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Microscopic description of low-lying two-phonon states: Electromagnetic transitions
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Microscopic description of low-lying two-phonon states in even-even nuclei is introduced. The main build-
ing blocks are the quasiparticle random-phase approximé&®&PA) phonons. A realistic microscopic nuclear
Hamiltonian, based on the Bonn one-boson-exchange potential, is diagonalized in a basis containing one-
phonon and two-phonon components, coupled to a given angular momentum and parity. The QRPA equations
are directly used in deriving the equations of motion for the two-phonon states. The Pauli principle is taken into
account by diagonalizing the metric matrix and discarding the zero-norm states. The electromagnetic transition
matrix elements are derived in terms of the metric matrix. The model has been applied't#éPthend*’%d
nuclei, known to contain two-phonon structures. In spite of its simplicity, the model predicts energies and ratios
of B(E2) values in a reasonable agreement with the data.
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[. INTRODUCTION tions within the MSM in order to describe low-lying states
together with thex-decay properties. The best example is the
Most of nuclei with a small ground-state deformation nucleus?%o. Its low-lying spectrum can be described by a
have low-lying spectra with a vibrational behavior. A suitablewave function of the form?*%Phg 2% o+ 21%Bij® 21%Bj [16].
microscopic approach to describe one-phonon states in these This formalism is related to the quasiparticle-phonon
nuclei was given long time ago in terms of particle-hole model (QPM) used by Soloviev and collaboratof$7] to
(ph) excitations within the Tamm-Dankoff approximation study a large variety of spectra for vibrational as well as for
(TDA) [1]. The ground-state and pairing correlations, takengeformed nuclei. The wave function is built in a similar way
into account by the use of the quasiparticle random-phasgs i the MSM, but the equations of motion are derived from
approximation(QRPA), are the most important ingredients , \ariational principle. The multipole-multipole interaction
necessary to improve the description of the one-phonon Vg veq to write a simple secular equation, instead of a ma-
brational state§2]. A systematic phenomenological analysstrix to be diagonalized. In Ref18] it was shown that two-

of low-lying spectra andd(E2) values of even-even n_ucle| phonon states are strongly fragmented in deformed nuclei.
revealed the existence of many-phonon sté8dsThe first . . .
An important effect of the two-phonon correlations is the

microscopic explanations of the low-lying excited two- fragmentation of the one-phonon giant resonance, studied in
honon O state in Pb isotopes was given in terms of two- ) ! .
P P 9 Ref.[19]. In the last years the so-called double giant dipole

particle—two-hole (-2h) pairing excitations[4,5]. Later . i ; . :
on, three-phonon states were studied in termsmBA ex- resonance was intensively investigated using the QPM. The
i most important results in this field are described, for in-

citations in Cd isotope$6], and even #-4h states were ! i .
identified as some kind of vibrations in the spectrum of Stance, in the review pap¢0] and in Refs[21,22. The

208 [7]. QPM was also applied to describe the fragmentation of the

Soon after this, in a series of papers by Ring and Schuclow-lying scissors 1 mode due to the presence of the two-
[8,9] and especially by Liotta and Pomgi0] it was recog-  Phonon statef23].
nized that these states can be microscopically described In @ series of papers Catara and co-workers studied the
within the so-called multistep shell modéMSM). The  anharmonic spectrum of°Ca[24] and the electromagnetic
2p-2h excitations within this formalism are given as super-transitions of the two-phonon staté®5]. The influence of
positions of products between two TDA phonons coupled tdhe two-phonon states on heavy ion collisions was investi-
a given angular momentum and parity. The resulting equagated, e.g., in Refd26,27. Recently, Hamamot$28] and
tions of motion are derived using Greens function or doubleBertch et al. [29] pointed out the role of anharmonicities
commutator technique, respectively. They contain the eigendsing some simple models.
values of the previous TDA step. It is also possible to extend the particle-hole basis by a

A generalization of this method to multiphonon states isdirect inclusion of the p-2h terms within the extended
given in Refs[11-13. Here two methods are developed: a QRPA [30], but the resulting equations are rather compli-
generalized Wick’s theorem and recursive relations, in princated. In most applications it is preferred, for the sake of
ciple, equivalent to the MSM. simplicity, to adopt the multistep technique in which building

As an application, the structure of the multiquasiparticleblocks are the QRPA phonons. All these microscopic descrip-
states was investigated within the MSM for the [8d4] and  tions of multiphonon states, and especially the double-
Pb isotopeg15]. It is also possible to usepda-like excita-  commutator technique to derive the equation of motion, are
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actually particular realizations of the so-called boson-whenever this is possible. The pair-creation operator is de-

expansion techniquis1]. fined by the coupling of two particle-creation operators to
In this paper we propose a simplified variant of the MSM some angular momentum,

to describe multiphonon states. It was introduced at the TDA

level in the already mentioned R¢1L6]. We use directly the

QRPA equations in deriving the equation of motion for a Al (j;j.)= > (jlml;j2m2|a2,u2>ajT m a]-Tm
composite excitation. In this way the Hamiltionian matrix 22 my+Mp= 1 e
elements, connecting two-phonon components, become pro- —(afal) (2.4)
portional to the metric matrix. We apply this technique to 117027 @k’ ’
describe probably one of the most striking examples of two-
phonon excitations, namely, the almost degenerate triplet ofhe normalized pair operator is given by
0*,2",4" states in the!®Pd and °Pd isotopes. We will
continue to apply this method in a forthcoming series of 1
papers aiming to describe beta and double-beta transitiong} (i1l = fAZ L), A =1+ (—)®
and alpha decays involving two-phonon states. 22 Ajj, 22 12 vz

The paper is organized as follows. In Sec. Il we give (2.5

necessary theoretical details on the wave functions, equa-

tions of motion, and electromagnetic transitions for two-The hoson commutation rules for the QRPA phonons, which
phonon states. In Sec. lll we analyze the low-lying spectrgonsitute also our basis operators, lead to the usual ortho-
andB(E2) values of 6P0_| and*®Pd nuclei, and in the last normality relations between the QRPA amplitudes. These re-
section we draw conclusions. lations allow us to invert Eq(2.3) in a standard way. The

QRPA equation of motion
Il. THEORETICAL BACKGROUND

A. One-phonon states [H ’ngazﬂz]: EazazQzlgazMz (2.6)

We will build two-phonon states in terms of the QRPA
degrees of freedom. The QRPA is a well known method, bu}eads to the followi tri tion-
in order to introduce some basic notations we will remind the wing matrix equation.
reader of its main ingredients. We will describe collective
low-lying excitations in even-even nuclei in terms of single- A B\ (X, X,
particle eigenstates in a given spherically symmetric mean B —-Ally = vy |
field. These states are labeled by spherical single-particle T T
guantum numbers, i.e., isospin, energy eigenvalue, angular
momentum, total spin, and its projection. We denote them byvhere the matrix elements are given in terms of symmetrized

(2.7)

T Ay

using the following shorthand notation double commutators between the Hamiltqnian and ba}sis pair
operators in Ref[32]. The vacuum on which the matrix el-
cleljmecljm, (2.1 ements are estimated here is the Bardeen-Cooper-Schrieffer

. ) ) (BCYS state. Naturally, thed and B matrices contain the
wherej now absorbs the energy eigenvalue and orbital anguz 77777, rvw, and vvwy parts yielding to eigenvectors

lar momentuml. In the following we will drop the isospin  containing both the proton-proton and neutron-neutron two-
index wherever its presence is unambiguously understoodyasiparticle amplitudes.

Let us introduce the quasiparticle representation by

aij [y -y CJ'Tm 22 B. Two-phonon states
(_)ifmajm vj U (_)i*mcjm ' ' As we mentioned in the Introduction, the first example of

a two-phonon state, investigated microscopically, was the
The phonon operator describing collective excitations injow-lying 0" excitation in the Pb isotopes. The considered
even-even nuclei within the QRPA is defined by using thewave function was a product of the pairipgp andhh quad-
following restricted representation rupole excitations, i.e.,

T T T
QL= S S XdisziaanAl,, (o) Fo=[ QPP Q2N ]o- 28

T=mv j1<]2

A o . The resulting energy is just the sum of the positpe and
=Y. (j1izs@par)(—)"2 *2A, _, (j1i2)], negativehh phonon energies. This is an example of a “pure”
2.3 one-component two-phonon excitation. In describing low-
lying excitations in even-even nuclei it is necessary to con-
where we denote byabab) the two-particle quantum num- sider a more general superposition of one- and two-phonon
bers, namely, the energy eigenvalue, angular momentum armmponents. Therefore, the resulting excitation operator can
parity. For simplicity of notation, we drop the parity symbol be defined as
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. ! i ! !
‘ B _ + Hox@azasb,8,5a5a,0585)
1—‘a4a4:“4_ az2 Z1(8z;84as) Qa2“4#4

E[Ea2a2+ Eb2ﬂ2+ Eaéaé—i_ Ebéﬁé]
+ Zb Zy(aza;3b,8558484)
a202=h2k2 Xy (BzasbyB718505055). (214
X(Qh 0, Qb 8, agus 2.9

We stress here the fact that this form of the Hamiltonian
. - . _matrix elements, connecting the two-phonon components, is
where @,a,) denotes the eigenvalue index and total SPsimpler than in the standard MSM or QPM. It is similar to

parity of the state. The energies associated with this excita- .
tion are, of course, not anymore sums of the single-phono e already us_ed TDA-level procedure of our earlier paper
' ' 6]. The matrix element{,, has a clear physical meaning,

tehneeg&iitizg?oil?n%??gﬁt?:cﬁi?qzz fci)_lér_]d by using, for instan néme!y, it gives the main _contripution to the two—phpnon
T energies as a sum of energies of its one-phonon constituents,
[A,r! 1=¢, . T} _ (2.10 corrected by the Eauli principl@netric matrix. _
A4k Bacta” Ba0ypig In order to derive the matrix elements connecting one-

To this purpose we proceed in a similar way we derived thé)honon with two-phonon components, we consider the com-
burp P y mutator of a QRPA phonon with the residual®V interac-

QRPA equations. Namely, we compute the expectation valu . ) .
of the symmetrized double commutators between the Hamilﬁon' The result can be cast into a form written in terms of

tonian and the basis components entering(B using the two QRPA phonons, i.e.,

BCS vacuum. One gets the following system of equations: [H(Sl)'Q;2a4ﬂ4]
( Ea2“45azaé HiAaz;a5a5b,85) ) _ 2 C(dyy! ) T t
Hoi(@zabaB2585)  Had@ahaBria505b585) d2v5Cav2 2720272,aza4)(deyéchyz)a4ﬂ4,
( Zy(ay;a4a4) ) (2.19
Zy(azazbyfBs;as0) where the coefficient is given in the Appendix. In this way

one obtains the following relations:
5azaé 0
~ Caay

0 I%(azazbzﬁziaéaébéﬁé)

( Zy(ay;a4a,) )

1
Hax(@za20,85;a5) =5 > C(da¥Caya;abay)
da75C272

NI (21]) XID[ a,a,b :d ,C ,
Zy(a,asbsBs a,a,) J@2a20285;d275C272)

Here the metric matrix is defined as . 1 .
HidaziaazhsBy) =5 2 C(dy;Cz72i8za)
Lo (B2a5b2B7;a5a50583) “272%272

X T, (day5Coy2;85a5b585)

t t @ 2 205056,
:<0|[(Qb2B2Qagaz)a4’(QaéaéQbé,Bé)tu]|O>’ !
=Ho(aza,by85;a,). (2.1

(2.12
A similar procedure to estimate the coupling between the

tonian matrix elements are given in terms of symmetrized,7).

double commutators as follows:
;o C. Electromagnetic transitions
Hod@zasb,85a5a,0585) . . -
. The electromagnetic transitions between states containing
=(0|[(Qp,5,Qa,4,) ,H,(QT, ,QT, e, ]0), only two-phonon components were described in R28|.
P2 Ty aja, b,/ ¥ ) !
Here we consider a more general case given by ().

e o At + The electromagnetic operator of multipolaritys written in
Hid@a;85a50582) =(Ol[ Qayey H 1 (Qqp s Quy g7, 110 second quantization as follows:
La! N AT
HZl(aZQZbZIBZ!aZ):<O|[(Qb2B2Qa2a2)a4!H!Qaéa4]|o>‘ Tiv=2 e, (Timi|TJM|ijj>ci“tmicjmj
(2.13 T
By using the QRPA equation of motid2.6) one finds that - l > e, > (AllTll7)e v, (217
the element$1,, are proportional to the metric matrix, i.e., 15 77T o
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where the transition operator for a harmonic-oscillatorstates with large one-phonon amplitudes and eigenstates with
single-particle basis has the standard form large two-phonon components. The reduced matrix element
connecting an eigenstate with the ground state is given in
terms of the one-phonon amplitudes of the operdf®),

ie.,

TJM:rJiJYJM. (21&

In the quasiparticle representati¢h?2) the particle-hole part
of the transition operator, consistent with the QRPA phonon
(2.9, is given by

(a4a4[T,,[|0)

Tom— 2 2 Ea(iDIATWD) + (=) MA_w(ij)], .
M g ’ o o =a42 Zl(azia4a4)2 E m4(|J [X,(i];azay)
(219 as T OIs]
where +Y (ij;ara4)]. (2.2)

PR eT . .
&n(i] T)::]A_,,<T'||TJ||TJ>(uiUJ+UiuJ')' (220 The matrix element connecting two eigenstates is given as a
N superposition of components containing products between
Here it is worth noting that we neglected the scattering termshe one- and two-phonon amplitudes, multiplied by the met-
a'a because we will discuss only transitions between eigenric matrix, i.e.,

(ajafl|T, |lagas)=2> Ej 2 & (DIXA0]5C272) + Y (ijic272)]
T iIs] Cp

xlayY, 2 Zi(azazas)Zy(apasbyBh ;agag)lai(aéaébéﬂé;a2a4czy2)
82 ajay=<by,

a2 Zi(ahiagag) Zy(apanh,Br;8504) T, (85iCo Y2 80000,8,) | . (2.22

a) agap<hyp,

In conclusion, the metric matrix, taking into considerationwhereE,=0, andE,,E, are the lowest QRPA eigenvalues,
the Pauli principle, is the most important ingredient in ourZ; the metric two-phonon matrix elements, &g the inter-
approach describing both eigenstates and electromagnetction term between the one- and two-phonon components.
transitions. The solutions corresponding &2 and&(Y have large two-
phonon component&,(J). It is interesting to note that the
D. Two-level model following inequality holds:

To get a rough idea about the ingredients of the present
formalism, let us first consider an application to a two-level ~ £P-¢%?  E, E, 2 M3
model. Now the basic building block of the two-phonon state E—2 :Z_Ez LT (Z_Ez - )
is simply a quadrupole QRPA phonon, and the excitations are
superpositions of one- and two-phonon components in the
form -

I'1=2,(3)Q}+Zx(3)(QIQY);, J=024. (2.23

__|_ —
T,E5 2

Hz
4 I2E2

=<0, (2.29

L . because the left-hand side is a sum of two negative quanti-
For simplicity, we consider that the monopole one- phon0n[Ies Therefore, the energy of the 4tate, being of the two-

component, corresponding to the breathing mode, vanishes Shonon character, is always lower that the energy of the 2
i.e., Z1(0)=0. The system of equations for two-phonon P Y 9y
two-phonon-like state. If the coupling between the one- and
states(Z.lJ) becomes - i
two-phonon components, namefy,;, is small, one obtains
the well known near-degenerate triplet of two-phonon states
B My |[Z4D) _ 1 0}(z9) J1=024 05,2, ,4; (we label the ground state by, 9. In the absence
Hy 2E,Z;)\ Zy(J) o ;)\ Z5(d))’ of coupling one obtains a degenerate triplet. It is also inter-
(2.29 esting to discuss thB(E2) values, defined as
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TABLE |. Experimental energies in keV fof*®Pd[34] (second
column), energies of the two-level modéthird column, and the
components of the wave functigtast two columng
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TABLE lIl. Experimental energies in keV fol%Pd [34] (sec-
ond column, the QRPA energiesthird column, and calculated
energies for different numbers of the QRPA and 4" eigenstates.

‘]ITr Eexp Eth Zl(‘]f) Z2(21+2:IJ.r).J ‘]Iﬂ- Eexp EQRPA EN:1 EN:2 EN:3 EN:4 EN:5
4;’ 1932 2262 0.989 0.111 4; 1932 2246 2183 2103 2087 2123 2093
41+ 1229 1165 —0.151 0.728 0; 1707 4493 2874 2752 3136 3103
O;’ 1134 1190 0.749 2; 1562 2245 2935 2104 1998 1977 1975
22+ 1128 1286 —0.349 0.682 4f 1229 1281 1240 1166 1193 1178
21’ 512 500 0.939 0.254 0; 1134 1323 1301 1223 1294 1293

2; 1128 1399 1367 1375 1323 1359

) 27 512 662 556 535 496 483 489
_ <Jf||T2|Ji>1
B(EZ,Ji—>Jf): = | s (22@
i low-energy one-quasiparticle-like spectra of the neighboring

within this simple model. One can directly use E@3.21)
and(2.22 to obtain the following branching ratio:

B(E2;J"—2])

=[Z,(DZ;]?, J*
B(E2;2; —07) [22(0) L]

=0,,2; 4, .
(2.27

If one considers boson commutation rules, i&5+2 and

RJ:

proton- and neuton-odd nuclei. The same single-particle va-
lence space was recently used for the study of the beta- and
double-beta decay feeding df%Pd in Ref.[44]. The BCS
occupation amplitudes and the QRPA eigenstates were calcu-
lated using as a residual two-body interaction @Genatrix
elements of the Bonn one-boson-exchange interaction, as
done in Ref[44]. Different channels of this interaction were
scaled by a constant as described in Ré&#].

As a first application we considered the two-level wave

Z5(0)= 1/\2, then one obtains for the above ratio thefunction (2.23. The energies of the eigenstateb, 2 4! |

value 2.

IIl. NUMERICAL APPLICATION

k=1,2 for 1%pPd are given in the third column of Table I. In
the last columns we give the components of their wave func-
tions. We notice that the members of the triplet,2; ,4;

A systematic analysis showed that the Ru-Pd regiofiave a large two-phonon amplitude. We stress the fact that
[33,34 and Cd isotope§35,36 contain many examples of the two-phonon triplet is split and its centroid is pushed
multiphonon structures. Probably the best, almost degenehigher than twice the energy of the' state, in agreement

ate, two-phonon triplet of states *(2*,4" is seen in

with the experimental situation. We remind that this happens

106,104 [34]. Our interest in studying the Pd isotopes is alsomainly because of the interaction between the one- and two-

connected with the possible beta and double-beta transitioronon components of the Hilbert space of the model and, to
to this triplet of states. Many papers were devoted to thesome extent, because of thelependence of the metric ma-

theoretical analysis of the Pd isotod83—43, most of them

at a phenomenological level.

trix. One can see that the agreement of the predicted energies
with the energies of the experimental levels, given in the

An important ingredient of our microscopic approach issecond column, is within 200 keV.
the single-particle basis. We describe it by using eigenvalues In the last column of Table Il we give the predicted ratios
of the spherical Woods-Saxon nuclear mean field. Theof the B(E2) values to the quantiti3(E2; 2, —0;]). The
single-particle wave functions are taken, however, to bepredicted ratios from the members of the two-phonon triplet
eigenstates of a spherical harmonic-oscillator with a suitablare less than the values predicted by the extreme boson limit
oscillator constant. This is a rather good approximation fordue to the Pauli effect, accounted for by the metric matrix.
bound states in the Pd isotopes. We have chosen for tHexcept for the first line of Table I, the agreement with the
106109 jsotopes 12 proton and 15 neutron single-particlexperimental values, given in the second column, is quite
levels around the Fermi surface. Some of the Woods-Saxosatisfactory.
energies have been shifted slightly to better reproduce the For the general wave functiof2.9) we solve the eigen-

TABLE II. Experimental ratiosR(E2) betweenB(E2) values
andB(E2;2; —07) for 1°Pd[34] (second columnand theR(E2)
values of the two-level modéthird column.

TABLE IV. Experimental ratioR(E2) betweernB(E2) values
andB(E2;2; —0;) for 1°%Pd[34] (second columnand calculated
ratios forN=5 (third column.

Ji—=Js R(E2)exp R(E2) Ji—=Js R(E2)exp R(E2)1,
0; —27 1.02 1.78 0, —27 1.02 1.87
25 —2; 0.93 1.23 2527 0.93 1.55
45 -2 1.69 1.80 4527 1.69 1.77
25 —0f 0.02 0.14 2507 0.02 0.13

034301-5



D. S. DELION AND J. SUHONEN PHYSICAL REVIEW G7, 034301 (2003

16 —————T—————71 ]
1.4 |- -
I (a) ]
1.2 | -
I ] =
[¢)]
= i | =
1.0_— § w
08 -
0.6-' PO T W I WO TR N R T RO SR ST N NN S N |-
0.2 0.4 0.6 0.8 1.0
E,. QRPA [MeV]
08 —mm—r—m—m——7—— ] 20 ———— 7
I | 15} .
06 | (b) - i ]
I ] > 1
D 1.0 [ —
- 1w ]
04 — | i
F E 0.5 |- -
A S W R S TR SR TR M S T 0.0
0'20.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0

E,. QRPA [MeV] E,. QRPA [MeV]

FIG. 2. (a) The lowest eigenvalues of the systétll) versus
the energy of the first QRPA;2phonon for the small single-particle
basis withN=5. The lowest two-quasiparticle configuration in the
2] state of the QRPA calculation isv{ds)? with an energy of
2.01 MeV. (b) The same as iifa), but for the large single-particle
basis and with the1ds,)? configuration energy of 2.73 MeV.

FIG. 1. (a) The effective charge parametgrversus the energy
of the first QRPA 2 phonon for the small single-particle basis with
N=5. (b) The same as ifg), but for the large single-particle basis.

value system of equation®.11) by using a standard tech-
nique[16]. The initial basis is not orthogonal and therefore
the metric matrix is nondiagonal. First we diagonalize thethat afterN=5, convergence in the energies of the low-lying
metric matrix. The eigenstates of the metric matrix allow usstates is achieved. In the third column we give the starting
to built a new orthonormal basis. The states corresponding tQRPA eigenvalues for those states with a large one-phonon
very small eigenvalues of the metric matrix are spurious angdomponent. The agreement with the experimental spectrum
should be eliminated. The resulting system of equations imf the second column is within 200 keV, except for the eigen-
the new basis has a standard Hermitian form. state @ . The accuracy for the two-phonon-like triplet is
We build the two-phonon basis by using a given amounicomparable with the result of the two-level model but, of
N of 2" and 4" QRPA eigenstates. The result of calculation course, here a host of other levels are described.
for N=1,...,5in °Pd is given in Table lll. We mention  To have a feel of the systematic behavior of our model,
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FIG. 3. (a) The ratio between the energies of the triplet centroid  F1G- 4. (&) The ratiosR, defined by Eq(2.27) versus the energy
and the eigenvalue ;2 versus the energy of the first QRPA' 2 of the first QRPA Z pho_non for the small smgl_e-partlcle _baS|s W_lth
phonon for the small single-particle basis with=5. (b) The same  N=5. (b) The same as ifg), but for the large single-particle basis.
as in(a), but for the large single-particle basis.

=42+ 4 W.u.[34]. The corresponding theoretidd(E2) can
we discuss next thé®Pd nucleus in terms of two basis sets. be brought to this value by defining the effective proton and
The first is asmall (toy) basis set consisting of three proton neutron charges using the effective-charge polarization pa-
and neutron orbitals in the immediate vicinity of the corre-rametery [45]. In Fig. 1 we display values of this parameter
sponding Fermi surfaces. The second is the one mentioness a function of the energy of the lowest Xtate of the
previously (12 proton and 15 neutron single-particle states QRPA calculation. Here Fig.(4) concerns the small basis
which we call here théarge basis set. The collectivity of the and Fig. 1b) the large basis. As can be seen from these
lowest 2" state can be seen both from its energy and itfigures, the collectivity of the 2 state increases when its
electric quadrupole decay strength to the Qround state. energy decreases, thus needing smaller and smaller effective
For 1%Pd the measured reduced quadrupole transition prokeharges to reproduce the experimeB4E2). For the small
ability from the 2 state to the ground state B(E2)ep  basis the lowest two-quasiparticle energy is at around 2 MeV
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TABLE V. Experimental energies in keV fo’®Pd[34] (second  ior as a function of the QRPA™ energy is more monoto-
column), the QRPA energieghird column), and calculated energies nous than for the large basis where all the rafyshave a
for different numbers of the QRPA"2and 4" eigenstates. maximum at some value of the*2energy. The abrupt
r E e E . E . E . E_ E_ changes in the ratioR, andR, for the_ ;mall basis and large
! exp TOQRPA PN=1 “N=2 TN=3 TN=4 ©N=5 2" energy come from the strong mixing of the one-phonon
47 1624 2179 2114 2024 2016 1996 1987 states with these two-phonon states at large energies of the

0; 1314 4358 2859 2819 3061 3066 two-phonon triplet. It is worth noting that for the large basis
25 1441 2245 2837 2061 2051 1923 1916 the ratios tend towards their experimental values, displayed
47 1048 1230 1164 1112 1087 1099 in Table IV, with the decreasing energy of the QRPA 2
0, 1053 1274 1235 1188 1296 1289 phonon.

25 931 1367 1317 1306 1299 1305 In Fig. 5@ we display eigenvalues of the metric matrix

2] 434 637 519 470 468 407 400 for the J=0 (squarey J=2 (starg, and J=4 (triangleg
states in the case of the large basis,Nor5 and at a real-
istic value of the energy of the QRPA"2phonon. For the

and for the |arge basis at around 2.7 Maﬁe more exact states Of the tWO-phOI’lon tl’lplet the diagonal matl’iX elements
values are given in the caption of Fig). 2t is also evident Of the metric matrix are between 1.84 and 1.93 and the off-

from Fig. 1 that for the small basis one needs bigger effectivéliagonal elements below 0.12. In Figlbp we display the
charges than for the large basis. magnitudes of the Hamiltonian matrix elements for the

In Fig. 2 we show the energies of thg Xtate and the =2 states for the above mentioned large basis and the real-
two-phonon triplet as functions of the energy of the first 2 iStic QRPA 2" energy. Here the squares are the diagonal
phonon of the QRPA. Both for the small bafi§g. )] and  Matrix elements and the circles are the maximum values of
the large basifFig. 2(b)] the energies of these states are verythe nond_lagonal elements. As can be seen, the magnitudes of
little perturbed for the QRPA 2 energies close to 1 MeV the off-diagonal elements are typically of the order of 0.2—
(energies to the very right in Fig.)2As the energy of the 0-3 MéV, much smaller than the diagonal ones, of the order

QRPA 2" state decreases, and thus its collectivity increase®f 3 MeV. In particular, for the two-phonon triplet states the
the two-phonon triplet splits more and more in energy andiagonal elements are between 2.53-2.57 MeV and the mag-
the energy of the 2 state goes faster to zero than the QRPAnltudes of the matrix elements connecting them to the 2
2* phonon energy. As a matter of fact, the first two-phonon2nd 4 one-phonon states between 0.2 and 0.3 MeV.
0* state collapses for very small values of the QRPA 2 The behawors of the metric matrix elements an_d Hamil-
energy. One can also see that the splitting of the triplet idonian matrix elements related to the two-phonon triplet have
more notable for the large basis. The development of th&een displayed in Fig. 6 as functions of the energy of the 2
relative energies of the ;2 and the two-phonon states is Phonon of the QRPA. The calculation has been performed
shown in Fig. 3 wherda) shows the ratioR between the for the large basis witlN=5. The displayed diagonal metric
centroid energy of the two-phonon triplet and the energy offhatrix elements for the two-phonon triplgfig. 6@a)] de-
the 2 state as a function of the QRPA' 2energy for the ~Crease slowly with the increasing collectivity of th¢ 2tate.
small basis. Figure (8) shows the same for the large basis. At the same time, the corresponding diagonal Hamiltonian
As seen from this figure the behavior of this ratio is qualita-Matrix element$Fig. 6(b)] decrease fast to less than half of
tively very different for the small and large bases: for thetheir initial value and the nondiagonal matrix elements con-
small basisR decreases and for the large basis it increaseBecting the 2 and 4 states with the 2, and 4, ,,, states,
with decreasing energyncreasing collectivity of the QRPA  respectively, increase their magnitydeg. 6(b)]. This means
2" state. The behavior dR in the large basis is along the that the repulsion between these one- and two-phonon states
lines of experiment where fot°Pd Rexp=2.27. increases considerably with increasing collectivity of tHe 2
In Fig. 4 we show the ratioR; of Eq. (2.27 for the small ~ state leading to a very low final energy for th¢ 2tate. In
basig[Fig. 4@] and the large bas[§ig. 4(b)] as functions of  addition, the strongest off-diagonal matrix elementsHi,
the QRPA 2 phonon energy. For the small basis the behav-of Eq. (2.11) are the ones od=0 angular momentum lead-

TABLE VI. Largest components of the wave functions f8fPd with N=5.

Vi Z,(37) Z,(33) Z5(2121); Z5(212;); Z5(2123); Z5(2141);
4y 0.851 0.143 -0.371 0.339
03 -0.781 0.840

23 -0.119 0.869 -0.122 0.268 0.269 -0.197
4y -0.184 0.753 0.248

0; 0.752

25 —0.304 0.154 0.679

27 0.933 0.213
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FIG. 6. (a) Values of the metric matrix elements for the two-
phonon states as functions of the energy of the first QRPA 2
phonon.(b) Values of the Hamiltoniar;, matrix elements for the
k > _ two-phonon states as functions of the energy of the first QRPA 2
=4 states, respectivelyb) The same as i@, but for the magni-  ohonon. The interaction matrix elements of the two-phonon states

tudes of the Hamiltonian matrix elemerftsr the Hamiltonian®;, it the first one-phonon state of the same angular momentum are
of Eq. (2.11] in the case ofl=2. The squares denote the magni- 45, given.

tudes of the diagonal matrix elements and the circles the maximum

magnitudes of the off-diagonal elements. wave functions of states iff®Pd. The members of the triplet
0,,2;,4; have a large (22;), component, comparable to

ing to the collapse of the 0 two-phonon state before the that of the two-level case. The eigenstatg IRas large two-

collapse of the 2 state, as clearly seen in Fig. 2. phonon components {2,), and (2 25)o. The corre-

The convergence of the energy spectrum '8fPd is  sponding results fot°®Pd are given in Table VII.

shown in Table V. As for'°Pd, convergence is achieved for ~ The ratios of theB(E2) values are described in Table IV

N=5. To have a deeper insight into the contents of the wavéor 1°Pd and in Table VIII for'®®d. We used in the calcu-

functions, we give in Table VI the main components of thelations the effective-charge polarization paramegter0.4 for

FIG. 5. (a) Eigenvalues of the metric matrix for the large single-
particle basis wittN=>5. A realistic value of the 2 state was used.
The squares, stars, and triangles correspond=t0, J=2, andJ
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TABLE VII. Largest components of the wave functions f§fPd with N=5.

Jr Z,(37) Z,(33) Z5(2127), Z5(212;), Z5(2123), Z5(2141),
4; 0.836 -0.179 0.151 -0.322 - +0.101 0.344
03 ~0519 1.019

2; ~0.167 0.838 -0.121 0.285 ~0.172
4y ~0.185 0.761 0.283 0.119 ~0.106
0; 0.752 ~0.156 ~0.150

2 -0315 0.151 0.678

2; 0.918 0.118 0.222 0.133 ~0.102

106p¢ andy = 0.5 for 19%d in order to reproduce the absolute ered Pd isotopes have a moderate quadrupole deformation.
value of theB(E2;2; —0"). One can see that, except the Therefore, proper description of a deformed system would be

first transition, these ratios satisfactorily describe the experiD€cessary to reproduce the very fine details of the orderings
mental situation. of the triplet of the two-phonon-like states.
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with a given angular momentum and parity. The equations of

motion for these states were derived using the QRPA equa- APPENDIX

tions from the previous step. It turned out that the Hamil- .

tonian matrix elements connecting the two-phonon compo- In the following we use the exact commutators between
nents are proportional to the metric matrix. The connectiofW0 QRPA phonons:

between the one- and two-phonon components is given by

the H®Y part of the residual Hamiltonian in its quasiparticle [Qaay 'Q;aw]

representation. Electromagnetic transitions between the two-

phonon states are described in terms of the same metric ma-
trix.

Our calculation gives an energy-split triplet of low-lying
0", 2%, 4" states, due to interaction between the one- and o -
two-phonon components. Analysis of the amplitude content X{X(j1jz2;a0)X(j1i1;a @ ){jimy;jmylaw)
showed that, indeed, these states have a two-phonon nature.

The centroid of the tripled is pushed up, in agreement with . .. = e,
the experimental situation. The experimental energy levels X(Jimg;jamalen) =Y (jajz;80) Y (j1js;a"a’)
andB(E2) values are quite well reproduced, except the en- ; i _ S _

ergy of the @ state and the transition from thg Gtate. The XCamyjomal @) iams sjamala )
energy of the 4 two-phonon-like state is lower than the x(_)am’ww’}, (A1)
energy of the 2 two-phonon-like state, as predicted by the
two-level model, in contrast to the experiment. We think that

th drawback ted with the fact that th w order to derive an expression of the metric matrix. The
ese drawbacks are connected wi € fact that the consigg,, amplitudes are defined in terms of the amplitudes of the

restricted basis as follows:

;
= aa O Oy + 2 2 &1 e @jm,

=, ,
Jal2ly Mpmamy

TABLE VIIl. Experimental ratiosR(E2) betweenB(E2) val-
ues andB(E2;2; —07) for 1°%d[34] (second columnand calcu-

lated ratios fotN=5 (third column. XA(j1iz2:a0a2)
Ji—J; R(Ez)exp R(E2) _ XT(J 1J2;a2a2)AJ1j2’ 11=J2 (AZ)
= T i1tip—aptl i<
0 —2f 1.04 1.93 Xial1iagan) Ay (=)H2me2 8 >,
25 —2f 1.02 1.42
4; 27 1.48 1.77 To this purpose we use the unrestricted representation of the
2507 0.01 0.15 QRPA phonon. The result contains, in addition to the diago-

nal terms, a correction expressing the Pauli principle, i.e.,
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The second term containing the product of fdtamplitudes
is very small and can be safely neglected. In this way the
metric matrix has a TDA form used in RéfL6].

The residual interaction, connecting the one-phonon with
the two-phonon components, has the following form in the
quasiparticle representation:

HE= 2 2 2 VRN () (-)he e

Nomp 7 ijK
=D > Aijklayasb,ByiapasbiBl), (A3)
T 2renale e x[(afa))yu (8@, u, T HCl. (A5)
where the above matri& . is given by Here we have dropped the isospin indices except under the
N L, summation sign.
A(ijkl;aza502825a5a5b,85) The commutator giving two phonon-creation operators is
. . given by
I I az
. a (31) At
= aZBZaéBé k I BZ [Hl ’Qa2a4,u4]
ay B;
— _ > C(d2720272aaza4)(Qd ,},chyz)a4,lt4
X{XA(1];a202) X (Kl 85) d2736272
XX (ik;apap)X,(]1:b385) — V(1] azas) (A6)
_ — = where the coefficient can be found by a straightforward cal-
XY (KL b2B2) Y (ik;aza5) Y A(j150285)} (A4)  culation to be as follows:
|
, XAmnazay) A~
C(dz?’zczyz;az%):; > & uill)(ﬂ\z)E —{5«@2)\272[)(7(']?d27\2)[XT(>\2kCY4n;m72i02)5|m
2 T mn

— (=)™ ax (N okagmiNy2;C2) Sin]+ (=)' TKR2Y (1] 5do\ ) [X,(A ol @an;my2;iC2) S

— (=)™ k@ (Nl aMiny;Ca) Snl1+ N 27272 (

X[(_)HmXT( Yol agm;ny;;dy) 8in—

following shorthand notations

=) X (yol agn;mys;dy) Sl — (—
X[(=) ™, (vl agminys;dy) Ojnt+(— PR (ol agn;mys ;d5) Sjm]1}-

We dropped, as usual, the isospin indices except under the summation sign and in the amplitudes. We also introduced the

—)72[(— )Ry (IKij ;N y2:C0)
)2~y (1Kji;Npy2:Co)
(A7)

X,(NoKaan;my2:Co) = WA Jkargn; myz) X, (Kn;Co ),

yA(IKij ;N 2y2;C2) =W(IKij ;N 272) Y (jK; C2y2). (A8)

Here W(abcdef) denotes the Racah coefficient. In deriving E47) we neglected the’Y products, because one has
|Y/X|=<0.2. Our calculations showed that the contribution of the last lines contayniegns in Eq.(A7) is small.
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