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We suggested earlier that the energies of low-lying states in large shell-model spaces converge to their exact
values exponentially as a function of the dimension in progressive truncation. An algorithm based on this
exponential convergence method was proposed and successfully used for describing the ground state energies
in the lowest|A(N—Z)| nuclides from#’Ca to **Ni using thefp-shell model and the FPD6 interaction. We
extend this algorithm to describe nonyrast states, especially those that exhibit a large collectivity, such as the
superdeformed band i#fNi. We also show that a similar algorithm can be used to calculate expectation values
of observables, such as single-particle occupation probabilities.
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The nuclear shell-model calculations are specified by the The FPD6 interactiof16] was designed more than a de-
choice of the active single-particle spa@ebitals and their cade ago with the aid of experimental data for lowiesshell
energiey, effective interactions and the computational proce-nuclei, and it was later used towards the middle of tipe
dure. Fullsd-shell-model calculations were possible alreadyshell without modifications. The single-particle energies

56\(i .
20 years agdd], but a similar complete calculation for all @round >Ni are reasonably well knowf8]; small mono-
nuclei in thefp shell is not yet available, although many pole corrections may be required for an accurate description

partial results were already reportg2-5]. The limitations of absolute energiegl0]. Although an accurate description

iy f th tial | f matrix di of the superdeformed band itPNi may require excitations
come mainly from the exponential Incréase of matrix dimens,., o Oopp Orbit, it was recently reported that the FPD6
sions in many-body Hilbert space with the number of va-

i redicts a spherical-superdeformed shape coexistence for a
lence nucleons. In the past decade, several approximal&ias of nuclei including®Ni and 52Cr [20—23. Calcula-

methods were proposed to deal with the dimensionality probong hased on the constrained Hartree-Fock approximation
lem. Among them are the shell-model Monte C8@MMC)  \yere carried out with the use of more refined approxima-
[6], quantum Monte Carlo diagonalizatié@MCD) [7], the  tions, such as the QMCI22]. The difficulty here lies in
oE—AE extrapolation methofB], and the exponential con- cajculating the nonyrast;0 superdeformed band-head state
vergence metho(ECM) [9,10]. of Ni in a reasonably large model space. With the use of

The region of the nuclear chart between Ca and Ni ishe FPD6 interaction within af6h truncated model space
important for coming radioactive beam experiments and aspf about 25¢ 10° m-scheme states, the Gstate comes by 1.6
trophysical applications. The interest in the shell-model caly\jey higher than the value suggested by the experirf@dit
culations for nuclei around®Ca has increased recently with The QMCD calculation§22], however, show the band-head
the discovery of superdeformed bands i [11), “Ca  |ocated approximately at the right ened@2]. This result is
[12], and *°Ar [13]. The shell-model description 6fAr and instructive, indicating that with a relatively small spherical
“%Ca requires a reliable full or partiald-pf cross-shell ef-  shell-model basis, such 4p, one can successfully describe
fective interaction. This problem is under current investiga-the coexistence of spherical and superdeformed structure.
tion, see, e.g., Reff14,15. Positive parity states iA°Ni can In this paper, we will investigate the applicability of the
be accurately described withifp-model space, for which ECM to nonyrast states. The methf@]10] is based on the
fairly well tested interactions are available, such as FPDQ)bservation, justified by the ana|ysis of the statistical prop-
[16], KB3 [17], and GPFX1[18]. However, the KB3 inter-  erties of generic highly excited state!] and strength func-
action is reportedly not sufficiently accurate arouPNi tions of simple configurations, that in the process of orderly
[19]. Therefore, it was modified in Reff19] by reducing the  adding new partitions of given symmetggpinJ, parity, isos-
matrix elements between ttig,, orbit and all other orbits by pin T, etc) the energy eigenvalues for yrast-states decrease
300-500 keV. Recently, the matrix elements in this modifiedexponentially with the increasing dimension. The reason for
version of the KB3 interaction were modified again by an-this exponential convergence is a subtle coherent pressure of
other 100 keV and used to describe the first superdeformeghe small admixtures of very complicated remote high-lying
band in **Ni [11] using a -6h truncated model space, states applied through the high orders of perturbation theory.
where the particlgp and holeh refer to excitations from the Because of the variational character of the procedure, the
0f 7, orbital to one of the @, 1ps,, Or 1pyy, Orbitals. The  convergence is monotonous. The exponential type of the
results put the D band head at the right energy of about 4.5convergence follows[9] from the estimate of the off-
MeV, but the excitation energies do not follow the rotationaldiagonal matrix elements after reduction of the Hamiltonian
intervals as closely as the experimental offes. matrix to the tridiagonal form.
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In the opposite extreme case, the states at high level den- E(n)=C+Be ™ (1)
sity in the middle of the finite shell-model spectrum feel the
pressure in both directions, up and down, and their energid§ performed. To predict the energy of an yrast state one
do not change monotonously. It is important to understand ihould evaluat&(N), whereN is the full JT dimension of
the ECM can be extended to the intermediate case of lowthe original model space. In most cases of interest the con-
lying nonyrast states, in particular, if they can be only tribution of the second term in Ed1) is small for large
weakly mixed with yrast states because of different shape ofalues ofN, and the value of paramet@rrepresents a good
the corresponding mean field. Especially, we are interested igPProximation for(N). _
the ability of the ECM to extrapolate the energies of the very _Within the mrscheme approach one can easily use the

collective nonyrast states, such as those of the superd&2nczos algorithm to calculate the lowest states of a given
formed band in*®Ni. In order to understand the applicability Spin and isospin by adding to the nuclear Hamiltonkég

of the ECM to such situations, we studied the lowest tWwo 0 Pc,)vt(;ltiesrcrgs iﬂr(;p(;rrg(zgflstouggéoﬁlh;scmnW(i)I|IDeruaStﬁrusqEjna;ende?nd
states in®%Cr that can be calculated for all possible trunca- pin op g j P P 9y

tion models(maximumm-scheme dimension is 4610°). all undesired states of higher spin and isospin,

In the ECM, possible configurations of valence nucleons
ina fin_ite singl_e-particle space are Qrdered according to their H'=Hy+ aJ2+ 8712, )
centroid energies found with the aid of the methods of sta-
tistical spectroscopf23,25. In a truncation scheme6] for ~ wherea and 8 are two parameters conveniently chosen. The
the low-lying states, higher configurations can be consecuset of states wittM=J and T,=T has to be used as an
tively added to the many-body model space in order of theim-scheme basighis choice may forbid taking advantage of
centroid values. It was shown in R¢f] that, as a function the time reversal symmetry in some casédter the diago-
of the dimension of truncated Hilbert space, the energies ofialization, the eigenvaluds’ must be rescaled to obtain the
the low-lying states converge exponentially to their exactrue eigenvalues,
values. According to Ref§9,10], the initial truncation size
should exceed a certain value related to the spreading width
of typical basis states found from the Hamiltonian matrixthe calculations reported below were carried out using the

prior to its diagonalization. It was also suggested that th,, scheme shell-model codavicHSM [27].
matrix elements of observables can be extracted by a similar Figyre 1 shows the results f6fCr using truncated spaces

E=E'—aJ(J+1)—BT(T+1). 3)

procedure. , , o of differentJT dimensions. The 315 possible configurations
The exponential convergence algorithm for finding the enyyere ordered as described above, and they were progres-
ergies of the yrast-states works as follol@s10]: sively included in the shell-model calculations as explained.

(i) A set of configurationgpartitions for a given particle  The ‘upper panel presents the exponential behavior of the
number in a certain orbital spac® be included in the cal- energies of ¢ and 0 states as a function dfT dimension
culation is generated. The number of configurations in &JT=00 for this case as well as fo™Ni). The Coulomb
g|ven.mo?:el space IIS mﬁchh]ohwer thﬁm thed.She”'mOd]?' diinteraction was not included; therefore, isospiris a good
Ege’??"’”- or example, the highestscheme dimension for quantum number. The starting dimension in the upper panel

Ni'in the full fp shell is 1087 455 228@he corresponding ¢ 50 000, about 10% of the fulT dimension(508 289. The
JT=00 dimension is 2581 576while the number of parti- |5 yer panel presents in a logarithmic scale the approach to

tions is 475. : .
i . I . the exponential behavior of the energy value for tiestate.
(i) The average centroid#amiltonian traces divided by For JT dimensions lower thar=50 000, we see a deviation

the partial dimensionfor these configurations are calculated from the exponential behavior. In Réf.0], we showed that

using the presc.npnon. of statistical spectrosc@&,Zﬂ. . for yrast states the exponential behavior starts approximately
(iii) The configurations are ordered according to their av- . . . .
: . o at (3—4)r above the configuration with the lowest centroid.

erage centroids. This order is different from the uspal

! ; Here,o is the average width of simple shell-model configu-
particles—h holes scheme. For example, in tlig shell . "
. ) rations[26,23 found as an average over the partition sum of
some §—8h configurations come lower than many op 4

. . _ 2
—4h configurations. Table I lists the first 131 configurationsthe off-diagonal matrix elements Squar@%_(HOﬁ‘d‘a‘Qa",;
for 5Ni in order of their centroids For nonyrast states, such as the gtate in>°Cr, the “30°

(iv) Shell-model matrices are built for the truncated "€ does not workthe (gnse'F of the exponential regime for
spaces consecutively including into calculations the highefneray of th"fg state in *Cr is still accurately described by
partitions in their “natural” order established ifii ). this rule. This partlcglar example suggests thaF using trun-

(v) The energies of the yrast states are calculated using @t€d spaces covering 10-129% of the fill dimension
Lanczos eigenva'ue solver. The Step is repeated 5-10 COUId be sufficient for predICtIng the energy of th; Btate.
times by expanding the space with inclusion of new parti- Given the similarity between D states in>*Ni and >Cr
tions. [21], we calculated the energy of the Gstates in®®Ni in

(vi) The graph of energy v3T dimension is plottedsee, truncated spaces dfT dimension up to 12% of the ful T
e.g., lower panel of Fig.)l the beginning of the exponential dimension (2.5 10°) using the collection of configuration
tail is identified, and a fit with the expression listed in Table I. To our knowledge, this is one of the largest
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TABLE |. The first 131 single-particle configurations f&?Ni

listed in the order of their French and Ratcliff centro[@8] (last
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TABLE I. (Continued.

column. First four columns indicate the number of particles in eachn,, . n, N, Ny, m-dim JT-dim Centroid
orbit, mdim is the cumulativan-scheme dimension antr-dim is
the cumulative] T dimension. 1 3 1 3849725 13073 —159.330
11 2 0 3 3862093 13128 —159.169
N, Mo, Nig,  Npy, m-dim JT-dim Centroid 11 0 4 1 4041489 13700 —158.774
11 1 2 2 4334021 14679 —157.992
16 o 0 0 ! 1 —197566 19 4 2 0 5064943 16900 —157.943
15 o 1 0 13 1 7190250 4y 3 g 4 5065987 16906 —157.473
15 L 0 0 21 L —190.055 11 1 1 3 5105731 17066 —157.373
15 0 0 L 25 L —187.505 10 4 1 1 5649579 18736 —157.106
14 2 0 0 173 5 —183.229 11 0 3 2 5773219 19157 —157.055
12’ (1) i 8 g;g g :ig;g:z 10 4 0 2 5848161 19453 —156.988
14 1 0 1 1087 17 _180.567 8 8 0 0 5848551 19459 —156.654
10 3 3 0 7694191 24401 -156.243
14 0 1 1 1315 19 —180.289
9 6 0 1 7723687 24513 —156.149
14 0 0 2 1353 21 —178.340
13 3 0 0 2393 29 177088 9 6 1 0 7808127 24807 —156.148
13 5 1 0 7945 62 —176.143 11 0 2 3 7835271 24914 —156.055
1303 0 149 8 SIS o o o goen o o
13 1 2 0 19821 129 —175.676 )
13 > 0 1 21797 142 —174.314 10 2 4 0 12106871 36377 —155.021
13 1 1 1 28053 179 —173.466 10 3 0 3 12148019 36533 —154.746
13 0 2 1 32309 203  —173.095 10 3 1 2 12796983 38516 —154.526
13 1 0 > 33209 209 —171.975 10 1 5 0 13757283 41117 —154.275
12 4 0 0 36853 237  —171.631 10 0 6 0 13907961 41620 —154.007
13 0 1 2 38149 246 —171.222 10 2 3 1 17494357 50775 —153.422
12 3 1 0 68801 383 —170.117 9 5 2 0 18314725 53105 —153.401
13 0 0 3 68889 384 —170.069 9 5 0 2 18398569 53397 —153.361
12 2 2 0 147871 728  —169.080 8 7 0 1 18408565 53437 —153.320
12 3 0 1 158687 782 —168.746 9 5 1 1 19018453 55240 —153.022
12 1 3 0 232823 1069 —168.520 10 2 0 4 19024265 55277 —152.938
12 0 4 0 254579 1177 —168.437 8 7 1 0 19052865 55385 —152.861
12 2 1 1 313595 1426 —167.328 10 2 2 2 20744777 60186 —152.542
1 5 0 0 320051 1457 —166.860 10 2 1 3 20972133 60937 —152.380
12 1 2 1 409279 1809 —166.387 10 1 4 1 23292169 66895 —152.296
12 2 0 2 417589 1862 —166.294 10 0 5 1 23779425 68248 —151.647
12 0 3 1 455337 2015 —165.923 7 8 0 1 23780677 68255 —151.175
12 1 1 2 481845 2136 —164.972 9 4 3 0 26957333 76201 —151.132
11 4 1 0 565545 2452 —164.776 10 1 3 2 28549301 80526 —151.035
12 1 0 3 567285 2462 —164.276 9 4 0 3 28619569 80770 —151.007
12 0 2 2 585381 2557 —164.127 10 1 1 4 28638185 80846 —150.669
11 4 0 1 614733 2677 —163.862 10 1 2 3 28983773 81921 —150.492
11 3 2 0 953565 3791 —163.169 8 6 0 2 29032155 82116 —150.420
12 0 1 3 956073 3805 —163.051 9 4 2 1 32856147 91781 —150.372
10 6 0 0 061885 3842 —162.773 9 4 1 2 33969999 94948 —150.330
12 0 0 4 961957 3845 —162.692 7 8 1 0 33973571 94964 —150.258
11 2 3 0 1506989 5525 —162.039 10 0 4 2 34435707 96338 —150.005
11 3 1 1 1759553 6394 —161.874 8 6 1 1 34786631 97413 —149.623
11 1 4 0 2112693 7492 —161.387 8 6 2 0 35258927 98861 —149.544
11 3 0 2 2147721 7636 —161.298 9 3 4 0 40791279 111916 —149.339
11 0 5 0 2222537 7890 -—161.211 9 3 0 4 40806627 111979 —149.087
11 2 2 1 2878725 9937 —160.364 10 0 3 3 40952703 112444 —149.081
10 5 1 0 2996397 10347 —-160.119 10 0 2 4 40965481 112510 —148.877
10 5 0 1 3037545 10503 —159.663 9 3 3 1 50666209 134961 —148.198
11 2 1 2 3230345 11189 —159.407 7 7 0 2 50679445 135015 —148.163
9 7 0 0 3232801 11200 —159.371 9 3 1 3 51289333 136818 —148.072
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TABLE I. (Continued. the expectation value is given by

Ne, Np, Ni, Np, m-dim JT-dim  Centroid

N
o1
o

55732425 147346 —148.024
55795721 147566 —147.954
60359805 159044 —147.776
61903957 162959 —147.186

<a|©|a>=§ C* Ci(KIOll). (5)

As a first choice for testing the convergence of the expec-
tation values, we take the occupancies of single-particle
61999297 163285 —146.909  agn field orbitals;/jZEma;‘majm. For such a choice, the
62180225 163817 —146.826  apix elementg(k|v;|l) over the original basis states are
63183389 166667 —146.819 diagonal, k=1, and, moreover, they are the same for all
66045269 173828 —146.705  gtates|k) from the same partition. Results for electromag-
66046613 173840 —146.592  netic moments will be reported elsewhere. Occupation prob-
76817145 198134 —146.502  gpilities do not necessarily decrease with the increase of the
80261253 206833 —146.403  truncation dimension, as was the case with energies. For nu-
80389565 207255 —146.372  clej lighter than®®Ni, it is very likely that the occupancy of
80474005 207549 —146.249  the Of 4, orbit will decrease, while those offg,, 1ps,, and
80495089 207647 —145.922  1p,,, will increase. The general behavior is expected to be
87869893 225177 —145.699  similar to Eq.(1),
89461465 229477 —145.614
89490961 229589 —145.585
94526981 241359 —145.284

94536457 241399 —144.879 _ , . . -
05319517 243436 —144.542 Here, the signs oB; are not fixed. WherB; is positive we

96160169 245837 —144.449 Pplot in logarithmic scaleuJ--C]-’ (see lower panel of Fig.)3
103802577 263501 —144.343 While for negativij’ we pIoth’—vJ- (see two upper panels in
108572209 274914 —144.099 Fig. 3). Figure 3 shows the results for botfj @nd 0, states
109037053 276332 —143.993 in %2Cr. For the § state the exponential behavior takes
109043577 276360 —143.901 place for about 90% of the full T dimension, while for the
109171889 276782 —143.887 07 the deviation from the exponential law spans a much
109184667 276848 —143.885 smaller range.

115486605 292335 —143.695 We notice that the exponenig are not only nearly equal

for different levelsj and different states 0 and G in the
psame nucleus, they are also quite _close to the exponents in
larger one was recently presented in R&}. Our results are the convergence behawor_ of energies Of. the same states. In-
shown in Fig. 2, where the paramet&@sB, andy of Eq. (1) deed, a simple perturbative estimate gives a hint that the

were fitted to the values-198.754, 2.1, and 2.5610°6,  €Xponentsy andy’ should be close to each other.

respectively. Equatiofl) predicts energy of-198.751 MeV To come to this estimate, let us assume that we have di-
for the O} state in®Ni. This value is consistent with the agonalized a truncated matrix containing a number of shell-

recent QMCD result of—198.428 MeV[28,27. The full  Model partitions of total dimensiom At this stage we have

shell-model calculation of the;Ostate using the FPDS inter- intermediate eigenstat¢s;n) and their energie&(” where

action gives —203.195 MeV [22] (the ECM result is @=12,...n labels the states inside the given truncation,

—203.280 MeV[10]). These numbers put the superdeformedwhile the superscriptn) indicates that energy was calculated

0, band head at an excitation energy of 4.4—4.5 MeV, whicHor this running dimension. Now we add the next partition of

is consistent with experimental daia Ref.[11] the 0 was d!men?(l)())nd that contains unperturbed ;taﬂdxs) with ener-

not observed, but it can be extracted from the energies of 2 91€S Ei’ coupled with the states within the diagonalized

and 4" states in the band assuming a perfect rotor behavior SPace by the matrix element, . In the exponential re-
In Refs.[9,10], we suggested that other observables, be9iMe, the corrections are small and perturbation theory gives

sides energies, could exhibit an exponential behavior. Thie furthgr shift down to the energy of one of the low-lying

simplest case is given by the expectation values of one—boo?tates@,

operators depending on a single staiagleJT dimension,

such as the electromagnetic moments. For an opetattine (g Vil

expectation value in the stationary sthtthat, as a result of E, "~E. - Z EO_gM’ )

the diagonalization, is represented by a complicated superpo- K “«

sition of simple shell-model staték),

v =C|+Ble " (6)

0O O OO ~NOOWWOWWOO ON O OWWONW0WOOOWOmWON O o o o
P OPFRPNORFRPMAPMOOEFRPRONMNDBIBNSNONOOOOONERE WO
NNMNNORFRPRAEABRAMRPOPFPUDONWORPNNMNMOWERERNRFRP,ODNDO
NOPMWNNOWERREPRFERPRWWNDIEMPMNORPEPNONORLODNOW®

reported model spaces used for a nonyrast state, althoug

d

here and below th&¢ runs over the states of the last parti-
@)= E colk) 4) tion. Substituting the finite energy shift by the derivative and
o K assuming the exponential convergelitg we obtain
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. FIG. 2. The exponential convergence of thg State in®®Ni as
a function of JT dimension spanning=12% of the maximumJT
dimension.

+

In this approximation, we obtain the evolution of the oc-
cupation numbers which is, similarly to enerd§), ex-
pressed by the second order quantities,

(alvj|a)™* D= a )| a)™
d
- 2 (KR~ (el ) ™). (12)

It is clear that the population of a given single-particle level

1
100000 200000 300000

dimension n

FIG. 1. Energies of theDand G states in®2Cr versus the T
dimension of the truncated space. In the upper panel the energy
the 05 was artificially shifted down by 2.3 MeV to emphasize its
collective character. The lower panel presents only thestate in
logarithmic scale to emphasize the exponential behavior.

d
1 |Vka|2

5 =~
d % E(k )_E(an)

At the same time the correction to the wave function of the d

state|a) is determined by

d

yBe M.

400000

@) I=X| @)+ YK,
k

where

Vka
0
EO-eg

Yk:

and

d
|><|2=1—§ Y2

grows (decrease@swith the admixture of a new partition that
has a higheflower) occupancy of this level. In the deriva-
tion of Eq. (12), we took into account that first order matrix
ements a|v;|k) vanish because the unperturbed stges
eing orthogonal to the state), are the eigenstates of the
occupation numbers. By the same reason, the second order
admixtures of the statgs) that belong to the new partition
also vanish. The only term neglected in E(®. and(12) is
that related to the effective second order mixt(reediated
by the statesk) of the last partitiop between the statds)
and |3) both taken from the previous approximation. This
contribution, assuming that,, are real, is given by

1
500000

®)

s VaVia{ ] B)™
< (EP-EDEP-EP)
(13

5({al Vj|a>(n))=2 E
B#a

9

In contradistinction to the coherent contributions retained in
Eq. (11), this sum contains only incoherent matrix elements
between the remote states and no enhancefaait known
for the mixing of neutron resonances in the strong parity
nonconservatiofi29]) due to the small energy denominators.
Indeed, near a low-lying statier) the level density is still
low, and the spacingg!” - E{" are not small.

Since all the statelk) of the last partition have the same
occupancies(k|vj|k)5;f“), this stage of the evolution of
the occupation numbers is effectively described by

(10

d
(11 ﬁ<a|Vja>=Kj(n)[;](n)—<a|vj|a>], (14
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T 520r(0+1)' +
0.46 0:0000121 0

0.1

0.01

0cc(7/2-)-10.59

0.001

0.0001 . . . . .
0 100000 200000 300000 400000 500000 600000

dimension n

FIG. 4. The exponential convergence of the single-particle oc-
cupation probability of thef;, orbit for the 0 state in%2Cr de-
scribed byy'=0.00012% .

y'B'e Y "=K;dv;. (16)
The sumK; differs from the similar sum in the energy con-
vergence relatiori8) by an extra facton\,,=E{”—E™ in
the denominator. This factor is only slightly changing within
the last partition; therefore, we can expegt=y and B’

Thus, in a typical case the occupation numbers should
converge with the universal exponential rate quite close to
that of energies. In the end of the evolution, when the dis-
tance from the final value is small, we expect more signifi-
cant fluctuative deviations. Indeed, we see from Fig. 4 that
the fit of the occupancies with' =y gives a very reasonable
agreement up to a region, whefe;) differs from the final
result by a quantity of the order of 1%. As seen from the
derivation, this result is essentially based on the specific
properties of the occupation number operator adjusted to the
decomposition of the many-body space into partitions.

In conclusion, we have investigated the applicability of
the ECM to nonyrast states, in particular, to collective states
belonging to superdeformed bands as the ones®Mi.
Studying similar states if°Cr, we found that we can apply
the ECM to the states of this type by increasing the truncated
dimension to~10% of the fullJT dimension. Although this

constraint requires more work than in the algorithm for the
yrast state$10], it is still much less demanding than the full
calculation. Our results indicate that a relatively small
spherical single-particle model space, suchfps and the
unmodified FPDG6 interaction are able to describe very well
the superdeformed band RiNi. We also show that occupa-
tion probabilities follow exponential behavior similar to that
of energies. In a good approximation, their rate of conver-
gence coincides with that of energies due to the specific
properties of the occupation number operator and the way of

The mainn dependence comes from the fackq(n), while  , anizing the shell-model partitions. Investigation of other

the differencedv; of occupancies in the square brackets of ohseryables, such as the electromagnetic moments, can be of
Eq. (14) is always between 0 and 1 and exponentially fastgreat practical interest.

comes to the limiting valuév;. If the exponential conver-
gence of the occupation numbers takes place, it is deter- The authors acknowledge support from the NSF Grant
mined by Nos. PHY-0070911 and DMR-9977582.
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