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Hadronic parity violation and inelastic electron-deuteron scattering
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We compute contributions to the parity-violatif®V) inelastic electron-deuteron scattering asymmetry
arising from hadronic PV. While hadronic PV effects can be relatively important in PV threshold electrodis-
integration, we find that they are highly suppressed at quasielastic kinematics. The interpretation of the PV
quasielastic asymmetry is, thus, largely unaffected by hadronic PV.
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I. INTRODUCTION when ay is exchanged between the electron and taigek
Moreover, in contrast to the effect a° exchange, these

Parity-violating(PV) inelastic electron-nucleus scattering hadronic PV effects ini-exchange give rise to a term in the
is an important tool in the study of hadron struct{ité In  asymmetry which does not vanish@t=0. For sufficiently
combination with PV elastic electron-protoe-p) scatter- small Q?, this term would dominate the asymmetry. One
ing, measurements of the PV quasielasfgE) electron- might ask, then, whether the omission of this term in the
deuteron é-d) asymmetry allow a separate determination ofinterpretation of the SAMPLE deuterium measurement is re-
the strangeness magnetic form fact@ﬁ)(Qz), and the is- sponsible for the apparent, anomalously large radiative cor-
ovector axial vector form facto6(®(T=1(Q?). Knowledge  rections enterings{® ("= 1).
of G(Y(Q?) provides a window on the role played by sea Below, we show that the magnitude of this
quarks in the electromagnetic structure of the nucleon. Th&@%-independent hadronic PV contribution is too small to ac-
axial vector form factor, in contrast, is sensitive to nucleoncount for the observe@(("=1) effect. Based on simple
structure effects in higher order, electroweak radiative corscaling arguments, the relative importance of the
rections. These corrections, which depend on the species gf?-independent contribution—compared to the “canonical”
lepton probe&hence, the &” superscrip}, share features with Z%-exchange induced asymmetry—goes ﬂgo—4m§/Q2,
corrections relevant to other precisior) electrqweak measurerys, at the SAMPLE kinematic®)?=0.1 (GeVk)?2, we
ments, such as the PV asymmetry in polarized neuon eypect the hadronic PV contribution to generate at most a
decay. The proper interpretation of such measurements religsy, parts in a thousand correction to the asymmetry—far
on an adequate understanding of electroweak radiative coknort of what would be needed to close the gap between the
rections|2]. _ theoretical and experimental values (=%

Recently, the SAMPLE cczil)aboratlon Pez)i(s%fle)rformed S€P2 We also carry out an explicit calculation of the hadronic
rate determlglathns of Gy and Gy at Q PV contribution and verify the expectations based on these
=0.1 (GeVk)” using PVe-p and PV QEe-d scattering  gcajing arguments. Our computation follows on the work of
[3-5]. The results indicate a value f@{’"" ") consistent Refs. [8,9], in which the hadronic PV contribution to PV
with zero. At tree level, one expect§{"""(Q?=0)  threshold deuteron electrodisintegration was studied, and the
=—1.267, while radiative corrections reduce the magnitude:alculation of Ref[10], which treated PV QE-d scattering.
by roughly 40+ 20% [6,7]. These corrections include poten- |n the latter analysis, only parity mixing in the deuteron
tially significant hadronic contributions that are responsiblewave function was considered. In the present study, we also
for the estimated theoretical uncertainty. To make the meainclude the contributions from parity mixing in the finald
sured value ofG{P"=Y close to zero would require addi- scattering states as well as from PV two-body currents. Our

tional effects not included in the calculation of Rdf8,7]. results are consistent with both of these earlier calculations,
One possibility, which we explore in this paper, is the but give a more complete treatment of the QE case.
contribution from the PV nucleon-nucleoN ) interaction. The remainder of the paper is organized as follows. In

The latter induces small admixtures of opposite parity stateSec. Il, we review the formalism for PV QE scattering and

into the deuteron as well as the scattergglpartial waves. hadronic PV, identify the relevant operators and matrix ele-

These parity admixtures contribute to the PV asymmetryments to be computed, and present the scaling arguments for
the relative magnitude for the hadronic PV contribution. Sec-
tion Il gives a discussion of the bound and scattering state

*Electronic address: cpliu@triumf.ca wave functions, which we determine first in the plane wave
"Electronic address: prezeau@krl.caltech.edu approximation and subsequently using the Argokfig po-
*Electronic address: mjrm@krl.caltech.edu tential. We present the results of our calculation in Sec. 1V,
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where we consider two cases: threshold electrodisintegratio! N N N
and QE scattering. Figs. 7, 8, 12, and 13, which show various
contributions to the PV asymmetries as a functionQ, et -~
summarize the main results of this work. A summary discus-X .\ \ A/ rrd Vo e
sion appears in Sec. V. ' )
[t ] & - ’nt
Il. PV ELECTRON SCATTERING AND HADRONIC PV N N N

A. Basic formalism FIG. 1. Contributions due to hadronic PV in

The PV asymmetry for inclusive-d scattering of an un-
polarized target can be expressed in terms of two response
functions:WEM, the parity-conservingPC) electromagnetic
(EM) response, antVPY, the PV response arising from the
interference of EM and PV neutral current amplitudes. One
may decompose the former in terms of the longitudinal and
transverse response functions

elagidN scatter-

ing, where® denotes the PV meson-nucleon coupling.

Wa(q) = —gf\; [Fes(@Fex(q)+Fuy(a)Fus(a)],

)

Win(@)= =85 2 [Fea@F (@) +Fua(@Fes (@],

®
WEM=2 [ FE @) +orFH@ ]lo-g g, @
where theFx(S) refer to weak, neutral current multipole ma-
trix elements and the 5 subscript indicates multipole projec-
Ff(q)zé}0 F2,(q), (2)  tions of the axial vector current. THey  are defined in a
- similar fashion as Eq(4)—up to different coupling con-
stants; however, for the axial form factors, itN&s and T¢'s
F2(q)= >, [F2,(q)+F2,(q)], (3)  Which have additional factors ofwhile T™*% is without one
T R M [1,28]. The kinematic coefficients;, , vy, andvt, are
— 21~2\2
wherev 1 are the standard kinematic coefficieritiefined v =(Q%a%)% ©)
laten), q“z(w,ﬁ) is the four mome_n_tum transfered int_o the vr=(Q%q?)2/2+tark(6/2), (10)
nuclear systemK; andE; are its initial and final energig¢s
The Fy;(q), X=C,E,M, are the charge, transverse electric, = 21022+ tard( 6/2)tan 6/2 11
and transverse magnetic multipole matrix elements depend- vr=V(Q") (0/2)tan(6/2), (a1
ing ong= |ﬁ|. They are defined through multipole operators, N N N N
OC=M, OE=T¢, andOM=iT™ma9[1,11,13, as[27] v
ANNNY o-- vl R
P @)= e 3 (-
xI\ = —— - _
V2J,+1 1501 Mt 0 My LM L PPN
X(Ip, Ty:: 05 (@) 135, To), @
N N N N
where the:: denotes reduced matrix elements in both (a) (b)
angular momentum and isosgif]. While a collective quan-
tum labela refers to Ea,La,Sa,Ja,MJa,Ta,MTa), the sum
> runs over all indexes excefii; and M, because they N N
have been carried out to get Ed). y
For the PV response, one has
()—--1\7[-- "Tw""®
WPYE =2, o, Way(a) +orWAl(@)
+0r WA o- — (5 N N
(c.1) (c.2)
Wh —_Q° E E ' 6 FIG. 2. Contributions due to two-body hadronic PVeid scat-
ava) gAJgo co@Fcs(a) ©) tering. HereM andM’ denote the identities of mesons.
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whereQ?=q%— w?, 6 is the scattering angle of electron.
The PV response functio\; arise from electron axial
vector (A) X hadronic vector currenV) interactions, while

W\T,/A is generated by th¥(e) X A(had.) interaction. At tree

level in the standard model, the electron vector coupling to

the Z° is suppressedg=—1+4sirf4,~—0.1 (the axial
vector coupling iggR=1).

In terms of these response functions, the PV QE asymm

try due toZ° exchanges is

2 \WPV(2)
Ag-L W
4\/§7Ta WEM

For quasielastic kinematicgy and gq are related, viz.,w
~q%2
q-/zmy .

12

B. Hadronic PV effects

Hadronic PV effects in the target generatea(correc-

tions to the tree-level contributions fW\T,'A. These hadronic
PV effects arise when a photon, rather tharz% is ex-

PHYSICAL REVIEW C 67, 035501 (2003

thangy, one expects the relative importance of the hadronic
PV effects—compared to the tree-level amplitude—to be of
order

8.2 1 _
V2ma 97 _ 001,

G,A% 1-4sirf6y 9a

Ra~— (13

whereg,,=3.8x 10 8 sets the scale for hadronic PV interac-
etTons,AX=47-rFW~1 GeV gives the scale of chiral symme-
try breaking, andg,=1.267+0.004. In the case of elastic
e-N scattering, hadronic PV arises via diagrams of the type
in Fig. 1. These corrections induce a BN coupling, or
anapole moment. The latter has been used in the one-body
estimate ofR, given in Refs[6,7]. Those analyses indicate
hadronic PV-induced anapole corrections-06 + 20%.
Two-body hadronic PV contributions arise from the dia-
grams in Fig. 2. Figs. (@ and(b) indicate parity mixing in
the initial and final state wave functions, while FigcpR
indicates the PV two-body EM current contribution. Each
contributes to an effective axial vector EM transition ampli-

tude, whose effects appear as corrections t@ghjg(q) mul-
tipole matrix elements.

changed between the electron and hadron. Because the vec-In computing the parity-mixing matrix elements, we use
tor yee coupling Q°=—1 is an order of magnitude larger the model PV Hamiltonian given in Rgf13]:

ngNh}r .

(i71X 79) (14 05) - U(T)
4\/§mN 1 2)z 1 2

_gpNN( 0> = hl hi

HPV(F):

2my | M7 Tt g (Tt

_ YonN
2my

h°+E(? +17,)
2 1 2)z

w

— (11— 72) T2+ 02) [ G0 o (1) = G v (1) 1=

4my

371,70~
2\/6( 1272z

710 72) | [(14 g, i 01X 05U, (D) + (a1— 05) v ,(1)]

[(14 peio1 X 05]- Uy(F) + (01— 02) -0 ,(1)]

gpNN
4my

hE (i 71X 79) 01+ ) - U, (F), (14)

where theh(¥ andgyyn are the weak, PV and strong, PC [17]. To illustrate the structure of these operators, however,
meson-nucleon couplings, respectively, the strong scalar andle give the complete two-body current operator associated
vector anamalous magnetic moments have the vajgs:  with the 7™ -exchange component éfpy:

—~0.12 and w,=3.70, and u,(r)=[p;—pPs.e ™'/r],

vo(N)={p1—p,.e M"/r}. Values for theh{{) have been 3,(Y.Xq Xp) PV

predicted theoretically using a variety of approaches. For
purposes of our calculation, we will adopt the so-called DDH
“best values” and “reasonable ranges” of Rdfl3]. The
latter are consistent with constraints obtained from a variety
of hadronic and nuclear PV experiments, as discussed in
Refs.[14,15.

Current conservation requires that one include contribu-
tions from PV two-body currents to the PV multipole matrix
elements. These currents have been derived in [R6f17]
from the diagrams in Fig.(2). Complete expressions for the
coordinate space current operators could be found in Ref.
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wherex; denotes the position of thi¢h nucleon and=|x] scattering at the kinematics of R¢&], however, the effects

= |X,—X,|. Inclusion of these PV two-body currents guaran-°' hadronic PV appear to be negligible.
hat th . g . isfied At the kinematics of QE electron scattering, a tower of
Iﬁgsotps:;to? f:\gﬂ%':{ﬁg%ﬂol\l i;nte_r:a[ctiépn]’ Is satisfied at i) state partial waves contribute to the amplitude, and one

. ) . . _must include the effects af>1 multipole matrix elements
Current conservation may also be |mp!emented IN WNting 4t transverse electric and transverse magnéttus situ-
down the various multipole operators. Since nuclear mode

) A ; tion contrasts with threshold disintegration, where only the
calculations based on realistic potentials generally break CUlywest J partial waves may be reached. As we show in Sec
rent conservation, it is useful to implement the latter via th ' '

€V, the multipole contributions to the PV QE asymm e
form of the multipole operator. A well-known example is .’ b Q ymmetdy

. ) ; 4 to hadronic PV saturate fordJ~7. All multipole matrix ele-
Siegert's theorenj18], which allows one to rewrite thd ments havingl>1 carry factors 0fQ?, so that they do not

=1 transverse electric multipole operat®§. ; , in terms of  contribute to theQindependent term in the PV asymmetry.
the electric dipole operatdthe J=1 charge multiplgin the  Nevertheless, the sum of their effects represents a tiny cor-
long wavelength limit. An extended version of this theoremrection to thez®-exchange asymmetry.

[19] allows one to implement the constraints of current con- |t js useful to illustrate how P\NN effects contribute to
servation for transverse electric operators of arbitthnd  the various multipole matrix elements entering the axial re-

momentum transfer. In general, one has] sponse,W\T,'A. Consider, for example, a transition from the
el el Aol deuteron ground state to tH&, continuum state. In the ab-
T3(@)=S(9)+R;(a). (160 sence of the tensor force component of the strinter-
action, the deuteron ground state is pd®. The PVNN
interaction will mix P states into thes8 waves. In ordinary
perturbation theory, one has

ForJ=1, one has

2 -~
Si'@qhg | 0¥ 000081 an

°S)—1°S) +] %S, (19
q2

el _ Byy ¥ C T —

Rin, (@)=~ J dhoV (0 XX (0, (18) |So)— 'S0} + [ *So), (20
where\?;\"LJl is the vector spherical harmonic. where the parity mixture&denoted with a tilde “-") are

Note that in the long wavelength limi&S'(q) gives the ) .

leading contribution td¢; , Fey, andFe, . For elastic elec- ESE> |kP1)< P1[Hpv|"So) (21)
tron scattering, hermiticity and time-reversal invariance re- k=13 Eo—Ex

quire thatF g, andF g, must vanish. Moreover, contributions

from 5:'5(q) also vanish for elastic scattering, since the com- = 1an  (CPolHpy|'S)
mutator in Eq.(17) leads to a factor olv=E;—E;=0. A |*So)=["Po) E¢—E} '
non-vanishing contribution arises froﬁf'f’(q), whose ma-

trix.element constiFutes the .nuclear anapgle moment contri- Eqr thisJ;=1 to J;=0 transition, onlyJ=1 multipole
bution. The latter is proportional tQ? which cancels the gperators contribute. For the P@exchange contribution,
1/Q* from the photon propagator to produce agne has only the magnetic dipole transition between the un-
Q2-in_dep_endgnt scattering amplitude at lowest order. Thignixed 3s, and 'S, initial and final state components, result-
contribution is kinematically indistinguishable from the ing in a nonzerd,; form factor. For the P\Z%-exchange

0 gt = . ~ . -
Z"-exchange contribution ey, and, thus, represents a amplitude, only the operatd'rils(q) contributes, connecting
simple multiplicative correction to the tree-level axial vector the unmixed®S, and S, components and leading to a non-

response. - . " . . zero Fg,_. The PV NN interaction also contributes to the
For the inelastic transition of interest here, matrix ele- 5 L .
latter in three ways(a) a nonvanishing matrix element of

ments oféi'5(q) do not vanish, nor do they contain a power -, L '
of Q7 to cancel the 12 from the photon propagatorg? TS (.q) between the initial stat€S,) and the final stat’P)

~Q?2 at low energies The scattering amplitude associated P2ty admixtijge(b) nonvanishing matrix elements ﬁﬁl(q)

with this operator goes asQ? at low Q2. When multiplied betwelen theg*~P,) _rmxture in the initial state and the final

by the factor ofQ? in Eq. (12), this term thus generates a State|"Sp), () matrix elements of the PV two-body current
Q2-independent, nonvanishing contribution A9 at low operatorTi'S(q) between the3S,) and |'S,) components.

Q?, in contrast to the&Z®-exchange asymmetry that vanishes All other contributions are higher-order in the weak interac-
at Q>=0. For sufficiently lowQ?, the Q%-independent had- tion and can be neglected. The analysis is similar when the
ronic PV EM contribution will dominate the asymmetry. As D-state components of the deuteron and scattering state in-
we show below, such a kinematic region may be reached iduced by the tensor force are included, as is the analysis for
principle with threshold PV electrodisintegration. For PV QE transitions to higher partial waves.

(22
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Because the hadronic PV contributes to the asymmetry by (a)
inducing axial photonic couplings, to incorporate these in the
expression of Eq(12), one only has to modify axial form

factorsFy,_ by

’IEXJS_’ﬁXJS_" ,3|~:§<73)57 (23)
where
PRI (24)
G,.Q° of

The EM axial form factors may be decomposed as

B 3 o] 0
5 J23,+1 1501 —M¢s O My
X{(Ip. e 1 0% (@)1 17T
+(3, T 103 (@) 119, Ty)
+(3, T :O7%(@) 113, T}, (25)

where|J; T}, (3¢, T4l and0’5(q) (the two-body PV EM
operator} represent the effects caused by hadronic PV. One
may then express the asymmetry due to hadronic PV
(through the radiative correctionas

WPV()

AD=2 (26)

WEM !

where

WPV =yp, X0 3 [Fey@F{f(a) | . A
fJ= 10 20 30 40 50
r (fm)

(&1
[=
=]

+Fua(DFEL(D] |-k, g, (27)
FIG. 3. Comparison of scattering state wave functiqas:'S,

A Slmple Sca“ng argument a”OWS us to estlmate the relachannel an({b) 3P0 Channel, Whel’e dashed |ineS give the plane
tive impact of the two-body hadronic PV contribution. For Wave solutions and solid lines give results of the potential model
backward-angle scattering as studied in the SAMPLE expericalculations using Ays. The relative energy afip is 1 MeV.
ments,u ~v>v_, SO the ratio of asymmetry due to had-
ronic PV, Eq.(26), andZ°, Eq.(12) is A mﬁl<e—mﬂx

A > mX>><1o—3, (30
A _8\2ma WO 8\2ma (jby) o

N = he ’ (28)
AD  G,Q* WY@ G,Q% (j%

where we have also included the NC magnetic form factor

L . . _Gu(Q?) in the denominator. For smafD?, one hasG
z M M
while (j*) at backward angles is dominated by the magnet'C~MV=4.7O. Takingx~1 fm, (e~ ™/(myx))~0.1, there-

NC component and scales &s), (j3,) scales ago) times  fora atQ2~0.1 (GeVk)?, we haveA/A in the order of
an additional factor introduced by hadronic PV. Using EQ.5 few 0.1%.

(15) for a guidance, this factor is roughly

1 o= .
g-nnhi [ e maX Ill. TWO-BODY WAVE FUNCTIONS
' In order to compute PV matrix elements in E@5), we

29
82 (29)
need two-body wave functions. The latter are solutions of the
With g,\n=13.45, anch,~4.5x10 ’, the scaling rule is  Schralinger equation

MyX
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FIG. 5. PV admixtures of deuterofe) ‘P, admixture andb)
3p, admixture, dashed lines are results using the plane wave

FIG. 4. PV admixtures for the scattering states in FigaB>P,
Green’s function and solid lines are calculations using AV

admixture in'S, and(b) 1S, admixture inP,, obtained by solv-

ing the inhomogeneous differential equations.

@31 A. Plane wave approximation

(Ho+Hp)| g+ ) =E| g+ ).
Although the plane wave approximation is veiland

SinceHpy is much smaller thai, first-order perturbation
zglc\)/uelg |vr\1/ c;\r/towsig '2_ t],?r'; ptry?ge;é' Td[]r;t i'SS’ digtiﬁn?r?; q bbe simple, we employ it as a toy-model calculation to achieve
solving ps: ' P Y some initial insights. In addition, the computanon of Ref.
[10] employed a plane wave Green'’s function to compute the
(E—Hg)|#)=0, (32) PV admixture in the deuteron, though unmixed deuteron
wave function was obtained using the Bonn potential. By
and second, the PV admixtuf) is determined from comparing the plane wave computation with the potential
model solution(see below, we hope to obtain a sense of the
(E— Ho)|7ﬂ>= Hpy| ¥), (33 errors introduced by the plane wave approximation.
In this approach, all the radial components of scattering
with |¢) obtained in the first step. In what follows, we ex- partial waves are spherical Bessel functipr(pr), whereL
plore two different approaches, one using the plane wavés the relative orbital angular momentum gnib the relative

approximation—which ignores the final state strong interacimomentum.
The parity admixture, to first order in the perturbation

tion (FS—and one using a potential model calculation,
expansion, is expressed as

which includes the FSI.
035501-6
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(a) (a)
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(b) (b)
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o // E
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1k - 3
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FIG. 6. The saturation behavior ¢d) total cross section an()
asymmetry as functions af,,x, the maximum total angular mo-
mentum for final states being included.

FIG. 7. The(a) total cross section and) PV asymmetry versus
Q?, where the kinematics are constrained to satigfy 2myw and
6#=180°. Note in(b), the hadronic PV contribution is multiplied by

100; it does not actually cross ti& term in thisQ? range.
1

|7ﬂ>=§ |¢>?E¢<¢|Hpv|¢>: (34 where y=my[Eg|, i (yr) and k _(yr) are the modified
v spherical Bessel functions of the first and third kind,(r-)

where|$) forms a complete eigenbasis. This could be comEfers to the smallefiargey radial coordinate ok andy,

puted if one knows Green’s function and xy denote the spin-angular and isospin wave functions.
The factord s, which is 1 if L+S+T is an odd number
()Z| ¢,><¢|9> and 0 otherwise, enforces the generalized Pauli principle.
G()ZQ)Z% “E,~E, (35) For the final state mixing, because of the poleEat

=E,, we must add a small imaginary numbei e to the

energy denominator, as in the scattering problem. In this

In the plane wave basis, closed-form Green’s functions exis\;\,ay we obtain a retarde@dvancesi Green’s function cor-
for both calculations of deuteron and final state mixing. resp’onding to the-ie (+ie) prescription. However, only

For the deuteron mixing, the transition involves a boundine rea| part of this Green’s function gives a non-vanishing

state(binding energyEg<0) to continuum state transition, response function. The real part is equivalent to the average
therefore Eg—E ,<0. Green’s function is of retarded and advanced ones

.- 2 ) — .
GP(x,y)= > 5LST( - VmN>|L(7r<)kL(7">) GH(x,y)= > OLsMyPAJL(PA <INL(PA )
L,S,,M; . T.Mp T L,S,J,M; . T.Mp

x VIV )X M TN, (36) X VIV ) XM TN, (37)
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FIG. 8. The breakdown of various hadronic PV contributions to E¢ (MeV)

the asymmetry at QE kinematics, whdbe F, and MEC refer to b
contributions from deuteron mixing, final state mixing, and PV me- ®)
son exchange currents, respectively, and the solid line gives the 10—
total. :

s ]

. . . [ 194 M ]
where pr is the relative momentum of the final state and -6F HAMV] 2

n (pA) is the spherical Neumann wave functions. F 120 MeV
llustrative results for the plane wave calculation are % “F I E
given in Figs. 3 and 5. We note that, in comparison with the = 2_ !
complete, coupled channel potential model computaisee o
below), use of the plane wave Green’s function overesti-
mates the degree of parity mixing in the deuteron ground
state. For parity-mixing in the scattering states, we also find F
a mismatch between the two approaches, though no systen 4f
atic pattern emerges as to the magnitude or sign of the dif- T e
ference. The problem may be particularly severe forige 20 40 60 80 100
and 3D, scattering states which, in the plane wave approach, E¢ (MeV)
are not automatically orthogonal to the deuteron wave func- g 9. The(a) total cross section arfth) two-body hadronic PV
tion [D). Although one might attempt to solve this problem asymmetry versus electron final energy, for 194 and 120 MeV inci-
by implementing orthogonality by hand, viz., dent beams and 180° scattering angle. The asterisk denotes the
position of the QE peak.

)

A
=

M P .
120 140 160

3q 3 _|3q 3 3q 3
°%1,°D2), =I"S1,°D0) = [PUDI*S, "Dy, (39 is determined by solving the Scltimger equation, where
u(r) denotes the radial wave functiok=+myE, and the
it is questionable whether thid hocsolution is rigorously  overall constant is fixed by the normalization condition
correct. For these reasons, then, we rely only on the coupleE’. .. |E...)=§(E'—E)--- . This task is eventually re-
channel potential model computation to determine thejuced to integrating a one-dimensional differential equation
nuclear PV contribution to the inelastic asymmetry. for the radial component and solving for the phase shift.
However, due to the tensor force, fde>0, states having
B. Potential model calculation quantum num_persL(,S,J)=(J—1,1,]) and (‘]+1’1’J). are .
coupled, requiring that one solve a coupled set of differential
Although theNN potential determined directly from solv- equations. The normalization of the radial wave functions is

ing QCD is not available, a variety of modern phenomeno-ixed by their asymptotic forms. For the uncoupled channel
logical potentials successfully filN scattering datdbelow problem, one has

350 MeV or so as well as deuteron properties with reason-

able x2 values. Here, we use the Argonngg potential Uy g(r—o)=r sin(kr+Lm/2+ &5, 5), (40)
(AV 1g) [21].
The PC scattering wave function, where §;, s denotes the phase shift. For the coupled channel
problem, the convention introduced by Blatt and Biedenharn
- 2mykug (1 i i ifie(1) - o(2) ixX-
(FIE.L.S.I M, T.My)= nK UjLs( )yMJ My (BB) [22], with two eigenphases shif&", {2 and a mix

r Xt ing parametek;, is adopted29]. The two orthogonal, real
(399  solutions are
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FIG. 10. The ratio of asymmetry due to two-body hadronic PV
andZ® exchange, versus final electron enerp: 194 MeV beam
and(b) 120 MeV beam. Both kinematics are the same as in Fig. 9

uM, cose,sin(kr +(J—1) w/2+ 8§Y)
W JI=e)=r o @y |

U2y, sine;sin(kr+ (J+ 1) w/2+ 85~)
(41)

u®,_ —sinesin(kr+ (J— 1) 7/2+ 6))
W2y cosesin(kr+ (J+1)m/2+ & )(42)

It should be noted that while we will still refer to solution
1(2) as 3[J—-1],(][J+1],) state, it contains a component
involving the other channel. We have verified our calcula-
tions by reproducing the experimental phase shifts.

The deuteron wave function,

w(r)

- u(r)
(r|D,M ;)= TyZAOJlJF Tyi”;l X9, (43

PHYSICAL REVIEW C 67, 035501 (2003

is obtained by solving the eigenvalue problem for binding
energyEg andD/S ratio. The asymptotic and normalization
conditions are

u(r<l)oer, u(r>1)orkg(yr) (44)
w(r<i)ecr3,  w(rs>1)ork,(yr) (45)
f dr[u?(r)+w?(r)]=1. (46)

Although one can follow a similar strategy and obtain the
PV wave functions by the Green’s function method men-
tioned in previous subsection, it is not straightforward to do
s0; the unperturbed wave functions are too complex to allow
one to obtain analytical results as in the case of plane waves.
Therefore, following the same approach as in Rél, we
directly solve the inhomogeneous equation, E3).

The basic idea is to solve the problem twice, once with
the “source” term off(thus a homogeneous equation as solv-
ing the PC wave functiorand then with the source term on.

A general solution for the inhomogeneous equaﬁb@,, can

be expressed as a linear combination of solutions for the
homogeneous equation, called the complimentary solutions,
(i), plus the particular solutionj. Therefore, in order to
obtain the particular solution,

I=g= 20 i), (47
the complimentary part has to be fully subtracted. Thus, we
must determineq;, i=1...N, N being the number of
coupled equations.

In the case of solving scattering wave function, the

asymptotic behaviors of bot}bg and ), can be expressed as
linear combinations of incoming and outgoing spherical
waves. While the interactions cause phase shifts of outgoing
waves, the incoming waves are not altered. This observation

tells us that,, the parity-mixed component induced by the
PV NN interaction, should not contain any incoming com-
ponent. Using this resully; are the solution when the in-

coming wave components Hafg andy(i) completely cancel
in Eq. (47).

Except for 1S, and 3P,, which can only be mixed into
each other, all the other uncoupled stafe,;_, could have
mixtures from 3L—1], and 3[L+1],_ states. For the
coupled states’[L=J—1]; and 3[L=J+1];, both mix to
133,. If the mixture is an uncoupled state, and we have

Veae ikr-Lm  p glki-Lm) (48)
TﬁgHC e—i(kr—Lw)+d ei(kf-L?T)' (49)
then
~ o~ C~
=g~ e (50

When the mixtures are coupled, a two channel calculation is
needed. If one has

035501-9



C.-P. LIU, G. PR'EEAU, AND M. J. RAMSEY-MUSOLF

do/dQdE? (nb/sr MeV)

TS0 160

w
T T

o
T T

do/dQdEZ (nb/sr MeV)
(5] »

i
Ty T T

%0 100

90
E¢ (MeV)

PHYSICAL REVIEW C67, 035501 (2003

10

)
ALR

10®)

(4]
LR

A

920 1-00
E¢ (MeV)

FIG. 11. The same plots as Fig. 9 with four average detector angles of SAMPLE experitaeh6.5°,(b) 154.0°,(c) 145.9°, andd)
138.4°. The left panels are for tite,= 194 MeV and right panels for thE,=120 MeV case.

- a(i,1)e_i(kr_(J_1)7T)+b(i,1)ei(kr_(‘]_l)77)
be(i=1,2)— a(iyz)ei(kr(J+1)w)+b(i,2)ei(kr(J+1)7T)>’
(51
- C(i,1)e7i(kl’f(J71)7T)+d(i,l)ei(krf(\lfl)ﬂ')
l/lg(l_1'2)_><C(i,2)e—i(kr—(J+1)7T)+d(i’Z)ei(kr—(J-#l)ﬂ'))’
(52
then
U=1g(1) = ar(1)Pe(1) — ax(1) e (2) (53)
=g(2)— 1(2) Yre(1) — 2(2) Ye( 2) (54)
with
(al(i) (a(Ly a(2,1))1(c(i,1))
ar(i)] \a(1,2 a(2,2 c(i,2)) 9

Various criteria exist for testing the numerical solutions:
(i) they should satisfy the differential equatiofii) they
should be independent of the initial conditions used to inte-
grate the differential equatiorijii) they should be propor-
tional to the source term, i.e., if the source term doubles, the
solution should also double. These conditions are employed
to make sure we obtain the correct solutions.

As for the parity admixture of deuteron, it is determined
using the same procedure. Since one is dealing with a
negative-energy state however, the asymptotic behavior is
given by a linear combination of modified spherical Bessel
functions,i| andk, . The physically realistic solution is ob-
tained by completely subtracting the component, because
it diverges ag increases.

IV. RESULTS AND DISCUSSION

First, we compare the two approaches discussed in Sec.
Ill. Figure 3 shows an example of the comparison between

Note that all the coefficients here are complex. This implieghe plane wave scattering states and those obtained from the
that the mixed wave functions are also complex. However, irpotential model calculation@n our case, it is AVg). Though
our framework, only the real part will contribute to the re- atE,.;=1 MeV, the ®P, solutions look almost the same, the

sponse functioW"V(?) and, thus, to the asymmetry.

plane wave'S, state differs from the more realistic solution
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E T FIG. 13. The breakdown of various hadronic PV contributions
0 p-r == — T e to the asymmetry in the threshold electrodisintegration region,
10° 10° 10" 107 102 whereD, F, and MEC refer to contributions from deuteron mixing,
2 2,2 i ixi i
Q* (GeVd) final state mixing, and PV meson exchange currents, respectively,

and the solid line gives the total.
FIG. 12. The asymmetries due to hadronic PV @idxchange
versusQ? in the threshold electrodisintegration region, with small,
fixed np relative energies. Ref. [1] with parametrized nucleon form factors, shows the
expected proportionality t@?. The curve for hadronic PV
shows a 0.05% correction ta{% at Q?=0.1 and a 0.3%
by a large phase shift as well as in its radial shape at smafiorrection atQ®=0.04. We note that these results are con-
distances. Note that the latter difference is important becaus@istent with simple scaling arguments as E2f)). Although
the PV NN interaction is very sensitive to the short rangethere is some enhancement #&f3 asQ? decreases, even at
behavior of wave functions. Therefore, the plane wave apQ?~0.01, near the threshold for QE kinematics, the correc-
proximation is not adequate. Figure 4 shows the PV mixturesion is less than 5%.
for these 'S, and 3P, states,®P, and 1S,, respectively. A detailed breakdown of various hadronic PV contribu-
They are similar to the results of RdB], which were ob- tions is shown in Fig. 8. The deuteron mixing, rather insen-
tained by using Reid soft-core potential, but differ slightly in sitive to theQ? of the explored region, is the dominant con-
magnitudes. For the deuteron mixing, the, state is in- tribution for Q?=0.03. Its correction tmﬁ; atQ?=0.1is
duced only byp andw exchanges4T=0), while the®P;  ~0.1%, and 0.3% af?=0.04. These values are consistent
is induced dominantly by ther exchange; both results are in the order of magnitude with the results of Ref0], which
plotted in Fig. 5. Also shown by the dotted lines in the sameused Bonn potential to calculate the PC wave functions and
figure are the solutions of the plane wave Green’s functionthe plane wave Green’s function to calculate the parity mix-
Though these curves are similar in shape, the potential mod&lre in deuteron. On the other hand, the final state mixing
calculation gives smaller amplitudes and different small- and PV meson exchange currents, though comparatively
radial dependence than plane waves. From now on, we onlgmaller, do have a combined contribution which could be as
present results from the potential model calculation whichlarge as half of the contribution from deuteron mixing for
are more realistic. Q?=0.03. They are also more sensitive @ and become
As the impact ofG{(™=Y on A is more important at important when approaching the QE threshold.
backward angles, we first examine the extreme case: Away from the QE peak, the dependence of the cross
=180°. Subsequently, we present results relevant t&ection and asymmetry on final electron energy are shown in
SAMPLE kinematics. The maximui®? we consider is 0.15 Fig. 9 for 194 and 120 MgV beams. Since the scattered elec-
(GeVic)?, and the saturation behavior shown in Fig. 6 justi-trons are detected via thee@nkov radiatior{the threshold
fies the truncation of the sum over final scattering states ds about 20 MeV, scattered electrons with,< 150 and 100
total angular momenta;<7. MeV, respectively, are detected. However, judging from the
Figure 7 indicates how the backward angle cross sectionross section plot, only regions about the peak energg0
and asymmetry vary withQ? ranging from 0.01 to and 10 MeV, respectively, are important for these two cases.
0.15 (GeVkt)? at the QE peak. It is clear that the asymmetry When these asymmetries are further plotted as rati@éz,ﬁq
due to two-body hadronic PYplotted with a magnification as shown in Fig. 10, we observe that the correction could
of 100 is insignificant compared with the contribution of become as large as a few percent. Notice, however, that the
tree-levelZ® exchange plus radiative corrections, which in- corrections change sign roughly when crossing the QE ridge.
cludes nucleon anapole effects. The curve Z8rexchange Hence, corrections from these two regions cancel after inte-
asymmetry, plotted using the static approximation result irgration, thereby, keeping the total correction small. A similar
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feature was also found in the calculation of Ref3], where V. CONCLUSIONS

PC two-body effects were con&dgred. The theoretical analysis of PV electron scattering asym-
The setup of SAMPI;E expeonments actually cover the .y jeq requires that one take into account effects that may,
angular range from 130° to 170°, the average angles of thg, incinle, cloud the intended interpretation of an experi-
detectors are: 138.4°, 145.9°, 154.0°, and 160ZH. The  menta| result. In this study, we have analyzed the effects of
corresponding cross sections and asymmetries are plotted Jyity violating NN interactions that give rise to a nonvan-
Fig. 11. The general trend is that when the angle gets smallq@hing inelastice-d asymmetry at the photon point. Our re-
the cross section becomes larger and the asymmetry becom@sits indicate that for the QE kinematics relevant to the
smaller. However, the overall behaviors are not too diﬁerenBAMPLE experiment’ these effects generate a neg||g|b|e
from the §=180° case. contribution to the PV asymmetry. Moreover, contributions
Summarizing these observations, we conclude that tharising from each side of the QE peak produce cancellations
two-body hadronic PV effects in Q&-d scattering are neg- when integrated over detector acceptances, thereby generat-
ligible. However, the situation changes in the kinematic reing an additional suppression of the nuclear PV contamina-
gion of threshold disintegration as shown in Fig. 12.@& tion. From this standpoint, then, the PV QE asymmetry pro-
~10"4(GeV/c)?, these two are comparabl80], and had- Vvides a theoretically clean environment for studying
ronic PV dominates when moving toward low®F region.  €lectroweak nucleon form factors, such @ " (Q?).
Here again, the magnitude % at which the hadronic Pv On the other hand, PV effects in the threshold region can
andZ%-exchange contributions are commensurate is roughlp€come dominant, with asymmetries as large as a few
what one would expect based on the Simp|e Sca”ng arguz< 0.1 ppm Hence, near-threshold eleCtrOdlSl.ntegratlon or
ments of Eq.(30). The detailed breakdown given in Fig. 13 photpdlsmtegratlon_ of the _deuteron could provide a tool for
shows that the final state mixing has the most important conPoPing the PVNN interaction.
tribution and that PV meson exchange currents are also sig-
nificant. The deuteron mixing, still rather independenQ3f ACKNOWLEDGMENTS
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