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Microscopic description of low-lying two-phonon states: Electromagnetic transitions
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Microscopic description of low-lying two-phonon states in even-even nuclei is introduced. The main build-
ing blocks are the quasiparticle random-phase approximation~QRPA! phonons. A realistic microscopic nuclear
Hamiltonian, based on the Bonn one-boson-exchange potential, is diagonalized in a basis containing one-
phonon and two-phonon components, coupled to a given angular momentum and parity. The QRPA equations
are directly used in deriving the equations of motion for the two-phonon states. The Pauli principle is taken into
account by diagonalizing the metric matrix and discarding the zero-norm states. The electromagnetic transition
matrix elements are derived in terms of the metric matrix. The model has been applied to the106Pd and108Pd
nuclei, known to contain two-phonon structures. In spite of its simplicity, the model predicts energies and ratios
of B(E2) values in a reasonable agreement with the data.
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I. INTRODUCTION

Most of nuclei with a small ground-state deformatio
have low-lying spectra with a vibrational behavior. A suitab
microscopic approach to describe one-phonon states in t
nuclei was given long time ago in terms of particle-ho
(ph) excitations within the Tamm-Dankoff approximatio
~TDA! @1#. The ground-state and pairing correlations, tak
into account by the use of the quasiparticle random-ph
approximation~QRPA!, are the most important ingredien
necessary to improve the description of the one-phonon
brational states@2#. A systematic phenomenological analys
of low-lying spectra andB(E2) values of even-even nucle
revealed the existence of many-phonon states@3#. The first
microscopic explanations of the low-lying excited tw
phonon 01 state in Pb isotopes was given in terms of tw
particle–two-hole (2p-2h) pairing excitations@4,5#. Later
on, three-phonon states were studied in terms of 3p-3h ex-
citations in Cd isotopes@6#, and even 4p-4h states were
identified as some kind ofa vibrations in the spectrum o
208Pb @7#.

Soon after this, in a series of papers by Ring and Sch
@8,9# and especially by Liotta and Pomar@10# it was recog-
nized that these states can be microscopically descr
within the so-called multistep shell model~MSM!. The
2p-2h excitations within this formalism are given as supe
positions of products between two TDA phonons coupled
a given angular momentum and parity. The resulting eq
tions of motion are derived using Greens function or doub
commutator technique, respectively. They contain the eig
values of the previous TDA step.

A generalization of this method to multiphonon states
given in Refs.@11–13#. Here two methods are developed:
generalized Wick’s theorem and recursive relations, in p
ciple, equivalent to the MSM.

As an application, the structure of the multiquasiparti
states was investigated within the MSM for the Sn@14# and
Pb isotopes@15#. It is also possible to use 4p a-like excita-
0556-2813/2003/67~3!/034301~12!/$20.00 67 0343
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tions within the MSM in order to describe low-lying state
together with thea-decay properties. The best example is t
nucleus212Po. Its low-lying spectrum can be described by
wave function of the form210Pb̂ 210Po1210Bi ^

210Bi @16#.
This formalism is related to the quasiparticle-phon

model ~QPM! used by Soloviev and collaborators@17# to
study a large variety of spectra for vibrational as well as
deformed nuclei. The wave function is built in a similar wa
as in the MSM, but the equations of motion are derived fro
a variational principle. The multipole-multipole interactio
allowed to write a simple secular equation, instead of a m
trix to be diagonalized. In Ref.@18# it was shown that two-
phonon states are strongly fragmented in deformed nuc
An important effect of the two-phonon correlations is t
fragmentation of the one-phonon giant resonance, studie
Ref. @19#. In the last years the so-called double giant dipo
resonance was intensively investigated using the QPM.
most important results in this field are described, for
stance, in the review paper@20# and in Refs.@21,22#. The
QPM was also applied to describe the fragmentation of
low-lying scissors 11 mode due to the presence of the tw
phonon states@23#.

In a series of papers Catara and co-workers studied
anharmonic spectrum of40Ca @24# and the electromagneti
transitions of the two-phonon states@25#. The influence of
the two-phonon states on heavy ion collisions was inve
gated, e.g., in Refs.@26,27#. Recently, Hamamoto@28# and
Bertch et al. @29# pointed out the role of anharmonicitie
using some simple models.

It is also possible to extend the particle-hole basis b
direct inclusion of the 2p-2h terms within the extended
QRPA @30#, but the resulting equations are rather comp
cated. In most applications it is preferred, for the sake
simplicity, to adopt the multistep technique in which buildin
blocks are the QRPA phonons. All these microscopic desc
tions of multiphonon states, and especially the doub
commutator technique to derive the equation of motion,
©2003 The American Physical Society01-1
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actually particular realizations of the so-called boso
expansion technique@31#.

In this paper we propose a simplified variant of the MS
to describe multiphonon states. It was introduced at the T
level in the already mentioned Ref.@16#. We use directly the
QRPA equations in deriving the equation of motion for
composite excitation. In this way the Hamiltionian matr
elements, connecting two-phonon components, become
portional to the metric matrix. We apply this technique
describe probably one of the most striking examples of tw
phonon excitations, namely, the almost degenerate triple
01,21,41 states in the106Pd and 108Pd isotopes. We will
continue to apply this method in a forthcoming series
papers aiming to describe beta and double-beta transiti
and alpha decays involving two-phonon states.

The paper is organized as follows. In Sec. II we gi
necessary theoretical details on the wave functions, eq
tions of motion, and electromagnetic transitions for tw
phonon states. In Sec. III we analyze the low-lying spec
andB(E2) values of106Pd and108Pd nuclei, and in the las
section we draw conclusions.

II. THEORETICAL BACKGROUND

A. One-phonon states

We will build two-phonon states in terms of the QRP
degrees of freedom. The QRPA is a well known method,
in order to introduce some basic notations we will remind
reader of its main ingredients. We will describe collecti
low-lying excitations in even-even nuclei in terms of sing
particle eigenstates in a given spherically symmetric m
field. These states are labeled by spherical single-par
quantum numbers, i.e., isospin, energy eigenvalue, ang
momentum, total spin, and its projection. We denote them
using the following shorthand notation

cte l jm
† →ct jm

† , ~2.1!

wherej now absorbs the energy eigenvalue and orbital an
lar momentuml. In the following we will drop the isospin
index wherever its presence is unambiguously understo
Let us introduce the quasiparticle representation by

S ajm
†

~2 ! j 2majm
D 5S uj 2v j

v j uj
D S cjm

†

~2 ! j 2mcjm
D . ~2.2!

The phonon operator describing collective excitations
even-even nuclei within the QRPA is defined by using
following restricted representation

Qa2a2m2

† 5 (
t5p,n

(
j 1< j 2

@Xt~ j 1 j 2 ;a2a2!Āa2m2

† ~ j 1 j 2!

2Yt~ j 1 j 2 ;a2a2!~2 !a22m2Āa22m2
~ j 1 j 2!#,

~2.3!

where we denote by (a2a2
p) the two-particle quantum num

bers, namely, the energy eigenvalue, angular momentum
parity. For simplicity of notation, we drop the parity symb
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whenever this is possible. The pair-creation operator is
fined by the coupling of two particle-creation operators
some angular momentum,

Aa2m2

† ~ j 1 j 2!5 (
m11m25m2

^ j 1m1 ; j 2m2ua2m2&aj 1m1

† aj 2m2

†

[~aj 1

† aj 2

† !a2m2
. ~2.4!

The normalized pair operator is given by

Āa2m2

† ~ j 1 j 2!5
1

D j 1 j 2

Aa2m2

† ~ j 1 j 2!, D j 1 j 2
[A11d j 1 j 2

~2 !a2.

~2.5!

The boson commutation rules for the QRPA phonons, wh
constitute also our basis operators, lead to the usual or
normality relations between the QRPA amplitudes. These
lations allow us to invert Eq.~2.3! in a standard way. The
QRPA equation of motion

@Ĥ,Qa2a2m2

† #5Ea2a2
Qa2a2m2

† ~2.6!

leads to the following matrix equation:

S A B
2B 2AD S Xt

Yt
D 5Ea2a2S Xt

Yt
D , ~2.7!

where the matrix elements are given in terms of symmetri
double commutators between the Hamiltonian and basis
operators in Ref.@32#. The vacuum on which the matrix el
ements are estimated here is the Bardeen-Cooper-Schri
~BCS! state. Naturally, theA and B matrices contain the
pppp, ppnn, and nnnn parts yielding to eigenvector
containing both the proton-proton and neutron-neutron tw
quasiparticle amplitudes.

B. Two-phonon states

As we mentioned in the Introduction, the first example
a two-phonon state, investigated microscopically, was
low-lying 01 excitation in the Pb isotopes. The consider
wave function was a product of the pairingpp andhh quad-
rupole excitations, i.e.,

G0
†5@Q2

†~pp!Q2
†~hh!#0 . ~2.8!

The resulting energy is just the sum of the positivepp and
negativehh phonon energies. This is an example of a ‘‘pur
one-component two-phonon excitation. In describing lo
lying excitations in even-even nuclei it is necessary to c
sider a more general superposition of one- and two-pho
components. Therefore, the resulting excitation operator
be defined as
1-2
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Ga4a4m4

† 5(
a2

Z1~a2 ;a4a4!Qa2a4m4

†

1 (
a2a2<b2b2

Z2~a2a2b2b2 ;a4b4!

3~Qa2a2

† Qb2b2

† !a4m4
, ~2.9!

where (a4a4) denotes the eigenvalue index and total s
parity of the state. The energies associated with this exc
tion are, of course, not anymore sums of the single-pho
energies. The eigenstates can be found by using, for insta
the equation-of-motion technique, i.e.,

@Ĥ,Ga4a4m4

† #5Ea4a4
Ga4a4m4

† . ~2.10!

To this purpose we proceed in a similar way we derived
QRPA equations. Namely, we compute the expectation va
of the symmetrized double commutators between the Ha
tonian and the basis components entering Eq.~2.9! using the
BCS vacuum. One gets the following system of equation

S Ea2a4
da2a

28 H12~a2 ;a28a28b28b28!

H21~a2a2b2b2 ;a28! H22~a2a2b2b2 ;a28a28b28b28!
D

3S Z1~a28 ;a4a4!

Z2~a28a28b28b28 ;a4a4!
D

5Ea4a4S da2a
28 0

0 Ia4
~a2a2b2b2 ;a28a28b28b28!

D
3S Z1~a28 ;a4a4!

Z2~a28a28b28b28 ;a4a4!
D . ~2.11!

Here the metric matrix is defined as

Ia4
~a2a2b2b2 ;a28a28b28b28!

5^0u@~Qb2b2
Qa2a2

!a4
,~Qa

28a
28

†
Qb

28b
28

†
!a4

#u0&,

~2.12!

and its explicit form is derived in the Appendix. The Ham
tonian matrix elements are given in terms of symmetriz
double commutators as follows:

H22~a2a2b2b2 ;a28a28b28b28!

5^0u@~Qb2b2
Qa2a2

!a4
,Ĥ,~Qa

28a
28

†
Qb

28b
28

†
!a4

#u0&,

H12~a2 ;a28a28b28b28!5^0u@Qa2a4
,Ĥ,~Qa

28a
28

†
Qb

28b
28

†
!a4

#u0&,

H21~a2a2b2b2 ;a28!5^0u@~Qb2b2
Qa2a2

!a4
,Ĥ,Qa

28a4

†
#u0&.

~2.13!

By using the QRPA equation of motion~2.6! one finds that
the elementsH22 are proportional to the metric matrix, i.e.
03430
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H22~a2a2b2b2 ;a28a28b28b28!

5
1

2
@Ea2a2

1Eb2b2
1Ea

28a
28
1Eb

28b
28
#

#3Ia4
~a2a2b2b2 ;a28a28b28b28!. ~2.14!

We stress here the fact that this form of the Hamilton
matrix elements, connecting the two-phonon components
simpler than in the standard MSM or QPM. It is similar
the already used TDA-level procedure of our earlier pa
@16#. The matrix elementH22 has a clear physical meaning
namely, it gives the main contribution to the two-phon
energies as a sum of energies of its one-phonon constitu
corrected by the Pauli principle~metric matrix!.

In order to derive the matrix elements connecting on
phonon with two-phonon components, we consider the co
mutator of a QRPA phonon with the residualH (31) interac-
tion. The result can be cast into a form written in terms
two QRPA phonons, i.e.,

@H (31),Qa2a4m4

† #

→ (
d2g28c2g2

C~d2g28c2g2 ;a2a4!~Qd2g
28

†
Qc2g2

† !a4m4
,

~2.15!

where the coefficientC is given in the Appendix. In this way
one obtains the following relations:

H21~a2a2b2b2 ;a28!5
1

2 (
d2g28c2g2

C~d2g28c2g2 ;a28a4!

3Ia4
~a2a2b2b2 ;d2g28c2g2!,

H12~a2 ;a28a28b28b28!5
1

2 (
d2g28c2g2

C~d2g28c2g2 ;a2a4!

3Ia4
~d2g28c2g2 ;a28a28b28b28!

5H21~a28a28b28b28 ;a2!. ~2.16!

A similar procedure to estimate the coupling between
one- and two-phonon basis components is used in the Q
@17#.

C. Electromagnetic transitions

The electromagnetic transitions between states contai
only two-phonon components were described in Ref.@25#.
Here we consider a more general case given by Eq.~2.9!.
The electromagnetic operator of multipolarityJ is written in
second quantization as follows:

TJM5(
t

et(
i j

^t imi uTJMut jmj&cimi

† cjmj

5
1

Ĵ
(

t
et(

i j
^t i uuTJuut j &@ci

†c̃ j #JM , ~2.17!
1-3
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where the transition operator for a harmonic-oscilla
single-particle basis has the standard form

TJM5r Ji JYJM . ~2.18!

In the quasiparticle representation~2.2! the particle-hole part
of the transition operator, consistent with the QRPA phon
~2.3!, is given by

TJM→(
t

(
i j

jtJ~ i j !@ĀJM
† ~ i j !1~2 !J2MĀJ2M~ i j !#,

~2.19!

where

jtJ~ i t j t!5
et

ĴD i j

^t i uuTJuut j &~uiv j1v iuj !. ~2.20!

Here it is worth noting that we neglected the scattering te
a†a because we will discuss only transitions between eig
on
u
ne

e
e
t
a
th

o
he
n

03430
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states with large one-phonon amplitudes and eigenstates
large two-phonon components. The reduced matrix elem
connecting an eigenstate with the ground state is given
terms of the one-phonon amplitudes of the operator~2.9!,
i.e.,

^a4a4uuTa4
uu0&

5â4(
a2

Z1~a2 ;a4a4!(
t

(
i< j

jta4
~ i j !@Xt~ i j ;a2a4!

1Yt~ i j ;a2a4!#. ~2.21!

The matrix element connecting two eigenstates is given a
superposition of components containing products betw
the one- and two-phonon amplitudes, multiplied by the m
ric matrix, i.e.,
^a48a48uuTg2
uua4a4&5(

t
(
i< j

(
c2

jtg2
~ i j !@Xt~ i j ;c2g2!1Yt~ i j ;c2g2!#

3H â48(
a2

(
a28a28<b28b28

Z1~a2 ;a4a4!Z2~a28a28b28b28 ;a48a48!Ia
48
~a28a28b28b28 ;a2a4c2g2!

1â4(
a28

(
a2a2<b2b2

Z1~a28 ;a48a48!Z2~a2a2b2b2 ;a4a4!Ia4
~a28a48c2g2 ;a2a2b2b2!J . ~2.22!
s,

nts.

nti-

2
nd

tes

ter-
In conclusion, the metric matrix, taking into considerati
the Pauli principle, is the most important ingredient in o
approach describing both eigenstates and electromag
transitions.

D. Two-level model

To get a rough idea about the ingredients of the pres
formalism, let us first consider an application to a two-lev
model. Now the basic building block of the two-phonon sta
is simply a quadrupole QRPA phonon, and the excitations
superpositions of one- and two-phonon components in
form

GJ
†5Z1~J!QJ

†1Z2~J!~Q2
†Q2

†!J , J50,2,4. ~2.23!

For simplicity, we consider that the monopole one-phon
component, corresponding to the breathing mode, vanis
i.e., Z1(0)50. The system of equations for two-phono
states~2.11! becomes

S EJ HJ

HJ 2E2IJ
D S Z1~J!

Z2~J!
D 5EJS 1 0

0 IJ
D S Z1~J!

Z2~J!
D , J50,2,4,

~2.24!
r
tic

nt
l
e
re
e

n
s,

whereE050, andE2 ,E4 are the lowest QRPA eigenvalue
IJ the metric two-phonon matrix elements, andHJ the inter-
action term between the one- and two-phonon compone
The solutions corresponding toE 2

(2) andE 4
(1) have large two-

phonon componentsZ2(J). It is interesting to note that the
following inequality holds:

E 4
(1)2E 2

(2)

E2
5

E4

2E2
212AS E4

2E2
21D 2

1
H 4

2

I4E2
2
1

1

2

2A1

4
1

H 2
2

I2E2
2
<0, ~2.25!

because the left-hand side is a sum of two negative qua
ties. Therefore, the energy of the 41

1 state, being of the two-
phonon character, is always lower that the energy of the2

1

two-phonon-like state. If the coupling between the one- a
two-phonon components, namely,HJ , is small, one obtains
the well known near-degenerate triplet of two-phonon sta
02

1,22
1,41

1 ~we label the ground state by 01
1). In the absence

of coupling one obtains a degenerate triplet. It is also in
esting to discuss theB(E2) values, defined as
1-4
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B~E2;Ji→Jf !5F ^Jf iT2iJi&

Ĵi
G 2

, ~2.26!

within this simple model. One can directly use Eqs.~2.21!
and ~2.22! to obtain the following branching ratio:

RJ5
B~E2;J1→21

1!

B~E2;21
1→01

1!
5@Z2~J!IJ#

2, J1502
1,22

1,41
1 .

~2.27!

If one considers boson commutation rules, i.e.,IJ52 and
Z2(J)51/A2, then one obtains for the above ratio t
value 2.

III. NUMERICAL APPLICATION

A systematic analysis showed that the Ru-Pd reg
@33,34# and Cd isotopes@35,36# contain many examples o
multiphonon structures. Probably the best, almost dege
ate, two-phonon triplet of states 01,21,41 is seen in
106,108Pd@34#. Our interest in studying the Pd isotopes is a
connected with the possible beta and double-beta transit
to this triplet of states. Many papers were devoted to
theoretical analysis of the Pd isotopes@37–43#, most of them
at a phenomenological level.

An important ingredient of our microscopic approach
the single-particle basis. We describe it by using eigenva
of the spherical Woods-Saxon nuclear mean field. T
single-particle wave functions are taken, however, to
eigenstates of a spherical harmonic-oscillator with a suita
oscillator constant. This is a rather good approximation
bound states in the Pd isotopes. We have chosen for
106,108Pd isotopes 12 proton and 15 neutron single-part
levels around the Fermi surface. Some of the Woods-Sa
energies have been shifted slightly to better reproduce

TABLE I. Experimental energies in keV for106Pd @34# ~second
column!, energies of the two-level model~third column!, and the
components of the wave function~last two columns!.

Jl
p Eexp Eth Z1(J1

1) Z2(21
121

1)J

42
1 1932 2262 0.989 0.111

41
1 1229 1165 20.151 0.728

02
1 1134 1190 0.749

22
1 1128 1286 20.349 0.682

21
1 512 500 0.939 0.254

TABLE II. Experimental ratiosR(E2) betweenB(E2) values
andB(E2;21

1→01
1) for 106Pd@34# ~second column! and theR(E2)

values of the two-level model~third column!.

Ji→Jf R(E2)exp R(E2)th

02
1→21

1 1.02 1.78
22

1→21
1 0.93 1.23

42
1→21

1 1.69 1.80
22

1→01
1 0.02 0.14
03430
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low-energy one-quasiparticle-like spectra of the neighbor
proton- and neuton-odd nuclei. The same single-particle
lence space was recently used for the study of the beta-
double-beta decay feeding of106Pd in Ref.@44#. The BCS
occupation amplitudes and the QRPA eigenstates were ca
lated using as a residual two-body interaction theG-matrix
elements of the Bonn one-boson-exchange interaction
done in Ref.@44#. Different channels of this interaction wer
scaled by a constant as described in Ref.@44#.

As a first application we considered the two-level wa
function ~2.23!. The energies of the eigenstates 02

1,2k
1,4k

1 ,
k51,2 for 106Pd are given in the third column of Table I. I
the last columns we give the components of their wave fu
tions. We notice that the members of the triplet 02

1,22
1,41

1

have a large two-phonon amplitude. We stress the fact
the two-phonon triplet is split and its centroid is push
higher than twice the energy of the 21

1 state, in agreemen
with the experimental situation. We remind that this happe
mainly because of the interaction between the one- and t
phonon components of the Hilbert space of the model and
some extent, because of theJ dependence of the metric ma
trix. One can see that the agreement of the predicted ene
with the energies of the experimental levels, given in t
second column, is within 200 keV.

In the last column of Table II we give the predicted rati
of the B(E2) values to the quantityB(E2;21

1→01
1). The

predicted ratios from the members of the two-phonon trip
are less than the values predicted by the extreme boson
due to the Pauli effect, accounted for by the metric mat
Except for the first line of Table II, the agreement with th
experimental values, given in the second column, is qu
satisfactory.

For the general wave function~2.9! we solve the eigen-

TABLE III. Experimental energies in keV for106Pd @34# ~sec-
ond column!, the QRPA energies~third column!, and calculated
energies for different numbers of the QRPA 21 and 41 eigenstates.

Jl
p Eexp EQRPA EN51 EN52 EN53 EN54 EN55

42
1 1932 2246 2183 2103 2087 2123 2093

03
1 1707 4493 2874 2752 3136 3103

23
1 1562 2245 2935 2104 1998 1977 1975

41
1 1229 1281 1240 1166 1193 1178

02
1 1134 1323 1301 1223 1294 1293

22
1 1128 1399 1367 1375 1323 1359

21
1 512 662 556 535 496 483 489

TABLE IV. Experimental ratiosR(E2) betweenB(E2) values
andB(E2;21

1→01
1) for 106Pd @34# ~second column! and calculated

ratios forN55 ~third column!.

Ji→Jf R(E2)exp R(E2)th

02
1→21

1 1.02 1.87
22

1→21
1 0.93 1.55

42
1→21

1 1.69 1.77
22

1→01
1 0.02 0.13
1-5
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value system of equations~2.11! by using a standard tech
nique @16#. The initial basis is not orthogonal and therefo
the metric matrix is nondiagonal. First we diagonalize t
metric matrix. The eigenstates of the metric matrix allow
to built a new orthonormal basis. The states correspondin
very small eigenvalues of the metric matrix are spurious
should be eliminated. The resulting system of equations
the new basis has a standard Hermitian form.

We build the two-phonon basis by using a given amo
N of 21 and 41 QRPA eigenstates. The result of calculati
for N51, . . . ,5 in 106Pd is given in Table III. We mention

FIG. 1. ~a! The effective charge parameterx versus the energy
of the first QRPA 21

1 phonon for the small single-particle basis wi
N55. ~b! The same as in~a!, but for the large single-particle basi
03430
e
s
to
d
in

t

that afterN55, convergence in the energies of the low-lyin
states is achieved. In the third column we give the start
QRPA eigenvalues for those states with a large one-pho
component. The agreement with the experimental spect
of the second column is within 200 keV, except for the eige
state 03

1 . The accuracy for the two-phonon-like triplet
comparable with the result of the two-level model but,
course, here a host of other levels are described.

To have a feel of the systematic behavior of our mod

FIG. 2. ~a! The lowest eigenvalues of the system~2.11! versus
the energy of the first QRPA 21

1 phonon for the small single-particle
basis withN55. The lowest two-quasiparticle configuration in th
21

1 state of the QRPA calculation is (n1d5/2)
2 with an energy of

2.01 MeV. ~b! The same as in~a!, but for the large single-particle
basis and with the (n1d5/2)

2 configuration energy of 2.73 MeV.
1-6
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MICROSCOPIC DESCRIPTION OF LOW-LYING TWO- . . . PHYSICAL REVIEW C 67, 034301 ~2003!
we discuss next the106Pd nucleus in terms of two basis se
The first is asmall ~toy! basis set consisting of three proto
and neutron orbitals in the immediate vicinity of the corr
sponding Fermi surfaces. The second is the one mentio
previously~12 proton and 15 neutron single-particle state!,
which we call here thelarge basis set. The collectivity of the
lowest 21 state can be seen both from its energy and
electric quadrupole decay strength to the 01

1 ground state.
For 106Pd the measured reduced quadrupole transition p
ability from the 21

1 state to the ground state isB(E2)exp

FIG. 3. ~a! The ratio between the energies of the triplet centr
and the eigenvalue 21

1 versus the energy of the first QRPA 21
1

phonon for the small single-particle basis withN55. ~b! The same
as in ~a!, but for the large single-particle basis.
03430
.

-
ed

s

b-

54264 W.u.@34#. The corresponding theoreticalB(E2) can
be brought to this value by defining the effective proton a
neutron charges using the effective-charge polarization
rameterx @45#. In Fig. 1 we display values of this paramet
as a function of the energy of the lowest 21 state of the
QRPA calculation. Here Fig. 1~a! concerns the small basi
and Fig. 1~b! the large basis. As can be seen from the
figures, the collectivity of the 21

1 state increases when it
energy decreases, thus needing smaller and smaller effe
charges to reproduce the experimentalB(E2). For the small
basis the lowest two-quasiparticle energy is at around 2 M

FIG. 4. ~a! The ratiosRJ defined by Eq.~2.27! versus the energy
of the first QRPA 21

1 phonon for the small single-particle basis wi
N55. ~b! The same as in~a!, but for the large single-particle basis
1-7
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D. S. DELION AND J. SUHONEN PHYSICAL REVIEW C67, 034301 ~2003!
and for the large basis at around 2.7 MeV~the more exact
values are given in the caption of Fig. 2!. It is also evident
from Fig. 1 that for the small basis one needs bigger effec
charges than for the large basis.

In Fig. 2 we show the energies of the 21
1 state and the

two-phonon triplet as functions of the energy of the first 21

phonon of the QRPA. Both for the small basis@Fig. 2~a!# and
the large basis@Fig. 2~b!# the energies of these states are ve
little perturbed for the QRPA 21 energies close to 1 MeV
~energies to the very right in Fig. 2!. As the energy of the
QRPA 21 state decreases, and thus its collectivity increa
the two-phonon triplet splits more and more in energy a
the energy of the 21

1 state goes faster to zero than the QR
21 phonon energy. As a matter of fact, the first two-phon
01 state collapses for very small values of the QRPA1

energy. One can also see that the splitting of the triple
more notable for the large basis. The development of
relative energies of the 21

1 and the two-phonon states
shown in Fig. 3 where~a! shows the ratioR between the
centroid energy of the two-phonon triplet and the energy
the 21

1 state as a function of the QRPA 21 energy for the
small basis. Figure 3~b! shows the same for the large bas
As seen from this figure the behavior of this ratio is quali
tively very different for the small and large bases: for t
small basisR decreases and for the large basis it increa
with decreasing energy~increasing collectivity! of the QRPA
21 state. The behavior ofR in the large basis is along th
lines of experiment where for106Pd Rexp52.27.

In Fig. 4 we show the ratiosRJ of Eq. ~2.27! for the small
basis@Fig. 4~a!# and the large basis@Fig. 4~b!# as functions of
the QRPA 21 phonon energy. For the small basis the beh

TABLE V. Experimental energies in keV for108Pd @34# ~second
column!, the QRPA energies~third column!, and calculated energie
for different numbers of the QRPA 21 and 41 eigenstates.

Jl
p Eexp EQRPA EN51 EN52 EN53 EN54 EN55

42
1 1624 2179 2114 2024 2016 1996 1987

03
1 1314 4358 2859 2819 3061 3066

23
1 1441 2245 2837 2061 2051 1923 1916

41
1 1048 1230 1164 1112 1087 1099

02
1 1053 1274 1235 1188 1296 1289

22
1 931 1367 1317 1306 1299 1305

21
1 434 637 519 470 468 407 400
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ior as a function of the QRPA 21 energy is more monoto
nous than for the large basis where all the ratiosRJ have a
maximum at some value of the 21 energy. The abrupt
changes in the ratiosR2 andR4 for the small basis and larg
21 energy come from the strong mixing of the one-phon
states with these two-phonon states at large energies o
two-phonon triplet. It is worth noting that for the large bas
the ratios tend towards their experimental values, displa
in Table IV, with the decreasing energy of the QRPA 21

phonon.
In Fig. 5~a! we display eigenvalues of the metric matr

for the J50 ~squares!, J52 ~stars!, and J54 ~triangles!
states in the case of the large basis, forN55 and at a real-
istic value of the energy of the QRPA 21 phonon. For the
states of the two-phonon triplet the diagonal matrix eleme
of the metric matrix are between 1.84 and 1.93 and the
diagonal elements below 0.12. In Fig. 5~b! we display the
magnitudes of the Hamiltonian matrix elements for theJ
52 states for the above mentioned large basis and the
istic QRPA 21 energy. Here the squares are the diago
matrix elements and the circles are the maximum values
the nondiagonal elements. As can be seen, the magnitud
the off-diagonal elements are typically of the order of 0.
0.3 MeV, much smaller than the diagonal ones, of the or
of 3 MeV. In particular, for the two-phonon triplet states th
diagonal elements are between 2.53–2.57 MeV and the m
nitudes of the matrix elements connecting them to the1

1

and 41
1 one-phonon states between 0.2 and 0.3 MeV.

The behaviors of the metric matrix elements and Ham
tonian matrix elements related to the two-phonon triplet ha
been displayed in Fig. 6 as functions of the energy of the1

1

phonon of the QRPA. The calculation has been perform
for the large basis withN55. The displayed diagonal metri
matrix elements for the two-phonon triplet@Fig. 6~a!# de-
crease slowly with the increasing collectivity of the 21

1 state.
At the same time, the corresponding diagonal Hamilton
matrix elements@Fig. 6~b!# decrease fast to less than half
their initial value and the nondiagonal matrix elements co
necting the 21

1 and 41
1 states with the 22-ph

1 and 42-ph
1 states,

respectively, increase their magnitude@Fig. 6~b!#. This means
that the repulsion between these one- and two-phonon s
increases considerably with increasing collectivity of the1

1

state leading to a very low final energy for the 21
1 state. In

addition, the strongest off-diagonal matrix elements inH12
of Eq. ~2.11! are the ones ofJ50 angular momentum lead
TABLE VI. Largest components of the wave functions for106Pd with N55.

Jl
p Z1(J1

1) Z1(J2
1) Z2(21

121
1)J Z2(21

122
1)J Z2(21

123
1)J Z2(21

141
1)J

42
1 0.851 0.143 20.371 0.339

03
1 20.781 0.840

23
1 20.119 0.869 20.122 0.268 0.269 20.197

41
1 20.184 0.753 0.248

02
1 0.752

22
1 20.304 0.154 0.679

21
1 0.933 0.213
1-8
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MICROSCOPIC DESCRIPTION OF LOW-LYING TWO- . . . PHYSICAL REVIEW C 67, 034301 ~2003!
ing to the collapse of the 01 two-phonon state before th
collapse of the 21

1 state, as clearly seen in Fig. 2.
The convergence of the energy spectrum of108Pd is

shown in Table V. As for106Pd, convergence is achieved fo
N55. To have a deeper insight into the contents of the w
functions, we give in Table VI the main components of t

FIG. 5. ~a! Eigenvalues of the metric matrix for the large singl
particle basis withN55. A realistic value of the 21

1 state was used
The squares, stars, and triangles correspond toJ50, J52, andJ
54 states, respectively.~b! The same as in~a!, but for the magni-
tudes of the Hamiltonian matrix elements@for the HamiltonianH12

of Eq. ~2.11!# in the case ofJ52. The squares denote the magn
tudes of the diagonal matrix elements and the circles the maxim
magnitudes of the off-diagonal elements.
03430
e

wave functions of states in106Pd. The members of the triple
02

1,22
1,41

1 have a large (21
121

1)J component, comparable t
that of the two-level case. The eigenstate 03

1 has large two-
phonon components (21

122
1)0 and (21

123
1)0. The corre-

sponding results for108Pd are given in Table VII.
The ratios of theB(E2) values are described in Table I

for 106Pd and in Table VIII for108Pd. We used in the calcu
lations the effective-charge polarization parameterx50.4 for

m

FIG. 6. ~a! Values of the metric matrix elements for the two
phonon states as functions of the energy of the first QRPA1

1

phonon.~b! Values of the HamiltonianH12 matrix elements for the
two-phonon states as functions of the energy of the first QRPA1

1

phonon. The interaction matrix elements of the two-phonon sta
with the first one-phonon state of the same angular momentum
also given.
1-9



D. S. DELION AND J. SUHONEN PHYSICAL REVIEW C67, 034301 ~2003!
TABLE VII. Largest components of the wave functions for108Pd with N55.

Jl
p Z1(J1

1) Z1(J2
1) Z2(21

121
1)J Z2(21

122
1)J Z2(21

123
1)J Z2(21

141
1)J

42
1 0.836 20.179 0.151 20.322 210.101 0.344

03
1 20.519 1.019

23
1 20.167 0.838 20.121 0.285 20.172

41
1 20.185 0.761 0.283 0.119 20.106

02
1 0.752 20.156 20.150

22
1 20.315 0.151 0.678

21
1 0.918 0.118 0.222 0.133 20.102
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106Pd andx50.5 for 108Pd in order to reproduce the absolu
value of theB(E2;21

1→01). One can see that, except th
first transition, these ratios satisfactorily describe the exp
mental situation.

IV. CONCLUSIONS

In this paper we derived a simple formalism to descr
two-phonon-like excitations in even-even nuclei. The pro
dure has two steps. First we determined the QRPA phon
using single-particle energies of a spherical Woods-Sa
mean field plus a residual interaction, calculated within
G-matrix approach. The two-phonon-like excitations we
built as superpositions of one- and two-phonon compone
with a given angular momentum and parity. The equations
motion for these states were derived using the QRPA eq
tions from the previous step. It turned out that the Ham
tonian matrix elements connecting the two-phonon com
nents are proportional to the metric matrix. The connect
between the one- and two-phonon components is given
theH (31) part of the residual Hamiltonian in its quasipartic
representation. Electromagnetic transitions between the
phonon states are described in terms of the same metric
trix.

Our calculation gives an energy-split triplet of low-lyin
01, 21, 41 states, due to interaction between the one- a
two-phonon components. Analysis of the amplitude cont
showed that, indeed, these states have a two-phonon na
The centroid of the tripled is pushed up, in agreement w
the experimental situation. The experimental energy lev
andB(E2) values are quite well reproduced, except the
ergy of the 03

1 state and the transition from the 02
1 state. The

energy of the 41 two-phonon-like state is lower than th
energy of the 21 two-phonon-like state, as predicted by th
two-level model, in contrast to the experiment. We think th
these drawbacks are connected with the fact that the con

TABLE VIII. Experimental ratiosR(E2) betweenB(E2) val-
ues andB(E2;21

1→01
1) for 108Pd @34# ~second column! and calcu-

lated ratios forN55 ~third column!.

Ji→Jf R(E2)exp R(E2)th

02
1→21

1 1.04 1.93
22

1→21
1 1.02 1.42

42
1→21

1 1.48 1.77
22

1→01
1 0.01 0.15
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ered Pd isotopes have a moderate quadrupole deforma
Therefore, proper description of a deformed system would
necessary to reproduce the very fine details of the order
of the triplet of the two-phonon-like states.
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APPENDIX

In the following we use the exact commutators betwe
two QRPA phonons:

@Qaam ,Qa8a8m8
†

#

5daa8daa8dmm81 (
j 1 j 2 j 18

(
m1m2m18

aj
18m

18
†

aj 2m2

3$X̄t~ j 1 j 2 ;aa!X̄t~ j 18 j 1 ;a8a8!^ j 1m1 ; j 2m2uam&

3^ j 18m18 ; j 1m1uam&2Ȳt~ j 1 j 2 ;aa!Ȳt~ j 18 j 1 ;a8a8!

3^ j 1m1 ; j 2m2ua2m&^ j 18m18 ; j 1m1ua2m&

3~2 !a1a82m2m8%, ~A1!

in order to derive an expression of the metric matrix. T
new amplitudes are defined in terms of the amplitudes of
restricted basis as follows:

X̄t~ j 1 j 2 ;a2a2!

5H Xt( j 1 j 2 ;a2a2)D j 1 j 2
, j 1< j 2

Xt( j 2 j 1 ;a2a2)D j 2 j 1
(2) j 11 j 22a211, j 1. j 2 .

~A2!

To this purpose we use the unrestricted representation o
QRPA phonon. The result contains, in addition to the dia
nal terms, a correction expressing the Pauli principle, i.e
1-10
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Ia4
~a2a2b2b2 ;a28a28b28b28!

5^@~Qb2b2
Qa2a2

!a4
,~Qa

28a
28

†
Qb

28b
28

†
!a4

#&

5da2a
28
da2a

28
db2b

28
db2b

28

1da2b
28
da2b

28
db2a

28
db2a

28
~2 !a21b22a4

2(
t

(
i jkl

At~ i jkl ;a2a2b2b2 ;a28a28b28b28!, ~A3!

where the above matrixAt is given by

At~ i jkl ;a2a2b2b2 ;a28a28b28b28!

5â2b̂2â28b̂28H i j a2

k l b2

a28 b28 a4

J
3$X̄t~ i j ;a2a2!X̄t~kl;b2b2!

3X̄t~ ik;a28a28!X̄t~ j l ;b28b28!2Ȳt~ i j ;a2a2!

3Ȳt~kl;b2b2!Ȳt~ ik;a28a28!Ȳt~ j l ;b28b28!%. ~A4!
03430
The second term containing the product of fourY amplitudes
is very small and can be safely neglected. In this way
metric matrix has a TDA form used in Ref.@16#.

The residual interaction, connecting the one-phonon w
the two-phonon components, has the following form in t
quasiparticle representation:

H1
(31)5 (

l2m2
(

t
(
i jkl

Vi jkl
(31)~tl2!~2 !l22m2

3@~ai
†aj

†!l2m2
~ak

†ãl !l22m2
1H.c.#. ~A5!

Here we have dropped the isospin indices except under
summation sign.

The commutator giving two phonon-creation operators
given by

@H1
(31),Qa2a4m4

† #

→ (
d2g28c2g2

C~d2g28c2g2 ;a2a4!~Qd2g
28

†
Qc2g2

† !a4m4
,

~A6!

where the coefficient can be found by a straightforward c
culation to be as follows:
uced the

s

C~d2g28c2g2 ;a2a4!5(
l2

(
t

(
i jkl

Vi jkl
(31)~tl2! (

m<n

Xt~mn;a2a4!

Dmn
$dg

28l2
l̂2g 2̂†X̄t~ i j ;d2l2!@xt~l2ka4n;mg2 ;c2!d lm

2~2 !m1 l 2a4xt~l2ka4m;ng2 ;c2!d ln#1~2 ! l 2k1l2Ȳt~ i j ;d2l2!@xt~l2la4n;mg2 ;c2!dkm

2~2 !m1k2a4xt~l2la4m;ng2 ;c2!dkn#‡1l̂2
2g 2̂g 2̂8~2 !g28†~2 ! j 1kyt~ lki j ;l2g2 ;c2!

3@~2 ! i 1mxt~g2la4m;ng28 ;d2!d in2~2 !a4xt~g2la4n;mg28 ;d2!d im#2~2 !l22a4yt~ lk j i ;l2g2 ;c2!

3@~2 !k1mxt~g2la4m;ng28 ;d2!d jn1~2 ! j 1kxt~g2la4n;mg28 ;d2!d jm#‡%. ~A7!

We dropped, as usual, the isospin indices except under the summation sign and in the amplitudes. We also introd
following shorthand notations

xt~l2ka4n;mg2 ;c2!5W~l2ka4n;mg2!X̄t~kn;c2g2!,

yt~ lki j ;l2g2 ;c2!5W~ lki j ;l2g2!Ȳt~ jk;c2g2!. ~A8!

Here W(abcd;e f) denotes the Racah coefficient. In deriving Eq.~A7! we neglected theYY products, because one ha
uY/Xu<0.2. Our calculations showed that the contribution of the last lines containingy terms in Eq.~A7! is small.
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