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Neutron and proton densities and the symmetry energy
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The neutron/proton distributions in nuclei, in particular, the difference, are considered in a “macro-
scopic” Thomas-Fermi approach. The density depend€ripe of the symmetry-energy density, wherés the
total density, drives this difference in the absence of Coulomb and density-gradient contributions when we
obtain an explicit solution for the difference in termsefIf F is constant then the-p difference and, in
particular, the differencéR between the neutron and proton rms radii are zero. The Coulomb energy and
gradient terms are treated variationally. The latter make only a small contributionneptddference, and this
is then effectively determined ly. The Coulomb energy reducé®. Switching off the Coulomb contribution
to the n-p difference then gives the maximudR for a givenF. Our numerical results are f&%b. We
consider a wide range d¥; for these, bothéR and the ratioy of the surface to volume symmetry-energy
coefficient depend, approximately, only on an integral involfing. For SR<0.45 fm this dependence is one
valued and approximately linear for smalR, and this integral is then effectively determined &/). There is
a strong correlation betweefR and y, allowing an approximate determination gffrom SR. R has a
maximum of=0.65 fm.
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[. INTRODUCTION density derivative of the symmetry-energy density.
Our Thomas-Fermi approach assumes local nuclear-
We consider the neutron and proton densipgsand pp matter conditions but includes density-gradient terms and of
in a local density “macroscopic” Thomas-Fermi approach.course the Coulomb interaction. We shall show that the gra-
In particular, we study the neutron-proton density differencedient terms play only a small role for the relative density
and its consequence for the differené® of rms radii and difference = (py— pp)/p, Whereas for the total density
for the surface-symmetry energy. There has recently beegych terms are essential. This gives us confidence that our
much interest indR because of the experimental possibility approach has some validity in spite of some limitations. The
of directly measuring the neutron-distribution radiusi®Pb  smaliness of the gradient terms is consistent with the “na-
via parity-violating electron scatteririg]. Hadronic probes jye» gimensional analysis of RMFT; a thorough discussion
cannot QO this clea}nly because of uncgrtainties from strongss these and related issues is given in R&l. In our ap-
Interaction gorrecnons:' proton and p|c(mqstly LAMPF roach the density distributions(r),\(r) for a particular
datg scattering determine the neutron radius, and thus th ucleus are determined as functions of the radial distance

difference between the neutron and proton radii, with an un; .

) from the center of the nucleus in terms of the parameters of
certainty of at least 0.2 frf]. The relevance odR for the e energy functionaldR is then determined from the den-
neutron equation of state, and hence for neutron stars, hé@ 9y o :

sities. For the determination af(r) the density dependence

been realized and discussed by several autf8#8§], and it -
has been realized that the differend® is principally deter- T (?) [EQ. (9)] of the symmetry-energy density plays a cen-

mined by the density dependence of the symmetry-energlf@l role, as was already shown in RE8]. We note thaf (p)
density. The critical role of this density dependence d&  Pecomes a determined function ofor some given density
was in fact shown long ago by one of the authi@k Recent  distributionp(r). To a very good approximation the problem
studies are in the framework of mean-field models, both witfseparates into one involving the total densgifyr) and one
nonrelativistic in particular, Skyrme-type approacfigsand for the relative difference\(r). In the absence of gradient
relativistic mean-field theoryRMFT) approaches. An excel- and Coulomb terms we obtain an explicit solutiog(r) in
lent review is by Furnstah8], who gives an overview of terms ofF(p) andp(r). [If F(p) is independent op, and
mean-field functionals and extensive references especiallperefore also of, thenpy/pp=N/Z and 6R=0.] The gra-
for RMFT; see also Refl9] for a review of RMFT. A re- dient and Coulomb terms are subsequently included varia-
cently extended RMFT approach has also been used to cafonally. We have limited ourselves t3%Pb. We use a range
culate the neutron radius 8¥%Pb and neutron-star properties of functions forF(p), rather than some particular interac-
[10]. A macroscopic approach closely related to ours can b&ions. We show that, at least for these functions, the differ-
found in Ref.[11], which emphasizes the importance of the ence in radiiéR, and also the surface-symmetry energy, are
largely determined by the appropriate nodof F~1(p). If
6R=0.45 fm then the dependence is one valued and approxi-

*Email address: drbillig@aol.com mately linear for smalbR. The effect of the gradient terms
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termine®, which is a purely nuclear-matter quantity. Com- po~0.165 fri 3 with energyu,= — 16 MeV and with curva-

parisons with other results are made. ture determined by the incompressibility constant K. We
shall not give an explicit form foe(p) since, as we shall
Il. DENSITIES AND ENERGIES discuss, it has only a small effect on the quantities involving

Instead ofpy ,pp We use the variables \, all considered

to be functions of the radial distance €, is the symmetry-energy density afdp) determines

its density dependence. The magnitude- 35 MeV is given
(13 by the semiempirical mass formufa2] and by related fits

=pntpp, AN=(pn—pp)p, y ‘ - ) _
PPNt PR (Pn=pe)lp with RMFT [13]. a, is often used in the literature instead of

pon=p(L+N)/2, pp=p(1—N\)/2, (1b)  U,. Werequire thaF(po) =1 in order that the semiempirical
value is obtained foA—c. The gradient terms have the
subject to the constraints form consistent with finite-range interaction effects and are
determined by the coefficients, and ;. The Weiszacker
f p du=A, ) gradient terms ar_ising from the kinetic energy are known to
be small and their effect can in any case be absorbed by the

dominant potential terms. The tenWp, Vp, arises from

f o\ dv=(N—2)=Ak,, ?) the neutron-proton interactioe¢ is the effective Coulomb
energy density where we have neglected the small exchange
contribution.

where In terms ofp and\ the total energy density is

No=(N—-2Z)/A. (4)
e(p.N)=e(p)+e\(p,\)+Cy(VpN)?+ec(p,\), (11)
All integrals are spherically symmetric, with the integrands
functions ofr; integrations are over all space with the vol- 8(p)=8V(p)+Co(Vp)2, (12)
ume elementlv =47r? dr and the range from 0 t®. If the
neutron and proton distributions are the same, i.e.,

sx(Pa)\):ur)\ZPF(P), (13)

if pn/pp=NIZ,
then Co=(kot Kk1)I2pg, C\=(ko—k1)/2pg. (14
A=X\o=(N—2)/A. (5)  &c(p,\) is obtained by using Eq(1b) for pp in Eg. (10).

The total energy then becomes a functionapafnd \:
The mean-square radii are given by
Elp,N]=E[p]+E\[p.\]. (15
rA=A"1[ pr2 dv, (r)=iN"1[ p(1+N)r? do,
n
E[p] comprises both the symmetric volume and surface en-
ergies, resulting in only aA dependence, and also the usual
(rf,>= %Zflf p(1—M\)r? dv. (6) direct Coulomb energyEco[ p]<(Ze/A)? obtained for A
=M\g. Thus

The difference between the neutron and proton rms radii is

defined by E[p]:f e(p) dv+Eco[p], (16)

SR=\(r3) = (r}). Y

If pn/pp=N/Z then(r?)=(rz)=(rj) and SR=0. Eco[P]:f ec(p,ho)du
The energy density we use is

s=ev(p) +ert(ko/p)l (Von)*+ (Vpp)*] :(4wze/A)2fw<1/r)pr2drfrpr'Zdr'. 17
0 0
+2("1/P0)VPn.Vpp+sc, (8)
ex=Uul(pn—pp)lpl°pF(p), 0 The term

r Exlp, N]=Ewl[pAN]+Ec\[pA]+Eg\[p,A] (18
ec=eVe(r)pp(r), Vc(r)=(47re/r)f pp(r/)r'2dr’.
° (10) contains all the dependence dr-\g, i.e., on the difference
in neutron and proton distributions, but also includes the
ey(p)/p is the energy per particle of symmetric nuclear mat-standard volume-symmetry energyT)\ﬁAz u,(N=2)%A
ter of densityp, saturating at normal nuclear-matter density obtained for=\,. The total Coulomb energy is
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Minimizing this with respect to\(r), subject to the con-
Ec[P,)\]=f ec(p,N)dv straint of Eq.(3), we obtain an explicit, exact, and simple
solution\,(r), EY' in terms of the giverp(r):
=(4we/2)2fo (1) p(r){1—N(r)}r2dr Am(D=NF " p(N] L, EM=ur2Ad~L, (25
r
xf p(r"){1—\(r")}r'2dr’. (19 CI>:A‘1J pF(p)dv, (26)
0
with

The \-dependent part is

EclpA1=Edlp A1~ Ecolp]- (20 f phodo = Akg. 27)

Ec, is positive (negative if A —\ is positive (negative,
corresponding to a legsnore extended proton than neutron
distribution.

With A =\, + 8\, we obtain for the energy

En(Amt 5>\)=ET+f (8M)%pF (p)du, (28)

EV)\[p,)\]:JA 8)\dv, (21) Where

for f p o\ dv=0, (29

N=No:Eyy=UNJA, (22) _ _

which follows from [p\ dv=[p\,, dv=A\q. Since there

as already mentioned. Thedependent gradient term gradi- is no term linear ind\ in Eq. (28) this demonstrates explic-

ent has the simple form itly that A, gives the minimum ofE,,, provided that
F(p)=0. This condition is satisfied for reasonalip),
sinceF(p=0)=0, F(pg) =1, and since & p=<p, includes

EG)\[p,)\]ZC)\j (VpX)2dv. (23 all p in the surface. To obtain the surface-symmetry energy

appropriate tE" we subtract out the volume pan,)\ﬁA:

IIl. VARIATIONAL CALCULATION O =El—UuNA=UNA(DP 1-1). (30)
We consider the variation @[ p,\ ] with respecttg and  \we draw some important conclusions from these resuits:

\, subject to the conditions of Eq&)—(4). The termE[p],  For
depending only om, gives the(volume and surfageenergy

dependent only oA and also the usual Coulomb energy. For F(p)=1:d=1,
a given nucleus, variation d&[ p] with respect top deter-
mines this energy as well ggr) in terms ofC, and of the Am=\o, OR=0, EL=0. (31

parameters oky(p). In particular, a fit to the data gives
Cp=30 MeV [14]. Minimization of E,[ p,\] with respect to Thus if there is no density dependence of the symmetry-
\, for a fixed p(r) appropriate to the nucleus considered,energy density—and if also the Coulomb and gradient terms
then determines (r) andE, in terms of F(p) and ofC,.  are neglected—then the neutron and proton distributions are
Variation of the total energ¥|[ p,\] with respect top will the same, i.ep,/p,=N/Z, and6R=0; also there is then no
lead to a coupling of the problems fprand\ and will result ~ surface-symmetry energy. It is thus the variationFdfp),
in some additional decrease of energy. Because of the stifequivalent to a differential neutron-proton pressure, which
ness of the equation of state, i.e., @f(p), this effect is drives the separation of the two densities; thbs-1>0
quite smau,ocy\g/K_ The smallness of this contribution is corresponds to different neutron and proton distributions. In
supported by simultaneous minimization with respecpto factif ® —1<1 thenEg «® 1— 1 [p(p—1)F'(p)dv and
and\ for a particular case. This conclusion is also reached inhusES, «<F’(0).
Ref.[11], where the input involves similar physics. Further ~We note that\ ,(r) is independent ofi, and that any
discussion is in Sec. VI. dependence on, can occur only through the gradient and
We thus consider the enerdy,[p,\] for a givenp(r) Coulomb terms and, furthermore, predominantly through the
satisfying Eq.(2). For numerical resultp(r) is chosen to be latter. The gradient terms, as we will show, make only a
consistent with the data for the nucleus considered. First wemall contribution.
consider only the term due to, : We also note that ifF(p)<1 for p<py, and since
A lfpdv=1, then®=A"1fpF 1(p)dv=1 and we have
B _ 2 EJ <0. This implies the sam@egative relative sign to the
EW[’J’)‘]_I s)\dv=urf A pF(p)dv. (24 yolume-symmetry energy as for the ordinary surface energy
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relative to the volume energy. This condition, although very IV. THE DENSITY DEPENDENCE F(p)
reasonable, and satisfied in all our calculations, is not re- . . . . .
quired. It is convenient to use the nondimensional variakle

=plpy instead of p. Then F'(x)=poF'(p)=0(1) and
F(pg)=1—F(x=1)=1. If &,(p,\) for small p arises en-
tirely from the Fermi kinetic energy thef(p)=ax?° with
a=0.2. Since\,*F ~1(p) the results are sensitive to small
p, and thus to large, and we use a cutofk.,. This is
desirable anyway, since the local density approximation will
Esp,\]= Ex—ur)\éA not be valid for large where quantum penetrability effects
(wave function tailswill become important. The dependence
on X is discussed further below. The conditior=E (x)
<1 is satisfied for most of th&(x) we use; in particular,
32 there are no negative values.

We have mostly used two functional forms which depend
Clearly, if the Coulomb and gradient terms are neglectec@Xplicitly on the first derivativé=" since we expect that this
then the minimunED of Es, (equivalent to the minimum of Will largely determine the variation d¥(x); we have already
E,) is obtained forSA=0. The constraint of Eq(29) re-  discussed this fob —1<1. More generally, because of the
quires that we must choos@\=\,, such that the constraints orF(x), this turns out to be only partially true.
p-weighted average af\ is zero. The functional form of,,, ~ 1N€ functional form we have mostly used is
must reflect this by having both negative and positive parts.

We now return to the full problem fok including the
gradient and Coulomb terntsg,\[p,A]+Ec)\[p,\]. We put
A=\n+ S\, subject to the constraint of EQR9), and use a
trial function for S\ =\ ,,. The total(surface}symmetry en-
ergy is now

= Egh+u7f (6N)?pF(p)dv +Egy +Ec, -

We use the following form: F(x)=F(xc)+ (x=Xxc)F' (Xc) + ¥(x—xc)°®
N=Ny= A(rmM=RMG(r), with
G(r)=(1+ar+brd){l+exd (r—R)/w]} %, (33 F”(x¢)=0. (36)
with The latter condition together with(1)=1 then determines
F(xc) andyin terms of the two parametexs andF’'(x¢).
mm:f I’mpG(I’)dv/f pG(r)dv (34  We have considered mostly the valugs=0.5 andxc=1.
We also require
to satisfy Eq(29). 6\ then depends on six variational param- E(x) = ax?3
eters:A, m, a b, R, andw; in particular A determines the (x)=ax
overall magnitude ob\. i
The Coulomb energiz ) gives a decrease i\, andE, :
alone gives a more extended proton than neutron distribu- Fx<ax?® (37

tion. We note that even fobA=0 both E,\[p,\,,] and
Ec\[p:A\m] are nonzero unless,,=\g. . . : T _
For the dependence dB, there is a linear contribution This determines the smafl behavior and implies-(x=0)

_ 2 Fh e =0. F(x) then depends on four parametexg;, F'(Xc), a,
E)i}\'[rfr)\’e)\rg]is ECB.:)}ﬂEz(eﬁl’))::rg)l’]]tr?bvu,tic\)li\;%iht()lS&:?\?Vi?fhngiztjI‘(S)f andx,,;. We have also considered the linear functional form:
through a bilinear contribution,,, o\, in Ec,[p,\]. Higher
order terms irC, will arise both fromEg, andEc, and also
from the termu,f(8\)?pF(p)dv. Our numerical results, , o ,
discussed below, show that the dependenc&pris fairly ~ 'hiS depends on the derivative @ and, together with Eq.
small and approximately linear for a large range of values of37); depends on the three parametgfg1), a, andxc, for
C,. F’(l')>1; hovyeyer, forF’(;)gl the conditionF(x=0)

The surface-symmetry coefficients,, defined in the =0 IS not satisfied, there is no dependence «prand x
semiempirical mass formula by the tetrg \2A%3, is given ~ =Xcut effecuvely replaced=(x=0)=0. We note thai(x)
in terms ofEg, by =xif F (_xc)=1 (y=0) in Eq. (36); this is equglen.t to

Eq. (38) with F’'(1)=1. However, for the same derivative at

Us,/U,=(Eg\ /U3 A2 (35  po, i.e., the samé'(1) (+1), Egs.(36) and (38) give dif-

ferent F(x). In particular, Eq.(36), especially for smaller
Ug, is the analog of the surface-energy coefficiagtof the  F’(1)<0.5, gives substantially smallér(x) than Eq.(38)
surface energyusA?® empirically ug/uy~—1.1. Simple because of thénegativé cubic term in Eq(36) and because
models of the surface show théateglecting Coulomb and thenF(0)=0 for Eq. (38). SomeF(x) are shown in Fig. 4
gradient terms ug,/u,=—0O(t/rg)=-0(1), where t below and are discussed in Sec. V. Instead=6f1), other
=2 fm is the surface thickness amg=1.1 fm is the usual authors, e.g., see RéB], usepy=u,poF’'(1) for the deriva-
radius constant. tive at py which then depends oum..

F(xX)=1+(x—1)F'(2). (38
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V. RESULTS shown for twoF(x) corresponding to rather different values

. o . of SR. The averagéoverr) is (A(n—p))=0. The contribu-
All our numerical results are _fc_)F Sp.b’ for which A tion from A, is omitted since it corresponds to the same
=0.2115. We use a standard empirica[ 1] to the electron o tron and proton distributions: thus(n—p)=0 for \
scattering data: =\,. It is noteworthy that the neutrons are pushed out quite
_ far beyond the protons, even for the smal#®=0.25 fm
— _ 1. _ ’ y
p=all+expr—c)/w]™ ¢=6.62 fm, justifying the usage “neutron skin.” Wave function tails
would enhance this effect.
The dependence on the coeffici€ht of the gradient term
is shown in Table | fou =35 MeV and for twoF(x) with
different values ofb. The dependence of bo#R and of the

w=0.546 fm, a=0.1604, (39

with a determined from Eq(2). We neglect the small differ-

ence betweep andpp ; this is unimportant for our purposes surface-symmetry energper nucleoh Es, /A on C, is lin-

since our focus is on the determinationofior a givenp. g (g a rather good approximation except for quite negative
Some further related discussion is given in R8f. We have |5 es ofC, , for which the positivity of the energy is not

checked numerically Fhat without gradient and C°“|°mbassured; the gradient teri, on its own is less linear with
terms we indeed obtaih=Ap,=\, for F=1, whereas for ¢, |nthe absence of Coulomb forces the dependend@,on
F#1 we obtaindA=0, i.e., A\=\p,, in agreement with,  js smaller and more strictly linear. Importantly, for a given
giving the minimum. ForF=1 but with the Coulomb and F(x), the differences iR for a wide range o, are quite
gradient terms and withC,=30MeV, we obtain SR small, <10%, and comparable to or less than other uncer-
=—0.058 @,=35) and —0.082 fm u,=25MeV). The tainties discussed below. This small dependenc€ gr-and
negative values reflect the dominance of the Coulomb interthus on the gradient term—has the important implication that
action, which gives a more extended proton than neutrodR depends predominantly only on a nuclear-matter quantity
distribution. involving F(x). The small dependence is consistent with the
Figure 1 shows the differenc&(n—p), resulting from  “naive” dimensional analysis of effective RMHB].
N—\g, between the number of neutrons and protons in a For the cutoff we consider the values 00%.,<0.1, the
shell of radiusr and of nominal thickness 1 fm. Results are corresponding number of nucleons outsiklg; being 1.1

TABLE |. Dependence orC, (MeV) for u,=35 MeV, x.,~=0.05. A(Eg, /A) and A(SR) denote the
changes oEg, /A and SR, respectively, with respect to their values ©f=0. Results are foF' =1, x¢
=0.5,a=0.2, and®=1.847.5R are in fm;E in MeV.

C, Ecy Eg /A SR A(Eg, /A) A(SR)
0 0 ~0.5661 0.392 0 0

15 0.844 ~0.5620 0.397 0.0041 0.005
-15 -0.883 ~0.5703 0.386 ~0.0042 ~0.006

30 1.658 ~0.5579 0.401 0.0082 0.009
-30 —2.174 ~0.5746 0.380 —0.0085 ~0.012

60 3.213 —0.5500 0.408 0.016 0.016
—60 —2.208 —0.5837 0.367 —0.0176 -0.025
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FIG. 2. DifferencedR between the neutron
and proton rms radii vsb—1 for the F(x) of
Egs.(36) and (37) for a large number of param-
eters and for the indicated valueswf. The full
circles correspond to different,, all with u,
=35 MeV. The values foE., =0 are also those
for A=\, as well as those fan,= o0 but with the
Coulomb contribution. See the text for further
discussion.

pendence. Most of our results are then fgp=0.05 with

of X, are shown in Figs. 2 and 3 as full circles. If we plot A,,=4, which seems reasonable.

our results vsb—1, where®d is the integral given by Eq.
(26), then the results foéR andug,/u, vs ®—1 for differ-

The following discussion of the choice of parameters of
F(x) is illustrated by Fig. 4. The curves a—e are for progres-

entx,; are very well consistent with the general pattern dis-sively increasingd (and 6R), corresponding to increasingly

cussed below. Thus Figs. 2 and 3 show tbRtandus,/u,,
for a large number of parameters for tR¢x) of Egs.(36)
and (38), are approximately determined by judt—1; the

overall differences fronf(x)=1, for which®=1. ForF’
we consider 6<F'<3.5 for both Egs.(36) and (38); this
covers all plausible values. For the parametewe consider

dependence oRr. is just a special case of this general de-effectively the whole range from 0 to 1 for E(B6); for Eq.

5

-Ust/Uvt

Key
as for fig.2
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FIG. 3. The ratio—ug,/u, of the surface-
symmetry-energy coefficient to the volume coef-
ficient vs® — 1. See the caption for Fig. 2.
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FIG. 4. Density dependendgx) vs x. Curve
a is for Eq.(38) with F'=0.5, ®=1.137, 6R
=0.08 fm. Curves b—e are for Eq36); for b:
F’'=0.5,xc=1, $=1.395, 5R=0.25 fm; for c:
F'=0.5, xc=0.5, #=1.611, 6R=0.27 fm, for
d:F'=1, allxc, $=1.847,6R=0.40 fm; for e:
F'=15x:=1,®=3.152,6R=0.56 fm. Values
are foru.=35 MeV.

X

(38), xc=1. The end point condition§(x=1)=1, F(x  dence orC,). For E¢,=0 we haven=\,,, which is inde-

=0)=0 [=0 for Eq. (38)] play an important role. FoF’ pendent ofu,. This is then equivalent to .= if Eg, is

=1 (curve d in Fig. 4 F(x)=x (except for smalk) and is  included. Thus the difference— \, is the result of compe-

independent ofx.. The casexc=1 (p=py) has already tition betweenu, and the Coulomb energl, . Reducing

been touched upon, and is considered further in Sec. Vli. is equivalent to increasing the relative contribution of

where the dependence pg (equivalently, orF') is shown.  Ec,, and will reduceSR andug,/u, from their maximum

This shows no universality, especially for smiall when the  values attained foEc, =0 appropriate to\,,. This is be-

nonlinear terms in Eq(36) are particularly important and cause the Coulomb repulsion favors a more extended proton

whenF(0)=0 for Eq.(38). This is in striking contrast to the distribution. The dependence en is depicted in Fig. 5 for

dependence ofb. For xc=0.5, which corresponds to fixing $®=1.494,C,=30MeV[F'(1)=1,04=0.2X.,~=0.05]. The

F’ at30q, the functionF(x) is forced(for smallF'<0.5) to  values forE¢, =0 are nicely consistent with those for.

be quite linear in the half-density region and thus overall to=c. The results shown in Fig. 2 fofR and forug,/u; in

be very different from 1¢ is then also significantly different Fig. 3 also demonstrate this dependence. These results, for a

from 1 (Fig. 4, curve ¢. On the other hand, also for sméll large number ofF(x), are foru,=25 and 35 MeV, and

but with xc close to 1, bottF(x) and® are much closerto Ec,=0 (i.e., u,=«). The dependence afR on u, for a

1 with correspondingly smabR (Fig. 4, curves a and)bln  given® —1 is consistent with a simple scaling:

Fig. 2 the latter values are those in the lower left hand corner

with both small® —1 and smalléR, whereas the former are

those with ® —1~0.5-0.7 and 6R~0.2—0.25 fm; these

points are mostly those that hang down to the right in this

region. For large='=1.5 (Fig. 4, curve ¢ and correspond-

ingly large ® and SR, the difference between Eq@6) and  which allows estimates for empirically reasonable values of

(39) is relatively small. Fore, which mostly determines the u, from those forEc, =0 and eitheru.=25 or 35 MeV.

low density dependence, we have mostly uaed0.2. How- We emphasize that for a particulafp) we vary onlyu, .

ever, we have considered values from 0.01 to 0.5. or Our results for the dependence &R on u, show a similar

—1=<1, especially smallefb -1, there is little dependence trend as the results of RMFT when just tpemeson cou-

on «; for & —1>1 the results are again consistent with thepling, which determinesi ., is varied[8]. Both sets of re-

general dependence dn sults, as expected, are consistent with small valueghof
As already noted\ and us./u, depend onu,. only  when extrapolated toi,=0. Our results show a somewhat

through the Coulomb terrg¢, (neglecting the small depen- stronger dependence on than the RMFT results; this could

SR(u,=2»)— 8R(u,)=[ SR(U, =) — SR(UL)(u)/u,),
(40
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u, for ®=1.494. See the caption for Fig. 2.
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be because for the latter the derivative is also changing. Thiee smaller than 0.4 fm. Our results show that there is an

results for a wide range of RMFT, which are shown in Fig. 7upper limit to R, absolutely, of=0.75 fm attained for

of Ref.[8], show a much larger slope=0.018 fm/MeV}, Ec,=0, and of =0.65 fm for more realistic u,

which extrapolates to unreasonably large negative values a£25—35 MeV.

6R=—0.43 fm foru,=0. This is presumably because other = Comparison of Figs. 2 and 3 shows thatig,/u, vs ®

parameters in addition to, are varied. —1 follows a similar pattern to that fa¥R, in particular, for
As discussed, the dependence of béfandug./u, on  ®—1<1. The associated correlation betweens./u, and

@ —1 is roughly universal for a given,. Thus if 5SR<0.4 SR is shown in Fig. 6. This shows that fé@R=<0.4 fm the

—0.5fm, a given(experimentalvalue of 6R will determine  value of —ug,/u, is reasonably well determined ¥R, and

®. However if 6R is larger than about 0.45 fm, thefR is  will thus provide important input for the semiempirical mass

not single valued, an@® cannot then be uniquely determined formula, and should result in a better determinatiomi of If

from SR. In fact, evidence indicates thaR is very likely to  indeedéR=<0.4 fm then it follows that-ug,/u,<2.

5
4 .
*
e 3 T
=
2 - . ¢ FIG. 6. Relation betweenr-ug,/u, and 6R
v 2 e s o2 ¢ . for the results shown in Figs. 2 and 3.
. . *
LR .
1 - .
*
*
*
*
0 ‘
0 0.1 02 0.3 04 0.5 0.6 0.7
SR (fm)
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FIG. 7. DifferencesR between the neutron
and proton rms radii vs the derivatiyg. See the
text for details.
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VI. DISCUSSION

We have demonstrated the central role thgt) plays for
the determination oh=(pN—pp)/p, and therefore of6R
andug,/u,; in particular, the exact solution,, obtained in
the absence of Coulomb and gradient terms exhibits this e

16

does not satisfyF(0)=0 this may indicate that the upper
branch may be more realistic. In any case in plots Ef) vs
@ the two branches are hardly distinguishable.

Our approach shows the critical importance of the inter-

sJplay betweeru, and the Coulomb energy. Fé&ic, =0, and

plicitly. We expect this dependence to persist also in othe@!S0 neglecting the small gradient contribution, the solution

approaches. For the large setffp) that we have consid-

Am(r), which is exact, is given in terms &f(p) by Eq.(25)

ered, this dependence occurs, approximately, only througnd is independent of.. If the Coulomb energ¥c, , due

the integral® of Eq. (26). It seems plausible that this depen-

to the difference of neutron and proton distributions, is in-

dence is quite general, but this needs confirmation. In ougluded, them\ will decreasgfrom \,,)) and so will 6R. Thus

approach® is not uniquely determined biy(p), in particu-

in the limit u.=o the differencesR attains its maximum,

lar, not by its derivative. This was discussed in Sec. V and i€orresponding tdEc, =0, A=\,.

also demonstrated by the following discussion.

The coupling betweep and\ will give some additional

In a comparison with other calculations we show in Fig. 7decrease of energy. This is small because of the stiffness of

our results foréR vs pp=u,pgF’(1), instead of vsF'(1),
wherepy is the derivative(at pg) used by other authof$].
For po=6 MeVfm 2 there are two distinct branches for
F(x), corresponding to Eq36) for the upper branch and Eq.
(38) for the lower. In Fig. 2 on a plot vsb—1, these
branches are barely distinguished. The upper branch in Fig.
is more linear withp, with a slope=0.04 as compared to
=0.043 MeV fm * for a wide variety of mean-field models
(Fig. 11 in Ref.[8]), which have a somewhat smalléR.
The lower branch has a slope0.033 MeV fmi 3 and con-
siderably smallebR. As previously discussedk(x) for Eq.

the equation of state. Limited calculations we have made, for
the simultaneous minimization with respectd¢@nd\, sup-
port this. Thus with onle,(p) and a rather schematic equa-
tion of state, with an incompressibility constark
=200 MeV, we obtain for the total energy per parti€@éA
#F—7.962 MeV. Including the symmetry-energy contribu-
tion, but without coupling between the problems foandA,
and for u.=25MeV and ®=2.1, gives E/A
=—8.382 MeV. This is changed by0.005 MeV by the
coupling, andéR=0.27 fm is changed by<0.01 fm. Our
conclusion is consistent with that of Rdfl1]. The small

(36) has a nonlinear term, which, especially for smallereffect on R is also consistent with results faiR vs K,

F’(1)<0.5, reduces-(x) and increase®, as compared to
using Eq. (38) for which F(0)=0 [for F’(1)<0], and

extracted from numerous calculations in &f; these seem
consistent with a random scatter and show no significant

which should correspond more closely to the results in Refdependence oK. For theA dependence ofR for constanZ

[8]. ForF'(1)=1 the results for both Eq$36) and(38) are
identical and for='(1)>1 the corresponding values, in par-
ticular, of ®, are quite similar. Since Eq38) for small F’

or N, i.e., for isotope and isotone shifts, which intrinsically
depend on thep-A coupling or its equivalent in other ap-
proaches, realistic calculations need to be more precise. In
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fact the dependence of the isotope shift Krthrough the the correlation betweeng,./u. and SR where the experi-
Coulomb energy was already proposed by Wilets, Hill, andmental value ofSR would be an input.
Ford [16], and through thénorma) nuclear-matter density Our Fermi-Thomas version of the local density approxi-
dependence of the symmetry energy by Bodpiéi. mation for the neutron-proton difference should have some
We briefly mention the implications for neutron stars. Theyalidity because of the small effect of the gradient terms. The
pressure of neutron matterA€1) with energy density yse of fairly general density functionals avoids specifying
#(p) =ev(p) + u,pF(p) [EQ. (11) without gradient and Cou- - some particular set of interactions. More detailed connec-
lomb termg is P(p)=Pqo(p) +U,p°F'(p), wherePo(p) is  tions need to be made, but we do not pursue these here. Our
the pressure of symmetric nuclear matter. The additional,,roach, even with small gradient terms, is of course lim-
pressure is thus proportional 9 (p), making a direct con-  jieq by the absence of shell and pairing effects, as well as
nection between the neutron-matter equation of state’@&d  \aye function tails. These limitations can become especially
This connection and the implications for neutron stars havgeyere for nuclei far from the stability line. Other approaches
been studied in Refd3-5], [10]. A larger 5R implies @  gych as the RMFT approach will not suffer from some or
larger® and hence a largét’(p), which in turnresults in a o5t of these limitations. Nevertheless, our approach clearly

harder equation of state and therefore a larger neutron-stglamonstrates the general features of neutron-proton distribu-
radius. The accuracy of the connectiondB assumes that tjons, which are less evident in other approaches.

higher powers of? in ,(p,\) are small. This needs inves-
tigation, not only forA =1, but also for\ relevant to nuclei
well away from the stability line.

The magnitude of the symmetry-energy teunplays a
central role in all the above considerations. A redetermina- We would like to thank C. H. Horowitz, S. W. Schramm,
tion of u, that includes the surface-symmetry term wouldand especially R. J. Furnstahl for helpful discussions and
involve a refit of the mass formula, which could make use oftomments.
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