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Momentum dependence of symmetry potential in asymmetric nuclear matter
for transport model calculations
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For transport model simulations of collisions between two nuclei which haveN/Z significantly different
from unity one needs a one-body potential which is both isospin and momentum dependent. This work
provides sets of such potentials.
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I. INTRODUCTION

Momentum dependent mean-fields for transport mo
calculations of heavy ion collisions have been in usage
many years now@1–6#. So far the attention has been for
momentum dependent potential which does not distingu
between neutrons and protons. This is adequate for sys
which haveN'Z whereN is the number of neutrons andZ
the number of protons. One main focus of nuclear phys
research today is to explore both structures of exotic nu
in regions far-off the stability line and novel properties
neutron-rich nuclear matter. The latter can be investigated
using collisions induced by neutron-rich nuclei at interme
ate to high energies. To interpret critically data from the
collisions and to extract accurately properties of neutron-r
nuclear matter, advanced transport model calculations
necessary. In asymmetric nuclear matter, the one body po
tial seen by a proton is different from that seen by a neutr
This has been implemented in BUU~Boltzmann-Uehling-
Uhlenbeck! calculations but with a simplification that th
potentials are taken to be momentum independent@7#. The
present work aims to correct this deficiency. That the m
mentum dependence will be different for neutrons and p
tons is of course well known and has been the subjec
quite sophisticated many body calculations, see, e.g, Ref@8#
for a recent review. We do not aim to add anything fund
mental in this regard. Our objective is to obtain a para
etrized version which displays the main characteristics
momentum dependence in asymmetric matter and is still
able in practical BUU calculations. Major advances in th
direction were already made: see articles by Bombaci@8# and
Prakashet al. @9#. We add to this. We will not only extend
the simplest momentum dependent potential@1# to include
isospin but also extend the improved treatment@2–4# subse-
quently introduced to include isospin. Thus this is an ext
sion of the work reported in Ref.@3,4#.

II. A MOMENTUM DEPENDENT POTENTIAL
FROM A PHENOMENOLOGICAL INTERACTION

An effective momentum dependent potential can be
duced from phenomenological interactions. We take
Gogny interaction@10# to obtain an idea of the momentum
dependence. There are many reasons for this choice. It
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been used in detailed fits for spectra in finite nuclei. It giv
accepted values for binding energy, saturation density, c
pressibility and symmetry energy in nuclear matter. It h
been verified already@2# that the interaction produces a re
sonable parameterization for the real part of the optical
tential in nuclear matter as a function of incident energy. T
Skyrme interaction has a wrong asymptotic behavior a
function of energy.~This is amplified in Ref.@2#.! Since we
want to devise a momentum dependence which should h
for beam energy as high as 1 GeV/nucleon~this would allow
investigation of symmetry energy at higher than norm
nuclear density! we discard the Skyrme interaction.

For the purpose of this work we will define nuclear mat
to be an infinite system but without the restrictionN5Z.
Using the Gogny interaction, we deduceU(r,d,p,t), the
one body potential a particle of momentump and isospint
feels in cold nuclear matter with densityr and asymmetry
d[(rn2rp)/(rn1rp). One then generalizes toU in the
case of heavy ion collisions. For BUU calculationsU is the
only quantity needed. But it is useful to also have an expr
sion forV(r,d), the potential energy density in cold nucle
matter with a given densityr and asymmetryd. This allows
one to deduceE/A as a function ofr and d which is, of
course, of importance. The expression forV(r,d) can also
be generalized to the case of heavy ion collisions and ca
used to check, for example, the accuracy of energy con
vation in a BUU simulation.

Normally nuclear matter denotes an infinite nucleus w
N5Z. Total potential energy in cold matter is deduced fro

VT5
1

2 (
p1s1t1p2s2t2

^pW 1 ,s1 ,t1 ,pW 2 ,s2 ,t2uv~r !

3~ upW 1 ,s1 ,t1 ,pW 2 ,s2 ,t2&2upW 2 ,s2 ,t2 ,pW 1 ,s1 ,t1&),

~2.1!

where,

v~r !5 (
i 51,2

~W1BPs2HPt2M PsPt! ie
2r 2/m i

2

1t0~11Ps!raS rW11rW2

2
D d~rW12rW2!. ~2.2!
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There are two finite range Gaussians and a density depen
zero-range force. The values of the parameters are g
in Ref. @10#. The one body potentialU(r,d,p,t) is
obtained fromU(r,d,p,t)5(p8s8t8^pW ,s,t,pW 8,s8,t8uv(r )
3(upW ,s,t,pW 8,s8,t8&2upW 8,s8,t8,pW ,s,t&) plus rearrange-
ment term which for nuclear matter i
(3/2)t0ara21(1/4)r2(12d2).

The momentum dependence inU comes entirely from the
exchange term of the finite range part, i.e., fro

^pW ,pW 8ue2r 2/m2
upW 8,pW &. Except for the momentum depende

part, very simple expressions forU andVT /A, the potential
energy per particle are obtained for the Gogny potent
ThusU(r,d,p,t)5X1Y1Z whereX arises from the direc
term of the finite range interaction,Y arises from thet0 term
~density dependent two body term!, andZ from the exchange
term of the finite range interactions. For a givent, these are

X5rS (
i 51,2

p3/2m i
3~W1B/2! i D

2rtS (
i 51,2

p3/2m i
3~H1M /2! i D , ~2.3!

Y5
3

2
t0ra~r2rt!1

3

2
t0ara21

1

4
r2~12d2!, ~2.4!

and

Z5ApF (
i 51,2

Zi~p,t!~2W22B1H12M ! i

1(
i

Zi~p,t8!~H12M ! i G , ~2.5!

where,

Zi~p,t!5
1

m ik
@e2$m i [kF(t)2k]/2%2

2e$2m i [kF(t)2k]/2%2
#

1
Ap

2 FerfS m i

2
@kF~t!2k# D

1erfS m i

2
@kF~t!1k# D G . ~2.6!

Heret8Þt, the isospin of the particle whose one body p
tential is being sought.

Similarly, VT /A5potential energy per particle, has cont
butions from the direct term of the finite range force, fro
the density dependentt0 term and the exchange term of th
finite range force. Denoting the first two byX8 andY8, re-
spectively, explicit expressions for these are

X85rF (
i 51,2

p3/2m i
3S W

2
1

B

4
2

H

4
2

M

8 D
i
G

2rd2F (
i 51,2

S H

4
1

M

8 D
i
G , ~2.7!
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Y85
3

8
t0ra11~12d2!. ~2.8!

We do not write down the explicit expression forZ8. It is
obtained from the expression ofZ above after a further inte
gration overp, sum overs,t and dividing the answer by 2

The one body potentials as a function ofk for neutrons
and protons in cold matter as predicted by the Gogny po
tial for d50 andd50.4 are shown in Fig. 1. They are quit
similar to other calculations ofU(r,d,p,t) available in the
literature. We compare, in particular, to theU(r,d,p,t)
given in Fig. 4 in Ref.@11#. That figure is forr50.17 and
obtained from Brueckner-Hartee-Fock calculation. W
Gogny interaction we find that the equation of state~EOS! of
asymmetric nuclear matter can be written as (E/A)(r,d)
'(E/A)(r,0)1Esym(r)d2, in agreement with the empirica
parabolic law found by all many body theories. Differe
calculations depending on the many body approaches and
interactions used, give very different behaviors forEsym(r),
especially at high densities. In some, such as, the relativ
mean field model@12# and the Brueckner-Hartree-Fock@11#,
it is a continuously rising function ofr. In others, such as
the variational many-body approach@13#, it rises in the be-
ginning and then begins to fall. Within the Hartree-Fock a
proach using all 86 Skyrme effective interactions wide
used currently in nuclear structure studies, it was found t
about 1/3(2/3) of them lead to symmetry energies in the fi
~second! category@14#. Gogny interaction with the defaul
parameters has behavior in the second category. It is in
esting to see what causes the fall and how the paramete
the interaction can be changed minimally to alter this beh
ior. In Fig. 2 we plot contributions toEsym(r) from the
Gogny interaction and we show separately the term com

FIG. 1. Single particle potentialU with respect tok and total
single particle energy (e) for neutron and proton ford50.4. The
solid line is the single particle potential for symmetric matter; he
r50.16 fm23.
1-2
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from ~a! the direct term of the finite range part,~b! the ex-
change term of the finite range part, and~c! the density de-
pendent zero range part. It is the latter that causes the b
ing over. For example, if we choose the density depend
term to bed independent,Esym(r) will continue to rise.

Lastly, we write the potential energy density due
Gogny interaction in a form that is common practice in BU
literature. Thus

V~r,d!5252.41S r2

r0
D137.70S r2

r0
D d21

102.6

s11

rs11

r0
s

~12d2!

1
1

r0
(
t,t8

E E f t~rW,pW ! f t8~rW,pW 8!

3@~241.51146.02dt,t8!e
2(kW2kW 8)2m1

2/4

1~238.62117.25dtt8!e
2(kW2kW 8)2m2

2/4#d3pd3p8.

~2.9!

Here, as in previous work, all quoted numbers are in M
r050.16 fm23. Also s5a(Gogny)1154/3.

Given that the momentum dependence generated by
Gogny potential comes from two Gaussians, we procee
find a simpler version for momentum dependent potential
asymmetric matter. We will extend the parametrization
Refs. @3,4#. Subsequently we will find an even simpler ve
sion, the kind that was used in first applications of mom
tum dependent potentials for heavy ion collisions.

III. A SIMPLE MOMENTUM DEPENDENT POTENTIAL
FOR BUU CALCULATIONS

The simplest generalization of the potential energy d
sity of Eq. ~5.4! of Ref. @3# to asymmetric nuclear matter i

FIG. 2. Esym(r) as a function ofr.
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V~r,d!5
A1

2r0
r21

A2

2r0
r2d21

B

s11

rs11

r0
s

~12xd2!

1
1

r0
(
t,t8

Ct,t8E E d3pd3p8
f t~rW,pW ! f t8~rW,pW 8!

11~pW 2pW 8!2/L2
.

~3.1!

The parameterx is introduced to cover the largely uncerta
behavior of nuclear symmetry energyEsym(r) as discussed
in the previous section. For the choice ofx51 ~same as in
Gogny! in the term containingB, the symmetry energy will
bend over beyond a densityr; for the choicex50 the sym-
metry energy will continue to rise with density. In the abov
C1/2,1/25C21/2,21/25Clike , and C1/2,21/25C21/2,1/25Cunlike.
In terms of interactions between like and unlike particles,
above equation is equivalent to

V~r,d!5
Aurnrp

r0
1

Al

2r0
~rn

21rp
2!1

B

s11

rs11

r0
s

~12xd2!

1
1

r0
(
t,t8

Ct,t8E E d3pd3p8
f t~rW,pW ! f t8~rW,pW 8!

11~pW 2pW 8!2/L2
,

~3.2!

whereA15(Au1Al)/2 andA25(Al2Au)/2. The one-body
potential needed for BUU computations is given by

U~r,d,pW ,t!5Au

rt8
r0

1Al

rt

r0
1BS r

r0
D s

~12xd2!

2x
B

s11

rs11

r0
s

dd2

drt

1
2Ct,t

r0
E d3p8

f t~rW,pW 8!

11~pW 2pW 8!2/L2

1
2Ct,t8

r0
E d3p8

f t8~rW,pW 8!

11~pW 2pW 8!2/L2
. ~3.3!

In the abovetÞt8 and ]d2/]rn54drp /r2 and ]d2/]rp
524drn /r2.

The constants appearing in Eqs.~3.1! and ~3.2! will be
fixed by ensuring that properties of cold nuclear matter
reproduced. Theref t(rW,pW )5(2/h3)Q@pf(t)2p#. The inte-
gration n Eq.~3.1! is facilitated by noting that for a fixedpW

[(pW 12pW 2)/2, the center of mass momentum can be in
grated out to give

E
0

pf (t)E
0

pf (t8)
d3p1d3p2g~pW !

5E
0

qf F16p

3
@pf

3~t!1pf
3~t8!#28pp@pf

2~t!1pf
2~t8!#

1
16p

3
p32

p

p
@pf

2~t!2pf
2~t8!#2Gg~pW !d3p, ~3.4!
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FIG. 3. Esym(r) as a function ofr for the two
choices ofx; 0 ~left panel! and 1~right panel!.
a

ng

n

sity
,

whereqf5@pf(t)1pf(t8)#/2.
For completeness, for cold matter, we write down the v

ues of the integrals appearing in Eqs.~3.1! and ~3.2!

E E d3pd3p8
f t~rW,pW ! f t8~rW,pW 8!

11~pW 2pW 8!2/L2

5S 2

h3D 2
4

3
p2 L2F H qf2

L

2
arctanS 2qf

L D J
34@pf

3~t!1pf
3~t8!#2H3@pf

2~t!1pf
2~t8!#1

L2

2 Jqf
21qf

4

1H3L2

4
@pf

2~t!1pf
2~t8!#1

L4

8
2

3

8
@pf

2~t!2pf
2~t8!#2J

3lnS 11
4qf

2

L2 D G . ~3.5!
03461
l-
Similarly, the value of the integral in Eq.~3.3! is

E d3p8
f t~rW,pW 8!

11~pW 2pW 8!2/L2

5
2

h3
pL3F pf

2~t!1L22p2

2pL
ln

@p1pf~t!#21L2

@p2pf~t!#21L2

1
2pf~t!

L
22H arctan

p1pf~t!

L
2arctan

p2pf~t!

L J G .

~3.6!
We fix the force parameters by first optimally reproduci

the variation ofU(r0 ,d,p) with p with that obtained by
using a Gogny force~Brueckner-Hartee-Fock calculatio
gives similar results@11#!. This fixesL of Eq. ~3.3!. Other
parameters are then fixed by values of saturation den
(0.16 fm23), binding energy~16 MeV! at saturation density
r
re
-

as
ar-
FIG. 4. One body potential in cold matter fo
d50.4. As in Fig. 3, here also the two panels a
for x50 and 1. Comparison with one-body po
tential as obtained with a Gogny interaction h
also been shown. The solid line is the single p
ticle potential for symmetric matter with MDI.
1-4
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compressibility ('210 MeV) of N5Z nuclear matter at
saturation density and symmetry energy atN5Z
('30 MeV). The values of the parameters for two choic
~1! x50 @denoted by MDI~0!# and ~2! x51 @denoted by
MDI ~1!# in Eq. ~3.2! as in Gogny~this causes the value o
the symmetry energy to bend over as a function of dens!
and are given in the table. Figure 3 shows the behavio
symmetry energy for the two choices. In Fig. 4 we show
one body potential in cold matter ford50.4.

Before we close this section we like to add that BU
calculations with momentum dependent interactions are o
slightly more complicated in the asymmetric case compa
to the case where no distinction is made between neut
and protons. In numerical solutions of Boltzmann equatio
phase space densities are simulated by test particles, ch
terized by a position and a momentum. Now there will a
be a tag on their charge but no major addition to the co
@6# are needed.

IV. REDUCTION TO THE GBD FORM

Although we do recommend the full formalism of th
above section be implemented, it is possible to reduce
above to a GBD~Gale, Bertsch, and Das Gupta! form. A
GBD potential, extended to asymmetric matter, already
ists and is called BGBD@8#. There the extensions were mad
such that in theN5Z case one gets back exactly the origin
parameters@1#. The parameterx @Eq. ~3.1!# was chosen to be
1/15. In contrast, here we have chosen the momentum
pendence of the Gogny potential as a reference curve
chosenx at 0 or 1. The values of the paramaters of GBD~0!
(x50), GBD~1! (x51), and BGBD (x51/15) are given in
Table I.

We write the potential energy density coming from t
momentum dependent part as

Vmom~r,d!5
1

r0
(
t,t8

Ct,t8rtE f t8~rW,pW !d3p

11~pW 2^pW &t!
2/L2

.

~4.1!
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The one-body potential generated by this piece of poten
energy density for givenr, d, pW and a givent is

Umom~r,d,pW ,t!

5
Ct,t

r0
F E f t~rW,pW 8!d3p8

11~pW 82^pW &t!
2/L2

1
rt

11~pW 2^pW &t!
2/L2G

1
Ct,t8
r0

F E f t8~rW,pW 8 !d3p8

11~pW 82^pW &t8!
2/L2

1
rt8

11~pW 2^pW &t8!
2/L2G . ~4.2!

In the above equation,t8Þt. As expected, the values of th
constants in the force will have to be recalculated to rep
duce the saturation properties. These are given in Tab
The GBD potentialU(r,d,p,t) is plotted in Fig. 5. This
does not track the Gogny potential as faithfully as the m

TABLE I. The values of the parameters of different interaction
Also gives the valuesK in the respective parametrizations. Th
saturation density for all parametrization is 0.16 fm23, except for
BGBD~1/15! it is 0.163 fm23. The binding energy and the tota
symmetry energy including contribution from kinetic part a
216 MeV/nucleon and 31.623 MeV/nucleon, respectively, in ea
case.

Parameters MDI~0! MDI ~1! GBD~0! GBD~1! BGBD~1/15!

Au 295.98 2187.27 2109.85 2299.69 2192.0
Al 2120.57 229.28 2191.30 21.46 296.0
B 106.35 106.35 205.66 205.66 203.3
Cu 2103.40 2103.40 2118.80 2118.80 284.53
Cl 211.70 211.70 226.26 226.26 265.472
s 4/3 4/3 7/6 7/6 7/6
L 1.0pf

(0) 1.0pf
(0) 1.5pf

(0) 1.5pf
(0) 1.5pf

(0)

K 210.68 210.68 214.68 214.68 215.0
r
re
-

as
the
r

FIG. 5. One body potential in cold matter fo
d50.4. As in Fig. 4, here also the two panels a
for x50 and 1. Comparison with one-body po
tential as obtained with a Gogny interaction h
also been shown. The solid line represents
single particle potential for symmetric matte
with the GBD potential.
1-5
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FIG. 6. Dependence of (UN2UP)/2d on mo-
mentum for different potentials at different den
sities. All the figures are ford50.4.
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sophisticated version of Sec. III does. The reader might w
der why the value ofL is significantly bigger in GBD as
opposed to in MDI~0! and MDI~1!. We have tried to fit the
variation ofU with k as obtained in Gogny potential~or the
Brueckner-Hartree-Fock calculation! by adjusting the value
of L. For p closepF , the contribution toU(p) in Sec. III
comes mainly fromp8 nearpF whereas in GBD what count
is upW 2^pW &aveu : since,^pW &ave is zero, one requires a differen
value ofL to mimic the variation withp. This point was not
appreciated in Ref.@3#.

V. MOMENTUM DEPENDENCE
OF THE SYMMETRY POTENTIAL

The single particle potentials derived in the previous s
tions can be used directly in transport model calculatio
They combine the density, momentum and isospin dep
dences of both the isoscalar and symmetry potentials
nontrivial way. In this section we evaluate the strength of
momentum dependence of the symmetry potential. To
leading order ind, the single nucleon potential can be cast
the form

Un/p~r,pW ,d!'U0~r,pW !6Usym~r,pW !d ~5.1!

in accordance with the Lane potential@17#, where the6 sign
is for neutrons and protons, respectively. Thus the symm
potential can be evaluated fromUsym(r,pW )5(Un2Up)/2d.
Shown in Fig. 6 are the symmetry potentials as a function
k for the three densities. It is seen that theUsym(r,pW ) is
strongly momentum dependent fork<5 fm21 in all models
considered. Moreover, this dependence is particularly st
ger at high densities. By construction, the results for Gog
and MDI~1! are very close. By comparing the results wi
x50 andx51, it is seen that the momentum dependenc
rather different mainly forr/r052. This is because the sym
metry energies withx50 andx51 are significantly different
only in the region ofr>r0 as shown in Fig. 3.

To our best knowledge, the symmetry potential has b
assumed to be momentum independent in all previous s
ies. Our results above indicate that this is only a good
03461
-

-
s.
n-
a

e
e

ry

f

n-
y

is

n
d-
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proximation at high momenta. At momenta less than ab
1 GeV/c, the momentum dependence of the symmetry
tential is important.

VI. SUMMARY

The goal of this work was to obtain parameters of a m
mentum dependent mean field potential which is applica
to highly isospin asymmetric nuclear matter but easy eno
to use in a transport model calculation for heavy ion co
sions at intermediate to high energies. We used the Go
interaction as a guide. Published results of Brueckn
Hartree-Fock calculations were also used for choosing
rameters. We have two versions. They both are quite flex
in the sense that parameters can be easily chosen acco
to the experimental data on binding energy, compressibi
etc. In each of these versions we have proposed two se
parameters: one, in which the symmetry energy continue
rise as a function of density and another one where the s
metry energy first rises and then falls off with density. O
opinion is that introducing momentum dependence in sy
metry potential will not not make transport model simul
tions much harder or longer than they already are. Imp
mentations of these potentials in BUU transport models
in progress.

Transport models with the momentum dependent sym
try potentials are more reliable tools for investigating t
density dependence of nuclear symmetry energy and thus
EOS of neutron-rich matter. Knowledge on the symme
energyEsym(r) is essential for understanding not only th
structure of radioactive nuclei but also many key issues
astrophysics. For instance, theEsym(r) determines uniquely
the proton fraction in neutron stars atb equilibrium @8#. A
continuously rising symmetry energy leads to a growing p
ton fraction with increasing density, thus allowing for the fa
cooling of protoneutron stars through the direct URCA p
cess@15#. A falling symmetry energy at high densities forbid
the direct URCA process to happen; moreover, it favors
formation of pure neutron domains in the cores of neut
stars@16#. Nuclear reactions induced by neutron-rich nuc
provide a great opportunity to pin down the density dep
dence of nuclear symmetry energy. Among the experime
1-6
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observables that have been found to be sensitive to the s
metry potential, the neutron/proton ratio of pre-equilibriu
nucleon emissions, neutron-proton differential flow, and c
relation functions, as well as the proton elliptic flow at hig
transverse momenta are expected to be most sensitive t
momentum dependence of the symmetry potential. These
servables will be studied with the improved BUU transp
models using the momentum dependent symmetry potent
These results will be reported in a forthcoming publicatio
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