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Surface entropy in statistical emission of massive fragments from equilibrated nuclear systems
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Statistical fragment emission from excited nuclear systems is studied within the framework of a schematic
Fermi-gas model combined with Weisskopf’s detailed balance approach. The model considers thermal expan-
sion of finite nuclear systems and pays special attention to the role of the diffuse surface region in the decay
of hot equilibrated systems. It is found that with increasing excitation energy, effects of surface entropy lead to
a systematic and significant reduction of effective emission barriers for fragments and, eventually, to the
vanishing of these barriers. The model predicts a maxirteffective nuclear temperature and the occurrence
of negative nuclear heat capacities, effects that have been reported in the literature. It also accounts for the
observed linearity of pseudo-Arrhenius plots of the logarithm of the fragment emission probedifitysthe
inverse square root of the excitation energy, but does not predict true Arrhenius behavior of these emission

probabilities.
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|. INTRODUCTION where a is the level density parametey;, is the thermal

excitation energy, anBi.omp, is the collective compressional

Over the last decade, considerable efforts have been madeergy. The dependence $bn bulk nuclear matter density
to understand the phenomenon of the production of multipley arises in Eq(2) through the dependence of both, the level
intermediate-mass fragmer(i$/F) in individual nuclear re-  density parametea (“little- a”) and the compressional en-
action events. As a contribution to these continuing effortsergy E,,,,, On the matter density.
the present study demonstrates that a simple scenario, closely The dependence of littla on the nuclear matter density
related to that known from fission studies, offers an explanafor infinite nuclear matter is given by the Fermi-gas model:
tion of how, at moderately high excitation energies, IMF
emission can compete effectively with nucleon evaporation.
It represents an extension of ideas and formalism presented a=a,
in a recent publicatiofil]. Central to this formalism is the

notion of a relatively high entropy associated with the diffuse . :
. wherea, is the level density parameter for the nuclear matter
nuclear surface regiofas opposed to bulk matjer

: . . at ground-state matter density .
The model formalism adopted in the present study is de The above equation holds approximately also for finite

scribed in detalil in Section II. While this formalism is some- uclei if the expansion or compression of these nuclei is
what schematic, it is believed to capture the essential physic@ par comp ) .

underlying the processes involved. One benefit of such $SSL.‘”T'ed to oceurin gself—smllar fashlon..Th|s IS S0 because
schematic treatment is that it provides direct insight into the ' flnltednucl?, thi littlea pargmeter con5|?[§2,l3] ct))f \t/r?l- f
phenomena of interest, disregarding a multitude of seconda € and surtace ermaxﬁ” 4, respectively, both o
details demanded by a more rigorous approach. Results h'?h are prop'ortlonal o under the assumption of self-
calculations are presented in Sec. Ill, while the conclusion§Irnllar expansion:

are presented in Sec. IV.
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II. THEORETICAL FORMALISM

The present study assumes that an excited nuclear systeihere a, and a,, are volume and surface coefficients, re-
expands in a self-similar fashion so as to reach a state dfpectively, independent of bulk nuclear matter density.
approximate thermodynamic equilibrium, where the entropy The term “self-similar expansion” is used here to de-
Sis maximal for the given total excitation ener&y,,, i.e.,  scribe a type of expansion in which any change in the matter

density profile is reducible to a simple rescaling of the radial
IS(Efi,p) 0 ® coordinate, such that
14 * '
Pl f,(r)=c3f(cr), ()

The functional dependence of the entropy Bfa; and | heref (r) is the ground-state density profile function and
bulk nuclear matter density is evaluated using the Fermi- g 5 scaling constant.

gas model relationship The presence of a surface contribution to the level density
- - parameter is of crucial importance in the present study as it
S=2\aE},=2\a(Ef,—Ecompn (2)  describes that pas, of the entropyS of the system, which
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. . . . . . .
is associated with the diffuse surface domain and is seen to Seaddi= Srest Sfrag:2\/(ares+ Atrag) Edadale  (12)
have significant effect on the fragment emission probability.

One has
In Egs. (11) and (12), aa, s and ag 44 are the level
S=S,+S,, (6) density parameters of the system at equilibrium, the residue,
and the fragment, respectively, whilg ", . is the thermal
whereSy is the entropy of the bulk matter. excitation energy of the system in the saddle-point configu-

The compressional energy in E) is approximated in ration. The latter quantity is calculated as
the present study following the schematic prescription pro-
posed in the expanding emitting source model EERWN) ped|?
! eq
1.€., E:;gdlez E:‘ot_ Eb( 1- _) —Vsaddies (13

[o]

2
p
€compr— €b(1_ ,D_) ) (7)

o whereV,,4q1ciS the (collective saddle-point energy.

Note that the present formalism of statistical decay of
where €.ompr and €, are the compressional and the ground-excited nuclear systems, albeit schematic, makes no use of
state binding energies per nucleon of the system, respeitensive parameters, such as temperature or pressure. As
tively. Note that Eq.(7) ensures that the compressional en-evident from Eqs(1)—(13), the present model builds entirely
ergy varies parabolically witlp, from zero at ground-state on extensive variables, both thermostdtatal excitation en-
densityp, to €, at zero density. ergy, compressional energy, and entroayid geometrical

Equations(1)—(3) and(7) allow one to obtain an analyti- (density parametes, used here to describe the volume of the
cal expression for the equilibrium densjby,/p, of nuclear  system. This is in a stark contrast to many approaches com-
matter as a function of the excitation energy per nucleonmonly used to describe statistical decay of nonextensive sys-
€= El /A, whereA is the mass number of the system: tems, i.e., systems for which the thermodynamic limit cannot

be reached. These latter approaches include the equilibrium

1 €l statistical model Gemiri6], the expanding emitting source

P 1+ \/9—86— : (8 model[4], Fisher's mode[7], and the Arrhenius-type Ber-

© b keley approacip8], all of which rely inherently on the notion
Equation(8) reflects the fact that foeZ, < e, the system of a temperature, an intensive parameter._\_N_hiIe the avae
is bound, as far as the self-similar expansion mode is corstatements should not be construed as a criticism of the cited
cerned, and features a single maximum entropy for the ran odczls, it had begn argué@l] tglat, thern;]odynammal mod?ls .
of matter densities 12pq/po<1. For €, =¢,, the sys- ta;e on extens:jve observa es,bsuc as egt][opyr,] total exci-
tem is essentially unbound with respect to the self-similaratlon energy, an geometry, are ”etter"sune or the purpose
. . : . of nonextensive thermostatics of "small” systems than mod-
expansion mode, with the entropy diverging, as the matter . . .
. . els built on intensive parameters.

densityp tends to zero. However, for (9/8)= €/, =€y, the

: . - While not constituting an inherent element of the present
system still has a local, metastable maximum at a finite de%odel the notion of amicrocanonical or effectivenuclear
sity given by Eq.(8), i.e., in the range of matter densities '

) temperature is used in the following section to discuss a ca-
1/a< f.’eq./ po=1/2. '_I'he latter m_etastak_)l(a/\nth respect 0 4ric curve—an entity that has attracted much attention in the
self-similar expansion moglenaximum in entropy is sepa-

. . o course of multifragmentation studi¢$0,11. The notion of
rated from the divergence at zero density by a minimum af, effective) temperature has been used also in constructing
Psaddle; Where an Arrhenius plot for fragment emission probabilities, an-
. other entity that has attracted much attention in recent years

Psadme:}( 1- /9_8@) o) [8]. While using the notion of an effective temperature, how-
Po € )’ ever, one has to keep in mind its possible limitations as far as
the description of nonextensive systems is concerned. For the
Here,Ey,=Ag,. above specific application, an effective nuclear temperature
The probabilityp of emitting a fragment from an equili- can be obtained from the commonly used Fermi-gas model

brated excited system, as defined above, can be evaluateslationship between the temperatireand thermal excita-
using the Weisskopf formalisi®]: tion energyEs},:

Peq

pe efS= essaddlefseq, (10

E* 113 2
T= Sth_ [ Peq —1/2\/E* —E 1_@
whereS;, 441 aNd S¢q are saddle-point and equilibrium-state - a | po o ot =b o)

entropies, respectively. The latter two entropies can be cal- (14)
culated using Eq(2),

Seq: 2 \/aA

Peq
Etor— Eb( 1- ’.

o

(11  effects due to surface entropy, the notion of an effective bar-

> To allow one to quickly evaluate the magnitude of the
) } rier Bess determining the emission probabilify is used in
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FIG. 1. Equilibrium density of bulk nuclear mattesolid curve )
and the net gain in entropy realized by &{Au system as a result FIG. 2. Caloric curve for thé*’Au system.
of the relaxation of the self-similar expansion mddashed curve
plotted as functions of total excitation energy per nucleon.
fects both, the caloric equation of state and the fragment
emission probability, two entities of considerable interest.
the following section. This notion is introduced so as to for-  The dashed curve seen in Fig. 1 illustrates the net gain in
mally reduce the emission probabilitygiven by Eqs(10)—  entropy resulting from the relaxation of the self-similar ex-
(12) of the present formalism to a more intuitive, effective pansion mode in an excitef’Au system. Large gains in
Boltzmann factor. The effective barrier is defined by theentropy associated with the relaxation of this mode empha-
equation size the importance of this mode for a statistical description
BT of excited nuclear systems, notably for models based on the
pece meft, (19 concept of microcanonical12] or pseudomicrocanonical
[13] equilibrium.
The caloric curve calculated for states of maximum en-
tropy, i.e., for the states of equilibrium density,, is de-
picted in Fig. 2. Not surprisingly, this curve shows consider-

Note again that Eq(16) does not include any intensive 2P!€ *deV|at|0n from the simple Fermi-gas form &t
parameters, the paramef€rbeing constructed from purely *\[Ej. Note that in experiments such as the recently re-
extensive observabldsee Eq(14)]. ported ISIS experimenfl4], it is Ef,; and not the purely

A selection of results of calculations performed using the
above formalism is presented in Sec. Ill below. I I

and hence,

Berf=—TAS. (16)

Ill. RESULTS OF MODEL CALCULATIONS

Results of the calculations performed in the framework of
the formalism presented in Sec. Il are presented in Figs. 1-7.
In these calculations, values ef,=1/14.6 MeV ! and «,,
=4/14.6 MeV ! have been assumed for the coefficients
and «,, as suggested in the literatuf@]. Further, ¢,
=8 MeV was assumef#] for the ground-state binding en-
ergy per nucleon, while the saddle-point collective energy
was approximated by the Coulomb energy of the residue and
fragment represented by two touching spheres of radius pa-
rameter rco,=1.3(p/p,) ¥® fm. The calculations were
made for excited®’Au nuclei.

Figure 1 illustrates the dependence of the equilibrium ' ' '
density peq Of bulk matter on the excitation energy per 0.2 0.4 0.6 0.8 10
nucleon(solid curve. As seen in this figure, for the range of plp,
excitation energies readily accessible in experiments, the
bulk matter density in a state of maximum entropy differs FIG. 3. Free energy for thé®Au system as a function of
substantially from that of the nuclear ground state. This afnuclear matter density and temperature.

F/nucleon (MeV)
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FIG. 6. Arrhenius plots for emission dfC and 0O fragments
FIG. 4. Effective barriers for the emission &iC and*°O frag-  from excited **’Au systems.
ments from equilibrated excitetf’Au systems as functions of ex-
citation energy per nucleon.
tem would likely decay dynamically into a “gas” of frag-
ments and free nucleons that would continue its indefinite
thermal contribution to itEy,, that is in fact measured. This expansion. It is worth noting that, in the present formalism, a
is so, because the static compressional en&igy, . is €x-  limiting, maximum nuclear temperature arises naturally from
perimentally undistinguishable from thermal excitatigfy . the requirement of the dynamical equilibrium implied by Eq.
Most notably, the caloric curve predicted in Fig. 2 features(1). This is in contrast to many other statistical-decay models
a maximum temperature of approximately,,,=6 MeV.  for excited nuclear systems, notably to all models relying on
This is an indication that, for higher temperatures, the systerthe concept of the existence of a freezeout vol{ifri13 or
is inherently unstable and does not find an equilibrium dena breakup configuratiofL5]. It is also in contrast to Fisher’s
sity. In other words, under the assumption that its mattemodel[7], which has recently been reconsidered in the con-
distribution is homogeneous, a nuclear system placed in text of intermediate-mass fragment producti@6]. None of
heat bath off >6 MeV would expand indefinitely, for which the above model approachgs12,13,15,16predicts a maxi-
it would derive increasing amounts of energy from the heamum temperature. However, the existence of such a limiting
bath. In a more realistic case, which is beyond the presertemperature appears to be supported by a series of experi-
consideration, before reaching thermal equilibrium, the sysmental observationgl0].
The particular form of the caloric curve seen in Fig. 2 can,
perhaps, be better understood when inspecting the depen-

dence of the free enerdy on matter density and tempera-
tureT, which is is illustrated in Fig. 3. The calculations show
T | | | | | |
10° - .
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FIG. 5. Distributions of relative emission probabilities of vari-
. . 7 . * 2 112
ous IMFs from an excited, equilibrated’Au system as functions E o (Mev™)
of the total excitation energfsolid curves. The dashed line repre-
sents the boundary of the domain of dynamical instability of the FIG. 7. Pseudo-Arrhenius plots for emission B and 0
system(see text fragments from excited®’Au systems.
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that, at temperatures belov=6 MeV, the free energy as a for the “equilibrium” density of a self-similarly expanded
function of p features two equilibrium points, a local mini- System.

mum and a local maximum, where the latter reflects an un- Since the magnitude of the effective barrier for IMF emis-
stable equilibrium These two points, predicted for any tem-Sion depends on the excitation energy and, thus, on tempera-
peratureT of less than approximately 6 MeV, correspond toture T, and sinceT is a nonmonotonic function dtf,, one
different excitation energies per nucleasf,,. Note that at Would expect the fragment emission probabiliet devi-

both these extremal points, the pressure of the system at ifle ts_,lg?n;flca?tly flro(;n a S|(;nple Arrhetnhlus_law W'tht an exp?-
surface is zero. This is so, because the pressure is prop ential Tunctional dependence on hé nverse temperature

tional to the partial derivative of the free energy with respect fl' This expectation is confirmed by Fig. 6, where Io_gquth-
. . mic plots ofp versus 1T are seen to feature clear deviations
to density at constant entropy, and since both, the free energy

X ) om linearity, including a prominent “back-bending.” The
and the entropy, are stationary with respect to the Mattel e backbending is obviously expected, in view of the
density at the extremal points in question.TA&¢6 MeV, the '

- : ) , : X maximum in the caloric curve seen in Fig. 2. Such a behavior
minimum and the maximum iR (p) merge into an inflection s 550 suggested by the general deviation of the caloric

point. At even higher temperatures, the free energy featuresyyation of state from the one for a low-temperature Fermi
only a monotonic decrease with decreasingrhe inflection gas.

point in F for (T~6 MeV) corresponds to a maximum of On the other hand, pseudo-Arrhenius plots depicted in
as a function ofEf,;. Obviously, a monotonic decrease in Fig. 7, where the logarithm of the emission probabilitypi(
free energy with decreasing matter density for a given temis plotted versus the inverse square root of the total excita-
perature implies that no equilibrium density exists for thattion energy, 1@, are to a good approximation straight
temperature. lines. This observation comes as a surprise, as it cannot

The role of the surface entropy in fragment emission isreadily be expected, based on the details of the theoretical
clear from Fig. 4 illustrating the dependence of effective barformalism employed. Therefore, no simple explanation for
riers [see Eq.(16)] for the emission of*’C and '°0 from  such a linearity can be offered at this time, the very rationale
exited *°’Au nuclei. Solid lines in this figure illustrate the behind the construction of such pseudo-Arrhenius plots be-
results obtained when the surface entropy is taken into corig humerous experimental findin,17-20. While it may
sideration via inclusion of,, in the expression for the level e purely fortuitous, the linear character of pseudo-Arrhenius
density parametea [see Eq.(3)], while dashed lines repre- plots p(ed|cted t_)y the present mpdel seems to be in agree-
sent results of calculations in which the surface entropy efMent with experimental observations.
fects were neglected, i.e., in whichwas assumed simply
proportional to the mass number.

It is important to note that, with the reduction in the ef- A model has been developed to describe quantitatively,
fective barrier being dominantly due to surface entropy ef-albeit in a schematic fashion, a scenario of purely statistical
fects, no analogous reduction is expected for the emission amission of massive fragments from finite equilibrated sys-
nucleons or light charged particles. In the latter case, théems. The formalism is based on the use of extensive observ-
effective barriers are expected to show trends similar to thosables only, complemented by the geometry of the used phase
shown by the dashed lines in Fig. 4. space. It is, hence, free of the possible limitations of models

The effects of the surface entropy on the relative emissiofielying on intensive variables. The presented formalism rec-
rates of various IMFs are illustrated in Fig. 5, displaying the@gnizes the importance of thermal expansion of hot matter
reduced probabilitiegtaken as bare Boltzmann factprfer and considers the stability of such systems at equilibrium
the emission of IMFs of different atomic numbers from annuclear densities. Unlike many other models and approaches,
equilibrated®’Au system as functions of the total excitation the present formalism predicts in a natural fashion a I|m|_t|ng
energy per nucleon. In the calculations, it was assumed th aximum temperature bound nuclear system can sustain, an

the mass numbers of the fragments equal twice their atomi ect supported by numerous expenme_ntali observathns.
numbers, i.e.A;, =27, . The spectra are normalized to the he important role of surface entropy consists in an effective

probability for emitting a proton, bound to the system by softening” of the nuclear surface, resulting in enhanced
Q.=8 MeV and experiencing a ’Coulomb barrier of 4 MeV fragment emission probabilities. The decay scenario under-
=

(corresponding to a Coulomb radius parameter rof lying this formalism is that of a thermally expanded system

—1.3 fm). As seen in this figure, already at excitation ener_with developed thermal fluctuations of the diffuse surface.
i ' gure, y Note added in prooflt came to our attention that the

gies per nucleon of the order of 3 MeV/nucleon, fragmentcurve Ipo (cf. Fig. 1) obtained from the single-parameter
emission begins to compete effectively with proton emissio Peq! Po (C. FIQ- g'e-p

and, then, at higher excitation energies, fragment emissié}nunctlon in Eq.(8) essentially coincides with a similar curve

becomes the dominant decay mode. Note, that the higheg?sulting from a finite-temperature Hartree-Fock calculation,
probabilities seen in Fig. 5, i.e., those depicted above th&° reported in Re(21].

dashed line, reflect a dynamical system instability with re-
spect to the fragment emission mode. In fact, Weisskopf’s
approact 5] is inapplicable in the domain above the dashed This work was supported by the U.S. Department of En-
line, as in this domain, the saddle-point entropy exceeds thatrgy Grant No. DE-FG02-88ER40414.

IV. CONCLUSIONS
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