity. This rate, together with t

1The connection betweeng(E) and the functionG(Em ,E) intro-
duced by Sirlin@8# for the description of allowedb decays is dis-
cussed in Sec. VI.
©2003 The American Physical Society02-1
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cross section for thepp reaction, is used to calibrate th
SSM and to predict many other quantities, in particular
flux of the 8B neutrinos studied at SNO. Below we show th
a proper treatment of the radiative corrections toSpp , the S
factor for the pp reaction, lowers the SSM prediction t
F(8B) by about 0.6% relative to the currently accepted va
@11#.2

b. Axial coupling constant gA . Since the reactions in Eq
~2! are dominated by the nuclear axial current, it is import
to use a procedure consistent with the definition of the a
coupling constantgA . We briefly discuss the conventiona
definition of gA based on the value extracted from neutr
decay and give a prescription for evaluation of the radiat
corrections consistent with that definition. This issue h
been discussed in the literature~see, e.g., Ref.@13#! but we
feel that it is sufficiently important to reiterate here.

c. Nuclear structure-dependent effects. In deriving univer-
sality properties of the radiative corrections, we work in t
‘‘one-body’’ approximation~in analogy to the early applica
tions to the nuclearb decay!. Namely, we evaluate the ra
diative correction to the CC reaction on a single nucleon,
then use it to compute the correction to the reaction of in
est. Effectively, only the corrections of the type shown
Fig. 1~a! are included in such a calculation. Nucle
structure-dependent many-body corrections of the t
shown in Fig. 1~b! are thus neglected. We show that a co
parison of such corrections to analogous effects contribu
to superallowed Fermi transitions in nuclei suggests that t
enter at 0.1% level. As we discuss in Sec. V, however,
estimate of universality-breaking contributions is not airtig
and a detailed computation is needed to obtain precise n
bers.

c. Collinear singularities. We study the behavior of the
radiative corrections in the limitme→0, whereme is the
electron mass. Separate contributions to the corrections
singular in this limit, and until now it has not been explicit
shown in the literature how the singularities cancel when
contributions are added. Such cancellation must take p
according to the well-known Kinoshita-Lee-Nauenbe
~KLN ! theorem@15#, and in Sec. VI we show how this hap

2The ‘‘outer’’ radiative corrections toSpp have been originally
evaluated in Ref.@12#, whose results are, however, not used in R
@11#. Results obtained using our simple prescription agree with
calculation presented in Ref.@12#.
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FIG. 1. One-nucleon~a! and two-nucleon~b! contributions to
the radiative corrections to CC neutrino-deuterium disintegrat
The oval represents the initial state deuteron.
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pens. As a corollary, we obtain a simple expression forg(E)
valid for E@me . In practice, radiative corrections evaluate
according to this simple expression are accurate to ab
0.1% for energies above 1 MeV.

Although these four topics constitute the main focus
our study, we also discuss processes, such as capture
tions, involving charged leptons in the initial state. In th
case, the radiative corrections do not display the same k
of universality applicable to the reactions in Eq.~2!. Never-
theless, the treatment of the two cases is sufficiently sim
that we feel a brief discussion—given at the end of t
paper—is warranted.

II. UNIVERSALITY OF THE RADIATIVE CORRECTIONS
TO REACTIONS WITH THE ELECTRON ÕPOSITRON

IN THE FINAL STATE

We begin with the first reaction in Eq.~2!. As was shown
in Ref. @5#, the total cross section is independent of the ph
ton detection thresholdEg

min . In the limit Eg
min→0, the func-

tion g(E) in Eq. ~1! has two parts:

g~E!5gv~E!1gb~E!. ~3!

Here,gv(E) ~for the virtual part! andgb(E) ~for the brems-
strahlung part! are given by the following lengthy expres
sions ~the cutoff parameterL that appears in Refs.@5,6# is
set equal to the proton mass!:

gv~E!52 lnS MZ

M p
D1

3

2
lnS M p

me
D12 lnS E2me

me
D

3F 1

2b~E!
lnS 11b~E!

12b~E! D21G1
3

4
1A„b~E!…20.57,

A~b!5
1

2
b lnS 11b

12b D212
1

b F1

2
lnS 11b

12b D G2

1
1

b
LS 2b

11b D
~4!

and

gb~E!5C„b~E!…1
1

2E2b~E! F Eme

E

~E2x!lnS 11b~x!

12b~x! Ddx

14EE
me

E xb~x!F~x!2Eb~E!F~E!

E2x
dxG ,

F~E!5
1

2b~E!
lnS 11b~E!

12b~E! D21,

C~b!52 ln~2!F 1

2b
lnS 11b

12b D21G111
1

4b
lnS 11b

12b D
3F21 lnS 12b2

4 D G1
1

b
@L~b!2L~2b!#

1
1

2b FLS 12b

2 D2LS 11b

2 D G . ~5!

.
e

.
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In the above equations,me is the electron mass and

b~E!5AE22me
2

uEu
[

ve~E!

c
,

L~b!5E
0

b ln~ u12xu!
x

dx 5
ubu<1

2 (
k51

`
bk

k2
, ~6!

whereve(E) is the velocity of the electron with energyE and
L(x) is the Spence function~see, e.g., Ref.@14#, Sec. 27.7!.
The closed form for the integrals appearing in Eq.~5! is
given in Appendix. Althoughg(Eobs) in general depends o
the value of the cutoff parameterL, the choice ofL affects
only the constant, energy independent part ofgv(Eobs). We
choseL5M p and adjusted the constant (20.57) in the Eq.
~4! so that the result matches with the corresponding exp
sion derived by Sirlin in Ref.@9# based on current algebr
~the same approach was chosen in Ref.@6#!. The dominant
uncertainty ing(Eobs) is associated with the value of th
matching constant and is briefly discussed after Eq.~8!.

It is remarkable thatg(Eobs) is a function of a single
parameter—the observed energyEobs—and does not depen
on the electron and photon energies separately. Moreo
formulas Eq.~4! and Eq.~5! make no reference to the pa
rameters that describe the leading-order differential cr
section, such aspp scattering length or the effective rang
~see, e.g., Ref.@16# for definitions!. It is, therefore, reason
able to ask whetherg(Eobs) is a universal function that de
scribes the radiative corrections to a whole class of proce
in the limit Eg

min→0. Below we show that this is indeed th
case.

Consider first, in the one-nucleon approximation, con
butions from virtual photon exchanges. As pointed out
Refs. @5,6#, it is convenient to split these contributions in
two pieces: withk,L and withk>L, wherek is the scale
for the virtual photon momenta andL is a cutoff, taken to be
of the order of 1 GeV. Contributions withk>L, usually
called ‘‘inner’’ radiative corrections, are combined with th
Z0 boson exchange box graphs to produce an ene
independent contribution tog(Eobs) @6#:

gv~Eobs!
k>L52 lnS MZ

L D . ~7!

This contribution is obviously common to all reactions in E
~2! since it contains no parameters that distinguish betw
them.

The piece withk,L is more complicated. The virtua
exchanges of a low energy photon for all three reactions
Eq. ~2! are shown in Fig. 2. The correction to Fig. 2~a! is
@5,6#

gv~Eobs!
k,L53 lnS L

M p
D1

3

2
lnS M p

me
D1

3

4
1A„b~Eobs!…

12 lnS l

me
D F 1

2b~Eobs!
lnS 11b~Eobs!

12b~Eobs!
D21G

20.571dC̃~L!, ~8!
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wherel is the ‘‘photon mass’’ used as the infrared regula
andA(b) is given in Eq.~4!. The parameterdC̃ represents a
matching constant arising from presently incalculable n
perturbative QCD effects. ItsL dependence must cancel th
corresponding dependence ing(Eobs). Unfortunately, no ex-
isting calculation ofdC̃ has demonstrated this cancellatio
explicitly. In addition,dC̃ will contain L-independent terms
that depend on the light-quark masses,LQCD, etc. A com-
plete, first principles computation of these contributions h
yet to be performed, so we must rely on models. Thus
practical calculations, we set this constant to zero forL
5M p to match the model results of Refs.@9,17,18#. The
uncertainty ingv(E) associated withdC̃ is estimated in Ref.
@18# to be about 0.08%.3

Even though the virtual momenta in Figs. 2~b! and 2~c!
are different from those in Fig. 2~a! their contributions are
also given by the Eq.~8!. The easiest way to see it is a
follows. Consider Fig. 2~b! first. This graph can be obtaine
from Fig. 2~a! through time reversal followed by replace
ments e2(initial)→e1(final) and ne(final)→ n̄e(initial).
Since time reversal is an exact symmetry of QED, the sc
tering amplitude is unchanged up to an overall phase.
result of replacements of the particles with antiparticles c
be found by utilizing crossing symmetry. However, the r
placementpe→2pe does not changeb(Ee) @see Eq.~6! for
the definition#. Since Eq.~8! depends on the electron mo
menta only throughb(Ee) it is obviously invariant. Hence
Eq. ~8! is applicable to the second process in Eq.~2!. The
validity of the Eq.~8! for the third process in Eq.~2! trivially
follows from the fact that Eq.~8! is independent of the neu
trino 4-momentum. Indeed, going from Fig. 2~b! to Fig. 2~c!,
which is accomplished by replacing the antineutrino with t
neutrino and changing the sign of its 4-momentum, lea
the Eq.~8! invariant.

The bremsstrahlung contributions are also identical for
three reactions under consideration@Eq. ~2!#. In particular,
for these reactions, only the bremsstrahlung from the char
lepton is important since all other charged particles
heavy. Therefore, for each of the processes under cons
ation, there is only one bremsstrahlung diagram of the t

3Of course, the precise value ofL is arbitrary. It is usually chosen
to correspond to the transition between the perturbative and non
turbative regions (L;1 GeV). Since theL dependence ofgv is
logarithmic, however, varyingL over a fairly sizable, but physi-
cally realistic range, does not lead to appreciable uncertainty in
cross section.

n

W

ν

γ

e

W

p

ν
_

e + +e

W
γ γ

a) b) c)

p n p

ν

n

FIG. 2. Exchanges of a low-energy virtual photon for the p
cesses shown in Eq.~2! in the one-nucleon approximation.
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shown in Fig. 3. The amplitude for this graph has the for

Mg;
eGF

A2
enLg

mnHm~q!, ~9!

wheree is the electron charge,en is the photon polarization
andLg

mn andHm(q) represent, respectively, the leptonic a
the hadronic contributions to the process

Hm~q!5E eiq•x^ f Nu (
m51

A

Jm
m~x!u i N&d4x

Lg
mn5E e2 iq•x2 ik•y^ f LuT$Jm~x!JEM

n ~y!%u i L&d4xd4y.

~10!

Here i N,L and f N,L are, respectively, the initial and the fin
states of the nuclear and the leptonic parts of the processJm

is the relevant charged current,JEM
n is the electromagnetic

current, andk is the momentum of the emitted photon. Th
summation indexm in the hadronic matrix element runs ov
all nucleons in the nucleus. The dependence ofHm on the
momentum transferq is explicitly shown. In the long wave
length approximation, valid for low neutrino energies, o
can neglect the dependence ofHm on the spatial component
of q. On the other hand, the dependence ofHm on the time
component ofq could be crucial. Indeed, energy conserv
tion implies that the initial (Ei) and final (Ef) energies of the
hadronic system obey the relationEf5Ei1q0. Clearly, the
nuclear matrix element depends sensitively on the value
Ef , the excitation energy of the final state. In the case of
neutrino deuteron disintegration, for example, changingEf
causes a dramatic change in the shape of the final statpp
wave function and the corresponding change in the size
the nuclear matrix element@5#.

With these considerations in mind, and using the result
Refs. @5,6#, it is easy to show that the square of the mat
element, Eq.~9! averaged over the initial and summed ov
the final spins has the form

q

Ψ2

p

p

ν e

W
γ

Ψ1

n

FIG. 3. The dominant bremsstrahlung graph.C1 andC2 repre-
sent the initial and the final nuclear wave functions, respectivelq
is the 4-momentum transfer from the leptonic to the hadronic p
of the graph. In general,C1,2 can contain any number of nucleon
03550
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^uMg~En ,Ee ,Eg ,x!u2&

5
a

p
^uM0~En ,Eobs!u2&

Ee

Eobs
F~Eg ,Ee ,x!,

q0[6En2Ee2Eg56En2Eobs. ~11!

Here ^uM0(En ,Eobs)u2& is the spin-averaged square of th
matrix element in the leading order of perturbation theo
andx is the cosine of the angle between the momenta of
photon and the electron. The dependence ofM0 on q0 is
implicit through the second line of Eq.~11!, where the sign
of the neutrino energy depends on whether the neutrino i
the initial (1) or final (2) state.F(Eg ,Ee ,x) is given by
the second line of Eq.~11! in Ref. @6#:4

F~Eg ,Ee ,x!5
Eg

2Ee
2~Eg2b~Ee!Kx!

1S Ee1Eg

2Ee
Db2~E!~12K2x2/Eg

2!

~Eg2b~Ee!Kx!2 ,

K25Eg
22l2. ~12!

As before,l is the infrared regulator~photon mass!. While
the form of the matrix elementM0 may depend on the par
ticular process under consideration, the functi
F(Eg ,Ee ,x) is universal.

In order to complete the calculation of the bremsstrahlu
contribution to the cross section, it is sufficient to multip
the first line of Eq.~11! by the appropriate phase space fac
and integrate over the final state momenta to obtain

dsCC
g 5dsCC

Tree~En ,Eobs!

3
a

p

b~Ee!Ee
2

b~Eobs!Eobs
2 F~Eg ,Ee ,x!dxK

dKdEe

dEobs
,

~13!

where againEobs5Ee1Eg and dsCC
Tree(En ,Eobs) is the

leading-order differential cross section. If there is at least o
more particle in the final state except the electron and
photon, its phase space factor can be used to eliminate
spatial part of the overall momentum-conservingd function,
which is always present in the expression for the differen
cross section. KeepingEobs fixed, one can then perform in
tegrations overx andEe . Changing the integration variable
from $Ee ,K% to $Ee ,Eobs% and integrating overEe from me
to Eobs, we obtain

4Our definition differs from that in Ref.@6# by a factor of 2, which
if absorbed inF(Eg ,Ee ,x) to simplify the expression in Eq.~11!.

rt
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dsCC
g ~En ,Eobs!

5dsCC
Tree~En ,Eobs!

a

pEme

Eobs
dEeE

21

1

dx

~14!

3
b~Ee!Ee

2

b~Eobs!Eobs
2 F~Eobs2Ee ,Ee ,x!~Eobs2Ee!

[dsCC
Tree~En ,Eobs!

a

p
gbrem~Eobs!.

The above integration is delicate due to the presence o
infrared divergence. The result, however, is well known~see,
e.g., Ref.@6#!: the infrared divergence ingbrem cancels that
in Eq. ~8!.

Now, the final result for the sum of all corrections is

g~Eobs!5gv~Eobs!
k>L1gv~Eobs!

k<L1gbrem~Eobs!
~15!

with g(E) given in Eq.~3! for L5M p . This completes the
proof of the universality of this function. The dependence
g(E) on energy is shown in Fig. 4.

III. EXAMPLES

With help of Eq.~1!, the functiong(Eobs) obtained in the
preceding section can be used to account for the radia
corrections to the differential cross section to all reactio
listed in Eq.~2!. A dramatic simplification occurs if one i
only interested in computing the total cross section. The
ter is given by the integral

sCC5E
me

Emax

dsCC
Tree~E!S 11

a

p
g~E! D , ~16!

where the subscript ‘‘obs’’ onE is not shown. We argue
below that if the leading-order electron spectrum is su
ciently narrow there is no need to compute the integral

0 2 4 6 8 10
Eobs (MeV)

2.5

3

3.5

4

4.5
(α

/π
) 

g(
E

ob
s)

 (
%

)

FIG. 4. The exact one-loop radiative correction (a/p)g(Eobs)
in percent~solid line! for reactions in Eq.~2! and the same correc
tion in the limit me→0 ~dashed line!.
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plicitly. As it is apparent from Fig. 4,g(E) is a smooth
function of its argument. If the shape of the leading-ord
differential cross section is such that only a certain range
energies dominates the above integral,g(E) can be expanded
around some pointE0 inside that range. Such an expansi
leads to the following series for the total cross section:

sCC5sCC
TreeS 11

a

p
g~E0! D

1
a

p S g8~E0!E
me

Emax

~E2E0!dsCC
Tree~E!

1
1

2
g9~E0!E

me

Emax

~E2E0!2dsCC
Tree~E!1••• D

~17!

If the point E0 is chosen in such a way that

E05

E
me

Emax

EdsCC
Tree~E!

sCC
Tree

[^E& ~18!

then the second term in Eq.~17! vanishes. Here,̂E& repre-
sents the average observed energy calculated with
leading-order electron spectrum. The series now has the f

sCC5sCC
TreeS 11

a

p
g~^E&!1

a

p2!
g9~^E&!^dE2&1••• D

^dE2&5

E
me

Emax

~E2^E&!2dsCC
Tree~E!

sCC
Tree

. ~19!

The above formula shows that the total cross section can
represented as a series in moments^dEn& of the leading-
order electron spectrum with coefficients given
a/(pn!)g(n)(^E&), with superscript indicating thenth de-
rivative. Since we expect the final uncertainty in the cro
section to be of the order of 0.1%~see Sec. V!, the series can
be truncated at the leading term if the following conditio
holds:

a

2p
g9~^E&!^dE2&&0.1%. ~20!

Below we consider some examples for which such trunca
is possible.

A. Neutrino and antineutrino deuterium disintegrations

Consider the first two reactions in Eq.~2!. The shape of
the leading-order electron spectrum is dominated by
overlap integral of the wave functions of the deuteron in
initial state and the two nucleon system in the final state. T
overlap integral depends on the relative momentum of
two nucleons, and it falls rapidly when the momentum b
comes larger than the inverse of the scattering length for
final state system~see Ref.@5# for discussion!. Because of
this feature the electron spectrum is strongly peaked nea
2-5
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endpoint~see, e.g., Ref.@16#!, and its width is determined by
the corresponding scattering length:

dEN1N2
'

1

aN1N2

2 M p

, ~21!

whereaN1N2
is the scattering length for the final state co

taining nucleonsN1 and N2. The direct evaluation gives
dEpp'0.7 MeV anddEnn'0.2 MeV.

For En>4 MeV ~as it is the case for the CC reaction
SNO!, one can use Eq.~3! to show that

a

p
g9~En!'

0.0037

En
2 ~22!

for En is in units of MeV. Therefore, forEn*5 MeV, we
have for both channels

a

2p
g9~^E&!^dE2&<0.01%, ~23!

which is an order of magnitude better then necessary.
To verify the validity of the truncation procedure, we pe

formed a series of calculations using Eq.~16! for the neu-
trino energiesEn>4 MeV for both pp and nn final states.
The truncated expression for the total cross section

sCC
n1d5sCC

TreeS 11
a

p
g~^E&! D ~24!

was valid to within the estimated error Eq.~23!. For instance,
for the pp final state atEn54 MeV, the exact one-loop
radiative correction to the total cross section is equal
3.28%, whereas Eq. ~24! gives 3.27% with ^E&
52.35 MeV.

B. The pp fusion reaction

The electron spectrum for this reaction@the third in Eq.
~2!# is essentially determined by the final state phase sp
factor

dspp
Tree

dEe
;b~Ee!Ee

2~E02Ee!
2, ~25!

where E0 is the maximum electron energy. Such shape
also typical in nuclearb decays. For thepp reaction in the
sun, the kinetic energy of the initial state protons may
neglected in computingE0. In that case,E0'2M p2Md
50.93 MeV. For the spectrum given by the above equati
the first two moments are well approximated by

^E&'
E01me

2
,

^dE2&'
~E02me!

2

24
. ~26!

Also, one can show from Eq.~3! that for Ee<1 MeV ~i.e.,
for energies relevant for thepp reaction!, one has to a good
approximation
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a

p
g9~Ee!'

0.0031

me~Ee2me!
~27!

with Ee andme in units of MeV. Therefore,

a

2p
g9~^E&!^dE2&'0.06

~E02me!

me
%. ~28!

Particularly, forpp reaction, we get the truncation error e
timate of 0.05%, which is more than satisfactory.

The rate of thepp reaction in the sun strongly affects th
flux of 8B neutrinos,F(8B), recently detected at SNO@3,4#.
The relationship betweenF(8B) and theS factor for thepp
reaction is@11#

F~8B!;Spp
22.6. ~29!

Since the fractional change in the totalpp cross section due
to the radiative corrections translates into the same chang
Spp , we obtain

dF~8B!

F~8B!
522.6

dSpp

Spp
522.6

dspp

spp
. ~30!

The exact evaluation using Eq.~16! gives 3.87% while the
first term in Eq.~19! gives 3.86% for the average electro
energy of 0.67 MeV. We see that the truncation error is w
within the aforementioned 0.05% estimate.

To compare our calculation with the result adopted in R
@11#, we need to subtract the ‘‘inner’’ part of the correction
isolate the ‘‘outer’’ piece:

g~^E&!outer5g~^E&!2ginner. ~31!

To emphasize that the inner correction is independent of
electron energy, we do not write the argument forginner. We
follow the convention adopted in Ref.@13# and identify the
outer piece with the contribution from Sirlin’s functio
G(Em ,E) ~see Ref.@8#! integrated over the electron spe
trum. To isolate the remaining inner piece it is convenient
use Eq.~29! of Ref. @6#. Dropping G(Em ,E) on the right
hand side~rhs! of Eq. ~29! we obtain

ginner52 lnS MZ

M p
D10.55, ~32!

where the 0.55 on the rhs is obtained in Ref.@6#. It includes
nonasymptotic contributions from the weak axial vector c
rent ~denoted byC in Ref. @6#! as well as perturbative QCD
corrections. The value of the inner radiative correction
evaluated to be 2.25%.5 Since it is independent of the elec
tron energy, we can simply subtract it from the total corre
tion to find the outer piece. The latter is, therefore, equa
1.62%, which is 0.22% higher than 1.4% used in Ref.@11#.
The difference is likely caused by a slightly lower value

5It should be noted that 2.25% refers only to the one-loop con
butions to the inner radiative corrections. The number that is o
quoted in literature, 2.4%, includes terms of the formanlnnMZ

2/Mp
2

resummed to all ordersn via renormalization group~see Ref.@19#
for details!.
2-6
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RADIATIVE CORRECTIONS TO LOW ENERGY . . . PHYSICAL REVIEW C67, 035502 ~2003!
E0 in the pp reaction compared to the corresponding qu
tity in neutron decay:E0

n→p1e1n5Mn2M p51.3 MeV com-
pared to 0.93 MeV for thepp. Sinceg(E) is a decreasing
function of E, smallerE0 in the pp reaction means a large
correction. Using the actual value of the radiative correct
reduces the prediction forF(8B) by 0.57% relative to the
present value. Although not very significant, this shift
comparable to the total theoretical uncertainty of 0.5%
signed toSpp in Ref. @11#.

IV. AXIAL CURRENT COUPLING CONSTANT

An accurate prediction of the cross section or rate o
process that depends on the nuclear matrix elements o
weak axial vector current requires an accurate knowledg
the axial coupling constantgA of the nucleon. If radiative
corrections are included one must use a renormaliza
scheme consistent with the procedure used to extract the
perimental value of this constant. Here we briefly review
prescription for evaluating radiative corrections to the h
ronic matrix elements of the axial current when using
value forgA recommended by the Particle Data Group@20#.

At leading order in electroweak perturbation theory~but
to all orders in the strong interaction!, the nucleon matrix
element of the charged current has the form

^Nf ,pf u(
k

q̄kgm~12g5!t1qkuNi ,pi&

5 p̄S gVgm1gM

ismnqn

2MN
2g° Agmg52gPqmg5Dn, ~33!

where thegi ’s represent the corresponding coupling co
stants, and the sum on the left hand side runs over all qu
flavors. The relevant form factors are evaluated atq2[(pf
2pi)

250, and only contributions from the first class cu
rents are included. The above formula leads to the inve
neutron lifetime

tn
21;Vud

2 GF
2~gV

213g° A
2 !1•••, ~34!

whereVud is the first element of the CKM quark flavor mix
ing matrix, GF is the Fermi coupling constant determine
through the muon lifetime, and ellipses represent the sm
but nonvanishing pseudoscalar and weak magnetism co
tions. In the absence of isospin breaking the conserved
tor current hypothesis~CVC! holds, andgV[1. We will not
discuss corrections to this approach in the following~see,

e.g., Ref.@21#!. On the other hand, the value ofg° A is not
protected from renormalization by QCD effects. For the p
pose of this discussion, we will callgA , appearing in Eq.
~33!, the ‘‘fundamental’’ axial coupling and accentuate it b
a circle.

In practice, one uses the combination of measuremen
the neutron lifetime and its parity-violating decay asymm

try, which depends on the ratiog° A /gV . If CVC is invoked,
one can also determineVud . However, for the accurate de
termination of all involved parameters, the above formula
the neutron lifetime is insufficient and the electroweak rad
tive corrections must be taken into account. The radia
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corrections to neutron decay have been evaluated in a n
ber of papers~see, e.g., Refs.@9,13,22#!. The general result
of these papers is that the neutron differential decay r
averaged over the neutron spin and integrated over all v
ables except the electron energy, has the form

dGn

dEe
;GF

2Vud
2 $@112DV~Ee!#gV

21@112DA~Ee!#3g° A
2%,

~35!

whereEe is the energy of the emitted electron, andDV(Ee)
andDA(Ee) are, respectively, the radiative corrections to t
vector and the axial vector current contributions to the dec
It is important to note that these corrections are in gene
not equal. However, for the level of precision, we are int
ested in their difference can be regarded as a constant i
pendent of the electron energy@22#. Although the value of
this constant can in principle be computed in standard mo
the practical calculation contains hadronic structure unc
tainties@5#. It is, however, possible to absorb such uncerta
ties in the modified definition ofgA :

dGn

dEe
;@112DV~Ee!#GF

2Vud
2 ~gV

213gA
2 !,

gA[g° A@11DA~Ee!2DV~Ee!#5g° A~11d!. ~36!

The advantage of the above definition is that the same ra
tive correctionDV(Ee) dominates the corrections to the ra
of superallowed nuclearb decays, which are pure Ferm
~vector current! transitions. Its uncertainty contributes to th
uncertainty in the value ofVud extracted from such decays
At present, the most conservative estimate of the combi
experimental and theoretical uncertainty inVud is 0.07%
@20#, which sets the upper bound on the uncertainty
DV(Ee). With DV(Ee) constrained in this way,gA defined in
the second line of the above equation can be experimen
determined from the neutron lifetime and its decay asymm
try. It is precisely the value forgA defined in the above

equation, not for the fundamentalg° A , that is quoted in the
Particle Data Group@20#. The current number isgA
51.267060.0030.

The above considerations—in particular Eq.~36!—show
that instead of evaluating the radiative corrections to the h
ronic matrix elements of the axial current one can use
corrections to the corresponding matrix elements of the v
tor current in combination with the modified axial couplin
constantgA . For the reactions in Eq.~2!, there is no need to

know the fundamental couplingg° A .6 Such an approach

6For other processes, however, one does requireg° A . In neutral
current lepton-nucleon scattering, for example, one must incl
only radiative corrections to the neutral current amplitude. The
of gA rather thang° A would erroneously introduce the effects o
charged current radiative corrections to the neutral current am
tude.
2-7
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A. KURYLOV, M. J. RAMSEY-MUSOLF, AND P. VOGEL PHYSICAL REVIEW C67, 035502 ~2003!
eliminates most of the hadronic uncertainties mentioned
Ref. @5#, where the discussion was given in terms of t

fundamentalg° A .

V. NUCLEAR STRUCTURE-DEPENDENT
CONTRIBUTIONS

Up to this point, our discussion of radiative correctio
has applied to the one-nucleon approximation; the cor
tions were computed assuming that both theW boson and the
photon couple to the same nucleon. This approximation
responds to graphs in Fig. 1~a!. There are, however, othe
contributions, such as those in Fig. 1~b!. These contributions
depend on nuclear structure, which, in general, renders t
nonuniversal. Below we present arguments suggesting
such corrections should contribute to the cross section a
level of 0.1%.

If the nuclear structure-dependent contributions to
cross section are not neglected then Eq.~1! is modified to
@17#

dsCC~Eobs!5dsCC
Tree~Eobs!S 11

a

p
@g~Eobs!1CNS# D ,

~37!

where the quantityCNS represents corrections that depend
nuclear structure. Its accurate evaluation requires knowle
of the full nuclear propagator between the weak and elec
magnetic current insertions. Although possible in princip
the calculation of this quantity is a complex problem ev
for such a simple nucleus as the deuteron. Before discus
CNS for the deuteron, it is instructive to turn to the case
superallowed nuclear Fermib decays, where the analogou
term has already been studied.

Nuclear structure-dependent radiative corrections to
perallowed nuclearb decays can be split into two categorie
those induced by the weak vector current~VC! and those by
the weak axial vector current~AC!. For pure Fermi transi-
tions, the contributions from the VC are suppressed by p
ers of the electron energy or first generation quark mass@23#
and are negligible. In Refs.@17,18# contributions toCNS

F in-
duced by the AC have been evaluated for Fermi transition
a number of nuclei using a shell model approach.CNS

F was
modeled by contributions analogous to those shown in F
1~b!. According to Table II of Ref.@18# the magnitude of
CNS

F never exceeds 1.348.
The results presented in Refs.@17,18# are, of course,

model dependent. However, for pure Fermi transitions wit
the Standard Model there exist indications that such an
proach gives fairly reliable values forCNS

F . Indeed, these
values ~along with some other nucleus-dependent corr
tions! successfully bring thef t values of various superal
lowed nuclearb decays into agreement with each other~at
about the 0.1% level! as required by CVC~see, e.g., Ref.
@18# for a discussion!. This success represents a nontriv
test of theoretical nuclear structure corrections in supe
lowed nuclearb decays and suggests that even if the mo
calculations of such corrections differ from their actual v
ues, the discrepancy must be a nucleus-independent sys
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atic effect. Although existence of such an effect might help
solve the CKM unitarity problem within the standard mod
the authors of Ref.@18# argue that it does not appear pla
sible under any reasonable circumstances.

These considerations suggest that the existing model
culations for superallowed decays produce reliable values
CNS

F for a large number of nuclei with 10<A<74 @18#.
Therefore, one might expect that the application of simi
techniques to the transitions in Eq.~2! will also produce
reliable results. Up to terms suppressed by electron energ
light quark masses, the dominant nuclear structure-depen
effects in this case arise from the VC, rather than the AC
for Fermi transitions@23#. Despite this difference, one migh
nevertheless argue that an analogous model calculatio
CNS

GT for the deuteron should be comparable in magnitude
CNS

F , up to appropriate scale factors~see below!. According
to Ref.@17# the magnitude ofCNS

F is related to the magnitude
of the typical velocity of a bound nucleon:

CNS
F ;

^pN&
MN

5
^vN&

c
~38!

where MN is the nucleon mass,pN is the characteristic
nucleon momentum~e.g., Fermi momentum!, andvN is the
corresponding nucleon velocity . ThisvN dependence fol-
lows directly from the expressions for the nucleon weak a
electromagnetic currents in the nonrelativistic case.

A similar situation occurs for Gamow-Teller transition
The dominant nuclear structure-dependent contribut
arises from the antisymmetric correlator of hadronic vec
currents appearing in the one-loop amplitude@23#:

M NS
GT;ūeE d4k

1

~k2!2 eanmlkngaVlm~12g5!un ,

Vlm5 i E d4xe2 ik•x^ f uT$Vl~x!Jm
EM~0!%u i &, ~39!

where ūe and un are Dirac spinors for the electron and th
neutrino,Vl andJm

EM are, respectively, the nuclear weak ve
tor current and the electromagnetic current operators, af
and i represent the final and the initial nuclear states. Si
two indices of theeanml tensor are contracted with the ind
ces of the two hadronic vector currents, at least one of
latter indices must be spacelike. Moreover, in the nonrela
istic limit relevant for low-energy nuclear dynamics, the sp
tial components of nucleon vector currents areO(^vN&/c).
Hence, we would also expectCNS

GT to scale withvN .
Since the characteristic nucleon momentum in the d

teron is significantly lower than that in all nuclei listed
Table II of Ref.@18# our naive scaling argument would giv
a smaller magnitude forCNS

GT(d): CNS
GT(d)/CNS

GT(A);pd /pA .
Here, the quantities describing the deuteron and the nuc
are accompanied byd andA, respectively. For atomic num
ber A@1, the Fermi momentum is about 300 MeV@7#. On
the other hand, in the deuteron the corresponding momen
scale is simply given by its inverse size,g545 MeV @16#.
2-8
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RADIATIVE CORRECTIONS TO LOW ENERGY . . . PHYSICAL REVIEW C67, 035502 ~2003!
Taking the largest value forCNS
F from Table II in Ref.@18#

and rescaling it by the corresponding momentum ratio we
the following estimate for the maximal expected size ofCNS

GT

for the deuteron disintegration:

uCNS
GTu;

45

300
3

a

p
31.348'0.05%. ~40!

Although such a correction is negligible at present, we c
not rule out fortuitous few-body structure effects that mig
lead to an enhancement. Completion of a detailed few-b
calculation would determine whether any such an enhan
ment occurs and provide firmer bounds on the theoreti
nuclear structure-dependent uncertainty.

VI. TAKING THE ELECTRON MASS TO ZERO

According to the KLN theorem@15#, a properly defined
scattering cross section should have no external mass s
larity. In this section, we demonstrate how the result in E
~3! is in agreement with this requirement. We takeme→0
and show that the functiong(E) in Eq. ~3! is finite in this
limit. The results of this section also have a practical ap
cation since we obtain a simple expression forg(E) valid for
E@me , which allows one to evaluate radiative correctio
with an accuracy of about 0.1% for energies above 1 Me

In the limit me→0, we have

b~E!→12me
2/2E2,

ln
12b

11b
→2 ln

2E

me
,

L~b!→LS 11b

2 D→LS 2b

11b D→2
p2

6
, ~41!

L~2b!→ p2

12
,

LS 12b

2 D→0.

Using these expressions it is straightforward to take the li
me→0 in Eqs.~4! and ~5!. We have

A~b!→2 ln2
E

me
22S ln 22

1

2D ln
E

me

1 ln 2~12 ln 2!2
p2

6
21,

gv~E!→2 lnS MZ

M p
D1

3

2
lnS M p

me
D1 ln2

E

me
2 ln

E

me

1 ln 2~12 ln 2!2
p2

6
2

1

4
20.57. ~42!

The integrals in Eq.~5! can now be evaluated analytically:
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1

2E2b~E!
E

me

E

~E2x!lnS 11b~x!

12b~x! Ddx→ 1

2 S ln
E

me
1 ln 22

3

2D ,

2

Eb~E!
E

me

E xb~x!F~x!2Eb~E!F~E!

E2x
dx

→22 ln
E

me
22 ln 22

p2

3
14. ~43!

Together with the limit forC(b)

C~b!→2 ln2
E

me
1 ln

E

me
2 ln 2~12 ln 2!2

p2

6
11, ~44!

we have

gb~E!→2 ln2
E

me
2

1

2
ln

E

me
2 ln 2S 5

2
2 ln 2D2

p2

2
1

17

4
.

~45!

Now we use Eq.~3! to get

lim
me→0

g~E!5g0~E!52 lnS MZ

M p
D1

3

2
lnS M p

2E D2
2p2

3
13.43.

~46!

This simple formula shows explicitly that there is no ma
singularity in g(E), in complete agreement with the KLN
theorem.

An expression analogous to the rhs of Eq.~46! appeared
in a footnote without proof in Ref.@9#.7 It was given there as
an asymptotic formula forḠ(Em) in the limit of large
b-decay endpoint energyEm . The functionḠ(Em), in turn,
is Sirlin’s function from Ref.@8# averaged over theb spec-
trum. The relationship betweeng(E) andḠ(Em) can be con-
structed from the definition of the latter:

Ḡ~Em!5

E
0

Em
~Em2E!2E2G~Em ,E!dE

E
0

Em
~Em2E!2E2dE

[2

E
0

Em
~Em2E!2E2Fg0~E!22 lnS MZ

M p
D20.55GdE

E
0

Em
~Em2E!2E2dE

53 lnS M p

2Em
D2

4p2

3
17.1. ~47!

7The expression in Ref.@9# differs from Eq.~46! by a factor of
two due to a different convention. We take this difference into
count when comparing the two formulas.
2-9
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The last line above coincides with the formula in Ref.@9# up
to a small constant, which is unimportant for our discuss
here.

In Eq. ~47!, the limit me→0 is taken everywhere. Th
second line follows from the first line because the to
b-decay rate must be the same in the limitEg

min→` ~the first
line! andEg

min→0 ~the second line!. The constant contribu
tion containing lnMZ represents the inner radiative corre
tions, and it must be subtracted fromg(E) if only the outer
part of the correction is considered. Since the limit of lar
Em must formally coincide with the limit of vanishingme , it
is reassuring that both expressions have the same de
dence onEm .

The functiong(E) should converge tog0(E) in the limit
E@me . It turns out that the asymptotic behavior sets in w
sufficient accuracy already forE*1 MeV. Indeed, Fig. 4
shows that for E.1 MeV the functions a/pg(E) and
a/pg0(E) differ by no more than 0.1%, which is of th
order of the expected uncertainty in the total cross sec
~see Sec. V!. This suggests, for example, thatg0(E) can be
safely used in place ofg(E) for the charged current deute
rium disintegration reaction at SNO, where only the eve
with Eobs.5 MeV were considered@3,4#. Incidentally, we
have for largeE (E is in units of MeV!

a

p
g09~E!5

3a

2pE2 5
0.0035

E2 ~48!

in excellent agreement with Eq.~22!.

VII. CAPTURE REACTIONS

Our analysis thus far has emphasized the universal
tures of radiative corrections for low-energy charged curr
processes in which the charged lepton appears in the
state. It is natural to ask whether the corrections relevan
capture reactions display similar universality properties. E
amples of such reactions include

e21p→n1ne ,

p1p1e2→d1ne ,

7Be1e2→7Li1ne1~g!. ~49!

The last two reactions producepep and 7Be solar neutrinos,
respectively. In the last reaction, the photon emission is
to 7Li nucleus decay from an excited state, to which7Be
decays about 10% of the time. Here, we show that an exp
sion analogous to Eq.~15! applies for such capture reaction
with Eobs→Ee andgbrem(Eobs)→gb

Capt(Ee ,Q), whereEe is
the initial state charged lepton energy andQ is theQ value
for the reaction. The presence ofgb

Capt(Ee ,Q) implies that
the correction factor in this case is not universal, though
nonuniversal dependence onQ can be computed in a
straightforward manner.

As far as radiative corrections are concerned, all reacti
of the type shown in Eq.~49! can be treated in a unifie
manner. Although to leading order the neutrinos are mono
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ergetic~for a fixed electron energy!, bremsstrahlung from the
initial state electron smears the spectrum to a certain ext
Here, we will not study the spectral properties of the emit
neutrino but rather focus on the correction to the total em
sion rate.

It is straightforward to see that the part of the radiati
corrections due to exchange of a virtual photon is the sa
as the one contributing tog(Eobs). Although the bremsstrah
lung contribution is different, it can be easily obtained fro
Eq. ~12! with help of crossing symmetry and time-revers
invariance. Specifically, one needs to change the sign of
photon 4-momentum, which is equivalent to changing
sign ofEg andx in Eq. ~12!. To get the correction to the rate
we write down the analog of Eq.~13! using the correct phas
space. The result is

dGCapt
g 5GCapt

Tree ~Ee ,Q!
a

p

~Ee1Q2Eg!2

~Ee1Q!2

3F~2Eg ,Ee ,2x!dxKdK, ~50!

whereGCapt
Tree (Ee ,Q) is the tree-level capture rate for a give

electron energy andQ value of the transition. To study th
correction to the total rate, we can assume that the bre
strahlung is never seen. This leads to the following expr
sion:

gb
Capt~Ee ,Q!5E

21

1

dxE
0

Ee1Q

KdK
~Ee1Q2Eg!2

~Ee1Q!2

3F~2Eg ,Ee ,2x!

52 lnS Ee1Q

l D F 1

2b~Ee!
lnS 11b~Ee!

12b~Ee!
D21G

1C„b~Ee!…

1
~Ee1Q!2

24Ee
2

1

b~Ee!
lnS 11b~Ee!

12b~Ee!
D

2
11Ee12Q

3Ee
F 1

2b~Ee!
lnS 11b~Ee!

12b~Ee!
D21G ,

~51!

where the notation is the same as in the discussion
g(Eobs). It is apparent that the part that contains the infrar
divergence is the same as before. To get the total correc
to the rate, we simply add the pieces that correspond to
tual photon exchange@see Eq.~7! and Eq.~8!#:

gCapt~Ee ,Q!5gv~Ee!
k>L1gv~Ee!

k<L1gb
Capt~Ee ,Q!.

~52!

It is easy to show that the same formula applies in the p
tron capture case.

To illustrate the dependence ofgCapt on theQ value of
the transition, we plot in Fig. 5 the value of this function f
a range of electron energies for three cases correspondin
the transitions in Eq.~49!:
2-10



s

on
n
tic
e,
if

a
i

s
-
le

on
at
ot

a
in
d

rred
rgy

ce is

are

ave
or-
ili-

o.
nts

r
be

ow.
lts

an
xity
e-
the

di
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Qp5M p2Mn521.3 MeV,

Qpep52M p2Md50.93 MeV,

ignoring pp kinetic energy,

Q7Be5M 7Be2M 7Li

50.35 MeV,transition to the ground state of7Li.
~53!

Note the turnover in the solid curve (Qp521.3 MeV). Gen-
erally, the turnover always appears ifQ1me,0. In this case
the electron must have a kinetic energy of at leastTe

min

52Q2me for the capture to occur. The one-photon brem
strahlung correction formally diverges at the thresholdEe
1Q→0, as evident from Eq.~51!. This indicates that the
one-photon approximation breaks down, and contributi
with an arbitrary number of both real and virtual soft photo
must be resumed to obtain a meaningful answer. In prac
applications, this nicety will rarely be of any importanc
however, since the perturbation series breaks down only

a

p
lnS me

Ee1QD.1, or Ee1Q,mee
2(p/a). ~54!

In practice, the spectrum of the initial state electrons is
ways many orders of magnitude wider than the last term
Eq. ~54!. Since the leading order capture rate is suppres
by a factor of (Ee1Q)2, the contribution from the immedi
ate vicinity of the threshold to the average rate is negligib

In summary, the radiative corrections for capture reacti
are not described by a universal function. The initial st
bremsstrahlungg—which is not generally detected—cann
radiate away more of the electron energy than required
make the reaction occur, thereby introducing aQ dependence
into the radiative corrections. Such considerations do not
ply when the charged lepton appears in the final state, s
in this case the minimum detectable, observed energy is

0 2 4 6 8 10
Ee (MeV)

1.5
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2.5
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4.5
(α

/π
) g

C
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t(E
e) 
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FIG. 5. The electron energy dependence of the one-loop ra
tive corrections to the electron capture reactions in Eq.~49!: p
1e2→n1ne ~solid line!, p1p1e2→d1ne ~dashed line!, and
7Be1e2→7Li1ne ~dotted line!.
03550
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termined by the experimental configuration rather theQ
value of the reaction. The precise value of energy transfe
from the lepton to the hadronic system does affect the ene
dependence of the total cross section, but this dependen
the same for both the leading-order andO(a) contributions.
Thus, apart from nuclear structure-dependent terms that
likely negligible for present purposes, therelative correction
to the tree-level cross section for the reactions in Eq.~2! is
described by a universal function. These features, then, h
allowed us to formulate a unified treatment of radiative c
rections for neutrino reactions that we hope will help fac
tate the analysis of future neutrino property studies.
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APPENDIX CLOSED FORM FOR SOME INTEGRALS

In Eq. ~5!, gb(E) is given in terms of two nonsingula
integrals over the electron energy. These integrals can
evaluated in closed form, with the results presented bel
Our evaluation of the integrals is consistent with the resu
originally obtained in Refs.@24,25#. In practical calculations,
numerical integration might, in fact, be more efficient th
the evaluation of the exact expressions due to the comple
of the analytic formulas. However, closed form for the int
grals may prove valuable if one is interested in studying
radiative corrections in various limiting cases~such asme
→0, etc.!. For the first integral, we obtain

E
me

E

~E2x!lnS 11b~x!

12b~x! Ddx

5
E2

2 F S 3

2
2

b2~E!

2 D lnS 11b~E!

12b~E! D23b~E!G . ~A1!

The second integral is more complicated,

E
me

E xb~x!F~x!2Eb~E!F~E!

E2x
dx

52b~E!EF 1

2b~E!
lnS 11b~E!

12b~E! D21G
1

E

2
lnS 11b~E!

12b~E! D F ln 2S 11
1

A12b2~E!
D 11G

2
E

4
ln2S 11b~E!

12b~E! D1ELS 2b~E!

11b~E! D
2b~E!EF ln 2S 11

1

A12b2~E!
D 21G , ~A2!

whereF(E) is defined in Eq.~5!, and b(E) and L(x) are
defined in Eq.~6!.
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