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Analytic proof that the quark model complies with partially conserved axial current theorems
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The Weinberg theorem, the Adler self-consistency zero, the Goldberger and Treiman relation, and the
Gell-Mann, Oakes, and Renner relation are proved analytically in full detail for quark models. These proofs are
independent of the particular quark-quark interaction, and they are displayed with Feynman diagrams in a
compact notation. | assume the ladder truncation, which is natural in the quark model, and also detail the
diagrams that must be included in each relation. Off mass shell and finite size effects are included in the
quark-antiquark pion Bethe-Salpeter vertices. The axial and vector Ward identities, for the quark propagator
and for the ladder, exactly cancel any model dependence.
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[. INTRODUCTION However, the quark model suffered from the onset to ac-
commodate the low pion mass. The mass scale of hadronic
The pion was introduced by Yukawa in 1931 to accountphysics is of the order of GeV. The quark model needed a
for the strong nucleon-nucleon attraction which binds thdarge number of parameters in order to fit the low pion mass
nucleus. Yukawa was inspired by the Coulomb attraction irand to address pion creation and annihilation in hadronic
atomic physics which is due to the photon exchange interaadecays. It is clear that a light pion is natural in chiral physics,
tion. The pion was indeed experimentally discovered; it is avhile it is odd in constituent models. With the aim to cure
pseudoscalar and an isovector. The pion mads:  the important problems of pion ma 7], pion coupling 8],
=140 MeV andM 0= 135 MeV determines the range of the and vacuum condensaf8], chiral symmetry breaking was
nucleon-nucleon attraction and confirms the prediction ointroduced in the quark model. This paper continues the pro-
Yukawa. The analogy with photon physics went quite far.gram of implementing chiral symmetry in the quark model,
The U1) gauge symmetry is a crucial property of quantumshowing that the quark model also complies with some of the
electrodynamics. In hadronic physics there is also a symmemost famous PCAC theorems. In particular | address the
try, chiral symmetry, which is a spontaneously broken globatelation of Gell-Mann, Oakes, and Renng®], the
symmetry. In the chiral limitlimit of exact chiral symmetry  Goldberger-Treiman relatiofi0], the Adler self-consistency
the pion would play the role of the massless Goldstone bozero[11], and the Weinberg theorefi2].
son. The pion mass is finite but it is indeed much smaller | do not aim to derive new theorems here for pion physics.
than the mass scale of hadronic physics which is of the ordesince the pioneering work of Yukawa, pion properties have
of GeV. The expansion in the pion mass, together with thealready been understood through the techniques of current
techniques of current algebra, led to beautifully correct theoalgebra, thes model, the Nambu—Jona-Lasinio model, and
rems, the PCAGpartially conserved axial currertheorems.  chiral Lagrangians. The goal of this paper is to achieve the
Similar to the vector Ward identities in gauge symmetry, thesame perfect understanding of chiral symmetry breaking in
axial Ward identities constitute a powerful tool of chiral sym- the quark model. This understanding is not trivial in the
metry. An important parameter of PCACfig, which relates  quark model because the pion is an extende’] and com-
the pion vertex with the axial vertexX.,=93 MeV is mea- posite meson, composed of a quark-antiquark pair. Recently
sured in the electroweak pion decay, and it is also known aBjorken asked: “How are the many disparate methods of
the pion decay constant. describing hadrons which are now in use related to each
Other hadrons, including hundreds of resonances, werether and to the first principles of QCD?” Here the missing
also found subsequently. The large number of hadrons anthk between the quark model and the low energy unique
deep inelastic scattering led to the discovery of quarks and tfield theory of pions is investigated. This work clarifies what
QCD (quantum chromodynamigswhich is the currently ac- classes of diagrams are necessary to recover the pion theo-
cepted theory of strong interactions. QCD has not beemems in the quark model, and explicitly shows the role of the
solved yet, but it inspired the invention of the quark modelaxial Ward identity in the quark model. This is potentially
[1] in order to describe the bound states of quarks, which faluseful for the numerous hadronic processes that the quark
mainly in the classes of mesofigke the pion and baryons model addresses.
(like the proton. The quark model also uses confining po-  Moreover, it is important to stress that the quark model
tentials that are determined in lattice QCD. The success gfrovides an explicit prescription to address virtual pions with
the quark model relies on its ability to reproduce the wholeoff mass shell momenta. The quark model is suited to de-
spectrum of hadronic resonances, with microscopic interactscribe the virtual exchange of a meson with momentum
ing quarks. Moreover, the quark model is competent to exequal to the sum of the quark and antiquark momenta, and
plain microscopically the strong hadron-hadron elastic interdifferent from the momentum of the mass shell. The relevant
actions[2]. For recent coupled channel studies see Refsexperimental processes that | study here are the neutron de-
[3-5]. cay ands-7 scattering. In neutron decay a virtual pion is
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T T T tained in the largéN. (number of colorslimit of QCD [19].
" * K In particular the intermediate meson exchange is described
m T by the ladder series
n ™ , = : + H + A +...
(a) (b) )

FIG. 1. In(a) a m on mass shell is scattered by a virtuat where the dotted line corresponds to the chiral invariant
provided by a nucleon. i) a virtual pion, which results from a quark-quark interaction of vertéx and of local kernelC. As
weak flavor change in the incoming, decays into three pions. usual in the quark model, the vert¥xs color dependent and
Both (a) and (b) contribute to hadronic reactions which are mea-includes a Gell-Mann matrix?/2. The arrowed line corre-
sured in the laboratory. sponds to the Feynman quark propagator. In this paper the

direct coupling of three or four mesons is studied. | use the
produced by the nucleon. Moreover, the experiments use gchnique of dressing the corresponding Feynman loop with
least one virtual pion inr-7 scattering because two beams of g|| possible planar insertions of the quark-antiquark interac-
pions have not yet been scattered in the laboratory. Onfon, and to resum the obtained series in terms of the quark-
should acknowledge that it is possible to extract mass shelintiquark ladder. Again, the ladder is well defined for any
m-7 scattering parameters from pion-nucleon scattering angbtal momentum, and this includes off-mass-shell momenta.
form kaon to pion-pion decaji4], and that an improvement | also assume that chiral symmetry is spontaneously bro-
in data is expected in the new DIRACS] experiment at  ken in the quark model. This is the only assumption in this
CERN, which will soon be able to measure directlym  paper that goes beyond the minimal quark model. However,
scattering both on the mass shell and at the threshold. Neyhe phenomenological success of PCAC shows that it is cru-
ertheless there is also interesting data ferr Scattering off cial to include chiral symmetry in the quark model. There-
the mass shell. For instance, ther phase shifts are experi- fore, the vertex/ is assumed to anticommute with. Fre-
mentally estimated with the help of N— 7 N scattering  quently a vector vertex inspired in the gluon coupling is used
[16]. In a possible contribution tar N— 7 o N at thresh-  for v/, but other Dirac structures for the vertexcan also be
old, the nucleon provides a virtual pl@ff\' with offshellness also use([24]_ Moreover, the bare quark propagator
P2—M2=—-3.32M2 [see Fig. 1a)]. Another experiment is
K*—#" #* 7~ where the kaon provides a virtual pion [
with offshellnessP?— M2 = +10.78\2 [see Fig. 1b)]. So(k) = K+m+ie €

The quark model is usually understood with simple quan-
tum mechanics. Baryons are bound states of three quarksjust be replaced, in the computed Feynman loops, by the
mesons are quark-antiquark bound states, and both are stuttessed quark propagator
ied with the Schrdinger equation. The hadronic reactions
are also studied with coupled-channel equations, and the
couplings are computed with the resonating group method.
In this paper | choose to display the equations with the com-
pact notation of Feynman diagrams, following the simplify- where the functiong\ and B are nontrivial solutions of the
ing principles of Llewellyn-Smith in his proof of the Bethe- mass gap equation and include the scale of the interaction
Salpeter normalization conditiofil7]. This decreases the which is comparable td ocp. The current quark mass is
number of terms involved in the equations because the Feynmmuch smaller than the scalkqocp, and therefore it only
man propagator includes both the quark and the antiquar&ffects pertubativehA andB. In what concerns bound states,

S(k)= (4)

|
A(K®)k+B(k?) +ie’

poles, the degeneracy of chiral partners is broken, in particular the
7 is a Goldstone boson in the chiral limit. These basic prop-
[ iSuulB  iZowlp erties of the quark model with chiral symmetry have been

kem+ie ko—E+ie —ko—E+ie’ (1) understood for some time through covarig@,26 quark

models with the Schwinger-Dyson equation and through

whereug(k) andv (k) are the quark and the antiquark Dirac equal-time quark mode([$,11,8,27 with the mass gap equa-
spinors. The translation from the covariant Feynman notatioion, and therefore they are used as a starting point in this
to the nonrelativistic notations direct and exagtand is  paper.
based on Eq(1). Incidently the formalism of Feynman dia-  With the concern of deriving a general proof that the
grams applies straightforwardly to relativistic models such agjuark model complies with the PCAC relations, | follow in
the Nambu and Jona-Lasinio modl&B,19 and other models this paper the logical path of using the simplest PCAC rela-
with Euclidean space integratioh$,20—23 and also to co- tions as the necessary intermediate steps to arrive at the
variant models in Minkowsky spad@3]. rather technical proof of the Weinberg theorem forr scat-

The essential simplicity of the quark model resides in ustering. Sections Il and Il define the formalism of this paper.
ing only two-body and finitequark-antiquark interactions. This formalism is standard; nevertheless it is convenient to
This is equivalent to using only planar interactions in thedefine it clearly. Section Il reviews mesons as quark-
possible series of Feynman diagrams, which are also okantiquark bound states in the ladder framework. Section Il
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reviews the axial Ward identity which is crucial for the low- of mesons and the contact interactiofhe off-mass-shell
energy pion theorems. Sections IV and V apply the techvertex also includes the principal part of the ladder series.
nigues defined in Secs. Il and Il to standard PCAC relationsThe principal part contains the contact interaction and also
which have been extensively studied in the literature. Thigontains the infinite tower of excited states, which are a so-
checks the methods used in this paper. Section IV recovetstion of the bound state equation when the potential is con-
the relation of Gell-Mann, Oakes, and Renner. Section Mining. Extending the Bethe-Salpeter vertex off the mass
recovers the Goldberger-Treiman relation. Once the formalshell constitutes an economical method to include all these
ism is defined and checked, Secs. VI and VII explicitly studyeffects. The off-mass-shell vertex is well defined at least in a
the more technical PCAC relations. Section VI proves thasmall neighborhood of the pole.

the quark models possess the Adler self-consistency zeros. To compute the Bethe-Salpeter vertex, it is convenient to
Section VII proves that the quark models comply with therewrite the ladder in a self-consistent equation,

Weinberg theorem. The conclusion is presented in Sec. VIII.

::I I:: —— —p] :':: 6
Il. QUARKS, MESONS, AND THE LADDER = = 4 = . ©

The ladder series is a geometrical series which includes
bound states. A meson is a quark-antiquark bound state that
corresponds to a pole in the series. Outside the pole the ladReplacing Eq(5) in Eq. (6), and folding it from the left with
der does not describe asymptotic states; nevertheless laddér . the off-mass-shell Bethe-Salpeter equation is obtained,
exchange appears as a subdiagram contributing to the inter-
action of asymptotic states. Then the ladder includes both the P2 — M2
off-mass-shell exchange of mesons and the contact interac- DXP (1 — ) ,

tion term. A
| follow the usual convention of factorizing the pole and

the Bethe-Salpeter vertices. In the close neighborhood of a T = X-#__ »Xp

bound stateb, a poleM? occurs in the external momentum

P2, and the ladder obeys the spectral decomposition — /tr{xp(k)S(k + P/Q)X_p(k‘)

:D: A ey 7w M=2 T e xS(k - P/2)}
5)

)

where where 7 is both displayed as a Feynman loop and as an

PXoP integral. For compactness, the convention of representing in-
tegrals of propagators and vertices with Feynman diagrams
will mainly be used in the rest of the paper. The Idbps

is the Bethe-Salpeter vertex, or truncated amplitude, of dinite and proportional to the square of the scale of the inter-

meson, and the arrowed action. Neverthelesg will factorize from the results of this
— paper, which are model independent. At the mass-shell mo-
mentum, Eq.(7) simplifies to the standard Bethe-Salpeter
equation,
line represents a dressed quark propagétdrhe nonampu- PXP DXP (8)

tated amplitude is simply obtained with the prodL‘SthPS

Equation(5) and the rest of the paper follows the convention
where the momenturR# of the vertex flows inside the quark

Ioop, summing to the ou.tgomg_quark gngb_P ha? the op- To check that the off mass shell E(y) Bethe-Salpeter
posite total momentum, in particular P~ is negative.x, ,  equation is correct, | derive from it the normalization condi-
can also be obtained fromb with the charge conjugation tion [17] for the Bethe-Salpeter vertices. Folding from the
transformationyp, is a function of the relative momentukn  fight With x_p, Eq. (7) becomes

of the bound pair of a quark and an antiquark.
In what concerns the total four-momentu®t, the bound X+ »Xp X___ PXp . (Pz 2)
; : : : — =1 - M
state vertex is straightforwardly defined in the mass shell,
which corresponds to the exact momentum of the gede ©)
=M2. Nevertheless with Eq5) it is possible to extend the

definition of xp,, to @ small neighborhood of the pole, up o gng the correct normalizing condition is obtained when Eq.
first order in the off-mass-shell quantify?— M2 In dia-  (9) is derived byd/dP*. The derivative of the left-hand side
grammatic languagehe ladder includes both the exchange is
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2 () (T o = = o 52}_1‘42 Y
(- X)) 2 (TDX)

—— Ill. USING THE AXIAL WARD IDENTITY
X~ 2 (1) DX XPE i( ) »xp
ap;t + apy, . .
(10 When chiral symmetry breaking occurs, the mass gap

equation has a nontrivial solution. The Schwinger-Dyson
and this provides a general normalizing condition for theequation for the full propagator is
vertex. Frequently mass shell vertices and local kernels are
used. Then the Bethe-Salpeter equatiBncan be used to
precisely cancel the terms with the derivative of the vertices
xp and y _p, and the derivative of the kernel also vanishes ) . ]
because the kerndthe quark-quark interactionis local. ~ Equation(15) is also known as the mass gap equation be-
With these cancellations, the derivative of Eg) is simply ~ cause the initially almost massless gap between the quark
and antiquark dispersion relations is increased when the con-
XP§ 8 ( - ) »XP . stituent mas$/ = \B?/A? is generated. Because the vertéx
Opu \ T =21 P# . (11) includes the Gell-Mann matrices, the tadpole does not con-
tribute to Eq.(15). Multiplying Eq. (15) right or left with s

o . . n mming | t
This is the standard normalizing condition for mass shella dsu g leads to

Bethe-Salpeter vertices with a local kernel. S(ky) " Yys+ ysS(ky) Tt
The off-mass-shell equatiofY) is particularly simple in

ety [ 9
S(k) " =S5 (k) +i —(277)4/C(Q)V5(k+Q)V- (19

the case where the bound state is a low-energy pion. In this 1 1

case the expansion in the exterR4l and inM , can be used, =So(ka) 75+ v5So(kz) N ESCIMESRE)
becauseM , andP# are much smaller that the characteristic Sk Vv 16
scale of meson physics, sa\3cp. The off-mass-shell cor- X5t ysS(ka+ )1V, (16)

rection only starts contributing to the Bethe-Salpeter equ
tion (7) at the second order d&#? andM?. Therefore, up to
the first order infP* and inM ., the vertexyp is formally the _ d*q

same functiorof P#, both for mass-shell and for off-mass- 1'a(K1.K2)=va(ky,kz)—i f (ZT)MC(Q)VS(MJF ) alky
shell pions. For instance, the momentum expansion up to

first order inP# of the pion Bethe-Salpeter vertex +q,k,+q)S(k,+q)V, 17

&yhich is the Bethe-Salpeter equation for the vertex

xp(K)=x°(k)+ P“X}L(k) +o(P*P"), and this show$26,7,24,28,2Ythat the ladder approximation
for the bound state is consistent with the quark self-energy
X}L(k)={F(k)y#+ G(k)k, k+H(K)[v,.kl}ys (120  equation in the rainbow approximation. Both approximations
are equivalent to the planar diagram expansion, which is
is also correct, and formally the same, for any small off-characteristic of the quark model.
mass-shell momentum*. In particular the expansion iR* In the Bethe-Salpeter equatioh7), the bare and dressed
of the Bethe-Salpeter equati@8) yields for x°(k) and for  vertices are defined by the same axial Ward identity
the components oﬁ(k) four equations totally independent

of P#. x%(k) will be exactly derived in Eq(23). Impor- T (ks ko) =S (ky) y5+ ¥5S™ k),
tantly, the four components ¢f,. will only contribute to the . 1 (18
PCAC theorems of this paper through the pion decay con- Ya(K1,ka) =S5 (Ky) vs+ 755 “(Ko).

stantf..,, which is defined by the trace At this point it is important to clarify that in the chiral limit

tr{(SxS)py*y®t=v2f P~ (13 of m=0, the bare vertexy, is essentially the momentum
contracted with the bare axial vertex'ys, and in the limit
wherev2 is a flavor factor. In Eq(13) and in the rest of the  of vanishing momentur® ,, the vertexy, is essentially the
paper the traces are assumed to include the momentum intedrrent quark mass times the bare pseudoscalar vegtehn
gral and the sum in Dirac and color indices. The importantgeneral,y, is a combination of the axial vertex and the pseu-
result of this low-energy pion discussion is that E&3) is  doscalar vertex. In what concerns the dressed vdrigxit
also correct outside the mass shell Rt#M? when a vir-  will be used up to second order in the total momentum, and
tual intermediate pion is used, providing the momenfth in general the Dirac structure df, has four components,

is small. similar in structure to the four components of the pion Bethe-

| now derive a second important relation, which statesSalpeter vertex12). Therefore this vertex cannot be reduced
how to include(or remove a ladder in the vertexp. Fold-  in the quark model framework, neither to a pure pseudo-
ing Eqg. (5) from the right with the vertexyp, and dividing  scalar term nor to a pure axial vector term. Nevertheless in
by theZ loop, the rest of this paper, for simplicity and because they are
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defined with the axial Ward identit{18), y, will be called axial vertexI'y, becomes homogeneous and is thus identical

the bare axial vertex anll, will be called the dressed axial to a homogeneous Bethe-Salpeter equat®nfor a pion

vertex, although they possess a more general Dirac structureertexy .r(k) with vanishing mass. In this limit the pion is a
The bare axial vertexy, is computed from the bare quark massless Goldstone boson, and the pion Bethe-Salpeter ver-

propagaton(3): tex is proportional to the dressed axial vertex, and to the
dynamical quark masB(k),
(P—2m)
YAT T s P=ki—kj. (19 B(K) 1
xo(K)=——vs=5—T'ao(k.K), (23

va IS the particular part of the Bethe-Salpeter equation for
the vertex(17), and it vanishes when the current quark masswheren , is the norm of the pion vertex, which is defined by
m is small (chiral limit) and at the same time the total mo- Eqg. (11). This can also be checked by the relation
mentumP# of the vertex is small. On the other hand, the

dressed vertek 5 is computed from the dressed quark propa- B(k)

gator (4), VS(k)B(kWsS(k)VZVWV%, (24)
A(ky) ki —A(ky) Kk, —B(ky) —B(ky) which explicitly verifies that the integrand of the Bethe-
Faky ka)= i Vs- Salpeter equation for the pion vertex, in the limit vanishing

(20) current quark mass and vertex momenturR*, is identical
to the integrand of the Schwinger-Dyson equation for the
I is finite, provided spontaneous chiral symmetry breakingscalar componenB of the dressed quark propagator. It is
occurs in Eq.(15) to generate a dynamical mass in theimportant to remark that outside this limit E@3) does not
dressed quark propagator. For instance, when the total merold, but the difference between the pion vertex and the axial
mentumP =k, —k; of the vertex vanishes, the vertex is sim- vertex only starts to contribute at first order in the expansion
ply identical to 2 B(k) ys, whereB(Kk) is a finite solution of  in m and P#,
the mass gap equation.
For simplicity the flavor is not yet included. Flavor will 1
only be explicitly included at the end of Sec. VII. The isos- xp(K)= mFAP(kHO(PM’m)' (25)
calar axial Ward identity must include the axial anomaly,
which is crucial to the (L) problem. Nevertheless the pion  Substituting the spectral decompositi@b] of the ladder
is an isovector, and in the coupling of a pion | do not need ta5), Eq. (21) implies that
be concerned with the axial anomaly.
I now derive two powerful relations which involve the
axial vertices and the ladder. After iterating the Bethe-
Salpeter equatiofl7) for the dressed axial verteX,, and

i
La= XPpz_ 2 tr{x - p(SYaS)p},

including the external propagators, a first useful relation is 1 [
derived, =5in_ I‘A‘F,z_ Mftr{(SXS)fP'}’AP}- (26)
SIWS = ' ‘ P (21) where only the first nonvanishing terms in the expansion in

P# and inM _, is retained. In particular the pion vertex in the
left-hand side was simplified with E¢23). The leading re-
To derive some of the PCAC proofs it is crucial to use asult is

second relation which is an extension of Ef8), t{(SxS) _pya}=2n (P2 M2) 27)
-P AP - T - /"

]: Y5 Y5 It is also convenient to extend this result to the case where
= ::[l:: + ::[I:: different external momenta are involved i8xS) and iny, .
A detailed momentum analysis of Eq4.3), (19), and (27)

(22)  ghows that the norm_=if . /v2 and produce$28] the de-
and this constitutes a Ward identity for the ladder. This iden-sired trace:
tity is derived if | expand 27] the ladders and substitute the )
vertex in the left-hand side. Then all terms with an interme- I (SxS)e, ¥ap } =~ 2n+(Py1- P+ M7). (28)
diate ys include the anticommutatdrys,V} and this cancels
becausdhe interaction is chiral invarianandthe kernel is  Using Eqs(14), (19), and(28) when the momenta vanish, an
local. Only the right-hand side survives. important particular result is derived:

-

C’?u

—f2pp2
IV. THE GELL-MANN, OAKES, AND RENNER RELATION 2mtr{S} =M, (29

In the limit of vanishing current quark massand vertex where —tr{S} is the quark condensa(q/_/df). Equation(29)
momentumP#, the Bethe-Salpeter equatidd?) for the is the relation of Gell-Mann, Oakes, and Renf@}. In the
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_ e~ N— P+ 7", of the pion propagator, and of the electroweak
_ € D, decay of the pionm~ —e™ + v, [26]. The axial part of the
d electroweak decay can be measured, and | just have to com-
pute the coupling oP{y, ys to a quark line of the nucleon.
P N T'his is included in the bare axial vertex , and it is conve-
nient to compute

7

FIG. 2. This figure shows the microscopic description of the YA
weak decayN— P+e™ +7v,, where ad quark produces a quark u d U Xm d
and two leptons with the four Fermi weak coupling. The bare dia- P N P@N i {:}
gram is depicted iti@) and the corresponding fully dressed diagram = —_— Xnr.
is depicted in(b). (b) includes a full ladder, which is represented P? — M?
with a full box, and the series of interactions of the diquark which
is not coupled to the leptons, which is represented with an empty (30

circle. . o .
Summing the contribution of the three quarks internal to the

_ proton and the neutron, the left-hand side of E39) is iden-
chiral limit the quark condensatg/y) and the pion decay tical to v2M,ga/i. This is defined in nuclear physics from
constantf, remain constant. The relation of Gell-Mann, the Dirac equation for the nucleon, which is considered as a
Oakes, and Renner shows that the pion nMssis propor-  Dirac fermion. The vertexy, can be rewritten askeys
tional to y/m. This relation can also be extendg@9—31 for  + vskn—2mys)/i, wherekp is the momentum of the quark
arbitrarily large current-quark masses, and this provides, fothat flows into the proton an#ly is the momentum of the
instance, an intuitive understanding of modern lattice simuquark that comes from the neutron. Summing the contribu-
lations. tion of the three quarks to this amplitude, and interpreting the

nucleon as a Dirac particle, the left-hand side of B%) is
identical to the matrix element of Peys+ ys5Py
V. THE GOLDBERGER-TREIMAN RELATION —6mys)/i. Continuing to interpret the nucleon as a Dirac

The Goldberger-Treiman relation provides a convenienParticle the proton and nucleon slashed momenta can be re-
exercise to resum the series of planar diagrams, to descritfdaced, respectively, by and Mp. The current quark
the intermediate virtual meson exchange with the ladder, anftassm and the mass differendd y—Mp are both of MeV
to check that the pion vertex can be used outside the mag§der and negligible when compared with the nucleon mass.
shell. The weak decay of the neutron—p+e +7, is  1he computation of the left-hand side is completed with the
computed with Feynman diagrams that include the fourmatrix element ofys in the Dirac nucleon, which ig, ex-
Fermi coupling of two quark legs with the electron and thecept for a possible phase. In what concerns the right-hand
neutrino leg. The bare loop of Fig(&@ does not correctly ~Side of Eq.(30), the sum in the three internal quark lines
account for the strong interaction. A complete set of inserroduces the coupling of the pion to a nucleon. We do not
tions of the quark-quark potential must be used. However€ed to be concerned with the interactions in the remaining
three classes of insertions are included from the onset. THdiquark because they also dress the pion coupling to the
vertex V of the quark-quark potential is assumed to be al-nucleon. Excluding phases, E@O) is then
ready renormalized and should not be further dressed. For
instance, renormalizing diagrams f@rhave not been used
neither in the mass gap equatiti®) nor in the ladder series
(6). The propagato&is also dressed; it is a solution of the

mass gap equatiofly). Moreover, the Bethe-Salpeter verti where P{' is the momentum that flows in the pseudoscalar

cesy of the proton and neutron are already dressed; they arg o . . .
solutions of the three-body Bethe-Salpeter equation. Howl—adder’ V2970 is the coupling of the pion to the nucleon

ever, the four Fermi coupling is not dressed from the ons,egh(?‘f2 ISa flavor factoy, and the pion decay constahf is
and it remains to be dressed. A detailed inspection shows tthfmed V.V'th the trace€l3) and (28). . .

the full series of planar diagrams can be resummed in a lad- Equation(31) relates the nucleon decay_ with the pion de-
der series that dress§32—-34 the Fermi coupling, and in cay constant, the famous Goldberger-Treiman relzthd),

interactions in the remaining diquark of the nucleon. The

ladder series is represented by a box in Figp) 2The inter- Mnga=Gnmf (32)

actions in the remaining diquark of the nucleon are repre-

sented by an open circle in Fig(; however, they will not which is correct except for a small discrepancy of 6%

affect the results of this paper. [35,36]. This experimental verification suggests that the pla-
When the ladder in Fig. (®) is replaced by the spectral nar series of diagrams is acceptable, that the pseudoscalar

decomposition of Eq(5), the dressed Feynman lodp fac- ladder and the pion vertex can be used outside the mass

torizes in the product of the coupling of a nucleon to a pionshell, and that the expansion Rt andM _ is convergent.

1
2MngA=ﬁgwnnWV7H(P§—Mi), (31)
1 L
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VI. THE ADLER SELF-CONSISTENCY ZERO diagrams which would dress the quark-quark potential vertex
Adler showed 11] that in the chiral limit ofm=0, pions V. the quark propagato$, or the meson vertexe,. The

of vanishing momentum decouple from other mesons on thintermediate Iadders_include both a direct contact term and

mass shell. In this limi{see Eq.(23)] the pion vertex is the pole corresponding to meson exchange. There is also

proportional to the dressed axial vertex,aTl 5. Therefore | eV|denqe that the hadron-hadron coupled-channel equauons

simply have to show thdt , decouples from loops with me- Should include one meson exchange in ¢henodel[37], in

son vertices. This decoupling is straightforward in a three!n® Nambu and Jona-Lasinio modab)], in the constituent

meson coupling, qqark moo_lels{4,5], a_nd in a Euclidean quark modgt]. In
microscopic calculations the Feynman loop of a four-meson

I‘AP1 coupling, which dominates for instance far# scattering,
f’: 5 2 2 9 must therefore include inside the box a vertical scalar ladder
X 3PS X2pP, — Py — M3 Py — M, v and a horizontal scalar laddpt].
113 11y The main step to get the zero consists in decreasing the
FAf number of vertices using again Eq44) and (22). For in-
: stance | find that the second diagram of
Xspa‘::[ ol L PX2P g &0
S:I |
XPy 1 PAP]
P = M} xsp 1A pXer, G [ %9
=— 3 XPs XP,
ZIg
P2 — M2 € »V5p X2P,
422 X3Ps e is identical to
ZIQ
=0 ) . Py Ly |
33y B —M; _PXP _
and this vanishes when the mesons of vegxand y; are iy XPs S
on the mass shell. To get this result | used Efjg) and(22).
In the three meson coupling of E@3) the Feynman loop is  XP,V5p, X Py
empty. Any planar insertion of the quark-quark interaction C::DXPQ P22 - M22 C::l: 5P, X Ps
would produce double counting, because the vertices are a +
XPs 11y XPs
ready dressed.
However, the three-meson coupling is not the best one to (36)

find the direct evidence of an Adler zero. Because the me_-l_h first di f E(34) | ted in th
sons of vertexy, andy; couple to a pion, either the coupling e first diagram of Eq(34) is computed in the same way.

is derivative or the mesons 1 and 2 have opposite parity. | he crucial step consists in realizing that in the sum of the

the case of a derivative coupling the vanishing result ighree diagrams of E(34), the empty loop, without interme-

trivial, and it is not a PCAC result. In the case of oppositediate ladders, exactly cancels due to Bd). The sum of the

parity, and because chiral symmetry is spontaneously brokeﬁr,‘ree diagrams of E¢34) is exactly equal to

the mesons 1 and 2 are not expected to have the same mass. Xp
3 —

Therefore, either 1 and 2 are not both on the mass shell, or 2 A2
the pion momentum in not vanishing, and Eg3) does not u C: DXP4’)’5P1 +

apply. 114 XP

The four-meson coupling is more interesting than the XPs —
three-meson one. If two pions are coupled to two identical P22 - ]\/[22 C: nysplxp2 _
mesons, then all four mesons can be on the mass shell. In the sm— L =0

coupling of four mesons, the planar diagrams must be in- i1y XPs
cluded, and they can be resummed in two different interme- (37)

diate ladder exchanges, _ )
and this vanishes when the mesons of veig»xand y, are

XP. FAPl on the mass shell. Although poles occur in the remaining
intermediate ladder in Eq37), they are not expected to re-
p. — Lap, xp, Tap side, say aP5=M3, because,ysp, has the opposite parity
é__: of x,, and because chiral symmetry is spontaneously bro-
XP3 XP, + Xp  XP AP XP, ken.

(34) The same method can be used to show that the gén
couples from any number of mesamrs the mass shell. This

where the empty box is subtracted to cure double counting. tonstitutes a Ward identity for the meson couplings. The

again follow the prescription defined in Sec. IV of excluding quark model complies with the Adler self-consistency zero.
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VII. THE WEINBERG THEOREM

APl
The four-pion coupling, which dominates low-energy
scattering, is the ideal process for which the Adler self- — I1AP1 Py FAPI
consistency zero applies. To find a nonvanishing contribu- {
tion, the Feynman loop that extends E§4) must be ex- Ps 1:4132 + XPs — AP, Xpy lap, o
panded up to first order iR;- P; and inM2 The result is a (42)

beautiful algebraic expression that was flrst derived by Wein- > )
berg. After the original work of WeinberfL2], the theorem  PIUS, with factor (2n ;)" (two permutations
was also derived with Ward identities for the pion fie[88]
and with a functional integration of quark39]. | now prove
that thew-7r scattering theorem of Weinbefd?2] applies to r r
guark models with chiral invariant quark-quark interactions, . AP XPs 4P
completing in full detail an analytical proof that was recently :::3
outlined in Refs[4] and[5]. Laelxe + Tup, = Xxp = Tam Xp,

The most technical task of this paper consists in comput- (42)
ing independently of the quark modelnd up to orderT
andP;P; in the 7 mass and momenta, the Feynman loop

A Py

I now compute these diagrams up to the ordePpfP; and
Mi, starting with the terms with move verticgs;, Wh|ch

are closer to the ones computed in Sec. VI.

XP, P,
XP: — Py XP: XPy A. The xI'axT 4 amplitude
{ : ' ' : ) C:::X:D Here | compute the diagrams of E@2). The first steps
xpWJxp t XPs — XP, — XPs XP, are identical to the ones of Sec. VI, and the diagrams are

identical to the ones of Eq37) except that now the Bethe-
(38) Salpeter vertexp, is replaced by the axial verteE(AP ,
3

wherey is the Bethe-Salpeter vertex of the pion. The subin-
dex P; accounts for an external momentum flowing into the

loop. P} - M C: [TPXPYsPy +

To get the loop(38) up to orderP;- P, andM?2, at most i1y XP
two full Bethe-Salpeter verticeg are needed. The other two P
can be approximated bly,/(2in,), according to Eq(25). 2 Af2 ]
Expanding the foury, which are respectively equal to ul (;_:3751’1)@2 ,
Tal(2in,)+[x—Ta/(2in,)], up to second order iny iZy APs
—TI'5/(2in,) and regrouping the sum, one finds that the am- (43

plitude of Eq.(38) is the sum of four classes of terms. Each
class includes a sum of the possible cyclic permutations o
the external momentR,, P,, P3, andP,. The sum of the

\fvhere it is convenient to use E@.4) to include the ladder in
the adjaceny.,,

four classes is identical to, with factor 3 timesig2) ~4, P22 _ Mz P2 M2 B S:l _
Tap Z oz e [L0] [
1 PAP3 L
Lap, — Lap, Cap, Tap g1
; : ~$3 Cr:? x| [ Ewere, (44)
PAPz APy — APy “AP, + FA;";; L 3
(39 . _ .
and to apply the Ward identit{22) to the axial vertexX',, ,
. . . ., -3 . 3
minus, with factor 2 times (id1,)) ~° (four permutation p2_p2 ’75P3XP4’75P1C:)XP2
iZ
Lap
4 P2-M2 P}-M?2 XP475P1C::’:}XP275P3
xp — Lap xp Tap i
o $br C;4$3 ~ Cr":zr.’) L Bp=mz XB Vs X sy
AP, AP2 AP, APy tAR iz
(40) p2-M2 p2-M2 V5P X P j::j75P1XP2
+ =7 i )
plus, with factor (2n,) 2 (four permutations (45)
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where this result is exact. Only the contribution up to orderUsing again the Ward identit§22), and removing the higher-
second ordeP; - P; or Mf, needs to be retained. In E@L5) order cases where the ladder is scalar, Bd@) simplifies to
there are two classes of diagrams. The second and fourth

diagrams have scalar or vector verticegs, and therefore

the ladder is not a pseudoscalar and is not able to cancel the _ P-M2PI-M2 XP?»C:
higher-order factof(P5— M2)/i Z][ (P5—M?2)/iZ]. The first =g g

and third diagrams, with a pseudoscalar verjgxalready

[ ] »XP. V5P V5P,

have_a_ factor P2—M2)/iZ of second order. Therefore the i PP-M2 XP4C:_ED75P1'Z4P2’Y5P3
remaining trace {rysx ysSxS} only needs to be computed at + ﬁ—‘*—iz L
zero order where this trace is simply the constarnwhich
was defined in Eq(7). The final result up to second order is :
2 2 2 2 + —3—P2._M’% S XPs :':375&75131%5
P5—MZ+P5—M2 T 2
: . (46)
I YA pg B »V5P, AP, V5P;
B. The yxI'al' , amplitude 2fn 2fx ’
Here | compute the diagrams of E@1). Again the first (49

steps are similar to the ones of Sec. VI, and the diagrams are
identical to the ones of Eq(37) except that the Bethe- where the ladders can all be reabsorbed in vertices,
Salpeter vertexp, is replaced by the axial vertdx,, . In

2

the second diagram of Ed41), the axial vertexl“AP is p2_ M2 i
2 4 T
adjacent to the vertek,, and Eq.(21) substitutes for Eq. =~ t{(SxS)e.xe }+ 57 tH(SxS)e,va- }
1 m
(14). The equation similar to Eq37) is now ) ) )
i i
XPs — - 2f tr{(SXS)P3YAP} 2_f7T2_f7Ttr{(SI‘AS)P47A7p2}
P2-pm2 : PXP, V5P
T Lap, — :P4_Mi+P4'P2_M727+_P3‘P2_M37__Mi
XPy - i i i i
b’YSPl%E 2, p2 2
+ Xp = (47) _ P3+Py+ Py Pyt Ps- Pyt Ps-Py—2M

i z, (50)

where the last term is already proportionalyt)s;)P so it only
2

_and this is the final result of Eq41) up to second order.
needs one of thg to produce a term of second order. So in

the last term it is convenient to return to a lower ordelyin

—(i/2f )T s, where xx is replaced by x(i/2f,)TA C. The xI'al' I’ » amplitude
+ ({128 )L ax— (1121 )T a(i/2f ;)T 5. Including the desired | now compute the diagrams of E(0). The first step is
ladders, there are four different terms: identical to the previous case except that the Bethe-Salpeter
g1 vertexyp, is replaced by the axial vertdX, , . The equation
3
P2—M2 P}—M2 XPs - :‘ XPyYsp, similar to Eq.(37) is now
= iZ iZ Tas
AP, T
5 C:Aps xR
2 2 -« _b P2 M2 P V5P
@ Pf— M Xp C:_ o | V5P AP, iz Tap, —
Zfﬂ- ZI FAPg, XPy —

»Y5p, AP,
. Cagy — T T NG
+P — M2 i XP:§ orl | »75P AP,

iz 2 f,T
g-1 and the Ward identity(22) can now be used in the axial
e IEP Yl vertexI' 5 . Again Egs.(14) or (21) are needed to introduce
1 1 "ApS Y » V5P, AP, A, 1 d
—_— A . a second Iadder in the loop. Excluding the terms with vertex
2fr 2fx AP3 scalar or vector vertexys which have a higher order, Eq.

(48) (51) simplifies to
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pP2-M2 T 1
Zi—Mr lapg ‘ » V5P X P V5P
iZ : s Etr{(Pl_PZ)[SPZ,PB_ZSP3,P4+SP4,P1]

+ XP4CD75P1%P275P3 5 (52) _4m[sp2’p3+ 28p3ﬁp4+ SPA’pl]}, (56)

and this can be further simplified when only the second orde\/\’here the quark propagatof, p; are mo!exed with the at-

is retained. Using Eq23) the zero order of the loop in the tached external momenta for book keeping. Expanding up to
first diagram simplifies to @,7. The second loop is com- Sécond order iP; andM ., and using the relation of Gell-
puted with the tracécondensed The result for Eq(40) is ~ Mann, Oakes, and Renné29), Eq. (56) simplifies to

2 P,+P,)-P,—2M?2]. 53 1 .
(2n)L(Pa*P2) Py 2 ®3 Etr{(Pl_PZ)(P3_P4)MaMS}_4If7ZTMET' (57)

D. Four I', vertices ) ] ) ) ]
The third term with of Eq.(55), with two y, vertices, is

| now compute the diagrams of E(B9), where all the equal to

vertices are axial verticeb, . The technique to simplify

the loops is identical to the previous cases, but the term with 1 p-p, C: PP,
a scalar or vector ladder must also be considered because it Z i 7 . (59)

contributes to the second order. The number of vertices is
again decreased with the help of E¢22) and (21),

Ty | P It is interesting to remark that the vector Ward identity can-
::(::3 P o D%P"’ cels up to second order the momentum-dependent part of Eq.
PAPz = 5?_1_ (57) with Eq. (58). The vector Ward produces equations

comparable to Eqg18) and(21), in particular,

= TP—yTyp, + :[D%Pl’%ﬁ , (54 k-+P/2

e

where the Ward identity22) can also be applied to the ver- k—P/2
tex s, , rather than be applied to the vertéy . It is (59)

more convenient to take the average of these two possible _ i
choices. This is repeated with the vertidég, andT's, to The expansion up to first order I of Eq. (59) produces
3 4

compute the square box with ladder . _g ]

Ap; —  LAP 2 FAP3 APy (’75p2FAP3) Therefore the sum of the momentum dependent parts of Egs.
(57) and (58

S(k+ P/2) — S(k — P/2) .

Lap, . Tap 1 (Tap,vsp)  Tup, Tap,

1
+Z[ Vsp, Vs, (Ysp, Tap, + ’)54P1’Y5@
PE-PE| o o PP
+2 Y5 p,(Ysp, 4P, + ’)54P175P2)’Y® T [—z@uS t:—'_’Y”C:]:] e
+ (Bsp WP, T P, Y5R,) V5P V6B | (61)

1 Is due to the vector Ward ident§0). Only the con-
2 ar e p 75 e (wp vsp 15 up,) . CANCEIS due to the vector Ward ident§0). Only the co
*3 urgor t 1o P4C:|:::. PR TEATR  stant term remains, and this is exact up to orEgR; . The

(55 final result for the Feynman diagrams of Eg9) is

)

where there are three classes of terms, respectively, with P

zero, one, and two verticeg,. | note that all the other —8in7M7. (62)
factors ", S and the scalar and vector laddare finite
and carry the scale of the effective quark-quark interaction.
The first term, with zeroy,, cancels when the three dia-
grams of Eq.(39) are summed. Using Eq19), the second Summing the contributions of Eq$46), (50), (53) and
term of Eq.(55), with oney,, is (62), the Feynman loop of Eq38) results in

E. Scattering parameters
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— Q1,71 Pi— — P gq,Ta — TABLE I. Table of the flavor traces. {tri 7,7,70,} and
OUT X IN tr{rilrgzrizrgl} are examples of the neighbor and separated cases.
< Gors Tz Py =P g2 T2 < Im, Ti1Ti2 Neighbor Separated
FIG. 3. To compute th& matrix for 7-7 scattering, the external & 3 1
momenta of the Feynman lod8) must be matched with the in- 00 m 1 2
coming and outgoing pion momenta. There are six different pos-
sible combinations. The Feynman lo¢g8) is represented by the 11 01027020, E 0
solid circle. 4 2
1
+ _+
4 3 o' —
22 0 2
+3| 5 —8in2M?2)-2| = 2n,(P3?
(me) ( M) (2'nw> 4§p:erm (P V2
2
_onm2
T P1-Ps=2Mo)+ 2in77) 45em appropriately included in the definition ¢f. [see Eq(13)].
. ) With regard to momentum, the result is expressed in the
y Pi+P5+P;-Py+Py-P3+Py-Py—2M7 usual Mandelstam relativistic invariant variablgst, andu.

i For instance, the first combination in E@4) produces the
result i(s+u—2M2)/(4f2). | now introduce flavor. For
+( 1 )2 Pi+P5—2M2 compactness it was not regarded in the previous definitions
2in,) 2%pem i of the verticed" 5, and xp . Because the pion is an isovector,

i there are three different casds=0, I1=1, andl=2. The
_ 2 2 2 flavor contributions to the pion vertex simply factorize from
) ff,[(PlJr P2+ (P1+Py)"=2M], ©®3 " the momentum contributioﬁ:, and the differr)eynt combinations
only produce two classes of flavor traces, which correspond
where the conservatioR; + P,+P3+P,=0 of momentum  to theneighborandseparatectlasses in Eq(64). The flavor
was used to simplify the result. results are compiled in Table I. Summing the six possible
| finally compute ther-7 scattering matrixT. The exter-  combinations of color, spin, momentum, and flavor traces,

nal pions,il andi2 incoming and1 ando2 outgoing, are  and dividing by —i, the 77 scatteringT' matrices are fi-
simply matched with the four pion vertex that | just com- pally

puted in Eq.(63). This is depicted in Fig. 3, where the loop

(38) is represented by the solid circle. The loop is topologi- 25— M2 s+t+u—4M?
cally invariant for cyclic permutations d?,, P,, P3, and T0=— 2 T 2 .
P,. To remove double counting one match is fixed, Bay 215 215
=q;1- Then there are six different combinations of the re-

maining external legs, t—u
g g le—ﬁz—, (65)
neighbor: g
_ 2 _ 2
P1=di1, P2=di2, P3=—do2, Pa=—0o1; 2_ _ S+2Mw_ stt+u—4M7
2f2 2f2 :

Pi=0i1, P2=0i2, P3=—0o1, Ps4=—0o2;

wheres+t+u—4M?2 expresses the off-mass-shell contribu-
tion. The T' matrices of Eq.(65) are computed at the tree
level (including scalar and vectos, t, and u exchangg
which is exact up to the order &?P? and of M2. Equation
(65 complies with the Gasser and Leutwyler resul3s].
Off-mass-shell effects are very important for the experi-
ments. For instance, in the scatteringmatr threshold of ar
beam with virtualm* provided by a nucleon targg40], the
off-mass-shell effects of Eq65) decreas@® by a factor of
0.5 and increas&? by a factor of 1.7.

where in the first four combinations the incoming pions are  The 7- scattering lengths,, are simply obtained from
neighborsin the Feynman loop, while in the last two com- the mass-shell scattering amplitudésand T with the Born
binations the incoming pions aseparatedn the quark loop  factor of —1/167=M ., and for vanishing three-momenta.
by an outgoing pion. Thel =1 case is antisymmetric so the first scattering param-

In what concerns color, all the combinations are identicaleter is ai and the corresponding factor is-=@/167M ..)
because the pion is a color singlet, and the color factor is<[4/3(t—u)],

P1=di1, P2=—do1, P3=—0do2, Ps=0q2;
Pi=0i1, P2=—0do1, P3=0i2, Ps=—0o2;
separated:

Pi=0i1, P2=—0do2, P3=0i2, P4=—0o1;

Pi1=0di1, P2=—0o2, P3=—0o1, Pas=0j2; (64
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o 1 M, bosons not only are massless, in agreement with the relation
=35 T2 of Gell-Mann, Oakes, and Renner, but also that Goldstone
g bosons are noninteracting at low energy in agreement with

1 1 the Adler self-consistency zeros. This proof also confirms
a}:__z, (66)  that intermediate ladders, which describe both meson ex-
247 M £ changes and contact terms, must be included in low energy

quark loops.

32:__1 % Moreover, this paper verifies that the famous PCAC rela-
0 167w ffT ' tions of Goldberger and Treiman and of Weinberg are also

obtained when the pions are off the mass shell and have a
this is the result of the famous Weinberg theorem ferr  finite size. The quark model provides a well-defined pre-
scattering(12]. scription for the exchange of virtual intermediate off-mass-

For simplicity, renormalizatioi28,41 was omitted from  ghell pions.
the details of this paper, and all the Feynman loops were The most involved technical part of this paper consists in
assumed to be finite. Nevertheless the results are not aﬁect@f‘étai”ng and completing the proof of the Weinberg theorem
by the use of an ultraviolet divergent kernel, say by the onef12], which was recently publishefet,5,44, and in extend-
gluon exchange interactidf(q) a1/q> which renders the in-  ing the proof to off-mass-shell pions. Other important pre-
tegral in Eq.(15) logarithmicly divergent. The same renor- cuyrsors of this work are the study af scattering[19] in
malization of ultraviolet divergences also occurs in atomicthe Nambu and Jona-Lasinio model, and the studyraf
physics, where the spectrum and the cross section of atomgattering with the bosonization methfgs].
are simply not affected by the divergences which are present |t js a remarkable achievement of chiral symmetry that the
in the Shwinger-Dyson equation of QED. Following Ref. quark propagator, the geometrical series of the ladder and the
[28], the divergent integral is regularized with an ultraviolet pion Bethe-Salpeter vertex, which are functions of the finite
cutoff A, and the dressed propagator is renormalized inscale of the interaction, say the string tensioar A ocp, Of
Eq. (15 by the quark wave function renormalization factor the current quark mass and of the ultraviolet cutoff\
of Z, and by the vertex renormalization factor 8{. The  explicitly disappear from the final results, which are simple
axial Ward |dent|ty(18), the vector Ward |dent|tY60), and functions of fﬂ_ and Mﬂ_ 0n|y_ Any quark model with a
the normalization condition of the Bethe-Salpeter veftl  chirally symmetric interaction complies with the PCAC rela-
ensure that the axial vertdx, , the vector verteX/, and the tions. This result is genera] and model independent_
normalization condition of the Bethe-Salpeter verjexget | expect that the analytical techniques used here may also
the same renormalization factor, which coincides with thepe applied to address other chiral effects within the quark
inverse of the renormalization factor of the quark propagatormodel framework. The determination of the next-order terms
Thus the Adler zero and the Weinberg result, which are comin the pion momenta expansion of ther scattering ampli-
puted in Feynman loops with an identical number of quarkiude will compute thel, and |, parameters of chiral
propagators and vertice@xial, vector or Bethe-Salpeler | agrangians, and will also tests quark model8]. Another
are insensitive to the renormalization factors. The resultgjifferent extension of this paper would consist in addressing
maintain the same expressions in terms of the physicalljhe anomalous axial Ward identities. The bosonization
observableV ;. andf ., which are not affected by the ultra- method suggesf€4] that the Wess-Zumino term of the pion

violet infinities in the renormalization factors. effective Lagrangeaf%5,46, which includes the Levi-Civita
symbole**# say in the coupling of five piong4], and the
VIIl. CONCLUSION anomalous coupling of pions to photd@¥ —49 can also be

. . .. studied within this framework.
In this paper a low momentum and chiral expansion is

performed on amplitudes computed in the framework of the
quark model with chiral symmetry breaking. The expansion
is analytical, and dressed Feynman diagrams are used for the | mainly acknowledge Emilio Ribeiro for reporting on
compactness of the expansion. The axial Ward identities, inrontrivial Ward identities, and | am grateful to Felipe Llanes
cluding a nontrivial Ward identity for the ladder, and the for correcting details in this manuscript. | also acknowledge
vector Ward identity are essential tools to arrive at simplediscussions with Steve Cotanch, Gast&rein, Felipe
and model independent results. Llanes, Brigitte Hiller, Pieter Maris, Gqato Marques,
A detailed proof is shown, which confirms that GoldstoneEmilio Ribeiro, and Adam Szczepaniak.
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