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A variable combination of realistic and random two-body interactions allows the study of collective prop-
erties[such as the energy spectra @{E2) transition strengtdsn #*Ti, “8Cr, and?*Mg. It is found that the
average energies of the yrast band states maintain the ordering for any degree of randomnes8(E)the
values lose their quadrupole collectivity when randomness dominates the Hamiltonian. The high probability of
the yrast band to be ordered in the presence of pure random forces exhibits the strong correlations between the
different members of the band.
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I. INTRODUCTION ergies for each member of the band, as well aBifg2)
values, is also reported.

Nuclei display very regular spectral patterns. Low energy
states in medium- and heavy-mass even-even nuclei allow Il. BAND STRUCTURE
their classification in terms of seniority, anharmonic vibrator,
and rotor nucle{1], according to the ratio of the excitation
energies of the stateg 4nd 2. While this regular behavior
has been usually related with specific forces, the investiga- H=aHc+bHg, with a+b=1, 1)
tion of the energy spectra with random interactipas$] has
shown that many-body states are strongly correlated even iwhereHc is a realistic Hamiltonian anéiy is a two-body
the presence of random two-body interactions. Random inrandom ensemble. BotH andHg are written[14] as
teractions in bosonic Hilbert spaces, like those used in the
II_3M qnd the vibron _model, exhibit a large predoml_nance o_f H= E V}]sTtuZIS,JTZtu,JT )
vibrational and rotational spectra, strongly suggesting that in r<st=u
boson spaces collectivity is an intrinsic property of the space , . )
of nuclear state§4—6]. Recently, several studies were per- N terms OfT scalar p_roducts of the no.rmahzed pair creation
formed with random and displaced random ensembles in o@PeratorsZ;; ;r and its Hermitian conjugatéy, ;, where
der to simulate realistic systerfig,g], in particular, to inves- .S, etc. specify subshells associated with individual orbits,
tigate the dominance of-0 stateg9,10]. andJ,T are the coupled angular momentum and isospin. For

In the nuclear shell model the transition between randonthe realistic HamiltonianVy, is the Wildenthal or KB3
and collective behavior in the energy spectr&?®™e gener- interaction. For the random case tldé;u matrix elements
ated by two-body forces was addressed in REf]. Collec- are taken from a two-body random ensemble, i.e., to be real
tivity was generated with a quadrupole-quadrupole forceand normally distributed with mean zero and widittfior the
while a residual random interaction was included in theoff-diagonals andy2¢ for the diagonals. The values of the
Hamiltonian in order to study its consequences on the syswidth o are taken from the realistic interactions: 1.34 MeV
tem’s spectroscopic properties. Both the eigenvalue distribuand 0.60 MeV, for thesd and fp shells, respectively. The
tion and the overlap between the @Jand calculated wave parameterb is varied from 0 to 1, to cover the different
functions exhibit the smooth path from a Hamiltonian domi-mixing from the realistic interaction to a pure random force.
nated by the collective force to a random, noncollective one. Calculations are performed in the full valence space for

The present work aims to extend these ideas by studyingoth #*Ti and 2*Mg. For “8Cr we use the truncatethps,
the transition from a realistic parametrization of the two-subspace, which allows for repetitive shell-model calcula-
body force to a purely random one, in complex systemsions in affordable times, and at the same time contains most
such as**Mg, *Ti, and *%Cr. The realistic interactions we of the relevant degrees of freedom, as a consequence of the
have chosen are the universal Wildentfid] interaction for  “quasi-SU(3) symmetry”[19]. In this basis the energy spec-
the sd shell, and the Kuo and Brow(iKB3) interaction[13] tra is definitively rotational8].
for the fp shell. The probability for each state in the yrast  For the three nuclei, the absence of a single-particle term
band to follow a sequence where the higher energies correnakes Hamiltoniar(2) more collective than in usual shell-
spond to the states with the larger angular momentum isnodel calculations. In the three examples discussed below,
studied by varying the mixing between realistic and randonthe energy spectra obtained for=0 exhibit little effect due
forces in the Hamiltonian. The evolution of the average en+o the lack of single-particle energies, while tRéE2) tran-

The combination of random and realistic interactions is
taken[11] as

0556-2813/2003/68)/0343117)/$20.00 67 034311-1 ©2003 The American Physical Society



V. VELAZQUEZ, J. G. HIRSCH, A. FRANK, AND A. P. ZUKER PHYSICAL REVIEW @7, 034311 (2003

] . 10, ——
*?‘ 9] —e—b=0.4 .
-10 P > —A—b=06 e
S e 8- —v—b=0.8 P
% —— . —ebt0] o @ v
2 s — 7] treee et
' /- <
> T or 2 61 Vvv .y y vV
O .20 o2 = A A
S —0—2+ - A
o —A—4+ 5 -
I Be- D e
-25- o+ ] —e
?F 1g+ T ° ’J././.
e 14+ 34 —eo—0o—0—©
-30 T T T T 7*|716+ T 2- o 7././././.
0.0 02 04 b 06 08 1.0 1 { m—m—m—n

2 0 2 4 6 8 10 12 14 16 18
FIG. 1. Average energy of 960 runs for each angular momentum
of the ground-state band iffCr. Angular Momentum

FIG. 3. Average energy width of 960 runs for each angular

sition strengths are enhanced by 50%, except in the case Qf)mentum of the ground-state band“ficr.

48Cr, where the use of a truncated space limits B{&2)

value.
function of the mixing parametds. It can be seen that the

relative ordering of the states with different angular momen-
A. The fp shell tum is maintained, but their relative separations vary signifi-
As a first example we takéCr, a rotational nucleus that cantly in the transition from the realistic to the random
has been widely studied in full shell-model calculations. InHamiltonian. However, up tb=0.6 the change is mostly a
the present case the diagonalization is performed in th&cale variation, with the nearly equidistant structure of the
f-12p3 shell with the codewToINE [15], using a KB3 inter-  band keeping its form. The energy spectra evolve from a

action[13] without single-particle energies. vibrational equidistant form & =0 to a mixed, yet ordered,
Figure 1 shows the average energis of the lowest Spectrum for pure random forces. The average ground-state

energy state for each angular momentdm 0%,2%, ..., €nergy increases with the increase in mixing to a maximum

16%, the yrast band, calculated for 960 samples of the ranvalue, with a slight decrease for=1. _

dom interaction. Similar patterns of evolution of the energy centroids for

The vertical axis displays the average energy of eaci§@ch angular momentum, as a function of the mixing param-
state, as a function of the mixing parameterAt the left  eter, were found in several other nuclei such*a§Ca and
hand side the realistic shell-model energies are shown, witf Ti- While for “Ti, the centroid of the)=2 state is lower
its distinctive rotor pattern, which resembles closely the exin energy than thé =0 state for a pure random Hamiltonian,
act yrast band. Ab increases to the right, the order betweenin general, for these nuclei and others in the shell the
the different members of the bands is maintained, but theifverage energy ordering is conserved, and there is a gradual
relative separation changes. The average energies in the rigiitange in the energy spectra.
hand side, the pure random Hamiltonian, still exhibit a band The widtho associated with the lowest average energy for
structure but have lost their quadrupole collectivity, as dis-€ach angular momentum, calculated as the square root of the
cussed below in connection with th&(E2) values. variance, is shown in Fig. 3 for the gs band ¥Cr, as a

The evolution of the average ground-stéts band of function of the angular momentum, for different values of
44Ti, calculated in the fullpf shell, is shown in Fig. 2 as a
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FIG. 2. Average energy of 960 runs for each angular momentum FIG. 4. Average energy of 960 runs for each angular momentum
of the ground-state band itfTi. of three bands irf*Mg; see text for label description.
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TABLE |. Probability for each angular momentum state to be in the correct position in the ground-state
band withb=0.4 for “Cr.

J+ 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

0 96.56 1.04 1.25 0.52 0.42 0.10 0.00 0.10 0.00
2 1.56 91.88 531 0.62 0.21 0.21 0.10 0.00 0.10
4 0.21 5.62 92.29 1.04 0.42 0.21 0.21 0.00 0.00
6 0.52 0.94 0.42 92.50 4.27 0.94 0.21 0.00 0.21
8 0.73 0.21 0.21 3.75 93.02 1.04 0.31 0.52 0.21
10 0.00 0.00 0.10 0.83 0.52 95.21 2.29 0.83 0.21
12 0.00 0.00 0.21 0.62 0.83 2.08 96.04 0.21 0.00
14 0.21 0.21 0.10 0.10 0.31 0.10 0.52 97.40 1.04
16 0.21 0.10 0.10 0.00 0.00 0.10 0.31 0.94 98.23

the mixing parameteo. The energy width increases with the odd angular momenta, up tb=8. Following the evolution
increase in mixing, from 1.5 MeV fob=0.2 to 7-9 MeV of the average energy levels as the mixing paramietier
for b=1.0. Given that, a increases, these widths become creases, we reconstruct the three bands for each valbe of
larger than the gaps between the average energies, they indievertheless, for a pure random interaction one can show
cate a strong mixing between different bands, an effecthat the states have lost their quadrupole collectivige
closely associated with the lack of collectivity discussed bebelow), and for this reason they do not form bands in the
low. As a function of the angular momentum all the widths usual sense.
are essentially flat, showing a moderate increase for the larg- In Fig. 4 the average energies for each angular momen-
est angular momenta. tum, for the ground state3, and y bands in®*Mg, are pre-
The energy widths are larger than the relative energy difsented for different values of the mixing parameder
ferences between adjacent states in the gs band, implying The most relevant features observed in Fig. 4 are that the
that there are individual cases in which the spectrum is nothree bands evolve in a similar way, keeping their internal
ordered. However, the number of runs with a completelyorder as well as the relative separation between the bands.
ordered spectrum is large even for pure random interactiond,he correlation between increasing energy and angular mo-

as is discussed in detail below. mentum is strictly followed in all the averaged bands. The
absolute ground-state energy becomes larger as the mixing
B. The sd shell parameter increases, following the same pattern found in the
fp shell.

Calculations in thesd shell can be done for the full shell
and an arbitrary number of active particles. The realistic in-
teraction used in this case is the universal Wildenthal inter-
action[12]. The nucleus®*Mg offers a rich enough system, In order to further study these systems, we have analyzed
where three bands can be studied simultaneously. They cothe probability that each state in the band has the usual or-
respond, forb=0, to the gs,3, and y bands. The first two dering; i.e., the largest the angular momentum, the highest
start withJ=0 and contain only eved-states, while they  the energy for a given band. To do so, we counted the num-
band starts witll=2 and includes states with both even andber of runs where the first=0 state is the ground state, the

IIl. ORDERING PROBABILITIES

TABLE II. Probability for each angular momentum state to be in different positions, fot¥beground-
state band witlb=1.0.

J+ 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

0 60.31 8.85 9.27 4.48 4.90 2.50 1.98 2.29 5.42
2 17.40 43.54 16.98 4.17 3.96 2.60 3.12 5.00 3.23
4 6.56 27.71 47.08 6.46 2.40 271 4.38 2.19 0.52
6 2.40 5.42 9.79 64.58 6.25 531 3.12 1.77 1.35
8 3.12 3.65 4.69 9.06 69.58 6.46 1.15 1.56 0.73
10 1.35 2.50 3.44 5.94 7.19 74.69 3.54 0.62 0.73
12 1.98 1.88 5.52 2.50 3.23 3.65 79.06 1.98 0.21
14 1.15 5.62 1.98 1.67 0.94 1.25 2.40 80.10 4.90
16 5.73 0.83 1.25 1.15 1.56 0.83 1.25 4.48 82.92
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TABLE Ill. Probability for each angular momentum to be in TABLE V. The same as in Table IV, for the band.
different positions, for thé“Ti ground-state band, with=1.0.

J+ 1st 2nd 3rd 4th 5th 6th 7th

J+ 1st 2nd 3rd 4th 5th 6th 7th
4521 22.92 7.50 5.94 4.79 6.46 7.19

2740 38.33 1354 6.15 4.17 6.04 4.38
740 1490 50.62 1594 7.29 3.02 0.83
7.71 12.08 15.10 58.85 5.00 1.04 0.21
3.44 3.75 6.25 760 66.25 11.88 0.83
5.10 4.27 4.17 3.96 10.83 64.38 7.29
3.75 3.75 2.81 1.56 1.67 7.19  79.27

0 46.25 19.27 2042 698 562 135 0.10
2 16.56 39.90 2438 1156 583 125 0.52
4 21.04 2583 40.10 938 3.02 021 042
6 8.44 1042 10.10 6458 542 1.04 0.00
8 6.56 396 427 583 7677 208 0.52
10 0.10 052 052 125 260 92.08 292
12 1.04 010 021 042 073 198 9552

0N O WN

IV. COLLECTIVITY
first excited state in the band, the second excited state, and
so on, in the 960 runs. We did the same for the states Witlgy
angular momental=2, 4, etc. In Table | the percentages
for “8Cr with a mixing of b=0.4 are listed. All the states

have a probability of at least 90% to occupy its physically  |i5 experimental value is 3262 fm2. In the restricted Hil-

expected place, while the dispersion is very small. bert space including only th&,,ps/, subshells, even in the

Table Il lists the probability for states of each angulargpsence of single-particle energies in Hamiltonid) this
momentum in*éCr to occupy the indicated place for a purely yajue is underestimated.
random Hamiltonian, i.eh=1. The probabilities of being in Forb=0.2, shown in Fig. &), the distribution is concen-
its expected place run from 44% fdr=2 to 83% forJ  trated around 23@? fm?. Forb=0.4, Fig. b), the increase
=16. States witil=0, 2, and 4 are those which more often in the random components of the Hamiltonian leads to an
fail to occupy their place, as they tend to exchange positiondmportant fragmentation of th&(E2) intensity with four
These results represent an extension of previous studies cotlusters. Among them one is near zero, the second one
cerning the probability of each state to be the ground stateground 75? fm?, the next one near 176 fm?, and the last
listed in the first columri16]. one close to the measured value. Ber0.6, Fig. §c), most

Table Il displays the probability for each angular mo- of the B(E2) values are very small, with some intensity at
mentum state to be in a given position, in tfffi ground-  the collectiveB(E2) values. Finally, in Fig. &) the distri-
state band withb=1.0. These probabilities have values bution of B(E2) values for a purely random Hamiltonian is
ranging from 44% forJ=2 to 95% forJ=12. The fact shown. It is strongly concentrated at very small values,
that the states witd=2 and 4 have less than 50% probabi- showing a complete lack of quadrupole collectivity, in con-
lity of occupying in their places is strongly connected with sonance with the findings of Rdfl1].
the closeness of their average energies, shown in Fig. 2 Figure 6 displays the distribution &(E2,2—0) values
for b=1. for **Ti. Figure @a) shows the results fob=0.2, with a

Tables IV-VI display the probability that states with narrow distribution around the 148 fm?, overestimating
different angular momenta iA*Mg have to occupy a given the transition strength, which has a measured value of
place in each band fob=1.0, for the ground-statep, 120€?fm?. In Fig. 6b) the distribution forb=0.4 is pre-
and v bands, respectively. In most cases the diagonal probsented, which is concentrated around the same valueb For
ability, i.e., the probability that each state occupies its ex—=0.6, Fig. gc), the distribution is still concentrated around
pected place, is larger than 50%. The exceptions are thie collectiveB(E2) values despite the dominance of the
states withJ=2 and 3 in they band, and those witd=0 random component in the Hamiltonian. However, this collec-
and 2 in theB band, whose probabilities lie between 38% tivity is completely lost when pure random forces are em-
and 48%. ployed, as shown in Fig.(8).

A useful indicator of collectivity is the energy ratio

A sensitive measure of the quadrupole collectivity of the
stem is theB(E2,2,— 0g4) transition strength. The distri-
bution of B(E2) strengths in*®Cr, for four different values
of the mixing parameteb, is shown in Fig. 5.

TABLE IV. Probability for states belonging to the ground-state

band in?*Mg, with b=1.0, to occupy different positions. TABLE VI. The same as in Table 1V, for thg band.

J+ 1st 2nd 3rd 4th 5th J+ 1st 2nd 3rd 4th 5th

0 56.56 12.40 12.29 6.77 1198 O 46.67 20.73 13.54 8.44 10.62
2 18.12 52.81 13.12 9.79 6.15 2 28.02 47.40 12.81 8.44 3.33

4 9.06 19.58 63.85 5.52 1.98 4 13.23 19.27 65.62 1.88 0.00

6 4.38 11.25 6.98 71.25 6.15 6 6.35 9.38 5.94 77.50 0.00

8 11.88 3.96 3.75 6.67 7375 8 5.73 3.23 2.08 3.75 85.21
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FIG. 5. Probability densities faB(E2,2—0) for *Cr.
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The valueR=2 is associated with a harmonic oscillator
spectrum, whileR= 3.3 characterizes a rigid rotor structure.
Figure 7 shows the distribution of energy ratios f&€r.
The casé=0.2, shown in Fig. @), does exhibit the actual

rotor behavior of this nucleus. This feature remains dominant

for b=0.4, Fig. 1b), while for b=0.6 the distribution of
energy ratios is wide and peaked Bt=1. For b=1.0,
shown in Fig. 7d), the distribution is very wide, with a clear

dominance of th&k=1 ratio, in correspondence with the near

degeneracy of the states wilk=2 and 4 forb=1, as shown
in Fig. 1.

44Ti has a structure closer to a harmonic oscillator than t
a rotor. This feature can be seen in Figg)8which displays
the distribution of energy ratios fds=0.2, narrowly con-
centrated aroun@®=2. Forb=0.4 and 0.6, Figs.®) and

8(c), the vibrational structure is wider but well defined. For a

pure random interaction, Fig(®, the distribution is peaked

FIG. 7. Probability densities for the energy ratR$or “Cr.

atR=1, reflecting the near degeneracy of the average ener-

giesE, andE,. The displacement of the most probable en-

ergy ratioR to 1 is accompanied by a lack of quadrupole

coherence, consistent with the previous analysis of the
B(E2) transition strengths.

V. CORRELATION AND COHERENCE

Having discussed the evolution of the energy centroids as
a function of the mixing parameté; and the probability for
each state to occupy a certain position in the band, it is
natural to study the probability that the ground-state band has
all its states properly ordered. This probability, given as the
percentage of results from the 960 runs which are properly
ordered, is shown in Fig. 9 fof®Cr, #4Ti, and ?*Mg. In the
three cases it is apparent that the spectrum is always ordered

hen the realistic interaction dominates the Hamiltonian,
and that the probability for the ground-state band to be or-
dered decreases to about 35% for a fully random Hamil-
tonian.

It is worth emphasizing that if these probabilities were

independent of each other, the probability of finding a com-

300-
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FIG. 6. Probability density foB(E2,2—0) for 4*Ti.
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FIG. 10. Average energy of 960 runs for each angular momen-
pletely ordered band would be the product of the probabilitum of the ground-state band fiCr with a DTBRE mixing.
ties for each state, i.e., the product of the diagonal elements
of the matrices shown in Tables lI-IV. However, these prod- The presence of strong correlations between the different
ucts are all smaller than 0.04, far smaller than the probabiliwave functions obtained with two-body random forces sug-
ties of 25—-45% found in these calculations. These resultgests that the many-body states could be well approximated
show that the many-body states obtained with two-body ranby a small number of configurations that may correspond to
dom forces are strongly correlated. This correlation in theirdefinite shapes, as was found for bosonic models. This would
energies is not, however, associated with quadrupole coheimply that the very large number of shell-model many-body
ence, which is lost for pure random forcigl]. The subtle  states would be limited or constrained by the geometry im-
connection between correlation and coherence requires fuposed by the existence of a two-body Hamiltonian, even for

ther analysis. the case that its components are randomly selddtgd
The correlation r for each value of the mixing parameter
b, between the states with energies and E;,, in the VI. THE DTBRE CASE

sample, can be quantitatively calcula{dd] as ) )
In Ref. [8] it was shown that a displaced two-body ran-

cov(E;,E;,0) dom ensembléDTBRE) gives rise to coherent rotor pat-
r=———""" 4 temns. To complement the present study, we analyze in this
section the transition from the realistic KB3 interaction to a
where DTBRE in the ground-state band 6fCr. The DTBRE cor-
responds to matrix elements with a normal distribution cen-
n tered atc=—1.0 MeV and widtho=0.6 MeV, values that
2 (Esi—Ex)(E@r2)—Ejy2) were shown in Ref(8] to be enough to exhibit some collec-
COME, ,E, )= : G fuwty. Figure 10 shows the evolution of th_e average energies
' n in the ground-state band dfCr as a function of the mixing
parameteb.
Here, covE;,E;, ) is the covariance of the two distribu- At variance from the results shown in Figs. 1, 2, and 4,
tions, o is the square root of the variance c&y(E;), andn  when the random component of the interaction increases, the

is the size of the space. tf=1, the distributions are fully absolute energies continuously decrease. As expected, the ro-
correlated, while ifr~0 there is no correlation between

Og.0
E;¥Eji2

them. In Table VIl the correlation for pairs of energies in TABLE VIIl. Probabilities for states belonging to the ground-
the ground-state band dfCr are listed. state band in*Cr, to occupy their ordered place, for a DTBRE

mixing.

TABLE VII. Correlationsr between neighboring states ffCr.

J+ b=0.2 0.4 0.6 0.8 1.0
J,J+2 0.2 0.4 0.6 0.8 1.0

0 99.58 99.79 97.71 92.08 88.12
0+,2+ 0.966 0.928 0.937 0.949 0.991 2 98.75 99.27 95.00 86.04 80.31
2+ 4+ 0.996 0.991 0.991 0.991 0.986 4 98.96 99.38 95.21 86.46 79.90
4+ .6+ 0.992 0.977 0.974 0.981 0.980 6 99.27 99.58 96.35 91.46 87.50
6+,8+ 0.991 0.989 0.992 0.993 0.993 8 99.27 99.69 98.02 94.69 91.15
8+,10+ 0.987 0.989 0.989 0.989 0.987 10 99.58 99.90 98.96 96.77 94.38
10+,12+ 0.985 0.982 0.982 0.984 0.985 12 99.69 99.90 98.65 96.77 95.00
12+ ,14+ 0.992 0.989 0.987 0.986 0.986 14 99.58 99.58 94.79 90.62 87.92
14+ ,16+ 0.992 0.992 0.990 0.989 0.988 16 99.58 99.69 95.00 90.42 88.33
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tor structure survives the transition from realistic to randommatrix elements taken randomly from a Gaussian distribu-

interactions, with nearly no changes. tion, a larger displacement€ — 1.0 MeV) is required.
In Table VIII we show the probability for states belonging
to the ground-state band if°Cr, to occupy its expected VIl. SUMMARY AND CONCLUSIONS

place. Notice that even fdyr=1.0, when the pure displaced
random ensemble is employed, the probability for eac
state to be in its place is larger than 80%, thus exhibiting

high ordering. The percentage of fully ordered bands fo amiltonian is changed smoothly from a realistic to a ran-
each mixing is equally large: 100% far=0.2, 89% forb dom one. Ground-state energies increase as a function of the

—0.6. and 70% fob=1.0. If the centroid of the DTBRE mixing parameter. The quadrupole collectivity is lost when
is ciis,placed to more nég.ative values, like —3.0 MeV, the Hamiltonian is dominated by random two-body forces,

e and the probability that the ground-state band remains or-
100% of the bands are orderdg8]. The distribution of L o . S
B(E2) probabilities exhibits a clear presence of quadrupoledere<j diminishes to 25-459% in the random limit, .Wh'Ch IS
coherence forc=-—1 MeV. They are concentrated in a anyway far Iarge.r t_han the product qf 'the probabilities for
narrow peak around the ‘ collectivB(E2) values for c each state to be in its place, thus exhibiting the strong corre-
—_3 Mgv (8] lations between the different wave functions. On the other
Realistic intéractions in thef shell, such as KB@BonnC hiand,dwr;]en displaced two_-bogy random enhsemblgs are em-
: . ’ . o ployed, the average energies decrease as the random compo-
20], have their matrix elements asymmetrically distributed, : ;
\[/vitr]1 a long tail for negative valug§21] and glentroidc nent increases, and the rotor pattern remains unchanged.

=—0.3 MeV. About 70% of the 195 matrix elements are

negative. In these interactions, the quadrupole collectivity is

mostly built up by some particular matrix elements with The exact diagonalizations were performed with the
large negative values. To obtain an average energy spectrusNTOINE code. This work was supported in part by the
that mimics the experimental one #Cr, with interaction ~ Conacyt, Maico.

h The average energies of states with different angular mo-
enta preserve their ordering inside the band when the
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