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Gersch-Rodriguez-Smith computation of deep inelastic electron scattering on4He
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We compute cross sections for inclusive scattering of high-energy electrons on4He, based on the two lowest
orders of the Gersch-Rodriguez-Smith series. The required one- and two-particle density matrices are obtained
from nonrelativistic 4He wave functions using realistic models for the nucleon-nucleon and three-nucleon
interaction. The computed results forE53.6 GeV agree well with the NE3 SLAC-Virginia data.
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I. INTRODUCTION

It is appealing to describe the total nuclear structure fu
tion ~SF! in terms of the SF of a nucleon, linking the tw
through a representative property of the medium. It
broadly accepted that the above link is represented by the
of a nucleus composed of point-nucleons, the internal st
ture of which resides in the SF of a nucleon. Such a prog
is usually performed within one of the following two ap
proaches. In the first, one perturbatively expands the SF
the point-nucleon system in the residual interaction betw
a nucleon struck by the virtual photon and the remain
spectator nucleus, thus generating the impulse series~IS! for
the SF. In the widely used lowest order impulse approxim
tion, this residual interaction is first neglected. One then
ther computes higher order final state interaction~FSI! terms
~see, for instance, Refs.@1,2#!, or models them@3–6#.

An alternative approach is based on a relativistic gen
alization of the Gersch-Rodriguez-Smith~GRS! expansion of
the SF of a nucleus of point particles in inverse powers of
three-momentum transferuqu @7–9#. Both theories have bee
applied to cross sections for inclusive scattering of hig
energy leptons from various nuclear targets@3–6,10,11#.

When applied to high-energy inclusive scattering, o
usually limits a GRS calculation to the two lowest ord
terms. Their determination requires knowledge of one- a
two-particle density matrices, which are not diagonal in
coordinate of the struck nucleon818, and of the spectra
function. The nondiagonal one-body density matrix is rela
to the single-nucleon momentum distributionn(p) and is
usually extracted from alternative experimental sources, o
computed from theoretical models. There generally is no
rect information on the half-diagonal, two-particle dens
matrices for finite systems and one relies on parametrizat
@7,12#. In those, nuclear recoil is usually neglected, there
limiting applications to targets withA*12.

In the following, we exploit accurately computed nonre
ativistic ~NR! wave functions for light nuclei, using a num
ber of modern realistic nucleon-nucleon~NN! and three-
nucleon (3N) interactions. Those wave functions a
Galilean invariant and enable a realistic GRS calculation
inclusive scattering on those nuclei. As a first application,
choose4He and for that target we shall report below a co
0556-2813/2003/67~3!/034003~11!/$20.00 67 0340
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parison with theE53.6 GeV SLAC-Virginia data@13#.
The other ingredient, namely, the4He spectral function

P(p,E), is rather difficult to compute and only a few dire
calculations are reported@14,15#. Below we shall adopt the
reasonable alternative that has been developed by Ciofi d
Atti and Simula@6#. The importance of using realistic spe
tral functions when comparing with data is well known and
has been also remarked in Ref.@16#.

At this point we mention that for years the IS and GR
approaches have been considered as being distinct and
incompatible. Only recently has their equivalence been de
onstrated, provided both series are expanded to the s
order in the same parameter@2,8,9#. Following the derived
prescription to link the two approaches, one can perform
interesting numerical comparison.

The GRS and IS theories are not the only tools wh
have been used to compute nuclear SF’s. We mention
particular the ingenious method of Efros and co-worke
which has been applied to4He @15,17#. Regrettably, it ap-
pears not feasible to extend that method to high energie

The main goals of this paper are the following.~i! The
first study of the leading two terms in the GRS series app
to 4He and a comparison of the results with the good qua
4He SLAC-Virginia data.~ii ! To establish for the case a
hand the relative importance of FSI versus the lowest or
term, in particular in the low-energy loss region.~iii ! To
present a first comparison between the GRS and IS ex
sions, cut at the same order in 1/uqu for a real system, in
contrast to what has been done in the past for models~see,
for instance, Ref.@19#!.

We also present in the paper predictions for the fores
E56 GeV experiment at JLab on4He @18#. Since the accu-
racy of the underlying theory@embodied in the convolution
integral given in Eq.~2.2!# grows with the squared momen
tum transferQ2, a comparison of theoretical results and da
in the deep inelastic region may enable the extraction of
neutron structure function at thoseQ2.

The present paper is organized as follows. In Sec. II,
recall the GRS approach, emphasizing the two main ingre
ents of our calculations, namely, the SF of a target compo
of point particles and the SF of the free nucleons. We a
discuss there the computation of the above density matri
In Sec. III, we compare our computed results for cross s
©2003 The American Physical Society03-1
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tions with the Virginia-SLAC data@13#. In the last section,
we present our conclusions.

II. TOTAL NUCLEAR STRUCTURE FUNCTIONS

The cross section per nucleon for inclusive scattering
high-energy electrons from a nucleus withA nucleons reads

d2seA~E;u,n!/A

dV dn
5

2

M
sM~E;u,n!FxM2

Q2
F2

A~x,Q2!

1tan2~u/2!F1
A~x,Q2!G , ~2.1!

whereM is the nucleon mass,sM is the Mott cross section,E
is the beam energy,u is the laboratory scattering angle, andn
is the energy loss imparted onto the target. The above nuc
structure functions per nucleonFk

A(x,Q2) contain the es-
sence of unpolarized electron scattering from randomly
ented targets. Those SF’s depend on the squared four
mentum transfer2q25Q25uqu22n2 and on the Bjorken
variablex5Q2/2Mn with range 0<x<A. For given beam
energyE,(u,n) and (x,Q2) are sets of alternative kinemat
variables.

Total nuclear structure functions per nucleon may, in
semiheuristic fashion, be expressed as follows@20–22#:

Fk
A~x,Q2!5E

x

A dz

z22k
f PN,A~z,Q2!

3(
l 51

2

CklS Q2

x2 ,zDFl
^N&S x

z
,Q2D . ~2.2!

In the equation above,f PN,A is the SF of a nucleus compose
of point particles, andFk

^N& is the averaged nucleon S
weighted by the number of protons and neutrons in
nucleusA(Z,N)

Fk
^N&~x,Q2!5

Z

A
Fk

p~x,Q2!1
N

A
Fk

n~x,Q2!, k51,2.

~2.3!

We considerFp (Fn) to be the free proton~neutron! SF. One
may then interpret the nuclear SF per nucleon given by
~2.2! as those nucleon SF’s modified by the medium, brou
about byf PN,A.

The coefficient functionsCkl account for the mixing of
the nucleon structure functions in the expression~2.2! @23#.
We retain in this paper only the dominant coefficient

C22S Q2

x2 ,zD'@12r1r/z#22
1

2
r~12r!~121/z!2,

r5@11Q2/4M2x2#21. ~2.4!

Equation~2.4! is a better approximation forC22 than previ-
ously used@22#.

Equation ~2.2! is valid for x*0.15–0.20, below which
pionic and antiscreening effects become of importance@24#
03400
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and above some criticalQc
2 , which presumably can be est

mated using QCD. A previous comparison of computed
sults and data for medium-A targets produced an empirica
estimateQ2*Qc

2'2.0–2.5 GeV2 @11#.
Each of the SFFk

p,n in Eq. ~2.2! has both nucleon-elasti
~NE! and nucleon-inelastic~NI! parts, thus Fk

N5Fk
N,NE

1Fk
N,NI , with N5p,n. The total nuclear structure function

Eq. ~2.2!, and the total cross section per nucleon may the
fore be expressed as a sum over contributions coming f
the NE and NI parts of nucleon SF. In particular, the NE p
Fk

N,NE is the well-known combination of static electroma
netic form factors and contributes primarily around the
gion of the quasi-elastic peak~QEP!, x'1. For the inelastic
partsFk

n,NI we have taken

Fk
n,NI~x,Q2!'Fk

d,NI~x,Q2!2Fk
p,NI~x,Q2!, k51,2,

~2.5!

where Fk
d,NI(x,Q2) are the deuteron SF’s per nucleon. F

F1
p,NI(x,Q2) andF1

d,NI(x,Q2) we employ values interpolate
between the data of Ref.@25#, whereas forF2

p,NI(x,Q2) and
F2

d,NI(x,Q2) we use the parametrizations of Ref.@26#. Later
on one would like to use more realistic neutron SF, for
stance by using Eq.~2.2! in the inverse sense, namely,
extractFk

n,NI employing high-quality data onFA, Fp and the
computedf PN,A ~for a first attempt, see Ref.@27#!.

A. The GRS series

We now focus onf PN,A in Eq. ~2.2!, the SF for a nucleus
of point particles, which has to be computed. Following R
@10# one writes

f PN,A~x,Q2!5S ]yG

]x D
Q2 fixed

f~ uqu,yG!,

uqu5QA11~Q/2Mx!2, ~2.6!

wheref(uqu,y) is the reduced response in terms of a relat
istic scaling variable@8#

yG5yG
D'yG

`F12
1

2A8

n2

uqu2
j1O~1/A82!G , A85A21,

yG
`5

Mn

uqu
j,

j5S 12
^D&
M

2xD , ~2.7!

and ^D& some average nucleon separation energy. We s
retain the above 1/A8 correction in the scaling variableyG
which, as Eq.~2.7! shows, is simply related to the Bjorke
variablex. In the GRS approach the reduced response m
for smoothNN interactions, be expanded in a series of
verse powers ofuqu @7,9#. Explicitly
3-2
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f~ uqu,yG!5f0~ uqu,yG!1 (
n>1

S M

uqu D
n

fn~yG!. ~2.8!

The lowest order term is given by

f0~ uqu,yG
D0!5E

uy
G

D0u

` dp p

4p2 E0

EM
dEP~p,E!

1u~yG
D0!E

0

y
G

D0 dp p

4p2 EEm

EM
dE P~p,E!,

~2.9!

with P(p,E) the standard single-hole spectral function. T
energy argument isE5E2D0 with E the removal energy
and D0 the (p,n averaged! minimal separation energy~for
4HeD0'20.2 MeV). Above,yG

D0 is the scaling variable give
in Eq. ~2.7! with ^D&5D0. The integration limits in Eq.~2.9!
are

EM
m

~yG ,p,uqu!5
~yG6p!uqu

n
. ~2.10!

In actual calculations the spectral function has been wri
as in Ref.@28#,

P~p,E!5n0~p!d~E!1P1~p,E!, ~2.11!

where n0(p) is the partial momentum distribution due
intermediate states of one nucleon and theA21 spectator
system in its ground state. Contributions from continuu
states of that system are summed inP1(p,E). As stated in the
Introduction, that part of the spectral function for4He has
been taken to beP1(p,E)5N(p)P 1

model(p,E), where
P 1

model(p,E) has been provided to us by Ciofi degli Atti@6#.
The normalization factorN(p) is fixed by

E
Ethr

`

dEP1~p,E!5n~p!2n0~p!, ~2.12!

where the quantitiesn(p), the total momentum distribution
andn0(p) have been calculated using the NR wave functio
as will be explained in Sec. II B.

We have also tested the following simple two-state
proximation for the spectral function@28,17#:

P~p,E!'n0~p!d~E!1@n~p!2n0~p!#d~E2^D&1D0!,

^D&'50 MeV. ~2.13!

Substitution into Eq.~2.9! produces auqu-independent lowes
order contribution,

f0
(1)~yG

D ,yG
D0!5

1

4p2 F E
uyG

D u

`

dp p n~p!2E
uyG

D u

uy
G

D0u
dp p n0~p!G .

~2.14!

Since in the relevantp regionn0'n, an accurate approxima
tion of Eq. ~2.14! reads
03400
n

s

-

f0
(2)~yG

D0!'
1

4p2Euy
G

D0u

`

dp p n~p!. ~2.15!

Terms withn>1 in Eq. ~2.8! describe FSI corrections to
the asymptotic limit as a series in 1/uqu. It is easier to give
those in terms of their Fourier transformf̃n(s), namely

fn~yG
D !5E

0

` ds

2p
eisyG

D
f̃n~s!. ~2.16!

Eachf̃n(s)[f̃n(s;@V#) is a functional of the bare interac
tion V, for instance,

M

uqu
f̃1~s!5E dr1E dr2r2~r1 ,r2 ;r12sq̂,r2!@ i x̃q~b,z;s!#,

~2.17a!

x̃q~b,z;s!5x̃q
(1)~b,z;s!1x̃q

(2)~b,z;s!, ~2.17b!

x̃q
(1)~b,z;s!52

M

uqu E0

s

dsV~b,z2s!, ~2.17c!

x̃q
(2)~b,z;s!5

M

uqu
sV~b,z2s!52s

]

]s
x̃q

(1)~b,z;s!,

~2.17d!

whereb ~z! is the component of the vectorr5r12r2 perpen-
dicular ~parallel! to theq direction, andr2 is the semidiago-
nal two-particle density matrix. Equations~2.17! define two
parts of the off-shell eikonal phasex̃q which are related, and
thus

x̃q~b,z;s!5S 12s
]

]sD x̃q
(1)~b,z,s!. ~2.18!

One frequently deals with interactionsV which have a strong
short-range repulsion~or produce for other reasons a diffra
tive elastic amplitude! and it is then of advantage to perform
a summation over a ladder of bare interactionsV. The re-
placement V→Ve f f5tq , produces a well-behaved
q-dependent, off-shellt matrix as an effective interaction
which in coordinate space is proportional to the off-sh
profile functionG̃ @10#. For the partG̃ (1), generated byx̃ (1),
one has

i x̃q
(1)~b,z;s!→G̃q

(1)~b,z;s!5exp@ i x̃q
(1)~b,z;s!#21

~2.19a!

'u~z!u~s2z!Gq
(1)~b!. ~2.19b!

The approximation Eq.~2.19b! has been tested in Ref.@29#.
Its application permits the exploitation of a standard para
etrization of the on-shell profileGq

(1)(b) in terms of elastic
NN scattering data, as aresq

tot ,tq ,Qq
(0) , which are, respec-

tively, the total cross section, the ratio of the real to ima
nary part of the forward elastic amplitude, and the width
the diffractive amplitude. Explicitly,
3-3
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TABLE I. Selection of cross section ratios He/C, C/Fe. For given angle we givex,Q2 and the ratios.
Former are from Ref.@13#, latter from Ref.@11#.
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Gq
(1)~b!'

1

2
sq

tot~12 i tq!
@Qq

(0)#2

4p
e2[bQq

(0)] 2/4. ~2.20!

There is no simple way to generalize Eq.~2.18! to the
total off-shell phasex̃. Yet, as in Ref.@10# we shall assume
that Eq.~2.18! is also approximately valid for the total off
shell profile function

i x̃q~b,z;s!→G̃q~b,z;s!'F12s
]

]sG G̃q
(1)~b,z;s! ~2.21a!

'F12s
]

]sGu~z!u~s2z!Gq
(1)~b!.

~2.21b!

After substitution of the above expression in Eq.~2.17!, the
leading FSI contribution tof̃(q,s) turns into the following
q-dependent result@10#:

M

uqu
f̃1~s;@V# !→ M

uqu
f̃1~s,@ t# !5G̃1~ uqu,s!

5G̃1
(1)~ uqu,s!1G̃1

(2)~ uqu,s!, ~2.22!

where

G̃1
(1)~ uqu,s!'2E dr1E dr2r2~r1 ,r2 ;r12sq̂,r2!u~z!

3u~s2z!Gq
(1)~b!, ~2.23a!

G̃1
(2)~ uqu,s!'E dr1E dr2r2~r1 ,r2 ;r12sq̂,r2!su~z!

3d~s2z!Gq
(1)~b!. ~2.23b!

Previous analyses dealt with targets withA>12. For those
there do not exist computations from first principles f
single-nucleon momentum distributionsn0(p), n(p), and
density matricesr2, as required in Eqs.~2.11!, ~2.12!, and
03400
~2.23!. Moreover, suggested parametrizations@7,12# do not
account for nucleon recoil, which is only justified forA
*12.

One of the implications of Eq.~2.2! is a weak-A depen-
dence of the SF for point-nucleon nuclei and of the avera
nucleon SF@10#. This entails predicted inclusive cross se
tions per nucleon to be practically independent ofA. Sup-
porting evidence comes from experimental ratios of cr
sections per nucleon for different targets at identical kin
matical conditions@10,11,30#. Definitely larger deviations
from smoothA dependence are expected, if one of the targ
is a light nucleus withA<6. This is evident from Table I
where we entered some C/Fe ratios from JLab data@31# and
for He/C from the older NE3 data in Ref.@13#.

For the above reasons, we did not include in the pas
GRS analysis of inclusive scattering on the lightest targ
In the following we exploit the possibility to compute a pr
cise NR nuclear ground state wave functionF0 of light nu-
clei for given nuclear interactionV. Those enable a calcula
tion of n(p),n0(p) and r2, which enter the component
~2.11!, ~2.12!, and~2.23! of the nuclear SF.

B. The density matrices

Various methods permit nowadays an accurate calcula
of the 4He ground state wave function@32#. We exploit here
the correlated hyperspherical harmonic~CHH! function tech-
nique which has been developed by the Pisa group. The
tial configuration of the system is described in terms o
given choice of the Jacobi vectorsj1 , j2 , j3. In the hyper-
spherical framework we use as new variables the hyperra
r, defined by

r25(
i 51

3

j i
2 , ~2.24!

and the setV5$ĵ1 ,ĵ2 ,ĵ3 ,w2 ,w3%. The latter includes the
polar anglesĵ i[(u i ,f i) of each Jacobi vector and addition
hyperspherical anglesw2 , w3. We then write for the ground
state wave functionF4,
3-4
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F45 (
n51

Ntot Fun~r!

r4
A$Fn~r 12,r 13,r 14,r 23,r 24,r 34!Yn~V!%G ,

~2.25!

whereA is an antisymmetrizer andYn(V) are the four-body
hyperspherical harmonic~HH! functions@33#. ChoosingFn
51, Eq. ~2.25! generates an uncorrelated HH expansion
the 4He ground state wave function. For it, the rate of co
vergence is extremely slow when theNN interaction is
strongly repulsive at small distances. One accounts for
latter property by multiplying every HH function in the ex
pansion with a suitably chosen correlation factorFn , ulti-
mately leading to the CHH expansion. The latter much i
proves the description of the target wave function for sm
internucleon distances, and a much smaller number of b
functions is required to get convergence.

In the case of4He, the correlation factors have been ch
sen to be of the Jastrow form@34#

Fn5 f n~r 12!gn~r 13!gn~r 14!gn~r 23!gn~r 24!gn~r 34!,
~2.26!

i.e., products of one-dimensional functionsf n andgn which
are solutions of aNN Schrödinger-like equation~for details,
see Ref.@34#!.

Using the Rayleigh-Ritz variational principle for varyin
functionsun in Eq. ~2.25!,

^duF4uH2EuF4&50, ~2.27!

one is led to a set of hyper-radial equations for the functi
un in the variabler which, after discretization, is converte
into a generalized eigenvalue problem and are solved
standard numerical techniques@35#. One thus determines th
hyperradial functionsun(r) in Eq. ~2.25! and the bound state
energyE. We shall present below results based on~1! the
Argonne V18NN potential @36# ~the AV18 model!, ~2! the
Argonne V18NN potential supplemented by the Urbana
three-nucleon potential@37# ~the AV18UR model!, ~3! the
Argonne V14NN potential@38# plus the Urbana VIII three-
nucleon potential@39# ~the AV14UR model!.

The two models, which contain a three-nucleon inter
tion, provide a4He binding energy rather close to the expe
mental one, whereas the AV18 underbinds by about 4 M
The present status of the4He binding energy calculation

TABLE II. Binding energies in MeV of4He calculated with the
CHH method using the AV18 and AV18/UIX, and the older AV1
and AV14/UVIII, Hamiltonian models. Also listed are the corr
sponding ‘‘exact’’ GFMC results@37# as well as the experimenta
value.

Model CHH GFMC

AV18 24.0 24.1~1!

AV18/UIX 28.1 28.3~1!

AV14 24.0 24.2~2!

AV14/UVIII 27.5 28.3~2!

Expt. 28.3
03400
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V.

with the CHH method is summarized in Table II, where
Eq. ~2.25! up to Ntot'200 functions have been used~the
explicit CHH states included in the expansion are discus
in Ref. @34#!.

Calculated binding energies for the AV18 or AV18U
Hamiltonians are within 1% of the ‘‘exact’’ Green’s functio
Monte Carlo~GFMC! results@37# for corresponding interac
tions. Somewhat less satisfactory agreement between
CHH and GFMC results for the AV14UR model, since th
interaction is more repulsive at short distances than the o
two. For all we checked that our final results for the de
inelastic scattering cross sections depend only slightly on
value ofNtot , onceNtot*200.

The thus constructed ground state wave function, rea
gives the corresponding four body density matrices, in p
ticular, the one nondiagonal in818,

r4~r1 ,r2 ,r3 ,r4 ;r18 ,r2 ,r3 ,r4!

5F4~r1 ,r2 ,r3 ,r4!F4~r18 ,r2 ,r3 ,r4!. ~2.28!

Successive integrations over the diagonal coordinates
and eventually over coordinate 2, then furnishr2 and r1
nondiagonal in818. The total momentum distribution is th
Fourier transform ofr1.

The partial momentum distributionn0(p) is obtained
from the overlap ofF4 and the (3H, 3He averaged! three-
nucleon ground state wave functionF3, namely,

n0~p!5ua~p!u2,

a~p!5^F3~1,2,3!x4h4u j 0~pR123,4!F4~1,2,3,4!&, ~2.29!

wherex4 (h4) is the spin~isospin! state of particle 4,j 0 is
the zero-order Bessel function, andR123,4 is the distance of
particle 4 with respect to the center of mass of the ot
three. The ground state wave functionF3 of the three-
nucleon system has been obtained with the same Ha
tonian model used to generateF4, and again by application
of the CHH technique@35#. In Eq. ~2.29!, F3 andx4h4 are
coupled to give a state with vanishing total angular mom
tum and isospin.

Equations~2.23! for G̃ invite to expressr2 in terms of the
variablesr5r12r2 and R5(r11r2)/2 and then to perform
the R integration

B~b,z;s!5E dRr2~r1 ,r2 ;r12sq̂,r2!. ~2.30!

The result is substituted into Eqs.~2.23! and subsequently
integrated overb andz.

C. An effective IS series

In Ref. @3#, one may find a detailed account of the lowe
order plane wave impluse approximation~PWIA! calcula-
tions as part of the IS series. To it one should perturbativ
add FSI’s due to the interaction of the knocked-out nucle
and the spectator core.
3-5
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In the Introduction we recalled a recent proof@9,2# that
the GRS and IS, both evaluated to orderO(1/uqu2), produce
the same result. The lowest order is given by

f0~ uqu,y0!5E
uy0u

2uqu1y0 dpp

4p2 E0

ĒM
dEP~p,E!

1u~y0!E
0

y0dp p

4p2 EĒm

ĒM
dEP~p,E!, ~2.31!

where in this case@3,9#

ĒM
m

5AM21~y01uqu!22AM21~p7uqu!2. ~2.32!

Above, y0 is the IS scaling variable defined by@3,9#

y05y0
`~11d0!,

y0
`52uqu1A~n2D0!~n2D012M !,

d0'2
1

2A8
F 11n/M

11uqu/y0
`G1O~1/A82!. ~2.33!

The IS first order is then obtained from the prescription t
puts G̃1

(2)50 in Eq. ~2.22! and simultaneously replaces th
GRS scaling variableyG

D , Eq. ~2.7!, by y0 in Eq. ~2.16!.
Finally, f PN,A(x,Q2) is now calculated using againy0 in
place ofyG

D in Eq. ~2.6!. Those changes have been shown
generate the IS series to order 1/uqu @2#. Actual applications
will be given in the following section.

III. RESULTS

In this section, we present numerical results for inclus
cross sections on4He based on Eqs.~2.1! and ~2.2!. Unless
stated differently, those results use density matrices base
the AV18UR interaction and the full spectral function as d
cussed in Sec. II A. In the GRS approach, the cross sect
have been computed by approximating the reduced struc
function as follows:

f~ uqu,yG!→f0~ uqu,yG
D0!, 0th order, ~3.1!

f~ uqu,yG!→f0~ uqu,yG
D0!1G1~ uqu,yG

D0![f01~ uqu,yG
D0!,

~011!th order, ~3.2!

wheref0 is given by Eq.~2.9! andG1 is the inverse Fourier
transform of the functions given in Eq.~2.23!. The corre-
sponding IS expressions are obtained as discussed in
II C.

In Fig. 1, we display the SLAC-Virginia NE3 cross se
tion data@13# for E53.595 GeV, scattering anglesu516°,
20°, 25°, 30° and varying energy lossn, and also our nu-
merical results obtained with the above reduced respo
f01. Table III shows the ranges of the kinematical variab
x,n,Q2. For all measured scattering angles, and in addit
for u545°, we entered there values of the energy lossn and
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of Q2 close to the appropriate lower (x52) and upper (x
50.1) ends of the theoretical curves shown in Fig. 1. W
also show then,Q2 values corresponding to the position
the QEP atx51 .

Let us first focus on the NE part of the cross section~thin
dashed lines!, which contributes primarily around the QE
As can be seen from the figure, the NE parts well descr
the QEP, in particular at lowQ2. The data foru516° show
a clear maximum and an adjacent minimum which g
fuzzier and ultimately disappear for increasingu or Q2. The
same maximum occurs in the inclusive cross sections
deuterons@40#, but is absent for targets withA>12 @13,31#.

FIG. 1. Predicted cross sections for inclusive scattering of 3.
GeV electrons from4He as function of the energy lossn and for
four values of the scattering anglesu in the (011)th order approxi-
mation ~thick solid lines!. Thin dashed~solid! lines show the NE
~NI! part of the cross sections. Data are from Ref.@13#.

TABLE III. Values of n ~in GeV! and Q2 ~in GeV2) for E
53.6 GeV@13#. The selected values ofx correspond approximately
to the QEP and the lower and upper ends of the curves show
Fig. 1.

Lower end QEP Upper end
x52 x51 x50.1

u n Q2 n Q2 n Q2

16° 0.25 0.93 0.46 0.87 2.00 0.44
20° 0.37 1.40 0.68 1.27 2.50 0.48
25° 0.55 2.06 0.95 1.79 2.80 0.54
30° 0.74 2.76 1.22 2.29 3.00 0.58
45° 1.23 4.99 1.90 3.58 3.31 0.62
3-6
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This structure is the result of the competition between
NE and the NI parts of the cross section. For decreasingQ2

the NE part around the QEPx51 grows relative to the,
usually dominant, NI part. For the smallestQ2 in the data,
the NE part beyond the QEP stands out until forx&1 the NI
one overtakes. It is the maximum value off PN,A(x,Q2) ~for
x'1) which sets the magnitude of the QEP. For a givenQ2,
that peak value decreases withA: it is largest for the deuteron
and 4He and then it is almost independent onA for A>12,
reflecting the smearing of the momentum distribution due
the Fermi motion. For example,f PN,A(x51,Q2) for the deu-
teron and 4He is '5.5 and 2.2 times, respectively, larg
than for nuclei withA>12. It causes the QEP for equ
kinematic conditions to be most prominent for the lighte
nuclei.

We already mentioned that Eq.~2.2! ~for the NI part! is
estimated to be valid forx*0.2 and above some critica
Qc

2'2.0–2.5 GeV2 @10,11#. As Table III shows, that ap
proximate critical value is actually never reached for anyu
516°,20° data point, which renders those data not re
suitable for a test of the theory. For the same reason
excluded from our analysis NE3 data at lower energies
the same is the case for old, near-elastic, high-Q2 data on
4He @41#. For both angles, the convolution formula predic
too large NI parts around the QEP, resulting in an overp
diction of the data in that region. Foru530°, on the other
hand,Q2*Qc

2 and, in fact, comparison of data and comput
results shows that there is good agreement for all but
smallest energy loss values. Since cross sections there
fallen by orders of magnitude, one expects sensitivity
small dynamical details. For example, without the inclus
in Eq. ~2.2! of the mixing factorC22, Eq. ~2.4!, the agree-
ment would be of definitely lower quality~see also below!.

With respect to the misfit for low angles aroundx51, the
use of nucleon SF’s averaged over resonances may be
cause@42#. In fact, nucleon resonances influence the imm
diate region aroundx51, and this effect is expected to de
crease with increasingQ2.

A more stringent test for the theory would be provided
data at higher beam energies with, in general, higherQ2.
Unfortunately, the recent 4-GeV experiments at JLab
various targets did not contain4He @31#, but a recent JLab
proposal includes that target in a 6-GeV run with scatter
anglesu515°, 23°, 30°, 45°, and 60°@18#. The kinematical
region explored by that experiment covers 0.2,x,1.0 and
1,Q2,8.0 GeV2 ~Table IV! and predictions for the fou
largest scattering angles can be found in Fig. 2. Incidenta
we checked that forE56 GeV the effect ofC22 is practi-
cally negligible due toQ2, which grows with beam energyE.

Next we discuss the effect of the different approximatio
for f0 presented in Sec. II. The cross sections calcula
using the approximations~2.14! and ~2.15! for f0 almost
overlap. Moreover, they are rather similar to the ones co
puted using the spectral function, Eq.~2.9!, except in the
low-n region. There, the use of the ‘‘full’’ model slightly
reduces the cross sections.

This result deserves some comment. The differences
tween the two expressions, Eqs.~2.9! and ~2.15! are gener-
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ally sizable in particular in the low-n region@3# whereyG
D0 is

negative and large in absolute value. However, in the ki
matical region of the NE3 experiment, the values ofEM
entering Eq.~2.9! are found to be rather large and then

E
0

EM
dEP~p,E!'E

0

`

dEP~p,E!5n~p!. ~3.3!

As a result, thef0 calculated using Eq.~2.9! or ~2.15! nearly
coincide. For example, forE53.595 GeV,u530°, andn
50.7 GeV, uqu/n'3 andEM is large for all the values ofp.
For the same reason we expect that the predicted cross
tions do not much depend on the parametrization chosen
the spectral function, in particular, not in the low-n region. In
that region they are rather sensitive to the tail of the mom

TABLE IV. Values of n ~in GeV! and Q2 ~in GeV2) for E
56.0 GeV and the values ofu of the proposed Jefferson Lab ex
periment. The selected values ofx correspond approximately to th
QEP and the lower and upper ends of the curves shown in Fig

Lower end QEP Upper end
x52 x51 x50.1

u n Q2 n Q2 n Q2

23° 1.21 4.56 2.02 3.80 5.01 0.94
30° 1.80 6.75 2.77 5.20 5.37 1.01
45° 2.90 10.90 3.91 7.34 5.70 1.07
60° 3.69 13.86 4.57 8.58 5.82 1.09

FIG. 2. Predicted cross sections for inclusive scattering of
GeV electrons from4He as function of the energy lossn and for
four values of the scattering anglesu in the (011)th-order approxi-
mation ~thick solid lines!. Thin dashed~solid! lines show the NE
~NI! part of the cross sections.
3-7
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tum distributions, which in turn is related to the correlatio
in the nuclear wave functions@43#.

In Fig. 3~a!, we display the separate contributions of t
cross sections atE53.595 GeV,u530°, and varyingn, as
due to the NE and NI components of the nucleon SFFk

^N& .
The thin ~heavy! dashes are NE parts in thef0 (f01) ap-
proximation for the reduced response. Those have t
maximum atx'1, and are only in the wings marginall
affected by the first-order FSI terms. The thin and hea
solid lines show the corresponding NI parts, which by nat
dominate the regionx&1 for relatively highn. FSI affect
only the low-n region and cause a rather small increase
cross sections. In thosen regions, NE and NI parts are of th
same order. Figure 3~b! is as Fig. 3~a! for u545° ~this angle
was chosen since theQ2 values are larger and similar t
those forE56 GeV, u515°). The results are similar, ex
cept that FSI’s now appear to decrease the zeroth NI co
bution at lown.

From Fig. 3~a! we observe that the slight overpredictio
in the low-n region of the theoretical results atu530° is
mainly due to the NI part and as discussed above, is o
marginally affected by the inclusion of FSI. The reason
the large NI contribution can be simply understood by loo
ing at the convolution~2.2! between the nucleon SF an
f PN,A.

Typical behavior of the functions f PN,A(z,Q2),
F2

^N&,NI(x/z,Q2) and the mixing factorC22(Q
2/x2,z), ~the

latter two for x50.1, 2.0! are given in Fig. 4 (F1
^N&,NI be-

haves similarly!. For x,1, the permitted range of valuesz
>x covers thez'1 region wheref PN,A(z,Q2) is large and
allows virtually the entire supportx/z of F ^N&,NI to contrib-
ute. In contrast, forx.1 @see Fig. 4~b!#, only the tail of
f PN,A contributes andF ^N&,NI(t,Q2) for x/A<t<1 is usually
small. Moreover,f PN,A decreases asz→4. In fact, asz be-
comes larger, alsouyG

D0u increases and the integral in E

~2.9! decreases. However,yG
D0'2AQ2/2 for z@1 and since

the values ofQ2 in the E53.595 GeV NE3 experiment ar

FIG. 3. ~a! Contributions to the cross section forE
53.595 GeV,u530° from the NE~dashes! and the NI~solid lines!
parts of the nucleon SF. Thin and thick lines are computed from
0th- and (011)th-order reduced responsef(uqu,yG), respectively.
The density matrices correspond to the AV18UR nuclear inte
tion. ~b! The same as in~a!, but for u545°.
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not large,f0 and the correspondingf PN,A are still nonvan-
ishing at z→4. As a consequence, the integrals receive
sizable contribution from the regionz.3 and the NI cross
section in the lown region remains large.

Note also that the mixing factorC22'1 for x50.1 @Fig.
4~a!# but is rather small forx52 @Fig. 4~b!#, sizably reducing
the NI part of the cross section in that region. As sta
before, without the inclusion of such a factorC22, the over-
prediction of the theoretical cross section in the low-n-region
would be more pronounced.

Next, applying the prescription recalled in Sec. II C, w
make a comparison between GRS and IS cross section
E53.595 GeV. Figure 5~a! ~5b! shows the results foru
530° using thef0 (f01) approximation for the reduced re
sponse, together with the NE3 data. The agreement betw
the two calculated results is good, but not perfect. One of
causes is undoubtedly the use of Eq.~2.21!, which is an
approximation for the parametrized, off-shell total profi
function G̃, and of course not intrinsic to the actual ladd
summation. Also the agreement with the data is good, exc
for the smallestn.

One observes that the GRS and IS results using onlyf0

e

c-

FIG. 4. The GRS functionf PN,A(z,Q2) ~thin solid line!, the
nucleon SFF2

^N&,NI(x/z,Q2) ~long dashed line! and the mixing fac-
tor C22(Q

2/x2,z) ~short dashed line! entering Eq.~2.2! as function
of z for E53.595 GeV, u530° and two cases ofx: ~a! x50.1
~corresponding to haveQ250.58 GeV2, n53.00 GeV) and~b! x
52 (Q252.76 GeV2, n50.74 GeV).I (z) is the corresponding in-
tegrand of Eq.~2.2!. All functions above are dimensionless.
3-8



to

m
r

a
o

-
tic
th

b

, t
d

s
as
h

ssed
se

l

vel
nd

ear
ig.

ned

ly
cal
ly

IS

re
e
the

GERSCH-RODRIGUEZ-SMITH COMPUTATION OF DEEP . . . PHYSICAL REVIEW C 67, 034003 ~2003!
diverge for decreasingn and that the GRS comes closest
the data. This is shown in Fig. 5~a! for u530°, E
53.595 GeV, but holds in fact for all examined cases. Co
parison of Figs. 5~a! and 5~b!, moreover, shows that FSI’s fo
GRS are smaller than for the IS, in particular for smallern.
The two observations above can be understood theoretic
@9# and have previously been demonstrated for simple m
els.

Finally, one infers from Fig. 5~b! that the differences be
tween the zero-order IS and GRS cross sections are no
ably reduced when the first-order FSI is included in bo
calculations. A similar comparison is shown in Figs. 5~c! and
5~d! for u545° and, again, the agreement is found to
good after the inclusion of the FSI.

The separate IS NE and NI parts forE53.595 GeV and
u530° (u545°) are shown in Fig. 6~a! @Fig. 6~b!#, where
we used the same notation adopted in Fig. 3. In this case
NI part computed with thef0 approximation for the reduce
response~thin solid line! stays well below the NE one~thin
dashed line! in the lown region, as already found in Ref.@3#.
Now, in the evaluation of the convolution~2.2!, uy0u becomes
rather large asz→4 andf0 rapidly decreases (y0→2AQ2

asz@1). As a consequence, the IS integrand of Eq.~2.2! is
very small in the low-n region ~in contrast to what happen
in the GRS case!. Since much of the input is the same
used in Ref.@28#, our lowest order results agree well wit

FIG. 5. ~a! Comparison of the zeroth order GRS and derived
cross sections forE53.595 GeV,u530°. ~b! As in ~a! but in the
case of the (011)th order.~c! and ~d!: as in ~a! and ~b!, respec-
tively, but for u545°.
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those reported in that paper. However, as already discu
in relation with Fig. 5, the FSI’s contributions in the IS ca
are sizable. In fact, those FSI’s are given by Eq.~2.22! with-
out the termG̃1

(2) , which otherwise would partially cance

the contribution of the large termG̃1
(1) . As a result, in the

low-n region, the IS NI cross section calculated at the le
of the (011)th order becomes larger than the NE one, a
rather close to the GRS NI cross section.

Another interesting aspect is the influence of the nucl
interaction, chosen to calculate the density matrices. In F
7, we display for E53.595 GeV, u530° cross sections
computed on the basis of the three previously mentio
models of nuclear interaction~AV18UR, AV18, and
AV14UR!. The calculations have been performed usingf0
from Eq.~2.15! with the density matrices determined direct
from the corresponding nuclear wave functions. For identi
kinematics the results for AV18UR and AV14UR can hard

FIG. 6. As in Fig. 3 but for the IS case.~a! Contributions to the
cross section forE53.595 GeV,u530° from the NE~dashes! and
the NI ~solid lines! parts of the nucleon SF. Thin and thick lines a
computed from the the 0th- and (011)th-order reduced respons
f(uqu,y0), respectively. The density matrices correspond to
AV18UR nuclear interaction.~b! The same as in~a!, but for u
545°.

FIG. 7. (011)th-order GRS cross sections atE53.595 GeV
and u530° for the AV18 ~dashed!, AV14UR ~long dashed!, and
AV18UR ~solid! nuclear interactions.
3-9
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be distinguished, whereas the AV18 cross section is slig
different from the other two in the low-n tail: There clearly is
only weak dependence on the nuclear interaction.

IV. CONCLUSIONS

We have studied inclusive scattering of high-energy el
trons from 4He, for energy losses below and around t
quasielastic peak and up into the deep inelastic scatte
region. The underlying model assumes noninterference
tween nucleonic and subnucleonic degrees of freed
which implies that total nuclear structures function may
expressed as a generalized convolution of the structure f
tions of free nucleons and the one of a nucleus compose
point particles. The model is estimated to become gradu
imprecise forQ2&2 –2.5 GeV2. Structure functions for a
nucleus of point particles are computed via the reduced
sponsef(q,y) using a relativistic generalization of the GR
series, which includes the first-order FSI.

A new element in the development of the latter is an
tual calculation of the required single- and two-partic
semidiagonal density matrices, based on accurately c
puted 4He ground state wave function. The above repla
previously used parametrizations of derived density matr
for targets withA>12. Computed cross sections appear
o
-

e

n-

d A
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be hardly dependent on the choice of theNN interaction.
In conclusion, we have found, first of all, that inclusiv

cross sections of electron on4He computed with the leading
two terms in the GRS series are in good agreement with
NE3 SLAC-Virginia data for all scattering angles. The latt
in spite of the fact that foru&30° the involvedQ2 fall below
the validity estimate. Second, for all kinematical regions u
der study, the FSI’s for GRS are smaller than for the IS,
particular for low-energy losses. Third, we have presen
the first comparison between the GRS and IS expansions
a real nucleus, cut at the same order in 1/uqu. We have ob-
served that they produce similar cross sections, in particu
after the inclusion of the corresponding FSI contributions

We also presented predictions for a futureE56 GeV ex-
periment at JLab on4He. Its kinematics are largely within
the estimated limits of the underlying GRS theory and
comparison of computed results with data will be more s
nificant for those than is the case for the NE3 data.
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