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Gersch-Rodriguez-Smith computation of deep inelastic electron scattering ofiHe
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We compute cross sections for inclusive scattering of high-energy electrdtt$esprbased on the two lowest
orders of the Gersch-Rodriguez-Smith series. The required one- and two-particle density matrices are obtained
from nonrelativistic*He wave functions using realistic models for the nucleon-nucleon and three-nucleon
interaction. The computed results fBr=3.6 GeV agree well with the NE3 SLAC-Virginia data.
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I. INTRODUCTION parison with theE=3.6 GeV SLAC-Virginia datd13].
The other ingredient, namely, thHtHe spectral function

It is appealing to describe the total nuclear structure func(p, &), is rather difficult to compute and only a few direct
tion (SF) in terms of the SF of a nucleon, linking the two calculations are reportgd4,15. Below we shall adopt the
through a representative property of the medium. It isreasonable alternative that has been developed by Ciofi degli
broadly accepted that the above link is represented by the Sktti and Simula[6]. The importance of using realistic spec-
of a nucleus composed of point-nucleons, the internal structal functions when comparing with data is well known and it
ture of which resides in the SF of a nucleon. Such a prograrhas been also remarked in REES].
is usually performed within one of the following two ap- At this point we mention that for years the IS and GRS
proaches. In the first, one perturbatively expands the SF adpproaches have been considered as being distinct and even
the point-nucleon system in the residual interaction betweeimcompatible. Only recently has their equivalence been dem-
a nucleon struck by the virtual photon and the remainingonstrated, provided both series are expanded to the same
spectator nucleus, thus generating the impulse séfggor  order in the same parametgt,8,9. Following the derived
the SF. In the widely used lowest order impulse approximaprescription to link the two approaches, one can perform an
tion, this residual interaction is first neglected. One then eiinteresting numerical comparison.
ther computes higher order final state interactiesl) terms The GRS and IS theories are not the only tools which
(see, for instance, RefEl,2]), or models theni3—6). have been used to compute nuclear SF's. We mention in

An alternative approach is based on a relativistic generparticular the ingenious method of Efros and co-workers,
alization of the Gersch-Rodriguez-Smi{tBRS expansion of  which has been applied tbHe [15,17]. Regrettably, it ap-
the SF of a nucleus of point particles in inverse powers of thgpears not feasible to extend that method to high energies.
three-momentum transfég| [7—9]. Both theories have been ~ The main goals of this paper are the followir@. The
applied to cross sections for inclusive scattering of highirst study of the leading two terms in the GRS series applied
energy leptons from various nuclear targ8s-6,10,11. to “He and a comparison of the results with the good quality

When applied to high-energy inclusive scattering, one*He SLAC-Virginia data.(ii) To establish for the case at
usually limits a GRS calculation to the two lowest orderhand the relative importance of FSI versus the lowest order
terms. Their determination requires knowledge of one- anderm, in particular in the low-energy loss regiofiii) To
two-particle density matrices, which are not diagonal in thepresent a first comparison between the GRS and IS expan-
coordinate of the struck nucleofl’, and of the spectral sions, cut at the same order injd/for a real system, in
function. The nondiagonal one-body density matrix is relateccontrast to what has been done in the past for mogsels,
to the single-nucleon momentum distributiorfp) and is  for instance, Ref[19]).
usually extracted from alternative experimental sources, oris We also present in the paper predictions for the foreseen
computed from theoretical models. There generally is no diE=6 GeV experiment at JLab ofHe [18]. Since the accu-
rect information on the half-diagonal, two-particle densityracy of the underlying theorjfembodied in the convolution
matrices for finite systems and one relies on parametrizationgtegral given in Eq(2.2)] grows with the squared momen-
[7,12]. In those, nuclear recoil is usually neglected, therebytum transferQ?, a comparison of theoretical results and data
limiting applications to targets with=12. in the deep inelastic region may enable the extraction of the

In the following, we exploit accurately computed nonrel- neutron structure function at tho§?.
ativistic (NR) wave functions for light nuclei, using a num-  The present paper is organized as follows. In Sec. Il, we
ber of modern realistic nucleon-nucledhiN) and three- recall the GRS approach, emphasizing the two main ingredi-
nucleon (3N) interactions. Those wave functions are ents of our calculations, namely, the SF of a target composed
Galilean invariant and enable a realistic GRS calculation obf point particles and the SF of the free nucleons. We also
inclusive scattering on those nuclei. As a first application, wediscuss there the computation of the above density matrices.
choose*He and for that target we shall report below a com-In Sec. Ill, we compare our computed results for cross sec-
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tions with the Virginia-SLAC datd13]. In the last section,
we present our conclusions.

Il. TOTAL NUCLEAR STRUCTURE FUNCTIONS

The cross section per nucleon for inclusive scattering o

high-energy electrons from a nucleus wahmucleons reads

2

d?o.A(E; 0,0)IA 2 XM
M O'M(E;G,V){?FQ(X,QZ)

dQdv M

+tarf( 9/2)F{(x,Q?) |, (2.1

whereM is the nucleon mass;), is the Mott cross sectiolf
is the beam energyj is the laboratory scattering angle, and

is the energy loss imparted onto the target. The above nuclear

structure functions per nucleoFlA(x Q?) contain the es-

sence of unpolarized electron scattering from randomly ori
ented targets. Those SF’'s depend on the squared four m ?. NI

mentum transfer— g>=Q?=|g|2—»? and on the Bjorken

variablex=Q?/2M v with range Gsx<A. For given beam
energyE, (6,v) and (x,Q?) are sets of alternative kinematic
variables.

Total nuclear structure functions per nucleon may, in
semiheuristic fashion, be expressed as foll¢2&—22:

FAX.Q?) = f 2 PNAGZ,QY)
Q2
xZ Cu —;z) ( Q2. (2.2

In the equation abové”N is the SF of a nucleus composed
of point particles, and={\ is the averaged nucleon SF,

f
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and above some critic@ﬁ, which presumably can be esti-
mated using QCD. A previous comparison of computed re-
sults and data for mediur-targets produced an empirical
estimateQ?=Q2~2.0-2.5 GeV [11].
Each of the SFFP'" in Eq. (2.2) has both nucleon-elastic
(NE) and nucleon-inelastigNIl) parts, thusF}=F}"NE
+FY"N' with N=p,n. The total nuclear structure functions,
Eq. (2 2), and the total cross section per nucleon may there-
fore be expressed as a sum over contributions coming from
the NE and NI parts of nucleon SF. In particular, the NE part
F'"NE is the well-known combination of static electromag-
netic form factors and contributes primarily around the re-
gion of the quasi-elastic pedlQEP), x~1. For the inelastic
partsFi"N' we have taken

k=1,2,
(2.9

FrNi(x,Q2)~FEN(x,Q2) — FpN(x,Q2),

where Fd Nl(x,Q?) are the deuteron SF’s per nucleon. For
(x, QZ) andF¢"N'(x,Q?) we employ values interpolated
between the data of RdR5], whereas for"N'(x,Q?) and
FIN(x,Q?) we use the parametrizations of REZ6]. Later

on one would like to use more realistic neutron SF, for in-
Stance by using Eq2.2) in the inverse sense, namely, to
extractF“ NI employing high-quality data oR”, F? and the
computedfp’\"A (for a first attempt, see Reff27)).

A. The GRS series

We now focus orfPNA in Eq. (2.2), the SF for a nucleus
of point particles, which has to be computed. Following Ref.
[10] one writes

e

o ¢(ld.ye),

fPN‘A(X,QZ)Z( )
Q2 fixed

weighted by the number of protons and neutrons in the

nucleusA(Z,N)

k=1,2.
(2.3

z N
FIY(x,Q%) = 2 FR(x. Q) + 1 Fix.Q?),

We considelFP (F") to be the free protofneutron SF. One

may then interpret the nuclear SF per nucleon given by Eq. Yc= YG ya| 1
(2.2) as those nucleon SF’s modified by the medium, brought

about byfPNA,
The coefficient function<C,; account for the mixing of
the nucleon structure functions in the expresdi2r2) [23].
We retain in this paper only the dominant coefficient
Q2
C22 X

1
~[1=p+plz)?=5p(1-p)(1-1i2)%,

p=[1+Q?%4M?x?]"1. (2.4
Equation(2.4) is a better approximation fo€,, than previ-
ously used22].

Equation (2.2 is valid for x=0.15-0.20, below which
pionic and antiscreening effects become of importdreeg

lal=QV1+(Q/2Mx)?,

where¢(|q|,y) is the reduced response in terms of a relativ-
istic scaling variablg 8]

(2.6

L E+O(LA'Y |, A'=A-1

2A" |q? ’
oQ_Mv
Yo~ qr &
(A)

f (1—V_X (27)

and(A) some average nucleon separation energy. We shall
retain the above &' correction in the scaling variablgg
which, as Eq.2.7) shows, is simply related to the Bjorken
variablex. In the GRS approach the reduced response may,
for smoothNN interactions, be expanded in a series of in-
verse powers ofq| [7,9]. Explicitly
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M n o0
#(ldl.yo)=dolld.yo) + 2 (H) bul¥e) (28 ] I TY X ONCEE
n= 47 Jly

The lowest order term is given by Terms withn=1 in Eq. (2.8) describe FSI corrections to

q . the asymptotic limit as a series in|dJ. It is easier to give
LEJ Mdgp(p,g) those in terms of their Fourier transforg,(s), namely
477 Jo

)

do(ldl.yg®) = J .
Iyl

s dpp (€ oy | "Lty (216

0 n n . .
o [ 22 apip

0 4xwcJE,
2.9 Each ¢,(s)=¢,(s;[V]) is a functional of the bare interac-
' tion V, for instance,

with P(p,€) the standard single-hole spectral function. The

energy argument i€=E—A, with E the removal energy M~ s :f dr jdr P PoTr— SO i ¥a(b.Z'S
and A, the (p,n averageyl minimal separation energgfor |al 1(9) 1] drapa(r,f2i1 = 8G, 1) xg(bZiS) ],

“He Ay=~20.2 MeV). Aboveyéo is the scaling variable give (2.179
in Eq.(2.7) with (A)=A,. The integration limits in E¢(2.9 ~ ~ ~
are q ( 7) < > 0 g (K ) Xq(b,z;s):Xg]l)(b72;s)+X512)(b’Z;s)’ (217b
+ - M (s
EM(yG,p,Iql)zw. (2.10 Xgl’(b,z;s)z—Hfodawb,z—o), (2.179
In actual calculations the spectral function has been written M F
as in Ref[28], Y2(b,z;s)=—=5sV(b,z—s)= —s—xP(b,z;s),
a lal s
P(p,E)=No(P)8(E) + Py(p,E), (219 2179

where no(p) is the partial momentum distribution due to Whereb (2 is the component of the vectorr, —r, perpen-

intermediate states of one nucleon and fhel spectator dicular(paralle) to theq direction, andp, is the semidiago-
system in its ground state. Contributions from continuumn@ two-particle density matrix. Equatioit.17 define two

states of that system are summed®y{p,£). As stated in the  parts of the off-shell eikonal phaie4 which are related, and
Introduction, that part of the spectral function féHe has thus
been taken to bePy(p,&)=Mp)PT**p,&), where

PT%(p,£) has been provided to us by Ciofi degli Af6]. Yu(b,2i5) = ( 1-s2 YD(b,z,5) 2.18
. . . . q ’ ) &S q 1 1 - .
The normalization factoV{p) is fixed by
o One frequently deals with interactiofswhich have a strong
f d&P1(p,E)=n(p) —No(p), (212 short-range repulsiofor produce for other reasons a diffrac-

e tive elastic amplitudeand it is then of advantage to perform

where the quantitiea(p), the total momentum distribution, & Summation over a ladder of bare interactiahsThe re-

andn,(p) have been calculated using the NR wave functionglacément V—Ve=t,, produces a well-behaved,
as will be explained in Sec. Il B, g-dependent, off-shelt matrix as an effective interaction,

We have also tested the following simple two-state ap\Which in coordinate space is proportional to the off-shell
proximation for the spectral functio28,17: profile functionT” [10]. For the pari ), generated by ",

one has
P(p,E)~no(p)8(&) +[N(p)—no(p)]S(E—(A)+Ay), _ B _
ix{"(b,z;s)—T{P(bz;s)=exdix{P(bz;s)] -1
(A)=~50 MeV. (2.13 (2.193

Substitution into Eq(2.9) produces dq|-independent lowest ~0(2)6(s— Z)Fgl)(b). (2.19H
order contribution,
The approximation Eq2.19b has been tested in R¢R29].
Joc d - J"yé(}ld ) Its application permits the exploitation of a standard param-
w ppnp 3] PP (P |- etrization of the on-shell profil&{"(b) in terms of elastic
(2.14 NN scattering data, as are;",7,Q}, which are, respec-
tively, the total cross section, the ratio of the real to imagi-
Since in the relevarg regionng~n, an accurate approxima- nary part of the forward elastic amplitude, and the width of
tion of Eq.(2.14) reads the diffractive amplitude. Explicitly,

1
(DA Aoy
b0 (YGayGO)—ArWz{
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TABLE |. Selection of cross section ratios He/C, C/Fe. For given angle we gi@8 and the ratios.
Former are from Refl13], latter from Ref[11].

6=20° §=25° 6=30°
x 0? He/C x 0? He/C x 0? He/C
2.69 144 0.64 2.10 2.07 0.64 1.37 2.51 0.66
1.40 1.34 0.70 1.23 1.88 0.69 1.08 2.35 1.17
0.70 1.18 0.88 1.37 2.51 0.96 0.81 2.12 1.03
6=15° 6=30°
x 0? C/Fe x 0? C/Fe
2.49 1.05 0.82 1.95 3.38 0.70
1.02 0.97 1.18 1.37 3.09 098
0.65 091 0.97 1.01 2.79 1.04
0.43 0.83 1.00 0.72 243 1.00

(2.23. Moreover, suggested parametrizatig@sl?] do not
(2.20  account for nucleon recoil, which is only justified fax
=12.

One of the implications of E¢2.2) is a weakA depen-
dence of the SF for point-nucleon nuclei and of the averaged
nucleon SH10]. This entails predicted inclusive cross sec-
tions per nucleon to be practically independentfofSup-
porting evidence comes from experimental ratios of cross
sections per nucleon for different targets at identical kine-
f(l)(blz;s) (2.21a matical conditions[10,11,3Q. Definitely larger deviations

q from smoothA dependence are expected, if one of the targets
is a light nucleus withA<6. This is evident from Table |

(0)72
[Qq ] e_[bQ((qO)]z/4
A '

1
T totq
~§Uq°(1 ITq)

(1)
r{Y(b)
There is no simple way to generalize EQ.18 to the
total off-shell phasg. Yet, as in Ref[10] we shall assume
that Eq.(2.18) is also approximately valid for the total off-
shell profile function

o~ ~ J
ixq(b,z;s)—1'4(b,z;8)~ 1—s£

d o where we entered some C/Fe ratios from JLab fféthand
~|1=s55|0(2)0(s—2)I'q"(b). for He/C from the older NE3 data in Ref13].
(2.21h For the above reasons, we did not include in the past a

GRS analysis of inclusive scattering on the lightest targets.
After substitution of the above expression in Eg.17), the  In the following we exploit the possibility to compute a pre-

leading FSI contribution taj(q,s) turns into the following cis_e NR _nuclear grour_1d state_ wave functibg of light nu-
q-dependent resuftLO]: clei for given nuclear interactioN. Those enable a calcula-

tion of n(p),ng(p) and p,, which enter the components

M _ M _ 5 (2.11), (2.12, and(2.23 of the nuclear SF.
H¢>1(S:[V])—>H%(s,[t]):Gl(IQI,S)
& &@ - B. The density matrices
= + . . . .
1'(d.9)+Cdl.s), (222 Various methods permit nowadays an accurate calculation
Where of the “He ground state wave functigB82]. We exploit here
the correlated hyperspherical harmof@HH) function tech-
nique which has been developed by the Pisa group. The spa-
(”;(11)(|q|,s)%_f drlf dropo(ry,foir1—S0,ro) 6(2) tial configuration of the system is described in terms of a
given choice of the Jacobi vectoés, &, &. In the hyper-
X 0(s—2)T'V(b) (2.233 spherical framework we use as new variables the hyperradius
q ' : )
p, defined by
~ ~ 3
G(lz)(|q|,s)~J’ drlJ drypo(ry,ry;r;—50,r2)s60(2) p2:i§1 §i2, (2.24

X 8(s—2)T{M(b). (2.239

Previous analyses dealt with targets wAkr12. For those and the sef)={&;,&>,€3,¢2,¢3}. The latter includes the
there do not exist computations from first principles for polar angles;= (6, ,¢;) of each Jacobi vector and additional
single-nucleon momentum distributiomg(p), n(p), and  hyperspherical angles,, ¢3. We then write for the ground
density matricep,, as required in Eqsi2.11), (2.12, and  state wave functio,,
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TABLE II. Binding energies in MeV of*He calculated with the  with the CHH method is summarized in Table I, where in
CHH method using the AV18 and AV18/UIX, and the older AV14 Eg. (2.25 up to N;,;=~200 functions have been uséthe
and AV14/UVIIl, Hamiltonian models. Also listed are the corre- explicit CHH states included in the expansion are discussed
sponding “exact” GFMC result$37] as well as the experimental i, Ref. [34)).

value. Calculated binding energies for the AV18 or AVIS8UR
Hamiltonians are within 1% of the “exact” Green'’s function

Model CHH GFMC Monte Carlo(GFMC) results[37] for corresponding interac-

AV1S 24.0 24.11) tions. Somewhat less satisfactory agreement between the

CHH and GFMC results for the AV14UR model, since this

ﬁxii/UIX 223'_2 Zzi;g interaction is more repulsive at shor_t distances than the other
AV14/UVIT 275 28.32) two. Fpr all we.checked thatl our final results fqr the deep
Expt. 8.3 inelastic scattering cross sections depend only slightly on the
value ofN;y¢, onceN,y=200.
The thus constructed ground state wave function, readily
Niot [, (p) gives the corresponding fOUI" b9dy density matrices, in par-
(D4=n§_:l f;)f AT (V1227 13T 14,0 23,T 24, 30) Va( )} ticular, the one nondiagonal ifl’,

(2.29 Pa(ry,r2,13,14;71,12,13,T4)

where A is an antisymmetrizer anil, (1) are the four-body =D ,(rqy,rp,r3,1)Pa(r1,ro,r3,rs). (2.28
hyperspherical harmoniHH) functions[33]. ChoosingF,
=1, Eq.(2.25 generates an uncorrelated HH expansion forSuccessive integrations over the diagonal coordinates 3,4,
the “He ground state wave function. For it, the rate of con-and eventually over coordinate 2, then furnish and p,
vergence is extremely slow when tHéN interaction is nondiagonal in’1’. The total momentum distribution is the
strongly repulsive at small distances. One accounts for th€ourier transform op;.
latter property by multiplying every HH function in the ex-  The partial momentum distributiomy(p) is obtained
pansion with a suitably chosen correlation facfy, ulti-  from the overlap of®, and the ¢H, 3He averagedthree-
mately leading to the CHH expansion. The latter much im-nucleon ground state wave functidr;, namely,
proves the description of the target wave function for small
internucleon distances, and a much smaller number of basis no(p)=|a(p)|?,
functions is required to get convergence.
In the case of‘He, the correlation factors have been cho- a(p)=(®3(1,2,3 x474ljo(PR123 A P4(1,2,3,4), (2.29
sen to be of the Jastrow forf34]
where is the spin(isospin state of particle 4j, is
Fn=Tn(r12)9n(r 13)9n(r 14)9n(T 23 9n(24)Gn(V 34, the ze?(g—cgr%gr Besselpfur(mtiorl?, r)aﬁngﬂ,is 51e distar:((:)e of
(2.26 particle 4 with respect to the center of mass of the other
three. The ground state wave functidphg; of the three-
nucleon system has been obtained with the same Hamil-
tonian model used to generate,, and again by application
of the CHH techniqué35]. In Eq. (2.29, ®; and y,7, are
coupled to give a state with vanishing total angular momen-
tum and isospin.
(8, 4/H—E|D,)=0, (2.27 Equations2.23 for G invite to expresg, in terms of the
variablesr=r;—r, and R=(r;+r,)/2 and then to perform
one is led to a set of hyper-radial equations for the functionghe R integration
u, in the variablep which, after discretization, is converted
into a generalized eigenvalue problem and are solved by .
standard numerical techniquggs]. One thus determines the B(b,Z;S)IJ dRpy(ry,r2;r1—=5q,r2). (2.30
hyperradial functionsi,(p) in Eqg.(2.25 and the bound state
energyE. We shall present below results based (@hthe  The result is substituted into Eq&.23 and subsequently
Argonne V18NN potential[36] (the AV18 mode), (2) the integrated oveb andz.
Argonne V18NN potential supplemented by the Urbana IX
three-nucleon potentidl37] (the AV18UR mode), (3) the
Argonne V14NN potential[38] plus the Urbana VIII three-
nucleon potential39] (the AV14UR model. In Ref.[3], one may find a detailed account of the lowest
The two models, which contain a three-nucleon interacorder plane wave impluse approximatiéRWIA) calcula-
tion, provide a*He binding energy rather close to the experi- tions as part of the IS series. To it one should perturbatively
mental one, whereas the AV18 underbinds by about 4 MeVadd FSI's due to the interaction of the knocked-out nucleon
The present status of thtéHe binding energy calculations and the spectator core.

i.e., products of one-dimensional functiofjsandg, which
are solutions of &N Schralinger-like equatior{for details,
see Ref[34]).

Using the Rayleigh-Ritz variational principle for varying
functionsu, in Eq. (2.29),

C. An effective IS series

034003-5
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In the Introduction we recalled a recent prd®£2] that 10° T I T I T
the GRS and IS, both evaluated to or@¥1//q|?), produce
the same result. The lowest order is given by

2ld+yo dpp EMdEP(p ) 10

¢0(|Q|:yo):f

Iyol 472 Jo

yodp p (Ey
+6(Yo) f — f_ dEP(p,&), (23D
0 4m7°JE

where in this casg3,9]

EM= M2+ (yo+|q)2— \MZ+(p=[d)2.  (2.32

Above, yy is the IS scaling variable defined p$,9]

(1/A) d°c/dQdv [ub/ster GeV]
)

Yo=Yo(1+ &),

yg:_|Q|+\/(V_Ao)(V_Ao"'ZM), 10°
1| 1+v/M

50~——, — +O(1/A'?). (2.33
2A" [ 1+]d/yq 10-60

v [GeV]

The IS first order is then obtained from the prescription that

puts 6(12)=0 in Eqg. (2.22 and simultaneously replaces the  FIG. 1. Predicted cross sections for inclusive scattering of 3.595
GRS scaling variableyé, Eq. (2.7), by y, in Eg. (2.16. GeV electrons from*He as function of the energy lossand for
Finally, fPNA(x,Q?) is now calculated using agaip, in four_value_s of th(_e sgattering_anglesn the (_0+ 1_)th order approxi-
place ofyé in Eq. (2.6). Those changes have been shown tomation (thick solid lines. Thln dashedsolid) lines show the NE
generate the IS series to ordefql[2]. Actual applications (N!) part of the cross sections. Data are from Re8].
will be given in the following section.
of Q? close to the appropriate lowex£2) and upper X
IIl. RESULTS =0.1) ends of the theoretical curves shown in Fig. 1. We

] ) ) ] _also show thev,Q? values corresponding to the position of
In this section, we present numerical results for inclusiveihe QEP ax=1 .

cross sections ofiHe based on Eq$2.1) and(2.2). Unless Let us first focus on the NE part of the cross sectitin
stated differe.ntly, thqse results use density matric_es base_d Qfashed lines which contributes primarily around the QEP.
the AV1$UR interaction and the full spectral function as d!s-AS can be seen from the figure, the NE parts well describe
cussed in Sec. Il A. In the GRS'app.roach, the cross sectionge QEP, in particular at lowQ?2. The data ford=16° show
have_been computed by approximating the reduced Structute -jear maximum and an adjacent minimum which get
function as follows: fuzzier and ultimately disappear for increasifig@r Q2. The
same maximum occurs in the inclusive cross sections on
¢(|Q|,YG)H¢0(|Q|’yé°)’ Oth order, 3.1 deuterong40], but is absent for targets with=12 [13,31).

N Ag Aoy — Ao
¢(ldl.ye) ¢O(|q|'yG )+Gl(|q|'yG) ¢01(|q|'yG ), TABLE lIl. Values of v (in GeV) and Q? (in Ge\?) for E

=3.6 GeV[13]. The selected values afcorrespond approximately
to the QEP and the lower and upper ends of the curves shown in

Fig. 1

(0+1)th order, (3.2

where g, is given by Eq.(2.9) andG; is the inverse Fourier
transform of the functions given in E¢2.23. The corre-

- ; . . ; Lower end QEP Upper end
sponding IS expressions are obtained as discussed in Sec. x=2 x=1 x=01
IIC. 2 2 T

i ) N 0 v Q v Q v Q

In Fig. 1, we display the SLAC-Virginia NE3 cross sec-

tion data[13] for E=3.595 GeV, scattering anglés=16°,  16° 0.25 0.93 0.46 0.87 2.00 0.44
20°, 25°, 30° and varying energy logs and also our nu- 20° 0.37 1.40 0.68 1.27 2.50 0.48
merical results obtained with the above reduced responsgse 0.55 2.06 0.95 1.79 2.80 0.54
¢o1- Table Il shows the ranges of the kinematical variableszge 0.74 2.76 1.22 2.29 3.00 0.58
x,v,Q2. For all measured scattering angles, and in additionse 1.23 4.99 1.90 3.58 3.31 0.62

for §=45°, we entered there values of the energy wssd
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This structure is the result of the competition between the TABLE IV. Values of v (in GeV) and Q? (in Ge\?) for E
NE and the NI parts of the cross section. For decrea@ifig =6.0 GeV and the values df of the proposed Jefferson Lab ex-
the NE part around the QER=1 grows relative to the, periment. The selected valuesx€orrespond approximately_to t_he
usually dominant, NI part. For the smalle@? in the data, QEP and the lower and upper ends of the curves shown in Fig. 2.
the NE part beyond the QEP stands out untilXex1 the NI
one overtakes. It is the maximum value f6NA(x,Q?) (for
x~1) which sets the magnitude of the QEP. For a gi@&n
that peak value decreases wihit is largest for the deuteron

Lower end QEP Upper end
x=2 x=1 x=0.1
v Q? v Q? v Q?

and “He and then it is almost independent Arfor A=12, 23° 1.21 4.56 2.02 3.80 5.01 0.94
reflecting the smearing of the momentum distribution due t®0° 1.80 6.75 2.77 5.20 5.37 1.01
the Fermi motion. For examplé”NA(x=1,Q?) for the deu-  45° 290 1090 391 734 570 1.07
teron and*He is ~5.5 and 2.2 times, respectively, larger 60° 3.69 13.86 4.57 8.58 5.82 1.09

than for nuclei withA=12. It causes the QEP for equal
kinematic conditions to be most prominent for the lightest _ _ . _ _ A
nuclei. ally sizable in particular in the low-region[3] wherey° is

We already mentioned that E(R.2) (for the NI par} is  negative and large in absolute value. However, in the kine-
estimated to be valid fox=0.2 and above some critical Matical region of the NE3 experiment, the valuesEy
Q2~2.0-2.5 GeV [10,11]. As Table Ill shows, that ap- €ntering Eq(2.9) are found to be rather large and then
proximate critical value is actually never reached for &y Ey "
=16°,20° data point, which renders those data not really J dSP(p,S)%f d&P(p,E)=n(p). (3.3
suitable for a test of the theory. For the same reason we 0 0
excluded from our analysis NE3 data at lower energies and
the same is the case for old, near-elastic, H@fhdata on  As aresult, thep, calculated using Eq2.9) or (2.19 nearly
“He [41]. For both angles, the convolution formula predicts coincide. For example, foE=3.595 GeV, §=30°, andv
too large NI parts around the QEP, resulting in an overpre=0.7 GeV,|q|/v~3 andE,, is large for all the values gf.
diction of the data in that region. Fat=30°, on the other For the same reason we expect that the predicted cross sec-
hand,Q%=Q? and, in fact, comparison of data and computedtions do not much depend on the parametrization chosen for
results shows that there is good agreement for all but théhe spectral function, in particular, notin the lanregion. In
smallest energy loss values. Since cross sections there halftt region they are rather sensitive to the tail of the momen-
fallen by orders of magnitude, one expects sensitivity to
small dynamical details. For example, without the inclusion L L L
in Eq. (2.2) of the mixing factorC,,, Eq. (2.4), the agree-
ment would be of definitely lower qualitisee also beloyv

With respect to the misfit for low angles arouréd 1, the
use of nucleon SF’s averaged over resonances may be the
caus€[42]. In fact, nucleon resonances influence the imme-
diate region aroundd=1, and this effect is expected to de-
crease with increasin@?.

A more stringent test for the theory would be provided by
data at higher beam energies with, in general, higRér
Unfortunately, the recent 4-GeV experiments at JLab for
various targets did not contaifHe [31], but a recent JLab
proposal includes that target in a 6-GeV run with scattering
angles#=15°, 23°, 30°, 45°, and 6(°L8]. The kinematical
region explored by that experiment covers<0x<1.0 and
1<Q?<8.0 GeV? (Table IV) and predictions for the four
largest scattering angles can be found in Fig. 2. Incidentally,
we checked that foE=6 GeV the effect ofC,, is practi-
cally negligible due taQ?, which grows with beam enerdy.

Next we discuss the effect of the different approximations
for ¢ presented in Sec. Il. The cross sections calculated
using the approximation§2.14) and (2.15 for ¢, almost
overlap. Moreover, they are rather similar to the ones com-
puted using the spectral function, E@.9), except in the FIG. 2. Predicted cross sections for inclusive scattering of 6.0
low-v region. There, the use of the “full” model slightly GeV electrons fron*He as function of the energy lossand for
reduces the cross sections. four values of the scattering anglésn the (0+ 1)th-order approxi-

This result deserves some comment. The differences benation (thick solid lines. Thin dashedsolid) lines show the NE
tween the two expressions, Ed2.9) and(2.15 are gener-  (NI) part of the cross sections.

(1/A)d°s/dQav [ubister GeV]

v [GeV]
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10 — T " T 1 — T " T 1
(a) E=3.6 GeV 6=30" (b) E=3.6 GeV 8=45"
S 10%F
D —
o &N
—_ _3 | Q‘,
g 10 <
= 2
.g 10 g
3 . e
© S ©
Ny 10 o
< i
= £
= 10%F
-7 2
10 0
v [GeV] v [GeV]
FIG. 3. (a) Contributions to the cross section foE 0.5

=3.595 GeV,0=30° from the NE(dashesand the NI(solid lineg

parts of the nucleon SF. Thin and thick lines are computed from the
Oth- and (O 1)th-order reduced respongs|q|,ys). respectively. —~ 0.4
The density matrices correspond to the AV18UR nuclear interac-q;
tion. (b) The same as ia), but for 9=45°.

o
w

tum distributions, which in turn is related to the correlations
in the nuclear wave functior{€3].

In Fig. 3(a@), we display the separate contributions of the
cross sections d&=3.595 GeV,#=30°, and varyingv, as
due to the NE and NI components of the nucleonFﬁw.

The thin (heavy dashes are NE parts in thgy (&) ap-
proximation for the reduced response. Those have theil
maximum atx~1, and are only in the wings marginally 2 25
affected by the first-order FSI terms. The thin and heavy

solid lines show the corresponding NI parts, which by nature FIG. 4. The GRS functiorf"NA(z,Q?) (thin solid line, the
dominate the regiox=<1 for relatively highv. FSI affect nucleon SFFJV"N'(x/z,Q?) (long dashed lingand the mixing fac-
only the low+ region and cause a rather small increase irtor C,(Q?/x?,2) (short dashed lineentering Eq.(2.2) as function
cross sections. In thoseregions, NE and NI parts are of the of z for E=3.595 GeV, §=30° and two cases of: (a) x=0.1
same order. Figure(B) is as Fig. 3a) for §=45° (this angle ~ (corresponding to hav@®=0.58 GeVf, »=3.00 GeV) and(b) x
was chosen since th®? values are larger and similar to =2 (Q°=2.76 GeV, »=0.74 GeV).I(2) is the corresponding in-
those forE=6 GeV, #=15°). The results are similar, ex- tegrand of Eq(2.2). All functions above are dimensionless.

cept that FSI's now appear to decrease the zeroth NI contri; large, , and the corresponding®™* are still nonvan-

bution at lowv. _ . ishing atz—4. As a consequence, the integrals receive a
From Fig. 3a) we observe that the slight overprediction gjzaple contribution from the regiaz>3 and the NI cross

in the low- region of the theoretical results &=30° is section in the lowy region remains |arge'

mainly due to the NI part and as discussed above, is only Note also that the mixing facta®,,~1 for x=0.1 [Fig.

marginally affected by the inclusion of FSI. The reason for4(g)] but is rather small fox= 2 [Fig. 4b)], sizably reducing

the large NI contribution can be simply understood by look-the NI part of the cross section in that region. As stated

ing at the convolution(2.2) between the nucleon SF and before, without the inclusion of such a fact@s,, the over-

FPNA, prediction of the theoretical cross section in the lewegion
Typical behavior of the functions f"NA(z,Q%),  would be more pronounced.

FOVN(x/2,Q%) and the mixing factoiCy(Q?/x?,2), (the Next, applying the prescription recalled in Sec. Il C, we

latter two forx=0.1, 2.0 are given in Fig. 4 F<1N>,Nl be- Mmake a comparison between GRS and IS cross sections for

haves similarly. For x<1, the permitted range of valugs E=3-595 GeV. Figure @ (Sb) shows the results fop

>x covers thez~1 region wheref?NA(z,Q?) is large and =30° using theg, (_¢01) approximation for the reduced re-
allows virtually the entire suppon/z of FN'N to contrib- ~ SPONSe. together with the NE3 data. The agreement between

. . the two calculated results is good, but not perfect. One of the
;JgeN.’AIn %?Sgisn f%ﬁ?,\%,,\%stee EI% fg}kf{‘gf?e tail Icl)f causes is undoubtedly the use of E@.21), which is an
co utes %NA (t,Q%) fo st=211susualy approximation for the parametrized, off-shell total profile
small. Moreoverf™™" decreases a&—4. In fact, asz be- L L
larger, alsd A0| increases and the intearal in E function I', and of course not intrinsic to the actual ladder
comes farger, e N 9 9 summation. Also the agreement with the data is good, except
(2.9) decreases. Howevey*~ — JQZ?/2 for z>1 and since  for the smallest.
the values 0fQ? in the E=3.595 GeV NE3 experiment are ~ One observes that the GRS and IS results using egly

o
o

Integrands of Eq. (2.2

©
-

N -
w
(3]
'
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10_1""0"""0" wr—71 1 1] ~ T T * 1
(a) E=3.6 GeV, 6=30 (b) E=3.6 GeV, 0=30 (a) E=3.6 GeV 9=30° (b) E=3.6 GeV 9=45D

> .
g 0 order 0+1 order =102k 4
8 102 L + - % 10
& 0
L. 1 _ 2 10°F -
g 10 é
> = 4
8 > 10" |~ 1
8 10 -+ - 3
B s
o Nb 10-5 = i
2 3
g0 T 7 <
e =10°f T
10 0 1 2 3 b e
v [GeV] v [GeV] 107, 0 1
v [GeV]
-1
10 (©) E-3.6 dev, pds® | () E=36 dev, =45 | FIG. 6. As in Fig. 3 but for the IS casé) Contributions to the
3 ol 0order 0+1 order cross section foE=3.595 GeV,§=30° from the NE(dashesand
Y 107 7] the NI (solid lineg parts of the nucleon SF. Thin and thick lines are
2 computed from the the Oth- and {QL)th-order reduced response
8 0% - é(|dl,yo), respectively. The density matrices correspond to the
=,
E‘ AV18UR nuclear interaction(b) The same as ina), but for ¢
% 104 | =45°,
Nb
2 10%F a those reported in that paper. However, as already discussed
= in relation with Fig. 5, the FSI's contributions in the IS case
10° I , I are sizable. In fact, those FSlI's are given by Ejj22 with-

2 3 out the termG{?, which otherwise would partially cancel

v [GeV] v[GeV] o = (1) :

the contribution of the large ter®;™’. As a result, in the
FIG. 5. (a) Comparison of the zeroth order GRS and derived ISlow-» region, the IS NI cross section calculated at the level
cross sections foE=3.595 GeV,6=30°. (b) As in (a) butin the  of the (0+ 1)th order becomes larger than the NE one, and

case of the (8-1)th order.(c) and (d): as in (&) and (b), respec-  rather close to the GRS NI cross section.

tively, but for 6=45°. Another interesting aspect is the influence of the nuclear
. _ interaction, chosen to calculate the density matrices. In Fig.

diverge for decreasing and that the GRS comes closest to 7 we display for E=3.595 GeV, §=30° cross sections

the data. This is shown in Fig. (@& for 6=30°, E  computed on the basis of the three previously mentioned
=3.595 GeV, but holds in fact for all examined cases. Commodels of nuclear interaction(AV18UR, AV18, and
parison of Figs. &) and gb), moreover, shows that FSI's for aA/14UR). The calculations have been performed usifig
GRS are smaller than for the IS, in particular for smaller  from Eq.(2.15 with the density matrices determined directly
The two observations above can be understood theoreticallyom the corresponding nuclear wave functions. For identical
[?] and have previously been demonstrated for simple modkinematics the results for AV18UR and AV14UR can hardly
els.

Finally, one infers from Fig. &) that the differences be-
tween the zero-order IS and GRS cross sections are notice-
ably reduced when the first-order FSI is included in both
calculations. A similar comparison is shown in Fig&)sand
5(d) for #=45° and, again, the agreement is found to be
good after the inclusion of the FSI.

The separate IS NE and NI parts fe=3.595 GeV and
0=30° (#=45°) are shown in Fig. ® [Fig. 6b)], where
we used the same notation adopted in Fig. 3. In this case, the

—_
(=]

~

on
N
|

[

— AV18UR
- AV18

(1/A) d°/dQdv [ub/ster GeV]
=)

NI part computed with theb, approximation for the reduced 10k —— AVI4UR| |
responsethin solid line stays well below the NE onéhin

dashed lingin the low v region, as already found in R¢8].

Now, in the evaluation of the convolutid.2), |y,| becomes 10-50 L I1 L é 1 é

rather large ag—4 and ¢, rapidly decreasesyf— —/Q?
asz>1). As a consequence, the IS integrand of €3) is
very small in the lowr region (in contrast to what happens  FIG. 7. (0+1)th-order GRS cross sections f&t=3.595 GeV
in the GRS cage Since much of the input is the same asand §=30° for the AV18(dashedl AV14UR (long dashe)] and
used in Ref[28], our lowest order results agree well with AV18UR (solid) nuclear interactions.

v [GeV]
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be distinguished, whereas the AV18 cross section is slightlype hardly dependent on the choice of thN interaction.
different from the other two in the low-tail: There clearly is In conclusion, we have found, first of all, that inclusive
only weak dependence on the nuclear interaction. cross sections of electron dide computed with the leading
two terms in the GRS series are in good agreement with the
NE3 SLAC-Virginia data for all scattering angles. The latter
o _ i _ in spite of the fact that fof=<30° the involvedQ? fall below

We have4stud|ed inclusive scattering of high-energy electhe yajidity estimate. Second, for all kinematical regions un-
trons from “He, for energy losses below and around theger study, the FSI's for GRS are smaller than for the IS, in
quasielastic peak and up into the deep inelastic scatteringarticular for low-energy losses. Third, we have presented
region. The underlying model assumes noninterference bgne first comparison between the GRS and IS expansions for
tween nucleonic and subnucleonic degrees of freedomy req) nucleus, cut at the same order ifgll/We have ob-
which implies that total nuclear structures function may beseryed that they produce similar cross sections, in particular,
expressed as a generalized convolution of the structure funggter the inclusion of the corresponding FSI contributions.
tions of free nucleons and the one of a nucleus composed of \y,e g150 presented predictions for a futlie 6 GeV ex-
point particles. Ihe model is estimated to become gradualljeriment at JLab orfHe. Its kinematics are largely within
imprecise forQ?<2-2.5 Ge\f. Structure functions for @ the estimated limits of the underlying GRS theory and a
nucleus of point particles are computed via the reduced récomparison of computed results with data will be more sig-

sponsep(q,y) using a relativistic generalization of the GRS pificant for those than is the case for the NE3 data.
series, which includes the first-order FSI.

A new element in the development of the latter is an ac-
tual calculation of the required single- and two-particle,
semidiagonal density matrices, based on accurately com- The authors are grateful for having received from C. Ciofi
puted “He ground state wave function. The above replaceslegli Atti tables of numerical values of théHe spectral
previously used parametrizations of derived density matricefunction, mentioned in Sec. Il. One of @kl.V.) also grate-
for targets withA=12. Computed cross sections appear tofully acknowledges a helpful discussion with G. I. Lykasov.

IV. CONCLUSIONS
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