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Analytic proof that the quark model complies with partially conserved axial current theorems
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The Weinberg theorem, the Adler self-consistency zero, the Goldberger and Treiman relation, and the
Gell-Mann, Oakes, and Renner relation are proved analytically in full detail for quark models. These proofs are
independent of the particular quark-quark interaction, and they are displayed with Feynman diagrams in a
compact notation. I assume the ladder truncation, which is natural in the quark model, and also detail the
diagrams that must be included in each relation. Off mass shell and finite size effects are included in the
quark-antiquark pion Bethe-Salpeter vertices. The axial and vector Ward identities, for the quark propagator
and for the ladder, exactly cancel any model dependence.
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I. INTRODUCTION

The pion was introduced by Yukawa in 1931 to accou
for the strong nucleon-nucleon attraction which binds
nucleus. Yukawa was inspired by the Coulomb attraction
atomic physics which is due to the photon exchange inte
tion. The pion was indeed experimentally discovered; it i
pseudoscalar and an isovector. The pion massMp6

5140 MeV andMp05135 MeV determines the range of th
nucleon-nucleon attraction and confirms the prediction
Yukawa. The analogy with photon physics went quite f
The U~1! gauge symmetry is a crucial property of quantu
electrodynamics. In hadronic physics there is also a sym
try, chiral symmetry, which is a spontaneously broken glo
symmetry. In the chiral limit~limit of exact chiral symmetry!
the pion would play the role of the massless Goldstone
son. The pion mass is finite but it is indeed much sma
than the mass scale of hadronic physics which is of the o
of GeV. The expansion in the pion mass, together with
techniques of current algebra, led to beautifully correct th
rems, the PCAC~partially conserved axial current! theorems.
Similar to the vector Ward identities in gauge symmetry,
axial Ward identities constitute a powerful tool of chiral sym
metry. An important parameter of PCAC isf p , which relates
the pion vertex with the axial vertex.f p593 MeV is mea-
sured in the electroweak pion decay, and it is also known
the pion decay constant.

Other hadrons, including hundreds of resonances, w
also found subsequently. The large number of hadrons
deep inelastic scattering led to the discovery of quarks an
QCD ~quantum chromodynamics!, which is the currently ac-
cepted theory of strong interactions. QCD has not b
solved yet, but it inspired the invention of the quark mod
@1# in order to describe the bound states of quarks, which
mainly in the classes of mesons~like the pion! and baryons
~like the proton!. The quark model also uses confining p
tentials that are determined in lattice QCD. The succes
the quark model relies on its ability to reproduce the wh
spectrum of hadronic resonances, with microscopic inter
ing quarks. Moreover, the quark model is competent to
plain microscopically the strong hadron-hadron elastic in
actions @2#. For recent coupled channel studies see R
@3–5#.
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However, the quark model suffered from the onset to
commodate the low pion mass. The mass scale of hadr
physics is of the order of GeV. The quark model neede
large number of parameters in order to fit the low pion m
and to address pion creation and annihilation in hadro
decays. It is clear that a light pion is natural in chiral physi
while it is odd in constituent models. With the aim to cu
the important problems of pion mass@6,7#, pion coupling@8#,
and vacuum condensate@8#, chiral symmetry breaking was
introduced in the quark model. This paper continues the p
gram of implementing chiral symmetry in the quark mod
showing that the quark model also complies with some of
most famous PCAC theorems. In particular I address
relation of Gell-Mann, Oakes, and Renner@9#, the
Goldberger-Treiman relation@10#, the Adler self-consistency
zero @11#, and the Weinberg theorem@12#.

I do not aim to derive new theorems here for pion physi
Since the pioneering work of Yukawa, pion properties ha
already been understood through the techniques of cur
algebra, thes model, the Nambu–Jona-Lasinio model, a
chiral Lagrangians. The goal of this paper is to achieve
same perfect understanding of chiral symmetry breaking
the quark model. This understanding is not trivial in t
quark model because the pion is an extended@13# and com-
posite meson, composed of a quark-antiquark pair. Rece
Bjorken asked: ‘‘How are the many disparate methods
describing hadrons which are now in use related to e
other and to the first principles of QCD?’’ Here the missi
link between the quark model and the low energy uniq
field theory of pions is investigated. This work clarifies wh
classes of diagrams are necessary to recover the pion t
rems in the quark model, and explicitly shows the role of t
axial Ward identity in the quark model. This is potential
useful for the numerous hadronic processes that the q
model addresses.

Moreover, it is important to stress that the quark mod
provides an explicit prescription to address virtual pions w
off mass shell momenta. The quark model is suited to
scribe the virtual exchange of a meson with moment
equal to the sum of the quark and antiquark momenta,
different from the momentum of the mass shell. The relev
experimental processes that I study here are the neutron
cay andp-p scattering. In neutron decay a virtual pion
©2003 The American Physical Society01-1
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produced by the nucleon. Moreover, the experiments us
least one virtual pion inp-p scattering because two beams
pions have not yet been scattered in the laboratory. O
should acknowledge that it is possible to extract mass s
p-p scattering parameters from pion-nucleon scattering
form kaon to pion-pion decay@14#, and that an improvemen
in data is expected in the new DIRAC@15# experiment at
CERN, which will soon be able to measure directlyp-p
scattering both on the mass shell and at the threshold. N
ertheless there is also interesting data forp-p scattering off
the mass shell. For instance, thep-p phase shifts are exper
mentally estimated with the help ofp N→p p N scattering
@16#. In a possible contribution top N→p p N at thresh-
old, the nucleon provides a virtual pionp* with offshellness
P22Mp

2 523.32Mp
2 @see Fig. 1~a!#. Another experiment is

K1→p1 p1 p2 where the kaon provides a virtual pio
with offshellnessP22Mp

2 5110.75Mp
2 @see Fig. 1~b!#.

The quark model is usually understood with simple qu
tum mechanics. Baryons are bound states of three qua
mesons are quark-antiquark bound states, and both are
ied with the Schro¨dinger equation. The hadronic reactio
are also studied with coupled-channel equations, and
couplings are computed with the resonating group meth
In this paper I choose to display the equations with the co
pact notation of Feynman diagrams, following the simplif
ing principles of Llewellyn-Smith in his proof of the Bethe
Salpeter normalization condition@17#. This decreases th
number of terms involved in the equations because the F
man propagator includes both the quark and the antiqu
poles,

i

k”2m1 i e
5

i (susus
†b

k02E1 i e
2

i (svsvs
†b

2k02E1 i e
, ~1!

whereus(k) andvs(k) are the quark and the antiquark Dira
spinors. The translation from the covariant Feynman nota
to the nonrelativistic notationis direct and exact, and is
based on Eq.~1!. Incidently the formalism of Feynman dia
grams applies straightforwardly to relativistic models such
the Nambu and Jona-Lasinio model@18,19# and other models
with Euclidean space integrations@4,20–22# and also to co-
variant models in Minkowsky space@23#.

The essential simplicity of the quark model resides in
ing only two-body and finitequark-antiquark interactions
This is equivalent to using only planar interactions in t
possible series of Feynman diagrams, which are also

FIG. 1. In ~a! a p on mass shell is scattered by a virtualp*
provided by a nucleon. In~b! a virtual pion, which results from a
weak flavor change in the incomingK, decays into three pions
Both ~a! and ~b! contribute to hadronic reactions which are me
sured in the laboratory.
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tained in the largeNc ~number of colors! limit of QCD @19#.
In particular the intermediate meson exchange is descr
by the ladder series

~2!

where the dotted line corresponds to the chiral invari
quark-quark interaction of vertexV and of local kernelK. As
usual in the quark model, the vertexV is color dependent and
includes a Gell-Mann matrixla/2. The arrowed line corre-
sponds to the Feynman quark propagator. In this paper
direct coupling of three or four mesons is studied. I use
technique of dressing the corresponding Feynman loop w
all possible planar insertions of the quark-antiquark inter
tion, and to resum the obtained series in terms of the qu
antiquark ladder. Again, the ladder is well defined for a
total momentum, and this includes off-mass-shell momen

I also assume that chiral symmetry is spontaneously b
ken in the quark model. This is the only assumption in t
paper that goes beyond the minimal quark model. Howe
the phenomenological success of PCAC shows that it is
cial to include chiral symmetry in the quark model. Ther
fore, the vertexV is assumed to anticommute withg5 . Fre-
quently a vector vertex inspired in the gluon coupling is us
for V, but other Dirac structures for the vertexV can also be
also used@24#. Moreover, the bare quark propagator

S0~k!5
i

k”1m1 i e
~3!

must be replaced, in the computed Feynman loops, by
dressed quark propagator

S~k!5
i

A~k2!k”1B~k2!1 i e
, ~4!

where the functionsA and B are nontrivial solutions of the
mass gap equation and include the scale of the interac
which is comparable toLQCD. The current quark massm is
much smaller than the scaleLQCD, and therefore it only
affects pertubativelyA andB. In what concerns bound state
the degeneracy of chiral partners is broken, in particular
p is a Goldstone boson in the chiral limit. These basic pro
erties of the quark model with chiral symmetry have be
understood for some time through covariant@25,26# quark
models with the Schwinger-Dyson equation and throu
equal-time quark models@6,11,8,27# with the mass gap equa
tion, and therefore they are used as a starting point in
paper.

With the concern of deriving a general proof that t
quark model complies with the PCAC relations, I follow
this paper the logical path of using the simplest PCAC re
tions as the necessary intermediate steps to arrive at
rather technical proof of the Weinberg theorem forp-p scat-
tering. Sections II and III define the formalism of this pap
This formalism is standard; nevertheless it is convenien
define it clearly. Section II reviews mesons as qua
antiquark bound states in the ladder framework. Section

-

1-2
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reviews the axial Ward identity which is crucial for the low
energy pion theorems. Sections IV and V apply the te
niques defined in Secs. II and III to standard PCAC relatio
which have been extensively studied in the literature. T
checks the methods used in this paper. Section IV reco
the relation of Gell-Mann, Oakes, and Renner. Section
recovers the Goldberger-Treiman relation. Once the form
ism is defined and checked, Secs. VI and VII explicitly stu
the more technical PCAC relations. Section VI proves t
the quark models possess the Adler self-consistency ze
Section VII proves that the quark models comply with t
Weinberg theorem. The conclusion is presented in Sec. V

II. QUARKS, MESONS, AND THE LADDER

The ladder series is a geometrical series which inclu
bound states. A meson is a quark-antiquark bound state
corresponds to a pole in the series. Outside the pole the
der does not describe asymptotic states; nevertheless la
exchange appears as a subdiagram contributing to the i
action of asymptotic states. Then the ladder includes both
off-mass-shell exchange of mesons and the contact inte
tion term.

I follow the usual convention of factorizing the pole an
the Bethe-Salpeter vertices. In the close neighborhood
bound stateb, a poleMb

2 occurs in the external momentum
P2, and the ladder obeys the spectral decomposition

~5!

where

is the Bethe-Salpeter vertex, or truncated amplitude, o
meson, and the arrowed

line represents a dressed quark propagatorS. The nonampu-
tated amplitude is simply obtained with the productSxbP

S.
Equation~5! and the rest of the paper follows the conventi
where the momentumPm of the vertex flows inside the quar
loop, summing to the outgoing quark line.xb2P

has the op-

posite total momentum, in particular2P0 is negative.xb2P

can also be obtained fromxbP
with the charge conjugation

transformation.xbP
is a function of the relative momentumk

of the bound pair of a quark and an antiquark.
In what concerns the total four-momentumPm, the bound

state vertex is straightforwardly defined in the mass sh
which corresponds to the exact momentum of the poleP2

5Mb
2. Nevertheless with Eq.~5! it is possible to extend the

definition of xbP
to a small neighborhood of the pole, up

first order in the off-mass-shell quantityP22Mb
2. In dia-

grammatic language,the ladder includes both the exchang
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of mesons and the contact interaction. The off-mass-shell
vertex also includes the principal part of the ladder ser
The principal part contains the contact interaction and a
contains the infinite tower of excited states, which are a
lution of the bound state equation when the potential is c
fining. Extending the Bethe-Salpeter vertex off the ma
shell constitutes an economical method to include all th
effects. The off-mass-shell vertex is well defined at least i
small neighborhood of the pole.

To compute the Bethe-Salpeter vertex, it is convenien
rewrite the ladder in a self-consistent equation,

~6!

Replacing Eq.~5! in Eq. ~6!, and folding it from the left with
xP , the off-mass-shell Bethe-Salpeter equation is obtain

~7!

where I is both displayed as a Feynman loop and as
integral. For compactness, the convention of representing
tegrals of propagators and vertices with Feynman diagra
will mainly be used in the rest of the paper. The loopI is
finite and proportional to the square of the scale of the in
action. NeverthelessI will factorize from the results of this
paper, which are model independent. At the mass-shell
mentum, Eq.~7! simplifies to the standard Bethe-Salpet
equation,

~8!

To check that the off mass shell Eq.~7! Bethe-Salpeter
equation is correct, I derive from it the normalization cond
tion @17# for the Bethe-Salpeter vertices. Folding from th
right with x2P , Eq. ~7! becomes

~9!

and the correct normalizing condition is obtained when E
~9! is derived by]/]Pm. The derivative of the left-hand sid
is
1-3
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~10!

and this provides a general normalizing condition for t
vertex. Frequently mass shell vertices and local kernels
used. Then the Bethe-Salpeter equation~8! can be used to
precisely cancel the terms with the derivative of the verti
xP andx2P , and the derivative of the kernel also vanish
because the kernel~the quark-quark interaction! is local.
With these cancellations, the derivative of Eq.~9! is simply

~11!

This is the standard normalizing condition for mass sh
Bethe-Salpeter vertices with a local kernel.

The off-mass-shell equation~7! is particularly simple in
the case where the bound state is a low-energy pion. In
case the expansion in the externalPm and inMp can be used,
becauseMp andPm are much smaller that the characteris
scale of meson physics, say 2LQCD. The off-mass-shell cor-
rection only starts contributing to the Bethe-Salpeter eq
tion ~7! at the second order ofP2 andM2. Therefore, up to
the first order inPm and inMp , the vertexxP is formally the
same functionof Pm, both for mass-shell and for off-mass
shell pions. For instance, the momentum expansion up
first order inPm of the pion Bethe-Salpeter vertex

xP~k!5x0~k!1Pmxm
1 ~k!1o~PmPn!,

xm
1 ~k!5$F~k!gm1G~k!kmk”1H~k!@gm ,k” #%g5 ~12!

is also correct, and formally the same, for any small o
mass-shell momentumPm. In particular the expansion inPm

of the Bethe-Salpeter equation~8! yields for x0(k) and for
the components ofxm

1 (k) four equations totally independen
of Pm. x0(k) will be exactly derived in Eq.~23!. Impor-
tantly, the four components ofxp will only contribute to the
PCAC theorems of this paper through the pion decay c
stant f p , which is defined by the trace

tr$~SxS!Pgmg5%5& f pPm, ~13!

where& is a flavor factor. In Eq.~13! and in the rest of the
paper the traces are assumed to include the momentum
gral and the sum in Dirac and color indices. The import
result of this low-energy pion discussion is that Eq.~13! is
also correct outside the mass shell forP2ÞM2 when a vir-
tual intermediate pion is used, providing the momentumPm

is small.
I now derive a second important relation, which sta

how to include~or remove! a ladder in the vertexxP . Fold-
ing Eq. ~5! from the right with the vertexxP , and dividing
by theI loop,
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III. USING THE AXIAL WARD IDENTITY

When chiral symmetry breaking occurs, the mass g
equation has a nontrivial solution. The Schwinger-Dys
equation for the full propagator is

S~k!215S0
21~k!1 i E d4q

~2p!4 K~q!VS~k1q!V. ~15!

Equation~15! is also known as the mass gap equation
cause the initially almost massless gap between the q
and antiquark dispersion relations is increased when the
stituent massM5AB2/A2 is generated. Because the vertexV
includes the Gell-Mann matrices, the tadpole does not c
tribute to Eq.~15!. Multiplying Eq. ~15! right or left with g5
and summing leads to

S~k1!21g51g5S~k2!21

5S0~k1!21g51g5S0~k2!212 i E K~q!V@S~k11q!

3g51g5S~k21q!#V, ~16!

which is the Bethe-Salpeter equation for the vertex

GA~k1 ,k2!5gA~k1 ,k2!2 i E d4q

~2p!4 K~q!VS~k11q!GA~k1

1q,k21q!S~k21q!V, ~17!

and this shows@26,7,24,28,27# that the ladder approximation
for the bound state is consistent with the quark self-ene
equation in the rainbow approximation. Both approximatio
are equivalent to the planar diagram expansion, which
characteristic of the quark model.

In the Bethe-Salpeter equation~17!, the bare and dresse
vertices are defined by the same axial Ward identity

GA~k1 ,k2!5S21~k1!g51g5S21~k2!,
~18!

gA~k1 ,k2!5S0
21~k1!g51g5S0

21~k2!.

At this point it is important to clarify that in the chiral limi
of m50, the bare vertexgA is essentially the momentum
contracted with the bare axial vertexgmg5 , and in the limit
of vanishing momentumPm , the vertexgA is essentially the
current quark mass times the bare pseudoscalar vertexg5 . In
general,gA is a combination of the axial vertex and the pse
doscalar vertex. In what concerns the dressed vertexGA , it
will be used up to second order in the total momentum, a
in general the Dirac structure ofGA has four components
similar in structure to the four components of the pion Beth
Salpeter vertex~12!. Therefore this vertex cannot be reduc
in the quark model framework, neither to a pure pseu
scalar term nor to a pure axial vector term. Nevertheles
the rest of this paper, for simplicity and because they
1-4
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defined with the axial Ward identity~18!, gA will be called
the bare axial vertex andGA will be called the dressed axia
vertex, although they possess a more general Dirac struc

The bare axial vertexgA is computed from the bare quar
propagator~3!:

gAP
5

~P” 22m!

i
g5 , P5k12k2 . ~19!

gA is the particular part of the Bethe-Salpeter equation
the vertex~17!, and it vanishes when the current quark ma
m is small ~chiral limit! and at the same time the total m
mentumPm of the vertex is small. On the other hand, t
dressed vertexGA is computed from the dressed quark prop
gator ~4!,

GA~k1 ,k2!5
A~k1!k” 12A~k2!k” 22B~k1!2B~k2!

i
g5 .

~20!

GA is finite, provided spontaneous chiral symmetry break
occurs in Eq.~15! to generate a dynamical mass in t
dressed quark propagator. For instance, when the total
mentumP5k12k2 of the vertex vanishes, the vertex is sim
ply identical to 2i B(k)g5 , whereB(k) is a finite solution of
the mass gap equation.

For simplicity the flavor is not yet included. Flavor wi
only be explicitly included at the end of Sec. VII. The iso
calar axial Ward identity must include the axial anoma
which is crucial to the U~1! problem. Nevertheless the pio
is an isovector, and in the coupling of a pion I do not need
be concerned with the axial anomaly.

I now derive two powerful relations which involve th
axial vertices and the ladder. After iterating the Beth
Salpeter equation~17! for the dressed axial vertexGA , and
including the external propagators, a first useful relation
derived,

~21!

To derive some of the PCAC proofs it is crucial to use
second relation which is an extension of Eq.~18!,

~22!

and this constitutes a Ward identity for the ladder. This id
tity is derived if I expand@27# the ladders and substitute th
vertex in the left-hand side. Then all terms with an interm
diateg5 include the anticommutator$g5 ,V% and this cancels
becausethe interaction is chiral invariantand the kernel is
local. Only the right-hand side survives.

IV. THE GELL-MANN, OAKES, AND RENNER RELATION

In the limit of vanishing current quark massm and vertex
momentumPm, the Bethe-Salpeter equation~17! for the
03520
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axial vertexGA becomes homogeneous and is thus ident
to a homogeneous Bethe-Salpeter equation~8! for a pion
vertexxpP(k) with vanishing mass. In this limit the pion is
massless Goldstone boson, and the pion Bethe-Salpeter
tex is proportional to the dressed axial vertex, and to
dynamical quark massB(k),

x0~k!5
B~k!

np
g55

1

2inp
GA0~k,k!, ~23!

wherenp is the norm of the pion vertex, which is defined b
Eq. ~11!. This can also be checked by the relation

VS~k!B~k!g5S~k!V5V
B~k!

A~k!2k22B~k!2 Vg5 , ~24!

which explicitly verifies that the integrand of the Beth
Salpeter equation for the pion vertex, in the limit vanishi
current quark massm and vertex momentumPm, is identical
to the integrand of the Schwinger-Dyson equation for
scalar componentB of the dressed quark propagator. It
important to remark that outside this limit Eq.~23! does not
hold, but the difference between the pion vertex and the a
vertex only starts to contribute at first order in the expans
in m andPm,

xP~k!5
1

2inp
GAP

~k!1o~Pm,m!. ~25!

Substituting the spectral decomposition@25# of the ladder
~5!, Eq. ~21! implies that

GAP
5xP

i

P22Mp
2 tr$x2P~SgAS!P%,

.
1

2inp
GA

i

P22Mp
2 tr$~SxS!2PgAP

%, ~26!

where only the first nonvanishing terms in the expansion
Pm and inMp is retained. In particular the pion vertex in th
left-hand side was simplified with Eq.~23!. The leading re-
sult is

tr$~SxS!2PgAP
%52np~P22Mp

2 !. ~27!

It is also convenient to extend this result to the case wh
different external momenta are involved in (SxS) and ingA .
A detailed momentum analysis of Eqs.~13!, ~19!, and ~27!
shows that the normnp5 i f p /& and produces@28# the de-
sired trace:

tr$~SxS!P1
gAP2

%522np~P1•P21Mp
2 !. ~28!

Using Eqs.~14!, ~19!, and~28! when the momenta vanish, a
important particular result is derived:

2m tr$S%5 f p
2 Mp

2 , ~29!

where2tr$S% is the quark condensate^c̄c&. Equation~29!
is the relation of Gell-Mann, Oakes, and Renner@9#. In the
1-5
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chiral limit the quark condensatêc̄c& and the pion decay
constant f p remain constant. The relation of Gell-Man
Oakes, and Renner shows that the pion massMp is propor-
tional toAm. This relation can also be extended@29–31# for
arbitrarily large current-quark masses, and this provides,
instance, an intuitive understanding of modern lattice sim
lations.

V. THE GOLDBERGER-TREIMAN RELATION

The Goldberger-Treiman relation provides a conveni
exercise to resum the series of planar diagrams, to desc
the intermediate virtual meson exchange with the ladder,
to check that the pion vertex can be used outside the m
shell. The weak decay of the neutron,n→p1e21 n̄e is
computed with Feynman diagrams that include the f
Fermi coupling of two quark legs with the electron and t
neutrino leg. The bare loop of Fig. 2~a! does not correctly
account for the strong interaction. A complete set of ins
tions of the quark-quark potential must be used. Howe
three classes of insertions are included from the onset.
vertex V of the quark-quark potential is assumed to be
ready renormalized and should not be further dressed.
instance, renormalizing diagrams forV have not been use
neither in the mass gap equation~15! nor in the ladder series
~6!. The propagatorS is also dressed; it is a solution of th
mass gap equation~15!. Moreover, the Bethe-Salpeter vert
cesx of the proton and neutron are already dressed; they
solutions of the three-body Bethe-Salpeter equation. H
ever, the four Fermi coupling is not dressed from the on
and it remains to be dressed. A detailed inspection shows
the full series of planar diagrams can be resummed in a
der series that dresses@32–34# the Fermi coupling, and in
interactions in the remaining diquark of the nucleon. T
ladder series is represented by a box in Fig. 2~b!. The inter-
actions in the remaining diquark of the nucleon are rep
sented by an open circle in Fig. 2~b!; however, they will not
affect the results of this paper.

When the ladder in Fig. 2~b! is replaced by the spectra
decomposition of Eq.~5!, the dressed Feynman loop~b! fac-
torizes in the product of the coupling of a nucleon to a p

FIG. 2. This figure shows the microscopic description of t
weak decayN→P1e21 n̄e , where ad quark produces au quark
and two leptons with the four Fermi weak coupling. The bare d
gram is depicted in~a! and the corresponding fully dressed diagra
is depicted in~b!. ~b! includes a full ladder, which is represente
with a full box, and the series of interactions of the diquark wh
is not coupled to the leptons, which is represented with an em
circle.
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N→P1p2, of the pion propagator, and of the electrowe
decay of the pionp2→e21ne @26#. The axial part of the
electroweak decay can be measured, and I just have to c
pute the coupling ofP1

mgmg5 to a quark line of the nucleon
This is included in the bare axial vertexgA , and it is conve-
nient to compute

~30!

Summing the contribution of the three quarks internal to
proton and the neutron, the left-hand side of Eq.~30! is iden-
tical to&MngA / i . This is defined in nuclear physics from
the Dirac equation for the nucleon, which is considered a
Dirac fermion. The vertexgA can be rewritten as (k”Pg5
1g5k”N22mg5)/ i , wherekP is the momentum of the quar
that flows into the proton andkN is the momentum of the
quark that comes from the neutron. Summing the contri
tion of the three quarks to this amplitude, and interpreting
nucleon as a Dirac particle, the left-hand side of Eq.~30! is
identical to the matrix element of (P” Pg51g5P” N
26mg5)/ i . Continuing to interpret the nucleon as a Dira
particle the proton and nucleon slashed momenta can be
placed, respectively, byMN and M P . The current quark
massm and the mass differenceMN2M P are both of MeV
order and negligible when compared with the nucleon ma
The computation of the left-hand side is completed with
matrix element ofg5 in the Dirac nucleon, which isgA ex-
cept for a possible phase. In what concerns the right-h
side of Eq.~30!, the sum in the three internal quark line
produces the coupling of the pion to a nucleon. We do
need to be concerned with the interactions in the remain
diquark because they also dress the pion coupling to
nucleon. Excluding phases, Eq.~30! is then

2MngA5&gpnn

1

P1
22Mp

2 & f p~P1
22Mp

2 !, ~31!

where P1
m is the momentum that flows in the pseudosca

ladder,2 i&gpnn is the coupling of the pion to the nucleo
~the& is a flavor factor!, and the pion decay constantf p is
defined with the traces~13! and ~28!.

Equation~31! relates the nucleon decay with the pion d
cay constant, the famous Goldberger-Treiman relation@10#,

MngA5gnpnf p , ~32!

which is correct except for a small discrepancy of 6
@35,36#. This experimental verification suggests that the p
nar series of diagrams is acceptable, that the pseudos
ladder and the pion vertex can be used outside the m
shell, and that the expansion inPm andMp is convergent.

-

ty
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VI. THE ADLER SELF-CONSISTENCY ZERO

Adler showed@11# that in the chiral limit ofm50, pions
of vanishing momentum decouple from other mesons on
mass shell. In this limit@see Eq.~23!# the pion vertex is
proportional to the dressed axial vertex,xpaGA . Therefore I
simply have to show thatGA decouples from loops with me
son vertices. This decoupling is straightforward in a thr
meson coupling,

~33!

and this vanishes when the mesons of vertexx2 andx3 are
on the mass shell. To get this result I used Eqs.~14! and~22!.
In the three meson coupling of Eq.~33! the Feynman loop is
empty. Any planar insertion of the quark-quark interacti
would produce double counting, because the vertices are
ready dressed.

However, the three-meson coupling is not the best on
find the direct evidence of an Adler zero. Because the m
sons of vertexx2 andx3 couple to a pion, either the couplin
is derivative or the mesons 1 and 2 have opposite parity
the case of a derivative coupling the vanishing result
trivial, and it is not a PCAC result. In the case of oppos
parity, and because chiral symmetry is spontaneously bro
the mesons 1 and 2 are not expected to have the same m
Therefore, either 1 and 2 are not both on the mass shel
the pion momentum in not vanishing, and Eq.~33! does not
apply.

The four-meson coupling is more interesting than
three-meson one. If two pions are coupled to two identi
mesons, then all four mesons can be on the mass shell. I
coupling of four mesons, the planar diagrams must be
cluded, and they can be resummed in two different interm
diate ladder exchanges,

~34!

where the empty box is subtracted to cure double countin
again follow the prescription defined in Sec. IV of excludin
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diagrams which would dress the quark-quark potential ver
V, the quark propagatorS, or the meson vertexxPi

. The
intermediate ladders include both a direct contact term
the pole corresponding to meson exchange. There is
evidence that the hadron-hadron coupled-channel equa
should include one meson exchange in thes model @37#, in
the Nambu and Jona-Lasinio model@19#, in the constituent
quark models@4,5#, and in a Euclidean quark model@4#. In
microscopic calculations the Feynman loop of a four-mes
coupling, which dominates for instance forp-p scattering,
must therefore include inside the box a vertical scalar lad
and a horizontal scalar ladder@4#.

The main step to get the zero consists in decreasing
number of vertices using again Eqs.~14! and ~22!. For in-
stance I find that the second diagram of Eq.~34!

~35!

is identical to

~36!

The first diagram of Eq.~34! is computed in the same way
The crucial step consists in realizing that in the sum of
three diagrams of Eq.~34!, the empty loop, without interme
diate ladders, exactly cancels due to Eq.~18!. The sum of the
three diagrams of Eq.~34! is exactly equal to

~37!

and this vanishes when the mesons of vertexx2 andx4 are
on the mass shell. Although poles occur in the remain
intermediate ladder in Eq.~37!, they are not expected to re
side, say atP2

25M2
2, becausex2g5P1

has the opposite parity

of x2 , and because chiral symmetry is spontaneously b
ken.

The same method can be used to show that the pionde-
couples from any number of mesonson the mass shell. This
constitutes a Ward identity for the meson couplings. T
quark model complies with the Adler self-consistency zer
1-7
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VII. THE WEINBERG THEOREM

The four-pion coupling, which dominatesp-p low-energy
scattering, is the ideal process for which the Adler se
consistency zero applies. To find a nonvanishing contri
tion, the Feynman loop that extends Eq.~34! must be ex-
panded up to first order inPi•Pj and inMp

2 . The result is a
beautiful algebraic expression that was first derived by We
berg. After the original work of Weinberg@12#, the theorem
was also derived with Ward identities for the pion fields@38#
and with a functional integration of quarks@39#. I now prove
that thep-p scattering theorem of Weinberg@12# applies to
quark models with chiral invariant quark-quark interaction
completing in full detail an analytical proof that was recen
outlined in Refs.@4# and @5#.

The most technical task of this paper consists in comp
ing independently of the quark model, and up to orderMp

2

andPi Pj in the p mass and momenta, the Feynman loop

~38!

wherex is the Bethe-Salpeter vertex of the pion. The sub
dex Pi accounts for an external momentum flowing into t
loop.

To get the loop~38! up to orderPi•Pj andMp
2 , at most

two full Bethe-Salpeter verticesx are needed. The other tw
can be approximated byGA /(2inp), according to Eq.~25!.
Expanding the fourx, which are respectively equal t
GA /(2inp)1@x2GA /(2inp)#, up to second order inx
2GA /(2inp) and regrouping the sum, one finds that the a
plitude of Eq.~38! is the sum of four classes of terms. Ea
class includes a sum of the possible cyclic permutations
the external momentaP1 , P2 , P3 , andP4 . The sum of the
four classes is identical to, with factor 3 times (2inp)24,

~39!

minus, with factor 2 times (2inp)23 ~four permutations!,

~40!

plus, with factor (2inp)22 ~four permutations!,
03520
-
-

-

,

t-

-

-

of

~41!

plus, with factor (2inp)22 ~two permutations!,

~42!

I now compute these diagrams up to the order ofPi•Pj and
Mp

2 , starting with the terms with move verticesxp , which
are closer to the ones computed in Sec. VI.

A. The xGAxGA amplitude

Here I compute the diagrams of Eq.~42!. The first steps
are identical to the ones of Sec. VI, and the diagrams
identical to the ones of Eq.~37! except that now the Bethe
Salpeter vertexxP3

is replaced by the axial vertexGAP3
,

~43!

where it is convenient to use Eq.~14! to include the ladder in
the adjacentxp ,

~44!

and to apply the Ward identity~22! to the axial vertexGAP3
,

~45!
1-8
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where this result is exact. Only the contribution up to ord
second orderPi•Pj or Mp

2 needs to be retained. In Eq.~45!
there are two classes of diagrams. The second and fo
diagrams have scalar or vector verticesxg5 , and therefore
the ladder is not a pseudoscalar and is not able to cance
higher-order factor@(P2

22Mp
2 )/ iI#@(P4

22Mp
2 )/ iI#. The first

and third diagrams, with a pseudoscalar vertexx, already
have a factor (P22Mp

2 )/ iI of second order. Therefore th
remaining trace tr$g5xg5SxS% only needs to be computed a
zero order where this trace is simply the constantI which
was defined in Eq.~7!. The final result up to second order

P2
22Mp

2 1P4
22Mp

2

i
. ~46!

B. The xxGAGA amplitude

Here I compute the diagrams of Eq.~41!. Again the first
steps are similar to the ones of Sec. VI, and the diagrams
identical to the ones of Eq.~37! except that the Bethe
Salpeter vertexxP2

is replaced by the axial vertexGAP2
. In

the second diagram of Eq.~41!, the axial vertexGAP2
is

adjacent to the vertexGAP1
and Eq.~21! substitutes for Eq.

~14!. The equation similar to Eq.~37! is now

~47!

where the last term is already proportional togAP2
so it only

needs one of thex to produce a term of second order. So
the last term it is convenient to return to a lower order inx
2( i /2 f p)GA , where xx is replaced by x( i /2 f p)GA
1( i /2 f p)GAx2( i /2 f p)GA( i /2 f p)GA . Including the desired
ladders, there are four different terms:

~48!
03520
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Using again the Ward identity~22!, and removing the higher
order cases where the ladder is scalar, Eq.~47! simplifies to

~49!

where the ladders can all be reabsorbed in vertices,

5
P4

22Mp
2

iI tr$~SxS!P3
xP4

%1
i

2 f p
tr$~SxS!P4

gA2P2
%

1
i

2 f p
tr$~SxS!P3

gAP2
%2

i

2 f p

i

2 f p
tr$~SGAS!P4

gA2P2
%

5
P4

22Mp
2

i
1

P4•P22Mp
2

i
1

2P3•P22Mp
2

i
2

2Mp
2

i

5
P3

21P4
21P3•P41P3•P11P4•P222Mp

2

i
, ~50!

and this is the final result of Eq.~41! up to second order.

C. The xGAGAGA amplitude

I now compute the diagrams of Eq.~40!. The first step is
identical to the previous case except that the Bethe-Salp
vertexxP3

is replaced by the axial vertexGAP3
. The equation

similar to Eq.~37! is now

~51!

and the Ward identity~22! can now be used in the axia
vertexGAP3

. Again Eqs.~14! or ~21! are needed to introduc

a second ladder in the loop. Excluding the terms with ver
scalar or vector vertexxg5 which have a higher order, Eq
~51! simplifies to
1-9
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~52!

and this can be further simplified when only the second or
is retained. Using Eq.~23! the zero order of the loop in th
first diagram simplifies to 2inpI. The second loop is com
puted with the trace~condensed!. The result for Eq.~40! is

~2np!@~P41P2!•P422Mp
2 #. ~53!

D. Four GA vertices

I now compute the diagrams of Eq.~39!, where all the
vertices are axial verticesGAPi

. The technique to simplify

the loops is identical to the previous cases, but the term w
a scalar or vector ladder must also be considered becau
contributes to the second order. The number of vertice
again decreased with the help of Eqs.~22! and ~21!,

~54!

where the Ward identity~22! can also be applied to the ve
tex GAP2

, rather than be applied to the vertexGAP1
. It is

more convenient to take the average of these two poss
choices. This is repeated with the verticesGAP3

andGAP4
to

compute the square box with ladder

~55!

where there are three classes of terms, respectively,
zero, one, and two verticesgA . I note that all the other
factors (GA , S, and the scalar and vector ladder! are finite
and carry the scale of the effective quark-quark interacti
The first term, with zerogA , cancels when the three dia
grams of Eq.~39! are summed. Using Eq.~19!, the second
term of Eq.~55!, with onegA , is
03520
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1

4i
tr$~P” 12P” 2!@SP2 ,P3

22SP3 ,P4
1SP4 ,P1

#

24m@SP2 ,P3
12SP3 ,P4

1SP4 ,P1
#%, ~56!

where the quark propagatorsSPi ,Pj
are indexed with the at-

tached external momenta for book keeping. Expanding u
second order inPi andMp , and using the relation of Gell
Mann, Oakes, and Renner~29!, Eq. ~56! simplifies to

1

4i
tr$~P” 12P” 2!~P32P4!m]mS%24i f p

2 Mp
2 . ~57!

The third term with of Eq.~55!, with two gA vertices, is
equal to

~58!

It is interesting to remark that the vector Ward identity ca
cels up to second order the momentum-dependent part o
~57! with Eq. ~58!. The vector Ward produces equation
comparable to Eqs.~18! and ~21!, in particular,

~59!

The expansion up to first order inPm of Eq. ~59! produces

~60!

Therefore the sum of the momentum dependent parts of E
~57! and ~58!

~61!

cancels due to the vector Ward identity~60!. Only the con-
stant term remains, and this is exact up to orderPi Pj . The
final result for the Feynman diagrams of Eq.~39! is

28inp
2 Mp

2 . ~62!

E. Scattering parameters

Summing the contributions of Eqs.~46!, ~50!, ~53! and
~62!, the Feynman loop of Eq.~38! results in
1-10
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13S 1

2inp
D 4

~28inp
2 Mp

2 !22S 1

2inp
D 3

(
4 perm

2np~P1
2

1P1•P322Mp
2 !1S 1

2inp
D 2

(
4 perm

3
P1

21P2
21P1•P21P1•P31P2•P422Mp

2

i

1S 1

2inp
D 2

(
2 perm

P1
21P3

222Mp
2

i

5
i

2 f p
2 @~P11P2!21~P11P4!222Mp

2 #, ~63!

where the conservationP11P21P31P450 of momentum
was used to simplify the result.

I finally compute thep-p scattering matrixT. The exter-
nal pions,i1 andi2 incoming ando1 ando2 outgoing, are
simply matched with the four pion vertex that I just com
puted in Eq.~63!. This is depicted in Fig. 3, where the loo
~38! is represented by the solid circle. The loop is topolo
cally invariant for cyclic permutations ofP1 , P2 , P3 , and
P4 . To remove double counting one match is fixed, sayP1
5qi1 . Then there are six different combinations of the
maining external legs,

neighbor:

P15qi1 , P25qi2 , P352qo2 , P452qo1 ;

P15qi1 , P25qi2 , P352qo1 , P452qo2 ;

P15qi1 , P252qo1 , P352qo2 , P45qi2 ;

P15qi1 , P252qo1 , P35qi2 , P452qo2 ;

separated:

P15qi1 , P252qo2 , P35qi2 , P452qo1 ;

P15qi1 , P252qo2 , P352qo1 , P45qi2 ; ~64!

where in the first four combinations the incoming pions a
neighborsin the Feynman loop, while in the last two com
binations the incoming pions areseparatedin the quark loop
by an outgoing pion.

In what concerns color, all the combinations are identi
because the pion is a color singlet, and the color facto

FIG. 3. To compute theT matrix for p-p scattering, the externa
momenta of the Feynman loop~38! must be matched with the in
coming and outgoing pion momenta. There are six different p
sible combinations. The Feynman loop~38! is represented by the
solid circle.
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appropriately included in the definition off p @see Eq.~13!#.
With regard to momentum, the result is expressed in
usual Mandelstam relativistic invariant variabless, t, andu.
For instance, the first combination in Eq.~64! produces the
result i (s1u22Mp

2 )/(4 f p
2 ). I now introduce flavor. For

compactness it was not regarded in the previous definiti
of the verticesGAP

andxP . Because the pion is an isovecto

there are three different cases:I 50, I 51, and I 52. The
flavor contributions to the pion vertex simply factorize fro
the momentum contribution, and the different combinatio
only produce two classes of flavor traces, which corresp
to theneighborandseparatedclasses in Eq.~64!. The flavor
results are compiled in Table I. Summing the six possi
combinations of color, spin, momentum, and flavor trac
and dividing by2 i , the p-p scatteringTI matrices are fi-
nally

T052
2s2Mp

2

2 f p
2 2

s1t1u24Mp
2

2 f p
2 ,

T152
t2u

2 f p
2 , ~65!

T252
2s12Mp

2

2 f p
2 2

s1t1u24Mp
2

2 f p
2 ,

wheres1t1u24Mp
2 expresses the off-mass-shell contrib

tion. The TI matrices of Eq.~65! are computed at the tre
level ~including scalar and vectors, t, and u exchange!,
which is exact up to the order ofPi

2Pj
2 and ofMp

2 . Equation
~65! complies with the Gasser and Leutwyler results@38#.
Off-mass-shell effects are very important for the expe
ments. For instance, in the scattering atp-p threshold of ap
beam with virtualp* provided by a nucleon target@40#, the
off-mass-shell effects of Eq.~65! decreaseT0 by a factor of
0.5 and increaseT2 by a factor of 1.7.

The p-p scattering lengthsa0
I are simply obtained from

the mass-shell scattering amplitudesT0 andT2 with the Born
factor of 21/16pMp , and for vanishing three-momenta
The I 51 case is antisymmetric so the first scattering para
eter is a1

1 and the corresponding factor is (21/16pMp)
3@4/3(t2u)#,

-

TABLE I. Table of the flavor traces. tr$t i1t i2to2
† to1

† % and
tr$t i1to2

† t i2to1
† % are examples of the neighbor and separated ca

ImI t i1t i2 Neighbor Separated

00
sW•sW

2A6

3

4
2

1

4

11
s1s22s2s1

4

1

2
0

22
s1s1

&
0

1

2
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a0
05

7

32p

Mp

f p
2 ,

a1
15

1

24p

1

Mp f p
2 , ~66!

a0
25

21

16p

Mp

f p
2 ;

this is the result of the famous Weinberg theorem forp-p
scattering@12#.

For simplicity, renormalization@28,41# was omitted from
the details of this paper, and all the Feynman loops w
assumed to be finite. Nevertheless the results are not affe
by the use of an ultraviolet divergent kernel, say by the o
gluon exchange interactionK(q)a1/q2 which renders the in-
tegral in Eq.~15! logarithmicly divergent. The same reno
malization of ultraviolet divergences also occurs in atom
physics, where the spectrum and the cross section of at
are simply not affected by the divergences which are pre
in the Shwinger-Dyson equation of QED. Following Re
@28#, the divergent integral is regularized with an ultravio
cutoff Luv , and the dressed propagator is renormalized
Eq. ~15! by the quark wave function renormalization fact
of Z2 and by the vertex renormalization factor ofZ1 . The
axial Ward identity~18!, the vector Ward identity~60!, and
the normalization condition of the Bethe-Salpeter vertex~11!
ensure that the axial vertexGA , the vector vertexV, and the
normalization condition of the Bethe-Salpeter vertexxp get
the same renormalization factor, which coincides with
inverse of the renormalization factor of the quark propaga
Thus the Adler zero and the Weinberg result, which are co
puted in Feynman loops with an identical number of qu
propagators and vertices~axial, vector or Bethe-Salpeter!,
are insensitive to the renormalization factors. The res
maintain the same expressions in terms of the physic
observableMp and f p , which are not affected by the ultra
violet infinities in the renormalization factors.

VIII. CONCLUSION

In this paper a low momentum and chiral expansion
performed on amplitudes computed in the framework of
quark model with chiral symmetry breaking. The expans
is analytical, and dressed Feynman diagrams are used fo
compactness of the expansion. The axial Ward identities
cluding a nontrivial Ward identity for the ladder, and th
vector Ward identity are essential tools to arrive at sim
and model independent results.

A detailed proof is shown, which confirms that Goldsto
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bosons not only are massless, in agreement with the rela
of Gell-Mann, Oakes, and Renner, but also that Goldst
bosons are noninteracting at low energy in agreement w
the Adler self-consistency zeros. This proof also confir
that intermediate ladders, which describe both meson
changes and contact terms, must be included in low ene
quark loops.

Moreover, this paper verifies that the famous PCAC re
tions of Goldberger and Treiman and of Weinberg are a
obtained when the pions are off the mass shell and hav
finite size. The quark model provides a well-defined p
scription for the exchange of virtual intermediate off-mas
shell pions.

The most involved technical part of this paper consists
detailing and completing the proof of the Weinberg theor
@12#, which was recently published@4,5,42#, and in extend-
ing the proof to off-mass-shell pions. Other important p
cursors of this work are the study ofp-p scattering@19# in
the Nambu and Jona-Lasinio model, and the study ofp-p
scattering with the bosonization method@39#.

It is a remarkable achievement of chiral symmetry that
quark propagator, the geometrical series of the ladder and
pion Bethe-Salpeter vertex, which are functions of the fin
scale of the interaction, say the string tensions or LQCD, of
the current quark massm and of the ultraviolet cutoffLuv
explicitly disappear from the final results, which are simp
functions of f p and Mp only. Any quark model with a
chirally symmetric interaction complies with the PCAC rel
tions. This result is general and model independent.

I expect that the analytical techniques used here may
be applied to address other chiral effects within the qu
model framework. The determination of the next-order ter
in the pion momenta expansion of thep-p scattering ampli-
tude will compute the l 1 and l 2 parameters of chira
Lagrangians, and will also tests quark models@43#. Another
different extension of this paper would consist in address
the anomalous axial Ward identities. The bosonizat
method suggests@44# that the Wess-Zumino term of the pio
effective Lagrangean@45,46#, which includes the Levi-Civita
symbolemnab, say in the coupling of five pions@44#, and the
anomalous coupling of pions to photons@47–49# can also be
studied within this framework.
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