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Neutron and proton densities and the symmetry energy
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The neutron/proton distributions in nuclei, in particular, then-p difference, are considered in a ‘‘macro-
scopic’’ Thomas-Fermi approach. The density dependenceF(r) of the symmetry-energy density, wherer is the
total density, drives this difference in the absence of Coulomb and density-gradient contributions when we
obtain an explicit solution for the difference in terms ofF. If F is constant then then-p difference and, in
particular, the differencedR between the neutron and proton rms radii are zero. The Coulomb energy and
gradient terms are treated variationally. The latter make only a small contribution to then-p difference, and this
is then effectively determined byF. The Coulomb energy reducesdR. Switching off the Coulomb contribution
to the n-p difference then gives the maximumdR for a givenF. Our numerical results are for208Pb. We
consider a wide range ofF; for these, bothdR and the ratiox of the surface to volume symmetry-energy
coefficient depend, approximately, only on an integral involvingF21. FordR&0.45 fm this dependence is one
valued and approximately linear for smalldR, and this integral is then effectively determined bydR. There is
a strong correlation betweendR and x, allowing an approximate determination ofx from dR. dR has a
maximum of>0.65 fm.
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I. INTRODUCTION

We consider the neutron and proton densitiesrN andrP
in a local density ‘‘macroscopic’’ Thomas-Fermi approac
In particular, we study the neutron-proton density differen
and its consequence for the differencedR of rms radii and
for the surface-symmetry energy. There has recently b
much interest indR because of the experimental possibili
of directly measuring the neutron-distribution radius in208Pb
via parity-violating electron scattering@1#. Hadronic probes
cannot do this cleanly because of uncertainties from stro
interaction corrections: proton and pion~mostly LAMPF
data! scattering determine the neutron radius, and thus
difference between the neutron and proton radii, with an
certainty of at least 0.2 fm@2#. The relevance ofdR for the
neutron equation of state, and hence for neutron stars,
been realized and discussed by several authors@3–5#, and it
has been realized that the differencedR is principally deter-
mined by the density dependence of the symmetry-ene
density. The critical role of this density dependence fordR
was in fact shown long ago by one of the authors@6#. Recent
studies are in the framework of mean-field models, both w
nonrelativistic in particular, Skyrme-type approaches@7#, and
relativistic mean-field theory~RMFT! approaches. An excel
lent review is by Furnstahl@8#, who gives an overview of
mean-field functionals and extensive references espec
for RMFT; see also Ref.@9# for a review of RMFT. A re-
cently extended RMFT approach has also been used to
culate the neutron radius of208Pb and neutron-star propertie
@10#. A macroscopic approach closely related to ours can
found in Ref.@11#, which emphasizes the importance of t
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density derivative of the symmetry-energy density.
Our Thomas-Fermi approach assumes local nucle

matter conditions but includes density-gradient terms and
course the Coulomb interaction. We shall show that the g
dient terms play only a small role for the relative dens
differencel5(rN2rP)/r, whereas for the total densityr
such terms are essential. This gives us confidence that
approach has some validity in spite of some limitations. T
smallness of the gradient terms is consistent with the ‘‘
ı̈ve’’ dimensional analysis of RMFT; a thorough discussi
of these and related issues is given in Ref.@8#. In our ap-
proach the density distributionsr(r ),l(r ) for a particular
nucleus are determined as functions of the radial distanr
from the center of the nucleus in terms of the parameter
the energy functional.dR is then determined from the den
sities. For the determination ofl(r ) the density dependenc
F(r) @Eq. ~9!# of the symmetry-energy density plays a ce
tral role, as was already shown in Ref.@6#. We note thatF(r)
becomes a determined function ofr for some given density
distributionr(r ). To a very good approximation the proble
separates into one involving the total densityr(r ) and one
for the relative differencel(r ). In the absence of gradien
and Coulomb terms we obtain an explicit solutionlm(r ) in
terms ofF(r) and r(r ). @If F(r) is independent ofr, and
therefore also ofr, thenrN /rP5N/Z anddR50.] The gra-
dient and Coulomb terms are subsequently included va
tionally. We have limited ourselves to208Pb. We use a range
of functions for F(r), rather than some particular intera
tions. We show that, at least for these functions, the diff
ence in radiidR, and also the surface-symmetry energy, a
largely determined by the appropriate normF of F21(r). If
dR&0.45 fm then the dependence is one valued and appr
mately linear for smalldR. The effect of the gradient term
as well as of the coupling between the problems forl andr
is small. A determination ofdR will then approximately de-
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A. R. BODMER AND Q. N. USMANI PHYSICAL REVIEW C67, 034305 ~2003!
termineF, which is a purely nuclear-matter quantity. Com
parisons with other results are made.

II. DENSITIES AND ENERGIES

Instead ofrN ,rP we use the variablesr, l, all considered
to be functions of the radial distancer,

r5rN1rP , l5~rN2rP!/r, ~1a!

rN5r~11l!/2, rP5r~12l!/2, ~1b!

subject to the constraints

E r dv5A, ~2!

E rl dv5~N2Z![Al0 , ~3!

where

l05~N2Z!/A. ~4!

All integrals are spherically symmetric, with the integran
functions of r; integrations are over all space with the vo
ume elementdv54pr 2 dr and the range from 0 tò. If the
neutron and proton distributions are the same, i.e.,

if rN /rP5N/Z,

then

l[l05~N2Z!/A. ~5!

The mean-square radii are given by

^r 2&5A21E rr 2 dv, ^r n
2&5 1

2 N21E r~11l!r 2 dv,

^r p
2&5 1

2 Z21E r~12l!r 2 dv. ~6!

The difference between the neutron and proton rms rad
defined by

dR5A^r n
2&2A^r p

2&. ~7!

If rN /rP5N/Z then ^r 2&5^r n
2&5^r p

2& anddR50.
The energy density we use is

«5«V~r!1«l1~k0 /r0!@~¹rn!21~¹rp!2#

12~k1 /r0!¹rn•¹rp1«C , ~8!

«l5ut@~rn2rp!/r#2rF~r!, ~9!

«C5eVC~r !rp~r !, VC~r !5~4pe/r !E
0

r

rp~r 8!r 82dr8.

~10!

«V(r)/r is the energy per particle of symmetric nuclear m
ter of densityr, saturating at normal nuclear-matter dens
03430
is

-

r0'0.165 fm23 with energyuV>216 MeV and with curva-
ture determined by the incompressibility constant K. W
shall not give an explicit form for«V(r) since, as we shal
discuss, it has only a small effect on the quantities involv
l.

«l is the symmetry-energy density andF(r) determines
its density dependence. The magnitudeut'35 MeV is given
by the semiempirical mass formula@12# and by related fits
with RMFT @13#. a4 is often used in the literature instead
ut . We require thatF(r0)51 in order that the semiempirica
value is obtained forA→`. The gradient terms have th
form consistent with finite-range interaction effects and
determined by the coefficientsk0 and k1 . The Weiszacker
gradient terms arising from the kinetic energy are known
be small and their effect can in any case be absorbed by
dominant potential terms. The term}¹rn•¹rp arises from
the neutron-proton interaction.«C is the effective Coulomb
energy density where we have neglected the small excha
contribution.

In terms ofr andl the total energy density is

«~r,l!5«~r!1«l~r,l!1Cl~¹rl!21«C~r,l!, ~11!

«~r!5«V~r!1C0~¹r!2, ~12!

«l~r,l!5utl
2rF~r!, ~13!

C05~k01k1!/2r0 , Cl5~k02k1!/2r0 . ~14!

«C(r,l) is obtained by using Eq.~1b! for rP in Eq. ~10!.
The total energy then becomes a functional ofr andl:

E@r,l#5E@r#1El@r,l#. ~15!

E@r# comprises both the symmetric volume and surface
ergies, resulting in only anA dependence, and also the usu
direct Coulomb energyEC0@r#}(Ze/A)2 obtained for l
[l0 . Thus

E@r#5E «~r! dv1EC0@r#, ~16!

EC0@r#5E «C~r,l0!dv

5~4pZe/A!2E
0

`

~1/r !rr 2drE
0

r

rr 82dr8. ~17!

The term

El@r,l#5EVl@r,l#1ECl@r,l#1EGl@r,l# ~18!

contains all the dependence onl2l0 , i.e., on the difference
in neutron and proton distributions, but also includes
standard volume-symmetry energyutl0

2A5ut(N2Z)2/A
obtained forl[l0 . The total Coulomb energy is
5-2
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NEUTRON AND PROTON DENSITIES AND THE . . . PHYSICAL REVIEW C 67, 034305 ~2003!
EC@r,l#5E «C~r,l!dv

5~4pe/2!2E
0

`

~1/r !r~r !$12l~r !%r 2dr

3E
0

r

r~r 8!$12l~r 8!%r 82dr8. ~19!

The l-dependent part is

ECl@r,l#5EC@r,l#2EC0@r#. ~20!

ECl is positive ~negative! if l2l0 is positive ~negative!,
corresponding to a less~more! extended proton than neutro
distribution.

EVl@r,l#5E «ldv, ~21!

for

l[l0 :EVl5utl0
2A, ~22!

as already mentioned. Thel-dependent gradient term grad
ent has the simple form

EGl@r,l#5ClE ~¹rl!2dv. ~23!

III. VARIATIONAL CALCULATION

We consider the variation ofE@r,l# with respect tor and
l, subject to the conditions of Eqs.~2!–~4!. The termE@r#,
depending only onr, gives the~volume and surface! energy
dependent only onA and also the usual Coulomb energy. F
a given nucleus, variation ofE@r# with respect tor deter-
mines this energy as well asr(r ) in terms ofC0 and of the
parameters of«V(r). In particular, a fit to the data give
C0>30 MeV @14#. Minimization of El@r,l# with respect to
l, for a fixed r(r ) appropriate to the nucleus considere
then determinesl(r ) and El in terms ofF(r) and of Cl .
Variation of the total energyE@r,l# with respect tor will
lead to a coupling of the problems forr andl and will result
in some additional decrease of energy. Because of the s
ness of the equation of state, i.e., of«V(r), this effect is
quite small,}l0

4/K. The smallness of this contribution i
supported by simultaneous minimization with respect tor
andl for a particular case. This conclusion is also reache
Ref. @11#, where the input involves similar physics. Furth
discussion is in Sec. VI.

We thus consider the energyEl@r,l# for a given r(r )
satisfying Eq.~2!. For numerical resultsr(r ) is chosen to be
consistent with the data for the nucleus considered. First
consider only the term due to«l :

EVl@r,l#5E «ldv[utE l2rF~r!dv. ~24!
03430
r
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Minimizing this with respect tol(r ), subject to the con-
straint of Eq.~3!, we obtain an explicit, exact, and simp
solutionlm(r ), El

m in terms of the givenr(r ):

lm~r !5l0F21@r~r !#F21, El
m5utl0

2AF21, ~25!

F5A21E rF21~r!dv, ~26!

with

E rlmdv5Al0 . ~27!

With l5lm1dl, we obtain for the energy

EVl~lm1dl!5El
m1E ~dl!2rF~r!dv, ~28!

where

E r dl dv50, ~29!

which follows from *rl dv5*rlm dv5Al0 . Since there
is no term linear indl in Eq. ~28! this demonstrates explic
itly that lm gives the minimum ofEVl , provided that
F(r)>0. This condition is satisfied for reasonableF(r),
sinceF(r50)>0, F(r0)51, and since 0<r<r0 includes
all r in the surface. To obtain the surface-symmetry ene
appropriate toEl

m we subtract out the volume partutl0
2A:

ESl
m 5El

m2utl0
2A5utl0

2A~F2121!. ~30!

We draw some important conclusions from these results:
For

F~r![1:F51,

lm[l0 , dR50, ESl
m 50. ~31!

Thus if there is no density dependence of the symme
energy density—and if also the Coulomb and gradient te
are neglected—then the neutron and proton distributions
the same, i.e.,rn /rp[N/Z, anddR50; also there is then no
surface-symmetry energy. It is thus the variation ofF(r),
equivalent to a differential neutron-proton pressure, wh
drives the separation of the two densities; thusF21.0
corresponds to different neutron and proton distributions
fact if F21!1 thenESl

m }F2121}*r(r21)F8(r)dv and
thusESl

m }F8(0).
We note thatlm(r ) is independent ofut and that any

dependence onut can occur only through the gradient an
Coulomb terms and, furthermore, predominantly through
latter. The gradient terms, as we will show, make only
small contribution.

We also note that ifF(r)<1 for r<r0 , and since
A21*rdv51, thenF5A21*rF21(r)dv>1 and we have
ESl

m <0. This implies the same~negative! relative sign to the
volume-symmetry energy as for the ordinary surface ene
5-3
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A. R. BODMER AND Q. N. USMANI PHYSICAL REVIEW C67, 034305 ~2003!
relative to the volume energy. This condition, although ve
reasonable, and satisfied in all our calculations, is not
quired.

We now return to the full problem forl including the
gradient and Coulomb termsEGl@r,l#1ECl@r,l#. We put
l5lm1dl, subject to the constraint of Eq.~29!, and use a
trial function fordl[lvar. The total~surface-!symmetry en-
ergy is now

ESl@r,l#5El2utl0
2A

5ESl
m 1utE ~dl!2rF~r!dv1EGl1ECl .

~32!

Clearly, if the Coulomb and gradient terms are neglec
then the minimumESl

m of ESl ~equivalent to the minimum o
El) is obtained fordl[0. The constraint of Eq.~29! re-
quires that we must choosedl[lvar such that the
r-weighted average ofdl is zero. The functional form oflvar
must reflect this by having both negative and positive pa
We use the following form:

dl[lvar5L~r m2Rm!G~r !,

G~r !5~11ar1br2!$11exp@~r 2R!/w#%21, ~33!

with

Rm5E r mrG~r !dv/E rG~r !dv ~34!

to satisfy Eq.~29!. dl then depends on six variational param
eters:L, m, a, b, R, and w; in particularL determines the
overall magnitude ofdl.

The Coulomb energyECl gives a decrease indl, andECl

alone gives a more extended proton than neutron distr
tion. We note that even fordl[0 both ECl@r,lm# and
EGl@r,lm# are nonzero unlesslm[l0 .

For the dependence onCl there is a linear contribution
EGl@r,lm#5Cl*@¹(rlm)#2dv, which is independent o
dl. There is a further contribution}Cl to dl, which occurs
through a bilinear contributionlm dl, in ECl@r,l#. Higher
order terms inCl will arise both fromEGl andECl and also
from the termut*(dl)2rF(r)dv. Our numerical results
discussed below, show that the dependence onCl is fairly
small and approximately linear for a large range of values
Cl .

The surface-symmetry coefficientuSt , defined in the
semiempirical mass formula by the termuStl0

2A2/3, is given
in terms ofESl by

uSt /ut5~ESl /utl0
2!A22/3. ~35!

uSt is the analog of the surface-energy coefficientuS of the
surface energyuSA2/3; empirically uS /uV'21.1. Simple
models of the surface show that~neglecting Coulomb and
gradient terms! uSt /ut52O(t/r 0)52O(1), where t
>2 fm is the surface thickness andr 0>1.1 fm is the usual
radius constant.
03430
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IV. THE DENSITY DEPENDENCE F „r…

It is convenient to use the nondimensional variablex
5r/r0 instead of r. Then F8(x)5r0F8(r)5O(1) and
F(r0)51→F(x51)51. If «l(r,l) for small r arises en-
tirely from the Fermi kinetic energy thenF(r)>ax2/3 with
a>0.2. Sincelm}F21(r) the results are sensitive to sma
r, and thus to larger, and we use a cutoffxcut. This is
desirable anyway, since the local density approximation w
not be valid for larger where quantum penetrability effect
~wave function tails! will become important. The dependenc
on xcut is discussed further below. The condition 0<F(x)
<1 is satisfied for most of theF(x) we use; in particular,
there are no negative values.

We have mostly used two functional forms which depe
explicitly on the first derivativeF8 since we expect that this
will largely determine the variation ofF(x); we have already
discussed this forF21!1. More generally, because of th
constraints onF(x), this turns out to be only partially true
The functional form we have mostly used is

F~x!5F~xC!1~x2xC!F8~xC!1g~x2xC!3

with

F9~xC!50. ~36!

The latter condition together withF(1)51 then determines
F(xC) andg in terms of the two parametersxC andF8(xC).
We have considered mostly the valuesxC50.5 andxC51.
We also require

F~x!5ax2/3

if

F~x!<ax2/3. ~37!

This determines the smallr behavior and impliesF(x50)
50. F(x) then depends on four parameters:xC , F8(xC), a,
andxcut. We have also considered the linear functional for

F~x!511~x21!F8~1!. ~38!

This depends on the derivative atr0 and, together with Eq.
~37!, depends on the three parametersF8(1), a, andxcut for
F8(1)>1; however, forF8(1)<1 the conditionF(x50)
50 is not satisfied, there is no dependence ona, and x
<xcut effectively replacesF(x50)50. We note thatF(x)
5x if F8(xC)51 (g50) in Eq. ~36!; this is equivalent to
Eq. ~38! with F8(1)51. However, for the same derivative a
r0 , i.e., the sameF8(1) ~Þ1!, Eqs.~36! and ~38! give dif-
ferent F(x). In particular, Eq.~36!, especially for smaller
F8(1),0.5, gives substantially smallerF(x) than Eq.~38!
because of the~negative! cubic term in Eq.~36! and because
thenF(0)>0 for Eq. ~38!. SomeF(x) are shown in Fig. 4
below and are discussed in Sec. V. Instead ofF8(1), other
authors, e.g., see Ref.@8#, usep05utr0F8(1) for the deriva-
tive at r0 which then depends onut .
5-4
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FIG. 1. ChangeD(n-p) between the numbe
of neutrons and protons in a shell of radiusr and
thickness 1 fm due to the differencel2l0 . Re-
sults are for two F(x) corresponding toF
51.85, dR50.40 fm, and to F51.40, dR
50.25 fm. Also shown is 10r/r0 .
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V. RESULTS

All our numerical results are for208Pb, for which l0
50.2115. We use a standard empirical fit@15# to the electron
scattering data:

r5a@11exp~r 2c!/w#21; c56.62 fm,

w50.546 fm, a50.1604, ~39!

with a determined from Eq.~2!. We neglect the small differ-
ence betweenr andrP ; this is unimportant for our purpose
since our focus is on the determination ofl for a givenr.
Some further related discussion is given in Ref.@8#. We have
checked numerically that without gradient and Coulom
terms we indeed obtainl5lm[l0 for F[1, whereas for
FÞ1 we obtaindl50, i.e.,l5lm , in agreement withlm
giving the minimum. ForF[1 but with the Coulomb and
gradient terms and withCl530 MeV, we obtain dR
520.058 (ut535) and 20.082 fm (ut525 MeV). The
negative values reflect the dominance of the Coulomb in
action, which gives a more extended proton than neut
distribution.

Figure 1 shows the differenceD(n2p), resulting from
l2l0 , between the number of neutrons and protons i
shell of radiusr and of nominal thickness 1 fm. Results a
03430
r-
n

a

shown for twoF(x) corresponding to rather different value
of dR. The average~over r! is ^D(n2p)&50. The contribu-
tion from l0 is omitted since it corresponds to the sam
neutron and proton distributions: thusD(n2p)[0 for l
[l0 . It is noteworthy that the neutrons are pushed out qu
far beyond the protons, even for the smallerdR50.25 fm,
justifying the usage ‘‘neutron skin.’’ Wave function tail
would enhance this effect.

The dependence on the coefficientCl of the gradient term
is shown in Table I forut535 MeV and for twoF(x) with
different values ofF. The dependence of bothdR and of the
surface-symmetry energy~per nucleon! ESl /A on Cl is lin-
ear to a rather good approximation except for quite nega
values ofCl , for which the positivity of the energy is no
assured; the gradient termEGl on its own is less linear with
Cl . In the absence of Coulomb forces the dependence onCl
is smaller and more strictly linear. Importantly, for a give
F(x), the differences indR for a wide range ofCl are quite
small, <10%, and comparable to or less than other unc
tainties discussed below. This small dependence onCl—and
thus on the gradient term—has the important implication t
dR depends predominantly only on a nuclear-matter quan
involving F(x). The small dependence is consistent with t
‘‘naı̈ve’’ dimensional analysis of effective RMFT@8#.

For the cutoff we consider the values 0.01<xcut<0.1, the
corresponding number of nucleons outsidexcut being 1.1
TABLE I. Dependence onCl ~MeV! for ut535 MeV, xcut50.05. D(ESl /A) and D(dR) denote the
changes ofESl /A and dR, respectively, with respect to their values forCl50. Results are forF851, xC

50.5, a50.2, andF51.847.dR are in fm;E in MeV.

Cl EGl ESl /A dR D(ESl /A) D(dR)

0 0 20.5661 0.392 0 0
15 0.844 20.5620 0.397 0.0041 0.005

215 20.883 20.5703 0.386 20.0042 20.006
30 1.658 20.5579 0.401 0.0082 0.009

230 22.174 20.5746 0.380 20.0085 20.012
60 3.213 20.5500 0.408 0.016 0.016

260 22.208 20.5837 0.367 20.0176 20.025
5-5
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FIG. 2. DifferencedR between the neutron
and proton rms radii vsF21 for the F(x) of
Eqs. ~36! and ~37! for a large number of param
eters and for the indicated values ofut . The full
circles correspond to differentxcut all with ut

535 MeV. The values forECl50 are also those
for l[lm as well as those forut5` but with the
Coulomb contribution. See the text for furthe
discussion.
ot
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<Aout<9.4. Results for the two forms ofF(x) for this range
of xcut are shown in Figs. 2 and 3 as full circles. If we pl
our results vsF21, whereF is the integral given by Eq
~26!, then the results fordR anduSt /ut vs F21 for differ-
entxcut are very well consistent with the general pattern d
cussed below. Thus Figs. 2 and 3 show thatdR anduSt /ut ,
for a large number of parameters for theF(x) of Eqs. ~36!
and ~38!, are approximately determined by justF21; the
dependence onxcut is just a special case of this general d
03430
-

-

pendence. Most of our results are then forxcut50.05 with
Aout>4, which seems reasonable.

The following discussion of the choice of parameters
F(x) is illustrated by Fig. 4. The curves a–e are for progr
sively increasingF ~anddR), corresponding to increasingl
overall differences fromF(x)[1, for which F51. For F8
we consider 0<F8<3.5 for both Eqs.~36! and ~38!; this
covers all plausible values. For the parameterxC we consider
effectively the whole range from 0 to 1 for Eq.~36!; for Eq.
f-

FIG. 3. The ratio2uSt /ut of the surface-

symmetry-energy coefficient to the volume coe
ficient vsF21. See the caption for Fig. 2.
5-6
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FIG. 4. Density dependenceF(x) vs x. Curve
a is for Eq. ~38! with F850.5, F51.137, dR
50.08 fm. Curves b–e are for Eq.~36!; for b:
F850.5, xC51, F51.395,dR50.25 fm; for c:
F850.5, xC50.5, F51.611, dR50.27 fm, for
d: F851, all xC , F51.847,dR50.40 fm; for e:
F851.5, xC51, F53.152,dR50.56 fm. Values
are forut535 MeV.
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~38!, xC[1. The end point conditionsF(x51)51, F(x
50)50 @>0 for Eq. ~38!# play an important role. ForF8
51 ~curve d in Fig. 4! F(x)5x ~except for smallx! and is
independent ofxC . The casexC51 (r5r0) has already
been touched upon, and is considered further in Sec.
where the dependence onp0 ~equivalently, onF8) is shown.
This shows no universality, especially for smallF8 when the
nonlinear terms in Eq.~36! are particularly important and
whenF(0)>0 for Eq.~38!. This is in striking contrast to the
dependence onF. For xC50.5, which corresponds to fixing
F8 at 1

2 o0 , the functionF(x) is forced~for smallF8&0.5) to
be quite linear in the half-density region and thus overal
be very different from 1;F is then also significantly differen
from 1 ~Fig. 4, curve c!. On the other hand, also for smallF8
but with xC close to 1, bothF(x) andF are much closer to
1 with correspondingly smalldR ~Fig. 4, curves a and b!. In
Fig. 2 the latter values are those in the lower left hand cor
with both smallF21 and smalldR, whereas the former ar
those with F21'0.520.7 and dR'0.220.25 fm; these
points are mostly those that hang down to the right in t
region. For largeF8*1.5 ~Fig. 4, curve e!, and correspond-
ingly largeF anddR, the difference between Eqs.~36! and
~38! is relatively small. Fora, which mostly determines the
low density dependence, we have mostly useda50.2. How-
ever, we have considered values from 0.01 to 0.5. ForF
21<1, especially smallerF21, there is little dependenc
on a; for F21.1 the results are again consistent with t
general dependence onF.

As already noted,l and uSt /ut depend onut only
through the Coulomb termECl ~neglecting the small depen
03430
I

o

er

s

dence onCl). For ECl50 we havel[lm , which is inde-
pendent ofut . This is then equivalent tout5` if ECl is
included. Thus the differencel2lm is the result of compe-
tition betweenut and the Coulomb energyECl . Reducing
ut is equivalent to increasing the relative contribution
ECl , and will reducedR and uSt /ut from their maximum
values attained forECl50 appropriate tolm . This is be-
cause the Coulomb repulsion favors a more extended pr
distribution. The dependence onut is depicted in Fig. 5 for
F51.494,Cl530 MeV @F8(1)51,a50.2,xcut50.05#. The
values forECl50 are nicely consistent with those forut
5`. The results shown in Fig. 2 fordR and foruSt /ut in
Fig. 3 also demonstrate this dependence. These results,
large number ofF(x), are for ut525 and 35 MeV, and
ECl50 ~i.e., ut5`). The dependence ofdR on ut for a
given F21 is consistent with a simple scaling:

dR~ut5`!2dR~ut!5@dR~ut5`!2dR~ut8!#~ut8!/ut),
~40!

which allows estimates for empirically reasonable values
ut from those forECl50 and eitherut8525 or 35 MeV.

We emphasize that for a particularF(r) we vary onlyut .
Our results for the dependence ofdR on ut show a similar
trend as the results of RMFT when just ther-meson cou-
pling, which determinesut , is varied@8#. Both sets of re-
sults, as expected, are consistent with small values ofdR
when extrapolated tout50. Our results show a somewha
stronger dependence onut than the RMFT results; this could
5-7
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FIG. 5. Dependence ofdR and 2uSt /ut on
ut for F51.494. See the caption for Fig. 2.
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be because for the latter the derivative is also changing.
results for a wide range of RMFT, which are shown in Fig
of Ref. @8#, show a much larger slope~>0.018 fm/MeV!,
which extrapolates to unreasonably large negative value
dR>20.43 fm forut50. This is presumably because oth
parameters in addition tout are varied.

As discussed, the dependence of bothdR anduSt /ut on
F21 is roughly universal for a givenut . Thus if dR&0.4
20.5 fm, a given~experimental! value ofdR will determine
F. However if dR is larger than about 0.45 fm, thendR is
not single valued, andF cannot then be uniquely determine
from dR. In fact, evidence indicates thatdR is very likely to
03430
he

of

be smaller than 0.4 fm. Our results show that there is
upper limit to dR, absolutely, of>0.75 fm attained for
ECl50, and of >0.65 fm for more realistic ut
>25– 35 MeV.

Comparison of Figs. 2 and 3 shows that2uSt /ut vs F
21 follows a similar pattern to that fordR, in particular, for
F21<1. The associated correlation between2uSt /ut and
dR is shown in Fig. 6. This shows that fordR&0.4 fm the
value of2uSt /ut is reasonably well determined bydR, and
will thus provide important input for the semiempirical ma
formula, and should result in a better determination ofut . If
indeeddR&0.4 fm then it follows that2uSt /ut&2.
FIG. 6. Relation between2uSt /ut and dR
for the results shown in Figs. 2 and 3.
5-8
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FIG. 7. DifferencedR between the neutron
and proton rms radii vs the derivativep0 . See the
text for details.
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VI. DISCUSSION

We have demonstrated the central role thatF(r) plays for
the determination ofl5(rN2rP)/r, and therefore ofdR
anduSt /ut ; in particular, the exact solutionlm obtained in
the absence of Coulomb and gradient terms exhibits this
plicitly. We expect this dependence to persist also in ot
approaches. For the large set ofF(r) that we have consid
ered, this dependence occurs, approximately, only thro
the integralF of Eq. ~26!. It seems plausible that this depe
dence is quite general, but this needs confirmation. In
approachF is not uniquely determined byF(r), in particu-
lar, not by its derivative. This was discussed in Sec. V an
also demonstrated by the following discussion.

In a comparison with other calculations we show in Fig
our results fordR vs p05utr0F8(1), instead of vsF8(1),
wherep0 is the derivative~at r0) used by other authors@8#.
For p0&6 MeV fm23 there are two distinct branches fo
F(x), corresponding to Eq.~36! for the upper branch and Eq
~38! for the lower. In Fig. 2 on a plot vsF21, these
branches are barely distinguished. The upper branch in F
is more linear withp0 with a slope>0.04 as compared to
>0.043 MeV fm23 for a wide variety of mean-field model
~Fig. 11 in Ref.@8#!, which have a somewhat smallerdR.
The lower branch has a slope>0.033 MeV fm23 and con-
siderably smallerdR. As previously discussed,F(x) for Eq.
~36! has a nonlinear term, which, especially for smal
F8(1),0.5, reducesF(x) and increasesF, as compared to
using Eq. ~38! for which F(0)>0 @for F8(1)<0], and
which should correspond more closely to the results in R
@8#. For F8(1)51 the results for both Eqs.~36! and~38! are
identical and forF8(1).1 the corresponding values, in pa
ticular, of F, are quite similar. Since Eq.~38! for small F8
03430
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does not satisfyF(0)50 this may indicate that the uppe
branch may be more realistic. In any case in plots ofF(x) vs
F the two branches are hardly distinguishable.

Our approach shows the critical importance of the int
play betweenut and the Coulomb energy. ForECl50, and
also neglecting the small gradient contribution, the solut
lm(r ), which is exact, is given in terms ofF(r) by Eq.~25!
and is independent ofut . If the Coulomb energyECl , due
to the difference of neutron and proton distributions, is
cluded, thenl will decrease~from lm) and so willdR. Thus
in the limit ut5` the differencedR attains its maximum,
corresponding toECl50, l[lm .

The coupling betweenr andl will give some additional
decrease of energy. This is small because of the stiffnes
the equation of state. Limited calculations we have made,
the simultaneous minimization with respect tor andl, sup-
port this. Thus with only«V(r) and a rather schematic equ
tion of state, with an incompressibility constantK
>200 MeV, we obtain for the total energy per particleE/A
527.962 MeV. Including the symmetry-energy contrib
tion, but without coupling between the problems forr andl,
and for ut525 MeV and F>2.1, gives E/A
528.382 MeV. This is changed by<0.005 MeV by the
coupling, anddR50.27 fm is changed by<0.01 fm. Our
conclusion is consistent with that of Ref.@11#. The small
effect on dR is also consistent with results fordR vs K,
extracted from numerous calculations in Ref.@8#; these seem
consistent with a random scatter and show no signific
dependence onK. For theA dependence ofdR for constantZ
or N, i.e., for isotope and isotone shifts, which intrinsical
depend on ther-l coupling or its equivalent in other ap
proaches, realistic calculations need to be more precise
5-9
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fact the dependence of the isotope shift onK through the
Coulomb energy was already proposed by Wilets, Hill, a
Ford @16#, and through the~normal! nuclear-matter density
dependence of the symmetry energy by Bodmer@16#.

We briefly mention the implications for neutron stars. T
pressure of neutron matter (l51) with energy density
«(r)5«V(r)1utrF(r) @Eq. ~11! without gradient and Cou
lomb terms# is P(r)5P0(r)1utr

2F8(r), whereP0(r) is
the pressure of symmetric nuclear matter. The additio
pressure is thus proportional toF8(r), making a direct con-
nection between the neutron-matter equation of state anddR.
This connection and the implications for neutron stars h
been studied in Refs.@3–5#, @10#. A larger dR implies a
largerF and hence a largerF8(r), which in turn results in a
harder equation of state and therefore a larger neutron
radius. The accuracy of the connection todR assumes tha
higher powers ofl2 in «l(r,l) are small. This needs inves
tigation, not only forl51, but also forl relevant to nuclei
well away from the stability line.

The magnitude of the symmetry-energy termut plays a
central role in all the above considerations. A redetermi
tion of ut that includes the surface-symmetry term wou
involve a refit of the mass formula, which could make use
ls

d
Il-

03430
d

al

e

tar

-

f

the correlation betweenuSt /ut and dR where the experi-
mental value ofdR would be an input.

Our Fermi-Thomas version of the local density appro
mation for the neutron-proton difference should have so
validity because of the small effect of the gradient terms. T
use of fairly general density functionals avoids specifyi
some particular set of interactions. More detailed conn
tions need to be made, but we do not pursue these here.
approach, even with small gradient terms, is of course l
ited by the absence of shell and pairing effects, as wel
wave function tails. These limitations can become especi
severe for nuclei far from the stability line. Other approach
such as the RMFT approach will not suffer from some
most of these limitations. Nevertheless, our approach cle
demonstrates the general features of neutron-proton distr
tions, which are less evident in other approaches.
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