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Momentum dependence of symmetry potential in asymmetric nuclear matter
for transport model calculations
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For transport model simulations of collisions between two nuclei which INA\Z significantly different
from unity one needs a one-body potential which is both isospin and momentum dependent. This work
provides sets of such potentials.
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[. INTRODUCTION been used in detailed fits for spectra in finite nuclei. It gives
accepted values for binding energy, saturation density, com-
Momentum dependent mean-fields for transport modepressibility and symmetry energy in nuclear matter. It has
calculations of heavy ion collisions have been in usage fobeen verified alread}?] that the interaction produces a rea-
many years nowW1-6]. So far the attention has been for a sonable parameterization for the real part of the optical po-
momentum dependent potential which does not distinguiskential in nuclear matter as a function of incident energy. The
between neutrons and protons. This is adequate for systerfkyrme interaction has a wrong asymptotic behavior as a
which haveN~Z whereN is the number of neutrons arl ~ function of energy(This is amplified in Ref[2].) Since we
the number of protons. One main focus of nuclear physicgvant to devise a momentum dependence which should hold
research today is to explore both structures of exotic nuclefor beam energy as high as 1 GeV/nuclétims would allow
in regions far-off the stability line and novel properties of investigation of symmetry energy at higher than normal
neutron-rich nuclear matter. The latter can be investigated bguclear densitywe discard the Skyrme interaction.
using collisions induced by neutron-rich nuclei at intermedi- For the purpose of this work we will define nuclear matter
ate to high energies. To interpret critically data from thesdo be an infinite system but without the restrictidh~Z.
collisions and to extract accurately properties of neutron-riclJsing the Gogny interaction, we dedutKp,d,p,7), the
nuclear matter, advanced transport model calculations arene body potential a particle of momentyprand isospinr
necessary. In asymmetric nuclear matter, the one body potefeels in cold nuclear matter with densipyand asymmetry
tial seen by a proton is different from that seen by a neutroné=(p,— pp)/(pn+pp). One then generalizes td in the
This has been implemented in BUWBoltzmann-Uehling- case of heavy ion collisions. For BUU calculatiodss the
Uhlenbeck calculations but with a simplification that the only quantity needed. But it is useful to also have an expres-
potentials are taken to be momentum independi@htThe  sion forV(p,d), the potential energy density in cold nuclear
present work aims to correct this deficiency. That the momatter with a given density and asymmetrys. This allows
mentum dependence will be different for neutrons and proone to deduceéE/A as a function ofp and & which is, of
tons is of course well known and has been the subject ofourse, of importance. The expression ¥ip,5) can also
quite sophisticated many body calculations, see, e.g,[BEf. be generalized to the case of heavy ion collisions and can be
for a recent review. We do not aim to add anything funda-used to check, for example, the accuracy of energy conser-
mental in this regard. Our objective is to obtain a param-ation in a BUU simulation.
etrized version which displays the main characteristics of Normally nuclear matter denotes an infinite nucleus with
momentum dependence in asymmetric matter and is still usN=Z. Total potential energy in cold matter is deduced from
able in practical BUU calculations. Major advances in this
direction were already made: see articles by Bomf®cand 1
Prakashet al. [9]. We add to this. We will not only extend VT:§ bio E
the simplest momentum dependent potenftidl to include v
isospin but also extend the improved treatm@at4] subse- ><(|51101-711F32102172>—|52102,szl51,01-71>):
qguently introduced to include isospin. Thus this is an exten-
sion of the work reported in Ref3,4]. 2.

(P1,01,71,P2,07,75|v(r)
T1P20272

where,
1. AMOMENTUM DEPENDENT POTENTIAL

FROM A PHENOMENOLOGICAL INTERACTION 2 2
. _ v(r)= 2 (W+BP,~HP,~MP,P,)e "/
An effective momentum dependent potential can be de- i=12
duced from phenomenological interactions. We take the - -
Gogny interactio{10] to obtain an idea of the momentum of Fatl2) - -
; . +to(1+P - —ry). 2.2
dependence. There are many reasons for this choice. It has fo 0P 2 o(ri=rz) 22

0556-2813/2003/68)/0346117)/$20.00 67 034611-1 ©2003 The American Physical Society



C. B. DAS, S. DAS GUPTA, C. GALE, AND BAO-AN LI

There are two finite range Gaussians and a density depende
zero-range force. The values of the parameters are givel

in Ref. [10]. The one body potentiall(p,d,p,7) is
obtained fromU(p,8,p, 7)==/ (p,o,7,p '\’ 7' |v(r)
x(|p,o,7,p "', 7)Y =|p ', , 7' ,p,0,7)) plus rearrange-
ment  term which for nuclear matter is
(32)tgap® L(1/4)p?(1— 62).

The momentum dependencelincomes entirely from the
exchange term of the finite range part, i.e., from
(p.p ’|e‘r2’”2|5 ' p). Except for the momentum dependent
part, very simple expressions forandV/A, the potential

energy per particle are obtained for the Gogny potential.

ThusU(p,é,p,7) =X+ Y+ Z whereX arises from the direct
term of the finite range interactiolY,arises from the, term

(density dependent two body ternandZ from the exchange
term of the finite range interactions. For a giventhese are

xzp(_E12 312 3(W+B/2))
—pT(.§2W3/ZM?(H+M/2)i), (2.3
3 11 2 2
Y=35top(p=po)+ Stoap® "7 p%(1- 5%, (2.9
and
Z=\/n| _ZlZZi(p,T)(—W—ZB+H+2M)i
+> Zi(p,r’)(H+2M)i}, (2.5
where,

(p,7)= ik[ef{m[kp(r)fkvz}z_e{wi[kp(r)fkmz]
Ki

ar

T

erf(%[kp(r)—k])

+ erf (2.6

= ke(7)+K]

Here 7' # 7, the isospin of the particle whose one body po-

tential is being sought.

Similarly, V+/A=potential energy per particle, has contri-
butions from the direct term of the finite range force, from
the density dependen term and the exchange term of the
finite range force. Denoting the first two B/ andY’, re-
spectively, explicit expressions for these are

{5l

W B H M
47178
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) |

>

i=1,2

@2
po 7738 2.7
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FIG. 1. Single particle potentidl with respect tok and total
single particle energye) for neutron and proton fo6=0.4. The

solid line is the single particle potential for symmetric matter; here
p=0.16 fm 3.

Y’zgtopa“(l—az). (2.9

We do not write down the explicit expression @ft. It is
obtained from the expression @fabove after a further inte-
gration overp, sum overo, T and dividing the answer by 2.

The one body potentials as a function lofor neutrons
and protons in cold matter as predicted by the Gogny poten-
tial for =0 and5=0.4 are shown in Fig. 1. They are quite
similar to other calculations dfl(p, d,p,r) available in the
literature. We compare, in particular, to theé(p,ds,p,7)
given in Fig. 4 in Ref[11]. That figure is forp=0.17 and
obtained from Brueckner-Hartee-Fock calculation. With
Gogny interaction we find that the equation of st@®9 of
asymmetric nuclear matter can be written & A)(p, )
~(E/A)(p,0)+ Egyn(p) 82, in agreement with the empirical
parabolic law found by all many body theories. Different
calculations depending on the many body approaches and the
interactions used, give very different behaviors Ey.(p),
especially at high densities. In some, such as, the relativistic
mean field mode]12] and the Brueckner-Hartree-Fofkl],
it is a continuously rising function gb. In others, such as,
the variational many-body approa¢h3], it rises in the be-
ginning and then begins to fall. Within the Hartree-Fock ap-
proach using all 86 Skyrme effective interactions widely
used currently in nuclear structure studies, it was found that
about 1/3(2/3) of them lead to symmetry energies in the first
(secondl category[14]. Gogny interaction with the default
parameters has behavior in the second category. It is inter-
esting to see what causes the fall and how the parameters of
the interaction can be changed minimally to alter this behav-
ior. In Fig. 2 we plot contributions tdEg{(p) from the
Gogny interaction and we show separately the term coming
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-100 | The parametex is introduced to cover the largely uncertain
behavior of nuclear symmetry ener@y,(p) as discussed

-150 | in the previous section. For the choice)st1 (same as in

E,,., (MeV/nucieon) (potential part)

N from density dopen | Gogny) in the term containind, the symmetry energy will
B bend over beyond a densipy for the choicex=0 the sym-
250 . ‘ metry energy will continue to rise with density. In the above,
0 0.2 0.4 0.6
p (fm™) C112,7=C-12-12=Ciike, @NA Cypp 1= C_ 172 1/7= Cuniike-
In terms of interactions between like and unlike particles, the
FIG. 2. Egyn(p) as a function of. above equation is equivalent to
papp A p”
. . Vip,5)= eboPo + o (patpp)t 7 (1%
from (a) the direct term of the finite range path) the ex- 0 2po 1 ps

change term of the finite range part, afwl the density de- .
pendent zero range part. It is the latter that causes the bend- Lo 2 c J J’ &pdp f f IO)f (rp )
ing over. For example, if we choose the density dependent ke 1+(p 5 ")2[A2]
term to bes independentEg(p) will continue to rise.

Lastly, we write the potential energy density due to 3.2
Gogny interaction in a form that is common practice in BUUwhereAl—(A +A)/2 andA,= (A, —A,)/2. The one-body

literature. Thus potential needed for BUU computations is given by

p
Po

OTT

o

(1—x6%)

U(p, 5p7’) Ay +A|—+B(
+37. 7(<p2)52+ 1026077 | "
Po o+1 pg ( ) B pa'+l d52

] pg dp,

p?
V(p,8)=—52. 4J(p

+—2H fr.p)f.(rp ")

Po 1 2C,, f(rp’
X[(—41.51+46.025, e (K Huil4 Po 1+(p—p ")?A
+(—38.62+17.255,..)e~ KK Vu34|q3pp’ +&J e LZ)Z 3.3

2.9 Po 1+(p—p )IA
In the abover# 1" and 36% dp,=43p,/p® and 95% dp,
=—46pylp®.
Here, as in prewous work, all quoted numbers are in MeV, The constants appearing in Eq8.1) and (3.2) will be
=0.16 fm>. Also o= a(Gogny)+ 1=4/3. fixed by ensuring that properties of cold nuclear matter are

leen that the momentum dependence generated by tf}%produced TheréT(r p)=(2h3)@[p(7)—p]. The inte-
Gogny potential comes from two Gaussians, we proceed to
ration n Eq.(3.1) is facilitated by noting that for a fixegd
find a simpler version for momentum dependent potential 1‘01g
asymmetric matter. We will extend the parametrization of— P1—P,)/2, the center of mass momentum can be inte-
Refs.[3,4]. Subsequently we will find an even simpler ver- 9rated out to give
sion, the kind that was used in first applications of momen-

. - . (7) ' N
tum dependent potentials for heavy ion collisions. fpf fp’( )d3p1d3ng(p)
0
a¢| 167 3 3 ) )
Ill. A SIMPLE MOMENTUM DEPENDENT POTENTIAL = T[pf(7)+pf(r’)]—87-rp[pf(r)+pf(r’)]
FOR BUU CALCULATIONS 0
The simplest generalization of the potential energy den- 16_77 3. T 20 20 2|2 a3
sity of Eq. (5.4) of Ref.[3] to asymmetric nuclear matter is * 3 P p [Pi(n)=pi(7)]%|a(p)d°p, (3.4
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FIG. 3. Egyn(p) as a function op for the two
choices ofx; 0 (left pane) and 1(right pane).
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Similarly, the value of the integral in E43.3) is
For completeness, for cold matter, we write down the val-

fd3 ;o f(rp )
1+(p—p ")4A?

2 pF(7)+A%=p? [p+ps(r)]?+A2
=—A3 In

h? 20N T[p—py(n) [+ A
2p¢(7) p+ps(7) p—ps(7)
+ —2{ arctan———— — arctan————1 |.
A A A
(3.9

We fix the force parameters by first optimally reproducing
the variation ofU(pq,8,p) with p with that obtained by
using a Gogny force(Brueckner-Hartee-Fock calculation
gives similar result$11]). This fixesA of Eq. (3.3). Other
parameters are then fixed by values of saturation density
(0.16 fm %), binding energy16 MeV) at saturation density,

U, (MeV)

17

/=== U, (MDI©O)

FIG. 4. One body potential in cold matter for
6=0.4. As in Fig. 3, here also the two panels are
for x=0 and 1. Comparison with one-body po-
tential as obtained with a Gogny interaction has
also been shown. The solid line is the single par-
ticle potential for symmetric matter with MDI.

-100
0

----- U, (MDI(0)) ----- U, (MDI(1))
—-—- Uy (Gogny) —-—- Uy (Gogny)
------------------- U, (Gogny) /= U, (Gogny)
1 2 3 1 2 .3 5
k (fm ) k (fm ™)
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compressibility £210 MeV) of N=Z nuclear matter at TABLE I. The values of the parameters of different interactions.
saturation density and symmetry energy &t=Z Also gi_ves the _valuesK in the res_pec_tive_ parametrizations. The
(=30 MeV). The values of the parameters for two choicessaturation de_ns_lty for all parametrization is 0.16 fin except for

(1) x=0 [denoted by MD{0)] and (2) x=1 [denoted by BGBD(1/19) it is 0.163 frTl’3. The .bln(jmg energy anq the total
MDI(1)] in Eq. (3.2 as in Gogny(this causes the value of SYmmetry energy including contribution from kinetic part are
the symmetry energy to bend over as a function of dehsity ~ 16 MeV/nucleon and 31.623 MeV/nucleon, respectively, in each
and are given in the table. Figure 3 shows the behavior of25¢:

symmetry energy for the two choices. In Fig. 4 we show th
one body potential in cold matter f@gr=0.4. eParameters MOD) MDI(1) GBD(0) GBD(1) BGBD(1/19

Before we close this section we like to add that BUU A, —-95.98 —187.27 —109.85 —299.69 —192.0
calculations with momentum dependent interactions are only A, ~120.57 —-29.28 —191.30 —1.46 —96.0
slightly more complicated in the asymmetric case compared p 106.35 106.35 205.66 205.66 203.3
to the case where no distinction is made between neutrons ¢ —103.40 —103.40 —118.80 —118.80 —84.53
and protons. In numerical solutions of Boltzmann equations, ¢, —11.70 —11.70 —26.26 —26.26 —65.472
phase space densities are simulated by test particles, charac- 43 4/3 7/6 716 7/6
terized by a position and a momentum. Now there will also (0) (0) (0) (0) (0)
be a tag on their charge but no major addition to the codes A 1o 1o LoWr” Lo 15
[6] are needed. K 210.68 210.68 214.68 214.68 215.0

IV. REDUCTION TO THE GBD FORM . S .
The one-body potential generated by this piece of potential

A|th0Ugh we do recommend the full formalism of the energy density for givelp’ S, p and a givem— is
above section be implemented, it is possible to reduce the .
above to a GBD(Gale, Bertsch, and Das Gupttorm. A Upon(p,d,p,7)
GBD potential, extended to asymmetric matter, already ex-

ists and is called BGBI8]. There the extensions were made ~ _ Cr.- J f(r,p)d%p’ N Pr

such that in théN=Z case one gets back exactly the original Po 1+(p' —(p))2A% 1+ (p—(p),)¥A?
parameter§l]. The parametex [Eg. (3.1)] was chosen to be

1/15. In contrast, here we have chosen the momentum de- C, .

f f(r,p’ )d%’
pendence of the Gogny potential as a reference curve and 1+(p '—<I5>T')2/A2

chosenx at 0 or 1. The values of the paramaters of GBD po

(x=0), GBD(1) (x=1), and BGBD &=1/15) are given in P
Table 1. = |- (4.2
We write the potential energy density coming from the 1+(p—=(p)-)TA
momentum dependent part as In the above equation; # 7. As expected, the values of the
1 fF ﬁ)d3p constants in the force will hgve to be recalcu_lateq to repro-
Voo, 8) = — 2 C, T'PTJ AL _ duce the saturat[on propertles.' These are given in Tgble l.
07 1+ (p—(p),)?A? The GBD potentialU(p,d,p,7) is plotted in Fig. 5. This

(4.)  does not track the Gogny potential as faithfully as the more

FIG. 5. One body potential in cold matter for
6=0.4. As in Fig. 4, here also the two panels are
for x=0 and 1. Comparison with one-body po-
tential as obtained with a Gogny interaction has
also been shown. The solid line represents the
single particle potential for symmetric matter
with the GBD potential.

U, (MeV)

- U, (GBD(0))

80l - U, (GBD(0)) J A U, (GBD(1))
// —-—- Uy (Gogny) / —-—- Uy (Gogny)
,,’ --------------- U, (Gogny) e U, (Gogny)
~100 s ’ ‘
0 1 2 .3 4 0 1 2 .3 4 5
k (fm™) k (fm™)
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FIG. 6. Dependence olJy—Up)/25 on mo-
______ mentum for different potentials at different den-
Lo T+ . sities. All the figures are fo6=0.4.

(Uy=U,)/28 (MeV)

sophisticated version of Sec. Ill does. The reader might wonproximation at high momenta. At momenta less than about
der why the value ofA is significantly bigger in GBD as 1 GeV/c, the momentum dependence of the symmetry po-
opposed to in MDI0O) and MDI(1). We have tried to fit the tential is important.

variation ofU with k as obtained in Gogny potenti&r the

Brueckner-Hartree-Fock calculatipby adjusting the value

of A. For p closepg, the contribution toJ(p) in Sec. llI VI. SUMMARY

comes mainly fronp’ nearpg whereas in GBD what counts
is [p—(P)avd : Since,(P)aveis zero, one requires a different
value of A to mimic the variation withp. This point was not
appreciated in Ref3].

The goal of this work was to obtain parameters of a mo-
mentum dependent mean field potential which is applicable
to highly isospin asymmetric nuclear matter but easy enough
to use in a transport model calculation for heavy ion colli-
sions at intermediate to high energies. We used the Gogny

V. MOMENTUM DEPENDENCE interaction as a guide. Published results of Brueckner-
OF THE SYMMETRY POTENTIAL Hartree-Fock calculations were also used for choosing pa-
rameters. We have two versions. They both are quite flexible

The single particle potentials derived in the previous sec-

tions can be used directly in transport model calculations!” the sense that parameters can be easily chosen according

They combine the density, momentum and isospin deper‘F—o the experimental data on binding energy, compressibility,
dences of both the isoscalar and symmetry potentials in gte. In (?[aCh_ of thgse \;]?rf]'%?s we havte proposed tWt(.) setstof
nontrivial way. In this section we evaluate the strength of theP@rameters. one, in which thé symmetry enérgy continues 1o

momentum dependence of the symmetry potential. To théise asa functipn Of. density and another one where .the Sym-
leading order in5, the single nucleon potential can be cast toMetry energy f'.rSt rses and then falls off with densﬂy. Our
the form opinion is that introducing momentum dependence in sym-
metry potential will not not make transport model simula-

tions much harder or longer than they already are. Imple-

- - - mentations of these potentials in BUU transport models are

Un/p(P-pa 0)~Uy(p,p) = Usyn{P,p)ﬁ (5.1 in progress.

: . : Transport models with the momentum dependent symme-
n accordance with the Lane potentﬁQV], where thet sign try potentials are more reliable tools for investigating the
is for rTeutrons and protons, respect|vely. Thus the Symmetr&ensity dependence of nuclear symmetry energy and thus the
potential can be evaluated frobhgyn(p,p)=(Un—U)/26.  EOS of neutron-rich matter. Knowledge on the symmetry
Shown in Fig. 6 are the symmetry potentials as a fuﬁnction OfenergyESym(p) is essential for understanding not only the
k for the three densities. It is seen that thg,.(p,p) is  structure of radioactive nuclei but also many key issues in
strongly momentum dependent fio=5 fm~* in all models  astrophysics. For instance, thg,(p) determines uniquely
considered. Moreover, this dependence is particularly strorthe proton fraction in neutron stars Atequilibrium[8]. A
ger at high densities. By construction, the results for Gognyontinuously rising symmetry energy leads to a growing pro-
and MDI(1) are very close. By comparing the results with ton fraction with increasing density, thus allowing for the fast
x=0 andx=1, it is seen that the momentum dependence igooling of protoneutron stars through the direct URCA pro-
rather different mainly fop/po=2. This is because the sym- cesq15]. A falling symmetry energy at high densities forbids
metry energies witbk=0 andx=1 are significantly different the direct URCA process to happen; moreover, it favors the
only in the region ofp=p, as shown in Fig. 3. formation of pure neutron domains in the cores of neutron
To our best knowledge, the symmetry potential has beestars[16]. Nuclear reactions induced by neutron-rich nuclei
assumed to be momentum independent in all previous stugsrovide a great opportunity to pin down the density depen-
ies. Our results above indicate that this is only a good apédence of nuclear symmetry energy. Among the experimental
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