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Hadronic parity violation and inelastic electron-deuteron scattering
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We compute contributions to the parity-violating~PV! inelastic electron-deuteron scattering asymmetry
arising from hadronic PV. While hadronic PV effects can be relatively important in PV threshold electrodis-
integration, we find that they are highly suppressed at quasielastic kinematics. The interpretation of the PV
quasielastic asymmetry is, thus, largely unaffected by hadronic PV.
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I. INTRODUCTION

Parity-violating~PV! inelastic electron-nucleus scatterin
is an important tool in the study of hadron structure@1#. In
combination with PV elastic electron-proton (e-p) scatter-
ing, measurements of the PV quasielastic~QE! electron-
deuteron (e-d) asymmetry allow a separate determination
the strangeness magnetic form factor,GM

(s)(Q2), and the is-
ovector axial vector form factor,GA

(e)(T51)(Q2). Knowledge
of GM

(s)(Q2) provides a window on the role played by s
quarks in the electromagnetic structure of the nucleon.
axial vector form factor, in contrast, is sensitive to nucle
structure effects in higher order, electroweak radiative c
rections. These corrections, which depend on the specie
lepton probe~hence, the ‘‘e’’ superscript!, share features with
corrections relevant to other precision electroweak meas
ments, such as the PV asymmetry in polarized neutrob
decay. The proper interpretation of such measurements r
on an adequate understanding of electroweak radiative
rections@2#.

Recently, the SAMPLE collaboration has performed se
rate determinations of GM

(s) and GA
(e)(T51) at Q2

50.1 (GeV/c)2 using PV e-p and PV QEe-d scattering
@3–5#. The results indicate a value forGA

(e)(T51) consistent
with zero. At tree level, one expectsGA

(e)(T51)(Q250)
521.267, while radiative corrections reduce the magnitu
by roughly 40620% @6,7#. These corrections include poten
tially significant hadronic contributions that are responsi
for the estimated theoretical uncertainty. To make the m
sured value ofGA

(e)(T51) close to zero would require add
tional effects not included in the calculation of Refs.@6,7#.

One possibility, which we explore in this paper, is t
contribution from the PV nucleon-nucleon (NN) interaction.
The latter induces small admixtures of opposite parity sta
into the deuteron as well as the scatterednp partial waves.
These parity admixtures contribute to the PV asymme
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when ag is exchanged between the electron and target@26#.
Moreover, in contrast to the effect ofZ0 exchange, these
hadronic PV effects ing-exchange give rise to a term in th
asymmetry which does not vanish atQ250. For sufficiently
small Q2, this term would dominate the asymmetry. O
might ask, then, whether the omission of this term in t
interpretation of the SAMPLE deuterium measurement is
sponsible for the apparent, anomalously large radiative
rections enteringGA

(e)(T51) .
Below, we show that the magnitude of th

Q2-independent hadronic PV contribution is too small to a
count for the observedGA

(e)(T51) effect. Based on simple
scaling arguments, the relative importance of t
Q2-independent contribution—compared to the ‘‘canonica
Z0-exchange induced asymmetry—goes as;1024mN

2 /Q2.
Thus, at the SAMPLE kinematics,Q250.1 (GeV/c)2, we
expect the hadronic PV contribution to generate at mos
few parts in a thousand correction to the asymmetry—
short of what would be needed to close the gap between
theoretical and experimental values forGA

(e)(T51) .
We also carry out an explicit calculation of the hadron

PV contribution and verify the expectations based on th
scaling arguments. Our computation follows on the work
Refs. @8,9#, in which the hadronic PV contribution to PV
threshold deuteron electrodisintegration was studied, and
calculation of Ref.@10#, which treated PV QEe-d scattering.
In the latter analysis, only parity mixing in the deutero
wave function was considered. In the present study, we
include the contributions from parity mixing in the finale-d
scattering states as well as from PV two-body currents. O
results are consistent with both of these earlier calculatio
but give a more complete treatment of the QE case.

The remainder of the paper is organized as follows.
Sec. II, we review the formalism for PV QE scattering a
hadronic PV, identify the relevant operators and matrix e
ments to be computed, and present the scaling argument
the relative magnitude for the hadronic PV contribution. S
tion III gives a discussion of the bound and scattering st
wave functions, which we determine first in the plane wa
approximation and subsequently using the ArgonneV18 po-
tential. We present the results of our calculation in Sec.
©2003 The American Physical Society01-1
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where we consider two cases: threshold electrodisintegra
and QE scattering. Figs. 7, 8, 12, and 13, which show vari
contributions to the PV asymmetries as a function ofQ2,
summarize the main results of this work. A summary disc
sion appears in Sec. V.

II. PV ELECTRON SCATTERING AND HADRONIC PV

A. Basic formalism

The PV asymmetry for inclusivee-d scattering of an un-
polarized target can be expressed in terms of two respo
functions:WEM, the parity-conserving~PC! electromagnetic
~EM! response, andWPV, the PV response arising from th
interference of EM and PV neutral current amplitudes. O
may decompose the former in terms of the longitudinal a
transverse response functions

WEM5(
f

@vLFL
2~q!1vTFT

2~q!#uv5Ef2Ei
, ~1!

FL
2~q!5 (

J>0
FCJ

2 ~q!, ~2!

FT
2~q!5 (

J>1
@FEJ

2 ~q!1FMJ
2 ~q!#, ~3!

wherevL,T are the standard kinematic coefficients~defined
later!, qm[(v,qW ) is the four momentum transfered into th
nuclear system (Ei andEf are its initial and final energies!.
The FXJ(q), X5C,E,M , are the charge, transverse electr
and transverse magnetic multipole matrix elements depe
ing onq5uqW u. They are defined through multipole operato
ÔC5M̂ , ÔE5T̂el, andÔM5 i T̂mag @1,11,12#, as@27#

FXJ~q!5
1

A2Ji11
(

T50,1
~21!Tf2MTS Tf T Ti

2MTf
0 MTi

D
3^Jf ,TfAAÔJ,T

X ~q!AAJi ,Ti&, ~4!

where the AA denotes reduced matrix elements in bo
angular momentum and isospin@1#. While a collective quan-
tum labela refers to (Ea ,La ,Sa ,Ja ,MJa

,Ta ,MTa
), the sum

( f runs over all indexes exceptEf and MJf
because they

have been carried out to get Eq.~1!.
For the PV response, one has

WPV(Z)5(
f

@vLWAV
L ~q!1vTWAV

T ~q!

1vT8WVA
T8 ~q!#uv5Ef2Ei

, ~5!

WAV
L ~q!52gA

e (
J>0

FCJ~q!F̃CJ~q!, ~6!
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WAV
T ~q!52gA

e (
J>1

@FEJ~q!F̃EJ~q!1FMJ~q!F̃MJ~q!#,

~7!

WVA
T8 ~q!52gV

e (
J>1

@FEJ~q!F̃MJ5
~q!1FMJ~q!F̃EJ5

~q!#,

~8!

where theF̃X(5)
refer to weak, neutral current multipole ma

trix elements and the 5 subscript indicates multipole proj
tions of the axial vector current. TheF̃X(5)

are defined in a
similar fashion as Eq.~4!—up to different coupling con-
stants; however, for the axial form factors, it isM̂ 5 and T̂el5

which have additional factors ofi while T̂mag5 is without one
@1,28#. The kinematic coefficients,vL , vT , andvT8 are

vL5~Q2/q2!2, ~9!

vT5~Q2/q2!2/21tan2~u/2!, ~10!

vT85A~Q2/q2!21tan2~u/2!tan~u/2!, ~11!

FIG. 1. Contributions due to hadronic PV in elastice-N scatter-
ing, where^ denotes the PV meson-nucleon coupling.

FIG. 2. Contributions due to two-body hadronic PV ine-d scat-
tering. Here,M andM 8 denote the identities of mesons.
1-2
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HADRONIC PARITY VIOLATION AND INELASTI C . . . PHYSICAL REVIEW C 67, 035501 ~2003!
whereQ25q22v2, u is the scattering angle of electron.
The PV response functionsWAV

T,L arise from electron axia
vector ~A! 3 hadronic vector current~V! interactions, while

WVA
T8 is generated by theV(e)3A(had.) interaction. At tree

level in the standard model, the electron vector coupling
the Z0 is suppressed,gV

e52114sin2uW'20.1 ~the axial
vector coupling isgA

e51).
In terms of these response functions, the PV QE asym

try due toZ0 exchanges is

ALR
(Z)5

GmQ2

4A2pa

WPV(Z)

WEM
. ~12!

For quasielastic kinematics,v and q are related, viz.,v
'q2/2mN .

B. Hadronic PV effects

Hadronic PV effects in the target generate O(a) correc-

tions to the tree-level contributions forWVA
T8 . These hadronic

PV effects arise when a photon, rather than aZ0, is ex-
changed between the electron and hadron. Because the
tor gee coupling Qe521 is an order of magnitude large
C
a

Fo
H

ie
d

bu
ix

e
e

03550
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thangV
e , one expects the relative importance of the hadro

PV effects—compared to the tree-level amplitude—to be
order

RA;2
8A2pa

GmLx
2

1

124sin2uW

gp

gA
'20.01, ~13!

wheregp53.831028 sets the scale for hadronic PV intera
tions,Lx54pFp'1 GeV gives the scale of chiral symme
try breaking, andgA51.26760.004. In the case of elasti
e-N scattering, hadronic PV arises via diagrams of the ty
in Fig. 1. These corrections induce a PVgNN coupling, or
anapole moment. The latter has been used in the one-b
estimate ofRA given in Refs.@6,7#. Those analyses indicat
hadronic PV-induced anapole corrections of26620%.

Two-body hadronic PV contributions arise from the di
grams in Fig. 2. Figs. 2~a! and ~b! indicate parity mixing in
the initial and final state wave functions, while Fig. 2~c!
indicates the PV two-body EM current contribution. Ea
contributes to an effective axial vector EM transition amp
tude, whose effects appear as corrections to theF̃XJ5

(q) mul-
tipole matrix elements.

In computing the parity-mixing matrix elements, we u
the model PV Hamiltonian given in Ref.@13#:
HPV~rW !5
gpNNhp

1

4A2mN

~ i tW13tW2!z~sW 11sW 2!•uW p~rW !

2
grNN

2mN
S hr

0tW1•tW21
hr

1

2
~tW11tW2!z1

hr
2

2A6
~3t1zt2z2tW1•tW2!D @~11mv!isW 13sW 2•uW r~rW !1~sW 12sW 2!•vW r~rW !#

2
gvNN

2mN
S hv

0 1
hv

1

2
~tW11tW2!zD @~11ms!isW 13sW 2#•uW v~rW !1~sW 12sW 2!•vW v~rW !]

2
1

4mN
~tW12tW2!z~sW 11sW 2!•@gvNNhv

1 vW v~rW !2grNNhr
1vW r~rW !#2

grNN

4mN
hr

18~ i tW13tW2!z~sW 11sW 2!•uW r~rW !, ~14!
er,
ted
where thehM
(X) and gMNN are the weak, PV and strong, P

meson-nucleon couplings, respectively, the strong scalar
vector anamalous magnetic moments have the values:ms5

20.12 and mv53.70, and uW a(rW)5@pW 12pW 2 ,e2mar /r #,

vW a(rW)5$pW 12pW 2 ,e2mar /r %. Values for thehM
(X) have been

predicted theoretically using a variety of approaches.
purposes of our calculation, we will adopt the so-called DD
‘‘best values’’ and ‘‘reasonable ranges’’ of Ref.@13#. The
latter are consistent with constraints obtained from a var
of hadronic and nuclear PV experiments, as discusse
Refs.@14,15#.

Current conservation requires that one include contri
tions from PV two-body currents to the PV multipole matr
elements. These currents have been derived in Ref.@16,17#
from the diagrams in Fig. 2~c!. Complete expressions for th
coordinate space current operators could be found in R
nd

r

ty
in

-

f.

@17#. To illustrate the structure of these operators, howev
we give the complete two-body current operator associa
with the p6-exchange component ofHPV :

Jm~yW ,xW1 ,xW2!PV,p

5
2egpNNhp

1

8A2pmN

~tW1•tW22t1zt2z!FsW 1d (3)~yW2xW1!

1sW 2d (3)~yW2xW2!2
1

2
~sW 1•¹W12sW 2•¹W2!S xW1

1

2

x

mp
¹y
W D

3@d (3)~yW2xW1!1d (3)~yW2xW2!#Ge2mpx

x
, m51,2,3

'O~v/c!2, m50, ~15!
1-3
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wherexW i denotes the position of thei th nucleon andx5uxW u
5uxW12xW2u. Inclusion of these PV two-body currents guara
tees that the continuity equation,¹W •JW5 i @Ĥ,r#, is satisfied at
the operator level for the PVNN interaction.

Current conservation may also be implemented in writ
down the various multipole operators. Since nuclear mo
calculations based on realistic potentials generally break
rent conservation, it is useful to implement the latter via
form of the multipole operator. A well-known example
Siegert’s theorem@18#, which allows one to rewrite theJ
51 transverse electric multipole operator,T̂J51

el , in terms of
the electric dipole operator~theJ51 charge multiple! in the
long wavelength limit. An extended version of this theore
@19# allows one to implement the constraints of current co
servation for transverse electric operators of arbitraryJ and
momentum transfer. In general, one has@20#

T̂J
el~q!5ŜJ

el~q!1R̂J
el~q!. ~16!

For J51, one has

Ŝ1MJ

el ~q!5
A2

3 E d3xx@Y1MJ
~Vx!r~xW !,Ĥ#, ~17!

R̂1MJ

el ~q!52
q2

9 E d3xxYW 111
MJ~Vx!•xW3 jW~xW !, ~18!

whereYW JL1
MJ is the vector spherical harmonic.

Note that in the long wavelength limit,Ŝ1
el(q) gives the

leading contribution toFE1 , F̃E1, andF̃E15
. For elastic elec-

tron scattering, hermiticity and time-reversal invariance
quire thatFE1 andF̃E1 must vanish. Moreover, contribution
from Ŝ1

el5(q) also vanish for elastic scattering, since the co
mutator in Eq.~17! leads to a factor ofv5Ef2Ei50. A
non-vanishing contribution arises fromR̂1

el5(q), whose ma-
trix element constitutes the nuclear anapole moment co
bution. The latter is proportional toQ2, which cancels the
1/Q2 from the photon propagator to produce
Q2-independent scattering amplitude at lowest order. T
contribution is kinematically indistinguishable from th
Z0-exchange contribution toF̃E15

and, thus, represents
simple multiplicative correction to the tree-level axial vect
response.

For the inelastic transition of interest here, matrix e
ments ofŜ1

el5(q) do not vanish, nor do they contain a pow
of Q2 to cancel the 1/Q2 from the photon propagator (q2

'Q2 at low energies!. The scattering amplitude associat
with this operator goes as 1/Q2 at low Q2. When multiplied
by the factor ofQ2 in Eq. ~12!, this term thus generates
Q2-independent, nonvanishing contribution toALR at low
Q2, in contrast to theZ0-exchange asymmetry that vanish
at Q250. For sufficiently lowQ2, theQ2-independent had
ronic PV EM contribution will dominate the asymmetry. A
we show below, such a kinematic region may be reache
principle with threshold PV electrodisintegration. For PV Q
03550
-

g
el
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e
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-
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scattering at the kinematics of Ref.@5#, however, the effects
of hadronic PV appear to be negligible.

At the kinematics of QE electron scattering, a tower
final state partial waves contribute to the amplitude, and
must include the effects ofJ.1 multipole matrix elements
~both transverse electric and transverse magnetic!. This situ-
ation contrasts with threshold disintegration, where only
lowestJ partial waves may be reached. As we show in S
IV, the multipole contributions to the PV QE asymmetry~due
to hadronic PV! saturate forJ;7. All multipole matrix ele-
ments havingJ.1 carry factors ofQ2, so that they do not
contribute to theQ2-independent term in the PV asymmetr
Nevertheless, the sum of their effects represents a tiny
rection to theZ0-exchange asymmetry.

It is useful to illustrate how PVNN effects contribute to
the various multipole matrix elements entering the axial

sponse,WVA
T8 . Consider, for example, a transition from th

deuteron ground state to the1S0 continuum state. In the ab
sence of the tensor force component of the strongNN inter-
action, the deuteron ground state is pure3S1. The PVNN
interaction will mix P states into theseS waves. In ordinary
perturbation theory, one has

u3S1&→u3S1&1u 3S1̃&, ~19!

u1S0&→u1S0&1u 1S0̃&, ~20!

where the parity mixtures~denoted with a tilde ‘‘; ’’ ! are

u 3S1̃&5 (
k51,3

ukP1&
^kP1uHPVu1S0&

E02Ek
, ~21!

u 1S0̃&5u3P0&
^3P0uHPVu1S0&

E082E18
. ~22!

For this Ji51 to Jf50 transition, onlyJ51 multipole
operators contribute. For the PCg-exchange contribution
one has only the magnetic dipole transition between the
mixed 3S1 and 1S0 initial and final state components, resu
ing in a nonzeroFM1 form factor. For the PVZ0-exchange
amplitude, only the operatorT̂1

el5(q) contributes, connecting
the unmixed3S1 and 1S0 components and leading to a no
zero F̃E15

. The PV NN interaction also contributes to th
latter in three ways:~a! a nonvanishing matrix element o
T̂1

el(q) between the initial stateu3S1& and the final stateu3P0&
parity admixture,~b! nonvanishing matrix elements ofT̂1

el(q)
between theu1,3P1& mixture in the initial state and the fina
stateu1S0&, ~c! matrix elements of the PV two-body curren
operatorT̂1

el5(q) between theu3S1& and u1S0& components.
All other contributions are higher-order in the weak intera
tion and can be neglected. The analysis is similar when
D-state components of the deuteron and scattering state
duced by the tensor force are included, as is the analysis
transitions to higher partial waves.
1-4
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Because the hadronic PV contributes to the asymmetry
inducing axial photonic couplings, to incorporate these in
expression of Eq.~12!, one only has to modify axial form
factorsF̃XJ5

by

F̃XJ5
→F̃XJ5

1bF̃XJ5

(g) , ~23!

where

b52
8A2pa

GmQ2

Qe

gV
e

. ~24!

The EM axial form factors may be decomposed as

F̃XJ5

(g) 5
1

A2Ji11
(

T50,1
~21!Tf2MTS Tf T Ti

2MT f 0 MTi
D

3$^Jf ,TfAAÔJ,T
X ~q!AAJi ,Tĩ&

1^Jf ,Tf̃AAÔJ,T
X ~q!AAJi ,Ti&

1^Jf ,TfAAÔJ,T
X5 ~q!AAJi ,Ti&%, ~25!

whereuJi ,Tĩ&, ^Jf ,Tf̃ u, andÔJ,T
X5 (q) ~the two-body PV EM

operators! represent the effects caused by hadronic PV. O
may then express the asymmetry due to hadronic
~through the radiative corrections! as

ALR
(g)52

WPV(g)

WEM
, ~26!

where

WPV(g)5vT8 (
f

(
J>1

@FEJ~q!F̃MJ5

(g) ~q!

1FMJ~q!F̃EJ5

(g) ~q!#uv5Ef2Ei
. ~27!

A simple scaling argument allows us to estimate the re
tive impact of the two-body hadronic PV contribution. F
backward-angle scattering as studied in the SAMPLE exp
ments,vT8'vT@vL , so the ratio of asymmetry due to ha
ronic PV, Eq.~26!, andZ0, Eq. ~12! is

ALR
(g)

ALR
(Z)

'
8A2pa

GmQ2

WPV(g)

WPV(Z)
'

8A2pa

GmQ2

^ jWPV
g &

^ jWZ&
, ~28!

while ^ jWZ& at backward angles is dominated by the magne
NC component and scales as^sW &, ^ jWPV

g & scales aŝsW & times
an additional factor introduced by hadronic PV. Using E
~15! for a guidance, this factor is roughly

gpNNhp
1

8A2p
K e2mpx

mNx L . ~29!

With gpNN>13.45, andhp;4.531027, the scaling rule is
03550
y
e

e
V

-

i-

c

.

ALR
(g)

ALR
;

mN
2

Q2 K e2mpx

mNx L 31023, ~30!

where we have also included the NC magnetic form fac
G̃M(Q2) in the denominator. For smallQ2, one hasG̃M
'mV54.70. Takingx;1 fm, ^e2mpx/(mNx)&;0.1, there-
fore atQ2;0.1 (GeV/c)2, we haveALR

(g)/ALR
(Z) in the order of

a few 0.1%.

III. TWO-BODY WAVE FUNCTIONS

In order to compute PV matrix elements in Eq.~25!, we
need two-body wave functions. The latter are solutions of
Schrödinger equation

FIG. 3. Comparison of scattering state wave functions:~a! 1S0

channel and~b! 3P0 channel, where dashed lines give the pla
wave solutions and solid lines give results of the potential mo
calculations using AV18. The relative energy ofnp is 1 MeV.
1-5
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~H01HPV!uc1c̃&5Euc1c̃&. ~31!

SinceHPV is much smaller thanH0, first-order perturbation
should work well in this process. That is, Eq.~31! can be
solved in two steps: first, the PC partuc& is determined by
solving

~E2H0!uc&50, ~32!

and second, the PV admixtureuc̃& is determined from

~E2H0!uc̃&5HPVuc&, ~33!

with uc& obtained in the first step. In what follows, we e
plore two different approaches, one using the plane w
approximation—which ignores the final state strong inter
tion ~FSI!–and one using a potential model calculatio
which includes the FSI.

FIG. 4. PV admixtures for the scattering states in Fig. 3:~a! 3P0

admixture in1S0 and ~b! 1S0 admixture in3P0, obtained by solv-
ing the inhomogeneous differential equations.
03550
e
-
,

A. Plane wave approximation

Although the plane wave approximation is naı¨ve and
simple, we employ it as a toy-model calculation to achie
some initial insights. In addition, the computation of Re
@10# employed a plane wave Green’s function to compute
PV admixture in the deuteron, though unmixed deute
wave function was obtained using the Bonn potential.
comparing the plane wave computation with the poten
model solution~see below!, we hope to obtain a sense of th
errors introduced by the plane wave approximation.

In this approach, all the radial components of scatter
partial waves are spherical Bessel function,j L(pr), whereL
is the relative orbital angular momentum andp is the relative
momentum.

The parity admixture, to first order in the perturbatio
expansion, is expressed as

FIG. 5. PV admixtures of deuteron:~a! 1P1 admixture and~b!
3P1 admixture, dashed lines are results using the plane w
Green’s function and solid lines are calculations using AV18.
1-6
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uc̃&5(
f

uf&
1

Ec2Ef
^fuHPVuc&, ~34!

whereuf& forms a complete eigenbasis. This could be co
puted if one knows Green’s function

G~xW ,yW !5(
f

^xW uf&^fuyW &
Ec2Ef

. ~35!

In the plane wave basis, closed-form Green’s functions e
for both calculations of deuteron and final state mixing.

For the deuteron mixing, the transition involves a bou
state~binding energyEB,0) to continuum state transition
therefore,EB2Ef,0. Green’s function is

G(D)~xW ,yW !5 (
L,S,J,MJ ,T,MT

dLSTS 2
2

p
gmND i L~gr ,!kL~gr .!

3Y JLS
†MJ~Vx!Y JLS

MJ ~Vy!xT
†MTxT

MT , ~36!

FIG. 6. The saturation behavior of~a! total cross section and~b!
asymmetry as functions ofJmax, the maximum total angular mo
mentum for final states being included.
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where g5AmNuEBu, i L(gr ) and kL(gr ) are the modified
spherical Bessel functions of the first and third kind,r , (r .)
refers to the smaller~larger! radial coordinate ofx andy, Y
and x denote the spin-angular and isospin wave functio
The factordLST, which is 1 if L1S1T is an odd number
and 0 otherwise, enforces the generalized Pauli principle

For the final state mixing, because of the pole atEc
5Ef , we must add a small imaginary number6 i e to the
energy denominator, as in the scattering problem. In
way, we obtain a retarded~advanced! Green’s function cor-
responding to the2 i e (1 i e) prescription. However, only
the real part of this Green’s function gives a non-vanish
response function. The real part is equivalent to the aver
of retarded and advanced ones

Ḡ(F)~xW ,yW !5 (
L,S,J,MJ ,T,MT

dLST~mNpF! j L~pFr ,!nL~pFr .!

3Y JLS
†MJ~Vx!Y JLS

MJ ~Vy!xT
†MTxT

MT , ~37!

FIG. 7. The~a! total cross section and~b! PV asymmetry versus
Q2, where the kinematics are constrained to satisfyq252mNv and
u5180°. Note in~b!, the hadronic PV contribution is multiplied by
100; it does not actually cross theZ0 term in thisQ2 range.
1-7
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where pF is the relative momentum of the final state a
nL(pFr ) is the spherical Neumann wave functions.

Illustrative results for the plane wave calculation a
given in Figs. 3 and 5. We note that, in comparison with
complete, coupled channel potential model computation~see
below!, use of the plane wave Green’s function overes
mates the degree of parity mixing in the deuteron grou
state. For parity-mixing in the scattering states, we also
a mismatch between the two approaches, though no sys
atic pattern emerges as to the magnitude or sign of the
ference. The problem may be particularly severe for the3S1
and 3D1 scattering states which, in the plane wave approa
are not automatically orthogonal to the deuteron wave fu
tion uD&. Although one might attempt to solve this proble
by implementing orthogonality by hand, viz.,

u3S1 ,3D1&'5u3S1 ,3D1&2uD&^Du3S1 ,3D1&, ~38!

it is questionable whether thisad hocsolution is rigorously
correct. For these reasons, then, we rely only on the cou
channel potential model computation to determine
nuclear PV contribution to the inelastic asymmetry.

B. Potential model calculation

Although theNN potential determined directly from solv
ing QCD is not available, a variety of modern phenomen
logical potentials successfully fitNN scattering data~below
350 MeV or so! as well as deuteron properties with reaso
able x2 values. Here, we use the ArgonneV18 potential
~AV18) @21#.

The PC scattering wave function,

^rWuE,L,S,J,MJ ,T,MT&5A2mNk

p

uJLS~r !

r
Y JLS

MJ xT
MT ,

~39!

FIG. 8. The breakdown of various hadronic PV contributions
the asymmetry at QE kinematics, whereD, F, and MEC refer to
contributions from deuteron mixing, final state mixing, and PV m
son exchange currents, respectively, and the solid line gives
total.
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is determined by solving the Schro¨dinger equation, where
u(r ) denotes the radial wave function,k5AmNE, and the
overall constant is fixed by the normalization conditio
^E8•••uE•••&5d(E82E)••• . This task is eventually re-
duced to integrating a one-dimensional differential equat
for the radial component and solving for the phase sh
However, due to the tensor force, forJ.0, states having
quantum numbers (L,S,J)5(J21,1,J) and (J11,1,J) are
coupled, requiring that one solve a coupled set of differen
equations. The normalization of the radial wave functions
fixed by their asymptotic forms. For the uncoupled chan
problem, one has

uJLS~r→`!5r sin~kr1Lp/21dJLS!, ~40!

wheredJLS denotes the phase shift. For the coupled chan
problem, the convention introduced by Blatt and Biedenh
~BB! @22#, with two eigenphases shiftsdJ

(1) , dJ
(2) and a mix-

ing parametereJ , is adopted@29#. The two orthogonal, rea
solutions are

-
he

FIG. 9. The~a! total cross section and~b! two-body hadronic PV
asymmetry versus electron final energy, for 194 and 120 MeV in
dent beams and 180° scattering angle. The asterisk denote
position of the QE peak.
1-8
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S uL5J21
(1)

uL5J11
(1) D ~r→`!5r S coseJsin~kr1~J21!p/21dJ

(1)!

sineJsin~kr1~J11!p/21dJ
(1)!

D ,

~41!

S uL5J21
(2)

uL5J11
(2) D ~r→`!5r S 2sineJsin~kr1~J21!p/21dJ

(2)!

coseJsin~kr1~J11!p/21dJ
(2)!

D .

~42!

It should be noted that while we will still refer to solutio
1~2! as 3@J21#J(

3@J11#J) state, it contains a componen
involving the other channel. We have verified our calcu
tions by reproducing the experimental phase shifts.

The deuteron wave function,

^rWuD,MJ&5H u~r !

r
Y 101

MJ1
w~r !

r
Y 121

MJJ x0
0 , ~43!

FIG. 10. The ratio of asymmetry due to two-body hadronic P
andZ0 exchange, versus final electron energy:~a! 194 MeV beam
and~b! 120 MeV beam. Both kinematics are the same as in Fig
03550
-

is obtained by solving the eigenvalue problem for bindi
energyEB andD/S ratio. The asymptotic and normalizatio
conditions are

u~r !1!}r , u~r @1!}rk0~gr ! ~44!

w~r !1!}r 3, w~r @1!}rk2~gr ! ~45!

E dr@u2~r !1w2~r !#51. ~46!

Although one can follow a similar strategy and obtain t
PV wave functions by the Green’s function method me
tioned in previous subsection, it is not straightforward to
so; the unperturbed wave functions are too complex to al
one to obtain analytical results as in the case of plane wa
Therefore, following the same approach as in Ref.@9#, we
directly solve the inhomogeneous equation, Eq.~33!.

The basic idea is to solve the problem twice, once w
the ‘‘source’’ term off~thus a homogeneous equation as so
ing the PC wave function! and then with the source term on
A general solution for the inhomogeneous equation,c̃g , can
be expressed as a linear combination of solutions for
homogeneous equation, called the complimentary solutio
c̃c( i ), plus the particular solution,c̃. Therefore, in order to
obtain the particular solution,

c̃5c̃g2(
i

a icc~ i !, ~47!

the complimentary part has to be fully subtracted. Thus,
must determinea i , i 51 . . .N, N being the number of
coupled equations.

In the case of solving scattering wave function, t
asymptotic behaviors of bothc̃g andc̃c can be expressed a
linear combinations of incoming and outgoing spheric
waves. While the interactions cause phase shifts of outgo
waves, the incoming waves are not altered. This observa
tells us that,c̃, the parity-mixed component induced by th
PV NN interaction, should not contain any incoming com
ponent. Using this result,a i are the solution when the in
coming wave components ofc̃g andc̃c( i ) completely cancel
in Eq. ~47!.

Except for 1S0 and 3P0, which can only be mixed into
each other, all the other uncoupled states,1,3LJ5L could have
mixtures from 3@L21#L and 3@L11#L states. For the
coupled states,3@L5J21#J and 3@L5J11#J , both mix to
1,3JJ . If the mixture is an uncoupled state, and we have

c̃c→a e2 i (kr2Lp)1b ei (kr2Lp), ~48!

c̃g→c e2 i (kr2Lp)1d ei (kr2Lp), ~49!

then

c̃5c̃g2
c

a
c̃c . ~50!

When the mixtures are coupled, a two channel calculatio
needed. If one has

.

1-9
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FIG. 11. The same plots as Fig. 9 with four average detector angles of SAMPLE experiments:~a! 160.5°,~b! 154.0°,~c! 145.9°, and~d!
138.4°. The left panels are for theEe5194 MeV and right panels for theEe5120 MeV case.
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c̃c~ i 51,2!→S a~ i ,1!e2 i (kr2(J21)p)1b~ i ,1!ei (kr2(J21)p)

a~ i ,2!e2 i (kr2(J11)p)1b~ i ,2!ei (kr2(J11)p)D ,

~51!

c̃g~ i 51,2!→S c~ i ,1!e2 i (kr2(J21)p)1d~ i ,1!ei (kr2(J21)p)

c~ i ,2!e2 i (kr2(J11)p)1d~ i ,2!ei (kr2(J11)p)D ,

~52!

then

c̃5c̃g~1!2a1~1!c̃c~1!2a2~1!c̃c~2! ~53!

5c̃g~2!2a1~2!c̃c~1!2a2~2!c̃c~2! ~54!

with

S a1~ i !

a2~ i !
D 5S a~1,1! a~2,1!

a~1,2! a~2,2!
D 21S c~ i ,1!

c~ i ,2!
D . ~55!

Note that all the coefficients here are complex. This impl
that the mixed wave functions are also complex. However
our framework, only the real part will contribute to the r
sponse functionWPV(g) and, thus, to the asymmetry.
03550
s
n

Various criteria exist for testing the numerical solution
~i! they should satisfy the differential equation,~ii ! they
should be independent of the initial conditions used to in
grate the differential equation,~iii ! they should be propor-
tional to the source term, i.e., if the source term doubles,
solution should also double. These conditions are emplo
to make sure we obtain the correct solutions.

As for the parity admixture of deuteron, it is determine
using the same procedure. Since one is dealing with
negative-energy state however, the asymptotic behavio
given by a linear combination of modified spherical Bes
functions,i L andkL . The physically realistic solution is ob
tained by completely subtracting thei L component, becaus
it diverges asr increases.

IV. RESULTS AND DISCUSSION

First, we compare the two approaches discussed in
III. Figure 3 shows an example of the comparison betwe
the plane wave scattering states and those obtained from
potential model calculations~in our case, it is AV18). Though
at Erel51 MeV, the 3P0 solutions look almost the same, th
plane wave1S0 state differs from the more realistic solutio
1-10
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HADRONIC PARITY VIOLATION AND INELASTI C . . . PHYSICAL REVIEW C 67, 035501 ~2003!
by a large phase shift as well as in its radial shape at sm
distances. Note that the latter difference is important beca
the PV NN interaction is very sensitive to the short ran
behavior of wave functions. Therefore, the plane wave
proximation is not adequate. Figure 4 shows the PV mixtu
for these 1S0 and 3P0 states, 3P0 and 1S0, respectively.
They are similar to the results of Ref.@9#, which were ob-
tained by using Reid soft-core potential, but differ slightly
magnitudes. For the deuteron mixing, the1P1 state is in-
duced only byr andv exchanges (DT50), while the 3P1
is induced dominantly by thep exchange; both results ar
plotted in Fig. 5. Also shown by the dotted lines in the sa
figure are the solutions of the plane wave Green’s functi
Though these curves are similar in shape, the potential m
calculation gives smaller amplitudes and different smar
radial dependence than plane waves. From now on, we
present results from the potential model calculation wh
are more realistic.

As the impact ofGA
(e)(T51) on ALR is more important at

backward angles, we first examine the extreme caseu
5180°. Subsequently, we present results relevant
SAMPLE kinematics. The maximumQ2 we consider is 0.15
~GeV/c)2, and the saturation behavior shown in Fig. 6 jus
fies the truncation of the sum over final scattering state
total angular momentaJf<7.

Figure 7 indicates how the backward angle cross sec
and asymmetry vary withQ2, ranging from 0.01 to
0.15 (GeV/c)2 at the QE peak. It is clear that the asymme
due to two-body hadronic PV~plotted with a magnification
of 100! is insignificant compared with the contribution o
tree-levelZ0 exchange plus radiative corrections, which i
cludes nucleon anapole effects. The curve forZ0-exchange
asymmetry, plotted using the static approximation resul

FIG. 12. The asymmetries due to hadronic PV andZ0 exchange
versusQ2 in the threshold electrodisintegration region, with sma
fixed np relative energies.
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Ref. @1# with parametrized nucleon form factors, shows t
expected proportionality toQ2. The curve for hadronic PV
shows a 0.05% correction toALR

(Z) at Q250.1 and a 0.3%
correction atQ250.04. We note that these results are co
sistent with simple scaling arguments as Eq.~30!. Although
there is some enhancement forALR

(g) asQ2 decreases, even a
Q2;0.01, near the threshold for QE kinematics, the corr
tion is less than 5%.

A detailed breakdown of various hadronic PV contrib
tions is shown in Fig. 8. The deuteron mixing, rather inse
sitive to theQ2 of the explored region, is the dominant co
tribution for Q2>0.03. Its correction toALR

(Z) at Q250.1 is
'0.1%, and 0.3% atQ250.04. These values are consiste
in the order of magnitude with the results of Ref.@10#, which
used Bonn potential to calculate the PC wave functions
the plane wave Green’s function to calculate the parity m
ture in deuteron. On the other hand, the final state mix
and PV meson exchange currents, though comparati
smaller, do have a combined contribution which could be
large as half of the contribution from deuteron mixing f
Q2>0.03. They are also more sensitive toQ2 and become
important when approaching the QE threshold.

Away from the QE peak, the dependence of the cr
section and asymmetry on final electron energy are show
Fig. 9 for 194 and 120 MeV beams. Since the scattered e
trons are detected via the Cˇ erenkov radiation~the threshold
is about 20 MeV!, scattered electrons withEe8& 150 and 100
MeV, respectively, are detected. However, judging from
cross section plot, only regions about the peak energy6 20
and 10 MeV, respectively, are important for these two cas
When these asymmetries are further plotted as ratios toALR

(Z) ,
as shown in Fig. 10, we observe that the correction co
become as large as a few percent. Notice, however, tha
corrections change sign roughly when crossing the QE rid
Hence, corrections from these two regions cancel after in
gration, thereby, keeping the total correction small. A simi

,

FIG. 13. The breakdown of various hadronic PV contributio
to the asymmetry in the threshold electrodisintegration regi
whereD, F, and MEC refer to contributions from deuteron mixin
final state mixing, and PV meson exchange currents, respectiv
and the solid line gives the total.
1-11
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feature was also found in the calculation of Ref.@23#, where
PC two-body effects were considered.

The setup of SAMPLE experiments actually cover t
angular range from 130° to 170°, the average angles of
detectors are: 138.4°, 145.9°, 154.0°, and 160.5°@24#. The
corresponding cross sections and asymmetries are plotte
Fig. 11. The general trend is that when the angle gets sma
the cross section becomes larger and the asymmetry bec
smaller. However, the overall behaviors are not too differ
from theu5180° case.

Summarizing these observations, we conclude that
two-body hadronic PV effects in QEe-d scattering are neg
ligible. However, the situation changes in the kinematic
gion of threshold disintegration as shown in Fig. 12. AtQ2

;1024(GeV/c)2, these two are comparable@30#, and had-
ronic PV dominates when moving toward lowerQ2 region.
Here again, the magnitude ofQ2 at which the hadronic PV
andZ0-exchange contributions are commensurate is roug
what one would expect based on the simple scaling a
ments of Eq.~30!. The detailed breakdown given in Fig. 1
shows that the final state mixing has the most important c
tribution and that PV meson exchange currents are also
nificant. The deuteron mixing, still rather independent ofQ2

evolution, becomes negligible. We also point out that wh
our calculation in this kinematic region is con
sistent with Hwang, Herley, and Millers@9# at Q2

>0.0001 GeV2/c2, we obtain larger asymmetries as one a
proaches the threshold region. The reason is that we u
potential (AV18) which has a much softer core than the Re
soft-core potential. Thus, the behavior of the wave funct
at low energy and small distance is important for studies
hadronic PV at threshold, including experiments like t
photodisintegration of deuteron, radiative neutron captu
and neutron spin rotation.
.
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V. CONCLUSIONS

The theoretical analysis of PV electron scattering asy
metries requires that one take into account effects that m
in principle, cloud the intended interpretation of an expe
mental result. In this study, we have analyzed the effects
parity violating NN interactions that give rise to a nonvan
ishing inelastice-d asymmetry at the photon point. Our re
sults indicate that for the QE kinematics relevant to t
SAMPLE experiment, these effects generate a neglig
contribution to the PV asymmetry. Moreover, contributio
arising from each side of the QE peak produce cancellati
when integrated over detector acceptances, thereby gen
ing an additional suppression of the nuclear PV contami
tion. From this standpoint, then, the PV QE asymmetry p
vides a theoretically clean environment for studyi
electroweak nucleon form factors, such asGA

(e)(T51)(Q2).
On the other hand, PV effects in the threshold region c
become dominant, with asymmetries as large as a
30.1 ppm. Hence, near-threshold electrodisintegration
photodisintegration of the deuteron could provide a tool
probing the PVNN interaction.
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functions are used, the form factorFM is real.
@28# In Ref. @1#, F̃XJ and F̃XJ5

are defined with an extra 1/2 an

21/2 factor. It is found that the minus sign in Ref.@1# is a
typographical error. The 1/2 factor is absorbed here in
overall scaleALR

0 .
@29# The ‘‘nuclear bar’’ convention, defined in Ref.@25#, is more
03550
e

commonly used in literature. However, the phase parameter
these two conventions are totally interchangeable. The rea
for our choice is that all the wave functions are purely real
BB convention.

@30# The Z0 asymmetry is plotted using the same formula from t
static approximation. Although there are also two-body effec
the Q2-dependence still governs the overall behavior.
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