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Nucleon-deuteron scattering withD-isobar excitation: Chebyshev expansion
of two-baryon transition matrix
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A new technique for solving three-nucleon scattering equations is developed. It is based on the two-
dimensional Chebyshev expansion of the two-baryon transition matrix. Its validity and its effectiveness are
demonstrated. The dynamics of the examples is based on a two-baryon potential which allows for the excita-
tion of a nucleon to aD isobar; the coupled-channel potential yields an effective three-nucleon force in the
three-nucleon system. The purely nucleonic reference potential is the charge-dependent Bonn potential.
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I. INTRODUCTION

We embarked on the description of nucleon-deuteron s
tering with D-isobar excitation. Reference@1# developed a
coupled-channel formulation within the framework of no
relativistic quantum mechanics: Three-nucleon channels
coupled to those in which one nucleon is turned into a sin
D isobar. TheD isobar is considered a stable baryon w
spin and isospin3

2 . The description applies to scattering e
ergies well below the pion-production threshold. The virtu
excitation of theD isobar yields an effective three-nucleo
force, besides otherD-isobar effects. First results of tha
coupled-channel description of nucleon-deuteron scatte
are given for elastic scattering in Refs.@2,3#, for breakup in
Ref. @4# and for electromagnetic reactions in the thre
nucleon system in Refs.@5,6#. Compared to Refs.@2–6#, the
underlying purely nucleonic reference potential is a mod
one, the charge-dependent CD-Bonn potential@7#.

Till now, we have solved the three-particle scatteri
equations in momentum space by a separable expansio
the two-baryon transition matrix. Though the validity of th
separable expansion is tested in Ref.@1# and confirmed there
to be quite reliable, this paper radically improves the num
cal technique. Instead of using separable expansions as
namic input, the two-baryon transition matrix is calculat
exactly, but for further applications its momentum depe
dence is represented and effectively interpolated with
help of Chebyshev polynomials. The three-particle scatte
equations are then solved without any further approximat
This interpolation scheme works for the three-particle sc
tering equations more efficiently than the spline interpo
tion.

Section II develops the Chebyshev interpolation sche
of the two-baryon transition matrix; it also describes t
technique for solving the three-particle scattering equati
and demonstrates its advantages. Section III tests the n
technique and gives examples of physics results for th
nucleon scattering obtained with it. Section IV presents
summary.

*Electronic address: deltuva@itp.uni-hannover.de; on leave f
Institute of Theoretical Physics and Astronomy, Vilnius Universi
Vilnius 2600, Lithuania.
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II. GENERAL FORMALISM

Our description of nucleon-deuteron scattering is ba
on the Alt-Grassberger-Sandhas~AGS! version@8# of nonrel-
ativistic three-particle scattering theory. The symmetriz
multichannel transition matrix between two-body chann
U(Z) and the symmetrized breakup transition matrixU0(Z)
are given in Ref.@1#, i.e.,

U~Z!5PG0
21~Z!1PTa~Z!G0~Z!U~Z!, ~1a!

U0~Z!5~11P!G0
21~Z!1~11P!Ta~Z!G0~Z!U~Z!.

~1b!

The two-baryon transition matrixTa(Z) carries the dy-
namics; the labela indicates the interacting pair~bg! ac-
cording to Fig. 1. In Eqs.~1! G0(Z) is the free resolvent
(Z2H0)21, H0 being the free Hamiltonian with the inclu
sion of rest masses, andP5P1231P132 the sum of the cyclic
and anticyclic permutation operators of three particles;Z is
a general complex number and will for physical amplitud
become the available energyE for three-particle scattering
i.e., Z5E1 i0. The term (11P)G0

21(Z) in the breakup
transition matrixU0(Z) does not contribute to on-shell ma
trix elements ofU0(Z) needed for breakup observables.

The dynamics of the description allows the interacti
nucleons to be excited to aD isobar. A three-baryon Hilber
space is employed which has a purely nucleonic sector a

m
,

FIG. 1. Three-baryon Jacobi momenta and discr
quantum numbers. The spectator baryon is labeleda, the pair
is made up of baryonsb and g. The Jacobi momenta are de
noted by p and q. The abbreviationn(I j ) for the employed
partial-wave basis statesupqn(I j )&a stands for the set
†„@L(sbsg)S#I ( ls) j …JMJ@(tbtg)Tt#TMTBb‡ of discrete quantum
numbers.
©2003 The American Physical Society01-1
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sector in which one nucleon is replaced by aD isobar. The
dynamics is based on a two-baryon potential which coup
both sectors of the Hilbert space. The employed method
extending a purely nucleonic reference potential to
coupled-channel one is given in Ref.@9#. The notation is also
taken over from Ref.@1#. The three-particle partial-wave ba
sis statesupqn(I j )&a of both sectors of Hilbert space, de
fined there as eigenstates ofH0, are used; their quantum
numbers are illustrated in Fig. 1. In the following, all oper
tors acting in the assumed Hilbert space have discrete q
tum numbers. Among them, three-particle parityP, total an-
gular momentumJ with projection MJ , and, if charge
independence of the interaction is assumed, total isospT
with projectionMT , are conserved and can be fixed for t
operators once and for all; due to rotational symmetry
operators are even independent ofMJ , in case of charge
independence even independent ofMT ; we will therefore
often omit those quantum numbers (PJMJTMT) in our
explicit notation. The two-baryon transition matrix in thre
baryon spaceTa(Z) which carries the dynamics is—due
geometric reasons—diagonal with respect to all discr
spectatorquantum numbers, i.e., orbital angular moment
l, spin s, total angular momentumj, isospin t, and baryon
characterb. With respect to pair quantum numbers,Ta(Z)
is—due to dynamic reasons—diagonal in the pair parityp
5(2)L, in the total pair angular momentumI and in the
total pair isospinT, but it can couple states with different pa
orbital angular momentumL, spinS, and baryonic contentB.
The abbreviationh5(LSB) stands for all nonconserve
quantum numbers, the abbreviationx, i.e., x5(pITls j tb),
for all conserved ones. Thus, there are three sets of disc
three-particle quantum numbers, which our notation will d
tinguish, i.e., n(I j )5@h,x,(PJMJTMT)#. However, in
contrast to the two-baryon transition matrixTa(Z) and to the
free resolventG0(Z), the permutation operatorP in Eqs.~1!
couples not only the quantum numbersh, but also the dy-
namically conserved quantum numbersx.

If charge dependence is allowed for as in the calculati
of this paper, the two-baryon transition matrixTa(Z) be-
comes dependent on the projectionM T of the pair isospinT.
Thus, its matrix elements in the three-particle ba
upqn(I j )&a couple states of total isospinT51

2 and T53
2. In

this case of charge dependence the discrete three-pa
quantum numbers are therefore to be split up into differ
sets, i.e., n(I j )5@h,x,(PJMJMT)#, compared with
charge independence. The total isospinT has to be included
among the nonconserved quantum numbersh5(LSBT).
Otherwise, the formalism to be developed in this paper
mains entirely unchanged.

In nucleon-deuteron scattering the transition matri
U(Z) andU0(Z) act on the initial nucleon-deuteron chann
state. The general nucleon-deuteron channel stateufa(q)na&
of energyE5ed1q2/2Ma , ed being the deuteron binding
energy, Ma5 2

3 mN being the reduced mass, andmN the
nucleon mass, is a product state of the form

ufa~q!na&5udI0MIT0MT0
&auqs0mst0mtb0&a , ~2a!

with I 051, T05MT0
50, ands05t05b05 1

2 ; MI , ms and
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mt are projections of the quantum numbersI, s andt defined
in Fig. 1. For computational convenienceufa(q)na& is ex-
panded into the partial-wave coupled statesudqxd&a accord-
ing to

ufa~q!na&

5 (JMJTMTjmj lml

udq$@ I 0~ ls0! j #JMJ~T0t0!TMTb0%&a

3^I 0MI jmj uJMJ&^ lmls0msu jmj&

3^T0MT0
t0mtuTMT&Ylml

* ~ q̂!, ~2b!

with the abbreviationudqxd&a for the partial-wave projected
nucleon-deuteron state, i.e.,

udqxd&a[udq$@ I 0~ ls0! j #JMJ~T0t0!TMTb0%&a . ~2c!

In the notationudqxd&a of the coupled state the symbolxd
stands for the set (p0I 0T0ls0 j t 0b0) of quantum numbers
with p051; there are two~three! distinct coupled states fo
each set of three-particle quantum numbers (PJMJMT)
with J51

2~J>3
2!; those three-particle quantum numbers a

notationally suppressed inudqxd&a .
The solution of the integral equation~1a! for the multi-

channel transition matrixU(Z) for the initial energyZ5Ei

1 i0, Ei5ed1qi
2/2Ma , acting on the initial nucleon-

deuteron statesudqixdi
&a ,

U~Ei1 i0!udqixdi
&a5 (

n50

`

@PTa~Ei1 i0!G0~Ei1 i0!#n

3PG0
21~Ei1 i0!udqixdi

&a , ~3!

is constructed from the Neumann series of finite order us
the method of Pade´ approximants. The breakup transitio
matrix U0(Z) is then obtained by quadrature. Because of
permutation operatorP, at each iteration step in Eq.~3! in-
terpolation is required in at least two continuous variabl
depending on the used representation ofP. Usually, cubic
spline interpolation is used. However, in this work w
present an alternative interpolation technique in terms
Chebyshev polynomials. We do so for the two-baryon tra
sition matrix Ta(Z) with respect to both the initialp and
final p8 relative momenta of the interacting pair. That nov
interpolation technique will then yield a novel technique f
solving the AGS equations~1!.

Why Chebyshev polynomials? We follow the so-call
moral principle 1of Ref. @10#.

~i! When in doubt, use Chebyshev polynomials, unless
solution is spatially periodic, in which case an ordinary Fo
rier series is better.

~ii ! Unless you are sure another set of basis function
better, use Chebyshev polynomials.

~iii ! Unless you are really, really sure that another set
basis functions is better, use Chebyshev polynomials.
1-2
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Whereas the following section develops the interpolat
scheme in terms of Chebyshev polynomials, Appendix
gives more formal reasons for its validity.

A. Chebyshev interpolation

The two-baryon transition matrixTa(Z) in three-particle
space is calculated using the full form of the two-bary
potentialva , but for further applicationsTa(Z) is rewritten
in an approximate Chebyshev representation, employed
on for an efficient interpolation.Ta(Z) is of the general
structure

Ta~Z!5va1vaG0~Z!Ta~Z!, ~4a!

Ta~Z!5va1va

1

Z2H02va
va , ~4b!

Ta~Z!5(
n8n

E p82dp8E q82dq8E p2dpE q2dq

3up8q8n8~ I 8 j 8!&aa^p8q8n8~ I 8 j 8!u

3Ta~Z!upqn~ I j !&aa^pqn~ I j !u. ~4c!

The two-baryon potentialva acts between the pair (bg).
According to Eq.~4b! the dependence ofTa(Z) on the final
and initial pair momentap8 andp arises from the momentum
dependence of the potentialva ; that dependence is repre
sented in terms of Chebyshev polynomials as follows:

Ta~Z!'(
n8n

E q2dqE p82dp8E p2dpup8qn8~ I 8 j 8!&a

3 (
i 8,i 50

nc21

tL8
i 8 ~p8!dx8xTh8h

i 8 i
~xq,Z!tL

i ~p!a^pqn~ I j !u,

~5a!

Ta~Z!5(
n8n

E q82dq8E q2dq

3 (
i 8,i 50

nc21

ut i 8q8n8&a~ i 8q8n8uTa~Z!u iqn!a^t iqnu,

~5b!

Ta~Z!5uta&Ta~Z!^tau. ~5c!

The representation~5a! of the two-baryon transition matrix is
only approximate, since the expansion is in a finite num
nc of polynomials; in contrast, the manipulations leadi
from Eq. ~5a! to Eqs.~5b! and~5c! are exact. The employe
momentum functions

tL
i ~p!5

pL

~p21aL
2!L/2

Ti„xc~p!… ~6!

are related to the Chebyshev polynomialsTi(x)
5cos(i arccosx), defined in the interval@21,1#. xc(p)
03400
n

ter

r

5(p22a2)/(p21a2) is the function which maps the interva
@0,̀ ! of the physical values of momentump to the interval
@21,1#. The form of the mapping functionxc(p) and the
parametersa and aL are chosen beforehand by experienc
The parametersa and aL are taken to be the same for a
polynomials. Separating out factors of typepL/(p21aL

2)L/2

makes the remaining function, which is to be represented
Chebyshev polynomials, smoother and ensures cor
asymptotic behavior of the expansion for small momenta
the interacting pair. The expansion parameters are

Chebyshev coefficientsTh8h
i 8 i (xq,Z). They are independen

of the pair label a. They are calculated for (i 8,i )
50, . . . ,N21, N>nc in Appendix A from the exact matrix
elements ofTa(Z) at the pair momentapk8 and pk corre-
sponding to all theN zeros ofTN(x), i.e., TN„xc(pk)…50.
The representation~5a! is exact for all those momentapk8 and
pk , provided nc is chosen asnc5N for the number of
Chebyshev polynomials@10#; in this case the representatio
~5a! is a true interpolation between the momentapk8 andpk .
If nc,N, the representation~5a! is an approximation also fo
the momentapk8 andpk ; we shall usually choosenc,N, but
nevertheless we shall call representation~5a! an interpolation
scheme.

In Eq. ~5b! the states

ut iqn&aªE p2dpupqn~ I j !&atL
i ~p! ~7!

are introduced for compact notation. They arise, when in
changing the order of the summation on the Chebyshev la
i and the corresponding integration on the momentump;
that interchange has to be done with care; however,
note that in all calculations only the componen
a^p8q8n8(I 8 j 8)ut iqn&a of those states, together with wel
behaved operators, will be needed. In Eq.~5c! the states
ut iqn&a are collected into the vectoruta& whose components
are to be differentiated by the Chebyshev labeli, by the
continuous variableq and by the discrete three-particle qua
tum numbersn. In the same spirit, a matrix-element form
introduced in Eq.~5b! for the Chebyshev coefficients, i.e.,

~ i 8q8n8uTa~Z!u iqn!ª
d~q82q!

q2
dx8xTh8h

i 8 i
~xq,Z!. ~8!

Those matrix elements are collected into the operatorTa(Z).
Thus, Eq.~5c! is a concisely abbreviated form of the two
baryon transition matrix used for developing the integ
equation to be solved in practice; then, the operator dep
dence on the continuous variableq and on the discrete three
particle quantum numbersn has to be recovered.

A similar expansion can be given for the nucleo
deuteron statesudqxd&a , e.g., in the form

G0
21~E1 i0!udqxd&a5vaudqxd&a , ~9a!
1-3
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G0
21~E1 i0!udqxd&a

5(
n
E p2dpE q82dq8upq8n~ I j !&a

3a^pq8n~ I j !uvaudqxd&a , ~9b!

with E5ed1q2/2Ma . The resulting expansion correspon
ing to the expansion of the two-baryon transition matrix~5!
is

G0
21~E1 i0!udqxd&a

'(
n
E p2dpupqn~ I j !&adxxd (

i 50

nc21

tL
i ~p!dL

i ,

~10a!

G0
21~E1 i0!udqxd&a5(

n
(
i 50

nc21

ut iqn&adxxd
dL

i ,

~10b!

~ udqxd&a)5G0~E1 i0!uta&d. ~10c!

The calculation of the Chebyshev coefficientsdL
i is also de-

scribed in Appendix A. In Eq.~10c! the compact notation o
Eq. ~5c! is taken over; the round brackets on the left ha
side indicate that all distinct coupled statesudqxd&a are con-
sidered together; the matrixd abbreviates thedxxd

dL
i for all

those states.
The expansion~9! of vaudqxd&a represents the depen

dence of the potentialva on the pair momentum in the sam
way as the corresponding expansion of the two-baryon t
sition matrix Ta(Z). Furthermore,vaudqxd&aa

^dqxduva

builds up the residue ofTa(Z) at the deuteron pole; at tha
pole the singular factor is separated out analytically and
residue is expanded according to Eqs.~9! and ~10!, i.e., the
Chebyshev coefficients of the two-baryon transition ma
~5a! at the deuteron pole are

Th8h
i 8 i

~xdq,Z!5
dL8

i 8 dL
i

Z2ed2q2/2Ma

. ~11!

B. Nucleon-deuteron scattering equations with Chebyshev
representation of two-baryon transition matrix

For a given initial nucleon-deuteron state with on-sh
momentum qi , three-nucleon energyEi5ed13qi

2/4mN ,
and initial quantum numbersxdi

the integral equation~1a!

has to be solved forU(Z)udqixdi
&a with Z5Ei1 i0, i.e.,

U~Z!udqixdi
&a5@PG0

21~Z!1Puta&Ta~Z!

3^tauG0~Z!U~Z!#udqixdi
&a . ~12!

Thus, the integral equation to be solved is an integ
equation for ^tauG0(Z)U(Z)udqixdi

&a . It has the genera
structure
03400
d

n-

e

x

l

l

^tauG0~Z!U~Z!G0~Z!uta&d

5^tauPG0~Z!uta&d1^tauPG0~Z!uta&Ta~Z!

3^tauG0~Z!U~Z!G0~Z!uta&d. ~13!

We note, that the structure of this integral equation is f
mally the same as Eq.~7! of Ref. @4#; it arises there from the
separable expansion of the two-baryon transition matrix
fact, any discretization of the two-baryon transition mat
Ta(Z), i.e., any interpolation scheme which assumesTa(Z)
to be calculated for a finite set of initial and final momen
and which then interpolatesTa(Z) to any desired momenta
with the help of an expansion into a set of analytic functio
can formally be treated as a separable expansion. The f
factors used in the context of the separable expansion of
@4# were denoteduga& instead ofuta&. The differences be-
tweenuga& and uta& are threefold.

~1! The uga& are independent from the spectator mome
tum and from the spectator discrete quantum numbers,
uta& are not.

~2! Each of theuga& has components for all nonconserve
discrete quantum numbersh, the propagatorTa(Z) of the
separable expansion is independent ofh. In contrast, each of
the uta& has only one component for one fixedh, since the
corresponding propagatorTa(Z) depends onh and couples
different h.

~3! Each of the distinctG0
21(Ei1 i0)udqixdi

&a was a

single element in the stateuga&; in contrast, each nucleon
deuteron stateG0

21(Ei1 i0)udqixdi
&a in the present contex

involvesall Chebyshev polynomials considered for interp
lation; this fact implies that the productuta&d should never
be separated into its individual Chebyshev building bloc
in order to preserve a minimal number of initial states
which the integral equation~13! has to be solved.

We now explain our techniques for practically solving t
integral equation~13!; we make all integrations and summ
tions, hidden in the compact form~13!, explicit, i.e.,

a^t i 8q8n8uG0~Ei1 i0!U~Ei1 i0!udqixdi
&a

5a^t i 8q8n8uPudqixdi
&a1(

in
(
i 9n9

E
0

`

q2dq

3E
21

1

dx
tL8
i 8 ~ p̄8~q8,q,x!!

p̄8L8~q8,q,x!

3
Gn8n~q8,q,x!

Ei1 i02dM2
q82

2ma
2

q2

2ma8
2

q8q

ma
x

3
tL
i ~ p̄~q8,q,x!!

p̄L~q8,q,x!
dxx9Thh9

i i 9 ~xq,Ei1 i0!

3a^t i 9qn9uG0~Ei1 i0!U~Ei1 i0!udqixdi
&a . ~14!
1-4
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This representation of the integral equation is derived fr
the form

a^p8q8n8~ I 8 j 8!uPupqn~ I j !&a

5E
21

11

dx
d„p82 p̄8~q8,q,x!…

p8L812

d„p2 p̄~q8,q,x!…

pL12

3Gn8n~q8,q,x! ~15!

of the permutation operatorP, defined in Appendix A of Ref.
@2#; the functionsp̄(q8,q,x), p̄8(q8,q,x), andGn8n(q8,q,x)
are given there. The driving terma^t i 8q8n8uPudqixdi

&a in
the integral equation~14! has to be calculated using Eq.~15!;
we keep it in its compact forma^t i 8q8n8uPudqixdi

&a , since
that part of the integral equation will not be essential for o
further considerations. In Eq.~14!, ma is the mass of the
spectator,ma5mbmg /(mb1mg) the reduced mass of th
pair, anddM the rest mass of the three-baryon state, norm
ized to zero for three-nucleons; since the permutation op
tor P only couples states with the same three-baryon cont
dM is the same for the quantum numbersn8 andn.

The kernel of the integral equation~14! contains
singularities. The term@Ei1 i02dM2q82/2ma2q2/2ma8
2(q8q/ma)x#21, arising from the free resolventG0(Ei
1 i0), develops so-calledmovingsingularities of kinematica
origin above breakup threshold, whereas the matrix of

Chebyshev coefficientsThh9
i i 9 (xq,Ei1 i0) shows the deu-

teron bound state pole~11!. That deuteron pole is handle
easily by regularization through subtraction. The treatmen
the moving singularities is taken over from Ref.@4#; it is
based on real-axis integration; changes compared with
@4# required by the special form~14! of the integral equation
are minimal.

The calculation of the first terms of the Neumann ser
~3! for a^t i 8q8n8uG0(Ei1 i0)U(Ei1 i0)udqixdi

&a of Eq.
~14! requires many matrix multiplications. We have two o
tions for this step.

The first option follows the strategy of Refs.@2,4# for a
separable expansion of the two-baryon transition mat
When solving the integral equation~14! as in Ref.@4#, the
matrix elements

a^t i 8q8n8uPG0~Ei1 i0!ut iqn&a

5E
21

1

dx
tL8
i 8
„p̄8~q8,q,x!…

p̄8L8~q8,q,x!

3
Gn8n~q8,q,x!

Ei1 i02dM2
q82

2ma
2

q2

2ma8
2

q8q

ma
x

3
tL
i
„p̄~q8,q,x!…

p̄L~q8,q,x!
~16a!
03400
r
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are obtained first by carrying out the thex integration which
involves only known functions. Correspondingly, the Bo
term of Eq.~14! could be calculated according to

a^t i 8q8n8uPudqixdi
&a

5(
in

a^t i 8q8n8uPG0~Ei1 i0!ut iqn&adxxdi
dL

i ,

~16b!

starting from a^t i 8q8n8uPG0(Ei1 i0)ut iqn&a . The integral
equation~14! is then solved in one continuous variable, i.
in the spectator momentumq. That procedure is a viable one
and we refer to it as the separable expansion technique
solution. However, that technique is very uneconomical
case of a substantial number of Chebyshev polynomials
the adopted interpolation scheme; that number is usu
much larger than the corresponding ranks of the separ
expansion in Refs.@1–4#. The matrix a^t i 8q8n8uPG0(Ei
1 i0)ut iqn&a is of formidable size, it typically requires
computer storage of the order of 100 GB; thus, it can
be stored in any medium-sized computer and has to
computed many times when calculating the Neumann se
~3!. Besides that, it couples all labels and quantum numb
( iqn) with each other yielding lengthy matrix multiplica
tions, whereas all building blocks within the form~16a!
of a^t i 8q8n8uPG0(Ei1 i0)ut iqn&a have block-diagonal
structure.

In the second optionthe same Neumann series~3! is cal-
culated. However, the integrations and summations in
~14! are carried out, whenever they arise, starting from ri
to left. This is the natural order of matrix multiplication
taking advantage of the block-diagonal structure of the qu
tities entering Eq.~14!. This procedure reduces the numb
of required floating point operations considerably. The Bo
term a^t i 8q8n8uPudqixdi

&a is calculated also directly with-
out any reference to the matrix elements~16a!. That impor-
tant logistic change constitutes the new technique of
paper for solving the AGS equations, compared with
technique of separable expansion, calledfirst option in this
paper and used by us before in Refs.@1–4#.

Finally, the partial-wave projected matrix elemen
needed for the calculation of the observables of elastic
inelastic nucleon-deuteron scattering follow fro

a^t i 8qn8uG0(Ei1 i0)U(Ei1 i0)udqixdi
&a in the forms

a^dqixdf
uU~Ei1 i0!udqixdi

&a

5a^dqixdf
uPG0

21~Ei1 i0!udqixdi
&a

1(
in

E
0

`

q2dqa^dqixdf
uPut iqn&a

3(
i 8n8

dxx8Thh8
i i 8 ~xq,Ei1 i0!

3a^t i 8qn8uG0~Ei1 i0!U~Ei1 i0!udqixdi
&a ,

~17a!
1-5
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a^pqn~ I j !uTa~Ei1 i0!G0~Ei1 i0!U~Ei1 i0!udqixdi
&a

5(
i

tL
i ~p!(

i 8n8
dxx8Thh8

i i 8 ~xq,Ei1 i0!

3a^t i 8qn8uG0~Ei1 i0!U~Ei1 i0!udqixdi
&a . ~17b!

Equations~17! suggest that it is more convenient to sol

Eq. ~14! for ( i 8n8dxx8Thh8
i i 8 (xq,Ei1 i0)a^t i 8qn8uG0(Ei

1 i0)U(Ei1 i0)udqixdi
&a instead for a^t i 8qn8uG0(Ei

1 i0)U(Ei1 i0)udqixdi
&a . The former quantity is directly

needed in Eqs.~17!; it corresponds to the alternative form
T(Z)5Ta(Z)G0(Z)U(Z) of the multichannel transition ma
trix used in Ref.@11#. The on-shell elements of the symm
trized multichannel transition matrixU(Ei1 i0) between
two-body channels~2a! are obtained from the result~17a!.
The on-shell elements of the symmetrized breakup transi
matrix U0(Ei1 i0) are obtained from the result~17b! ac-
cording to Eq.~1b!; it is advantageous to transform the m
trix elements~17b! first to plane-wave basis and then to a
ply also the permutation operatorP of the part (11P)
according to Eq.~1b! in that plane-wave basis.

III. RESULTS

First, this section tests the efficiency of the Chebysh
expansion for the two-baryon transition matrix and for t
deuteron wave function. Second, the Chebyshev expansi
employed as an interpolation scheme when solving the th
particle scattering equations with the two-baryon transit
matrix as dynamic input. In this context, our numeric
scheme is tested for accuracy and the advantage of the u
the Chebyshev expansion is discussed. Furthermore, we
new physics results for elastic nucleon-deuteron scatte
and nucleon-deuteron breakup.

Unless otherwise stated, our calculations are based on
purely nucleonic CD-Bonn potential@7#; it is extended as the
Paris potential in Ref.@9# to include theD isobar degree of
freedom. The CD-Bonn potential allows for charge dep
dence in the isospin triplet partial waves up toI 54. The
coupled-channel potential derived from CD-Bonn shows
same charge dependence. The charge dependence o
nucleon-nucleon interaction is treated exactly in the1S0 par-
tial wave, yielding total isospinT53

2 channels; in other two-
baryon isospin triplet partial waves up toI 54 the charge
dependence is treated approximately, i.e., without coup
to T53

2 states; this approximate treatment weights the co
ponents of the isospin triplet partial waves in the ratio1

3:
2
3 for

the proton-neutron and neutron-neutron parts; in those hig
partial waves the coupling toT53

2 states was checked to b
quantitatively irrelevant.

Partial waves up to total two-baryon angular moment
I 55 in purely nucleonic channels and up toI 54 in
nucleon-D channels and up to total three-baryon angu
momentumJ5 27

2 are taken into account. The results appe
fully converged with respect to higher two-baryon angu
momenta I, with respect to higher three-baryon angu
momentaJ, and with respect toD-isobar coupling on the
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scale of accuracy which present-day experimental data
quire.

The calculations are in momentum space and leave
Coulomb interaction between the charged particles o
Though most data taken for the comparison with theoret
predictions are from proton-deuteron scattering, the ca
lations therefore refer to the neutron-deuteron system;
respondingly, the calculations of the trinucleon bound st
in Appendix B refer to tritium. We use the neutron-neutr
and proton-neutron components of the CD-Bonn a
the coupled-channel two-baryon potentials. In the fr
Hamiltonian H0, we use an averaged nucleonic massmN
5938.919 MeV, in order to ensure charge independence
the moving singularities in the integral equation~14!. Due to
this choice of masses the neutron-neutron transition matr
calculated differently compared with Ref.@7#, which carried
out the fit to data; the resulting difference in neutron-neut
phase shifts between this paper and Ref.@7# is entirely neg-
ligible. The mass of theD isobar is assumed to be 1232 Me

A. Test of Chebyshev expansion of the two-baryon transition
matrix and of the deuteron wave function

The Chebyshev expansion works equally well for the tw
baryon transition matrix according to Eq.~5! and for the
deuteron wave function according to Eqs.~10!. Figure 2 dis-

plays examples of the Chebyshev coefficientsTh8h
i 8 i (x q,Z)

of the two-baryon transition matrix and of the Chebysh
coefficientsdL

i of vaudqxd&a ; their fast decrease with in
creasing order of the polynomial is impressive; the conv
gence appears subgeometric as described in Appendix A
expansion converges therefore rapidly as shown in Fig
Thus, the truncation of the Chebyshev expansion at
rather small orders 16 or 24 is well justified, except for ve
large momenta, unimportant for three-nucleon scattering
the rather modest available energies considered in this pa
The Chebyshev expansion is systematic and efficient
contrast, when using spline interpolation for the same qu
tities all spline functions are of same importance; there is
way for a corresponding systematic truncation of the spl
expansion.

B. Test of new technique for solving integral equation„14…
using Chebyshev expansion

We performed the following tests, in order to assure
technical reliability of our numerical apparatus, calledsec-
ond optionin Sec. II B.

~1! References@1–4# employed the coupled-channel po
tential A2 @9# and the Paris potential@12# as its nucleonic
reference potential in separable forms as dynamic input
calculations. We take those separable forms now as num
cal test cases, but do not exploit their separable struct
Instead, we use a Chebyshev expansion for their separ
expansions and interpolate them accordingly when solv
integral equation~14! with the technique of thesecond op-
tion of Sec. II B. The agreement with all previous results
Refs. @2,4# is so excellent that differences cannot be doc
mented in any plot. This fact is one indication that the n
technique for solving the integral equation~14! is reliable.
1-6
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FIG. 2. Chebyshev coefficientsTh8h
i 8 i (x q,Z) of the 1S0(NN)25D0(ND) two-baryon transition matrix fori 51, q50, and

Z5100 MeV and Chebyshev coefficientsdL
i of the deuteron wave function as functions of the orderi 8 or i of the Chebyshev polynomials
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~2! In Sec. II B two options for solving the basic integr
equation ~14! with Chebyshev interpolation of the two
baryon transition matrix and the deuteron wave function
discussed; the technique preferred by us is thesecond option.
Since both techniques differ only in the order of matrix m
tiplications, they have to yield identical results. In fact, th
do so in our test calculations within at least ten signific
figures and thereby prove the numerical reliability of th
part of our calculational scheme. These test calculations
prove our expectation, that the technique of thesecond op-
tion is the much more economical one for solving the in
gral equation~14!, being faster by a factor of the order of 1
than the separable expansion of thefirst option technique.
Furthermore, the actual computer time for the technique
the second optiondepends only weakly on the number
Chebyshev polynomials employed, whereas in the cas
the technique of thefirst option it increases quadratically
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with that number; the ratio is about 10 when using 24 Che
shev polynomials.

~3! Figure 4 studies the convergence of sample phys
observables with the number of Chebyshev polynomials e
ployed. The convergence is impressively rapid. Understa
ably it is faster for lower energies. The Chebyshev expans
is favored by us and will be used by us from now on. Ne
ertheless, as an alternative, also spline interpolation is u
as usually adopted in few-body numerics when solving
integral equation~14!. In both interpolation schemes the in
tegral equation~14! has the same general structure as d
cussed in Appendix C. The results provided by both inter
lation schemes are indistinguishable; however, spl
interpolation reaches the same quality of results only wit
considerably larger number of functions than the correspo
ing Chebyshev expansion. The results of Fig. 4 confirm
previous conclusion:The Chebyshev expansion is systema
polation
0 fm
rpo-
FIG. 3. Convergence of the Chebyshev expansion. On the left side the real part of the1S0(NN)25D0(ND) two-baryon transition matrix
is shown as function of the final momentump. The transition1S0→5D0 at q50 with the available energyZ5100 MeV for the initial pair
momentum pi51 fm21 is plotted. On the right side theL50 component of the deuteron wave functioncL(p)
[^p(LS)I 0MIT0MT0

BudI0MIT0MT0
& is shown. The dot-dashed, dotted, dashed, and solid curves correspond to Chebyshev inter

using 12, 16, 24, and 48 polynomials, respectively. All curves are indistinguishable in the resolution adopted for momenta up to 121.
Differences can only be seen for momenta beyond 10 fm21 with an especially fine resolution. The standard of reference is spline inte
lation with 48 spline functions. The solid curves turn out to be identical with those reference curves.
1-7



guration
nver-
olynomials,
d with 48

A. DELTUVA, K. CHEMIELEWSKI, AND P. U. SAUER PHYSICAL REVIEW C67, 034001 ~2003!
FIG. 4. Fivefold differential cross section for nucleon-deuteron breakup at 65 MeV nucleon lab energy in the space star confi
~54.0°,54.0°,120.0°! and deuteron analyzing powerAxz for elastic nucleon-deuteron scattering at 135 MeV nucleon lab energy. The co
gence of the Chebyshev expansion is studied. The dotted and dashed curves are results obtained with eight and 12 Chebyshev p
respectively, the solid curve corresponds to the indistinguishable results obtained with 16, 24, and 48 Chebyshev polynomials an
spline functions; always more than 24 spline functions are needed to reproduce the solid curve very well.
ed

ef
ce
th
sy
d
er
as

or

e
a

o be

-
ing
als,

ther

r-
are

ron
he
ver
and efficient and thereby superior to spline interpolation.All
results which are given in Secs. III C and III D are obtain
with 24 Chebyshev polynomials.

C. Test of separable expansion

The quality of the separable expansion employed in R
@1–4# is well established for the purely nucleonic referen
potential; for the two-baryon coupled-channel potential
separable expansion could be tested in the two-nucleon
tem and for the three-nucleon bound state and was foun
be quite accurate@1#. We are now able to complete the latt
tests also for three-nucleon scattering. Sample results b
on the coupled-channel potential A2 of Refs.@1–4# and ob-
tained from the integral equation~14! are compared in Fig. 5
with corresponding results for the separably expanded f
of A2 derived either from the integral equation~14! or by the
technique of Ref.@4#. Differences of results obtained for th
separably expanded and the unexpanded forms of A2
03400
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discernible, but the separable expansion is again proven t
quite reliable, enforcing the conclusions of Ref.@1#.

D. New physics results

The calculations of Refs.@1–4# required separable expan
sions for the dynamic input of the three-nucleon scatter
equations; only the two-baryon coupled-channel potenti
derived from the nucleonic Paris@1# and Bonn B@15# poten-
tials have been available to us, and both potentials are ra
outdated. Furthermore, the calculations of Refs.@1–4# used
only rather low partial waves, not sufficient for full conve
gence at higher scattering energies. Those restrictions
now gone. We therefore use the CD-Bonn potential@7# and
extend it forD-isobar excitation as in Ref.@9#. Sample re-
sults for a variety of physics aspects of nucleon-deute
scattering is now given. The short-hand for specifying t
kinematics to which breakup observables refer is taken o
from Ref. @4#.
on lab
the

xperimental
FIG. 5. Nucleon analyzing powerAy for elastic nucleon-deuteron scattering as function of c.m.scattering angle at 10 MeV nucle
energy and for nucleon-deuteron breakup as function of arclengthS along the kinematical curve at 65 MeV nucleon lab energy in
collinear configuration~30.0°,98.0°,180.0°!. The separable expansion of the underlying two-baryon potential A2 withD-isobar excitation is
tested. The dashed curves are results of the separably expanded potential form, the solid curves of the unexpanded form. The e
data are from Refs.@13,14#.
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FIG. 6. Neutron analyzing powerAy(n) as function of the c.m.scattering angle for elastic neutron-deuteron scattering at 10 MeV nu
lab energy. Results of the coupled-channel potential withD-isobar excitation including spin-orbit interaction~solid curve! are compared with
results of the CD-Bonn potential~dashed curve!. On the right side the peak results are shown in finer resolution; there also the res
D-isobar excitation without spin-orbit interaction~dotted! is shown. The partial three-nucleon force effect arising from theD isobar with
spin-orbit interaction is given for comparison~dashed dotted!. The experimental data are from Ref.@14#.
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~1! Before entering the discussion of nucleon-deute
scattering, we want to draw the attention of the reader
Appendix B. There, the hadronic properties of the tritiu
bound state, as derived by the technique of this paper f
03400
n
o

m

the CD-Bonn potential and from its coupled-channel ext
sion to singleD-isobar excitation, are listed. For compariso
results based on the AV18@16# and Nijmegen@17# potentials
are also given. Due to its strong nonlocality and theref
as
otal
FIG. 7. Differential cross section and nucleon analyzing powerAy(n) as function of the arclengthSalong the kinematical curve for two
configurations of nucleon-deuteron breakup at 13 MeV nucleon lab energy:~a!,~b! collinearity configuration~50.5°,62.5°,180.0°! and~c!,~d!
FSI configuration~39.0°,62.5°,180.0°!. Results of the coupled-channel potential withD-isobar excitation are shown. The results shown
solid curves take the charge dependence in the1S0 partial wave fully into account, i.e., with coupling to three-particle channels with t
isospin 3

2. That coupling is left out in the results shown as dashed curves. The experimental data are from Ref.@19# referring to neutron-
deuteron scattering~circles! and from Ref.@20# referring to proton-deuteron scattering~crosses!.
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FIG. 8. Differential cross section and nucleon analyzing powerAy(n) as function of the arclengthS along the kinematical curve fo
various configurations of nucleon-deuteron breakup at 65 MeV nucleon lab energy:~a!,~b! QFS configuration~44.0°,44.0°,180.0°! and~c!,~d!
collinear configuration~45.0°,75.6°,180.0°!. Results of the coupled-channel potential withD-isobar excitation~solid curve! are compared
with results of the CD-Bonn potential~dashed curve!. The experimental data are from Refs.@13,21# and refer to proton-deuteron scatterin
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due to a comparatively weak tensor force, the CD-Bonn
tential provides more trinucleon binding than the local AV1
and Nijmegen II potentials or the only mildly nonloc
Nijmegen I potential. The respective coupled-channel pot
tials with D-isobar excitation show the well-known compe
tion between two physically distinctD-isobar effects, i.e., the
repulsive two-nucleon dispersion and the three-nucleon
traction. The coupled-channel potential derived from C
Bonn potential still misses the tritium binding, but the r
maining discrepancy is quite small.

~2! Results for the neutron analyzing powerAy(n) of elas-
tic neutron-deuteron scattering at 10 MeV nucleon lab
ergy are given in Fig. 6. This observable is haunted b
persistent discrepancy with theoretical predictions, called
Ay puzzle. All calculations based on realistic two-nucle
potentials and complemented by a three-nucleon force, e
by an irreducible one or by an effective one as due
D-isobar excitation, are unable to account for the experim
tal height of the peak. Reference@18# discusses a three
nucleon force as possible remedy which has a phenom
logical spin-orbit component with rather long range. W
therefore test an effective three-nucleon force which obta
a microscopically motivated spin-orbit component arisi
from the spin-orbit part of ther-meson exchange mediatin
single D-isobar excitation; that spin-orbit component is
rather short range, its strength and range being pred
03400
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mined by ther parameters used in the standard transit
potential from two-nucleon to nucleon-D states. The obtained
results are disappointing: The inclusion of the spin-or
mechanism ofr exchange does not significantly decrease
long-standing discrepancy. Although the three-nucleon fo
effect is quite significant, it is canceled by the dispers
effect, leaving the fullD-isobar effect small. A similar smal
effect is found for the deuteron vector analyzing power iT11.
The effect of the spin-orbit contribution toD-isobar effects is
negligible for other observables.

~3! Results for spin-averaged and spin-dependent obs
ables of nucleon-deuteron break-up at 13 MeV nucleon
energy are given in Fig. 7. The proper treatment of cha
dependence, including three-baryon partial waves with to
isospinT5 1

2 and T5 3
2 , is necessary in order to reproduc

the height of the differential cross section peaks at arclen
S around 10 MeV in the collinearity and in the FSI config
rations of Figs. 7~a! and 7~c!, the corresponding spin observ
ables appear only mildly affected. In contrast to charge
pendence, the effect of theD isobar is irrelevant at this
scattering energy; it is therefore not separately documen
in the figure.

~4! Sample results for nucleon-deuteron breakup at
MeV nucleon lab energy are given in Fig. 8. The effects
theD isobar and of its mediated three-nucleon force beco
more noticeable at this higher energy in some observab
1-10
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NUCLEON-DEUTERON SCATTERING WITHD-ISOBAR . . . PHYSICAL REVIEW C 67, 034001 ~2003!
e.g., for the differential cross section in collinear configu
tions, as shown in Fig. 8~c!.

~5! The Sagara discrepancy of elastic nucleon-deute
scattering is revisited. Figure 9 shows the spin-averaged
ferential cross section and Fig. 10 the nucleon analyz
power at various energies. The removal of the Sagara
crepancy in the diffraction minima of the elastic different
nucleon-deuteron cross sections by the three-nucleon f
derived from theD isobar is confirmed; the same effect
found in the minima of the nucleon analyzing power. T
theoretical predictions miss the experimental data in forw
direction up to an scattering angle of about 40°; this discr
ancy is due to the omission of the Coulomb interaction
tween protons.

~6! Compared to our previous results based on the P
potential@12# and its extension to the inclusion of aD isobar,
most observables of elastic nucleon-deuteron scattering
of breakup get changed in predictions based on CD-B
and its extension. We show two typical examples in Fig.
where also predictions of AV18 and the Nijmegen potenti
are given for comparison. The results of the modern pot
tials are very close to each other, but differ markedly fro

FIG. 9. Differential cross section as function of the c.m. scat
ing angle at 65 MeV~upper curves! and 135 MeV~lower curves!
nucleon lab energy. Results of the coupled-channel potential wiD
isobar excitation~solid curves! are compared with results of th
CD-Bonn potential~dashed curves!. The experimental data are from
Refs.@22,23# and refer to proton-deuteron scattering.
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those of the Paris potential. The modern potentials incor
rate the charge dependence of the two-nucleon interac
and are fitted to more modern data, unavailable when
Paris potential was created. Since the difference in fits
responsible for the difference in predictions, Fig. 11 on
shows results with purely nucleonic reference potentials. T
difference in the sample prediction for nucleon-deuter
breakup at 13 MeV nucleon lab energy reflects the cha
dependence of the modern potentials which is not taken
account in the Paris potential; the difference in the sam
prediction for elastic nucleon-deuteron scattering at 1
MeV nucleon lab energy reflects the improved fit of the mo
ern potentials to more recent spin observables of tw
nucleon scattering.

~7! In the discussion of items 1 to 6, we conclude that t
use of well-fitted two-nucleon potentials appears importa
In this respect, the CD-Bonn potential is beyond doub

-

FIG. 10. Nucleon analyzing powerAy(n) of elastic nucleon-
deuteron scattering as function of the c.m. scattering angle at
135, 150, and 170 MeV nucleon lab energy. Results of the coup
channel potential withD isobar excitation~solid curves! are com-
pared with results of the CD-Bonn potential~dashed curves!. The
experimental data are from Ref.@24# and refer to proton-deuteron
scattering.
1-11
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FIG. 11. Comparison of observables derived from various potentials, i.e., CD-Bonn~solid!, AV18 ~long-dahed!, Nijmegen I ~short-
dashed!, Nijmegen II~dotted!, and Paris~dashed dotted!. Differential cross section of nucleon-deuteron breakup as function of the arcle
S along the kinematical curve at 13 MeV nucleon lab energy in collinear configuration~39.0°,75.5°,180.0°! and deuteron analyzing powe
Ay(d) of elastic nucleon-deuteron scattering as function of the c.m. scattering angle at 135 MeV nucleon lab energy are sh
predictions refer to the purely nucleonic reference potentials. The results of the modern potentials cluster around each other and
distinguishable from each other in the plots. The experimental data are from Refs.@19,22#.
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realistic potential as the modern two-nucleon potent
@16,17# used under item~6! in this section and in Appendix
B. However, we start to worry about our procedure@9# for
constructing coupled-channel potentials with singleD-isobar
excitation in isospin triplet partial waves: We avoid a care
fit and only make sure that exact phase equivalence
achieved at zero kinetic energy. Thus, phase differences
tween the nucleonic reference potential and the coup
channel potential arise, in general, and increase with incr
ing energy; e.g., at 100 MeV nucleon lab energy the ph
differences amount to about 3° in1S0, to about 1° in3PI
and to less than 0.2° in the higher partial waves. We are
the process of improving our procedure for extending tw
nucleon potentials allowingD-isobar excitation.

IV. SUMMARY

The paper develops a novel momentum-space techn
for solving the AGS equations without Coulomb for elas
nucleon-deuteron scattering and for nucleon-deuteron br
up. The technique is based on the expansion of the t
baryon transition matrix and of the deuteron wave funct
in terms of Chebyshev polynomials. The Chebyshev exp
sion is systematic and found to be highly efficient when u
for interpolation. The solution of the AGS equations is c
ried out without any further approximation. The results ag
very well with those obtained with alternative interpolatio
techniques.

The dynamics of three-nucleon scattering is based on
CD-Bonn potential; its charge dependence is kept in full
the 1S0 partial wave and approximately for other isospi
triplet partial waves. Furthermore, that purely nucleonic r
erence potential is extended to include singleD-isobar exci-
tation; the standard technique for extension with exact ph
equivalence at zero kinetic energy only is used.D-isobar
effects on observables usually are quite moderate at the
sidered scattering energies, decisive only in special k
matic situations.
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Using the CD-Bonn potential, we confirm most physi
results forD-isobar effects obtained previously with the Pa
potential. Noteworthy are the following special physics r
sults of this paper:

~1! TheAy puzzle of elastic nucleon-deuteron scattering
10 MeV nucleon lab energy cannot be resolved by aD-isobar
effect, even if theD-mediated three-nucleon force has a sp
orbit contribution; the considered spin-orbit contribution
of short range, since it arises from the exchange of thr
meson.

~2! The charge dependence of the two-nucleon interac
is important for nucleon-deuteron breakup in particular kin
matic configurations.

~3! The removal of the Sagara discrepancy in the diffra
tion minima of the elastic differential nucleon-deuteron cro
sections by the three-nucleon force derived from theD isobar
is confirmed; the same effect is found in the minima of t
nucleon analyzing power.

~4! Compared to our previous results, based on the P
potential and its extension to the inclusion of aD isobar,
some observables of elastic nucleon-deuteron scattering
of break-up get substantially changed in predictions based
CD Bonn and its extension to the inclusion of aD isobar.
These changes are due to the fact that CD Bonn is the m
modern potential accounting for the now existing databas
two-nucleon scattering much better than the outdated P
potential does.
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APPENDIX A: CALCULATION OF CHEBYSHEV
COEFFICIENTS

In this appendix, we give some important properties of
Chebyshev expansion of functions. More details can
found in Ref.@10#.

The Chebyshev polynomial of degreei is

Ti~x!5cos~ i arccosx!. ~A1!

The Chebyshev polynomials are orthogonal in the inter
@21,1# over the weight (12x2)21/2, i.e.,

E
21

1 Ti~x!Tk~x!

A12x2
dx5

p

2
d ik~11d i0!. ~A2!

The Gauss-Chebyshev quadrature formula

E
21

1 f ~x!

A12x2
dx'(

k51

N

wkf ~xk!, ~A3!

the abscissasxk5cos@(p/N)(k21
2)# being all theN zeros of

TN(x) and the weights beingwk5p/N, were exact, if the
function f (x) could be expressed as a linear combination
Chebyshev polynomials up to degree 2N21. Using Eqs.
~A2! and~A3!, it is easy to show that the Chebyshev expa
sion of any arbitrary functionf (x), defined in the interval
@21,1# as

f ~x!' (
i 50

nc21

ciTi~x!, ~A4a!

with the Chebyshev coefficients

ci5
22d i0

N (
k51

N

f ~xk!Ti~xk!, ~A4b!

is exact for allx equal to theN zeros ofTN(x), provided
nc5N.

What is the advantage of the Chebyshev expansion~A4!
for the interpolation of the functionf (x), in comparison with
interpolation schemes based on other polynomial? Supp
N is so large that the expansion~A4a! with nc5N is prob-
ably a perfect representation off (x). That representation is
not necessarily more accurate than other polynomial exp
sions of the same orderN, exact on some other set ofN
points. However, the truncated Chebyshev expansion~A4a!
with nc5N, , N, being considerably smaller thanN, may
still be sufficiently accurate, since in typical cases the co
ficientsci are rapidly decreasing. In fact, iff (x) has no sin-
gularities in the interval@21,1#, the convergence of the
Chebyshev expansion~A4! is geometric, i.e., uci u;exp
(2gi) for sufficiently large i. Singularities of f (x) in the
complex plane can slow down that convergence, but they
never destroy it, as demonstrated in Ref.@10#. The difference
between the Chebyshev expansions~A4! with nc5N and
nc5N, can be no larger than the sum of the absolute val
of all neglected Chebyshev coefficients( i 5N,

N21 uci u, since all

uTi(x)u<1. In fact, the error is dominated bycN,
TN,

(x), an
03400
e
e

l

f

-

se

n-

f-

an

s

oscillatory function with N, equal extrema distributed
smoothly over the interval@21,1#. This smooth spreading
out of the error is a very important property of the Cheb
shev expansion~A4!: The Chebyshev expansion is close
the representation by the so-calledminimax polynomial,
which among all polynomials of the same degree has
smallest maximum deviation from the true functionf (x).
That minimax polynomial is very difficult to find; the Cheby
shev expansion is an efficient substitute for it.

The Chebyshev expansion~A4! can be extended to arbi
trary intervals of definition by an appropriate mapping
@21,1# and to functions of several variables. When mapp
to infinite or semi-infinite intervals, the convergence m
becomesubgeometric, i.e., uci u;exp(2gir) with 0,r ,1 for
sufficiently largei. However, the asymptotic rate of conve
gence will often be academic for practical applications a
how: The expansion~A4! may already be sufficiently accu
rate for the desired accuracy of the problem even with
reaching the asymptotic region.

Finally, we give the definition of the Chebyshev c
efficients of the two-baryon transition matrix and of th
deuteron wave function as used in the calculations of
paper, i.e.,

dx8x

d~q82q!

q2
Th8h

i 8 i
~xq,Z!

5 (
k8,k51

N

t̄L8
i 8 ~pk8!a^pk8q8n8~ I 8 j 8!u

3Ta~Z!upkqn~ I j !&a t̄ L
i ~pk!, ~A5a!

dL
i 5 (

k51

N

t̄ L
i ~pk!^pk~LS!I 0MIT0MT0

BuvaudI0MIT0MT0
&.

~A5b!

Here, the relative pair momentapk andpk8 correspond to all
the N zeros of TN(x), i.e., TN(xc(pk))5TN(xc(pk8))50.
The functionst̄ L

i (pk) are defined to be

t̄ L
i ~pk!5

22d i0

N

~pk
21aL

2!L/2

pk
L

Ti„xc~pk!…; ~A5c!

they are related to thetL
i (p) of Eq. ~6! used in the Chebyshe

expansions~5! and ~10!.

APPENDIX B: THREE-NUCLEON BOUND STATE

At the three-nucleon bound state pole the inhomogene
integral equation~1a! becomes the homogeneous one for t
Faddeev amplitudeuca& of the bound stateuB& with binding
energyEB , i.e.,

uca&5G0~EB!Ta~EB!Puca&, ~B1a!

uB&5N~11P!uca&, ~B1b!

N being the normalization factor of the bound state. W
solve the homogeneous integral equation~B1a! using Lanc-
1-13
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TABLE I. Hadronic properties of tritium. Results for modern potentials CD-Bonn, AV18, Nijmegen I and II are listed and compa
those of the Paris potential. TheD-isobar effect on the binding energyEB is split up as arising from the two-nucleon dispersionDE2 and
from the effective three-nucleon forceDE3. The probabilityPL of the wave function components refers to total three-baryon orbital ang
momentum,P3/2 to the T5

3
2 wave function component arising from charge dependence, andPD to the wave function components wit

D-isobar configurations. All energies are given in MeV, all probabilities are given in percent; always three digits are quoted, only for
small quantityP3/2 four are quoted; they appear converged. With respect to the Chebyshev expansion, the results with 16 Ch
polynomials are already fully converged within this accuracy.

EB DE2 DE3 PS PS8 PP PD P3/2 PD

CD-Bonn 28.004 91.621 1.307 0.047 7.020 0.0046
CD-Bonn1D 28.259 0.661 20.916 88.797 1.210 0.072 7.232 0.0043 2.685
AV18 27.627 90.132 1.291 0.066 8.509 0.0024
AV181D 28.052 0.630 21.055 87.500 1.145 0.095 8.780 0.0022 2.477
Nijmegen I 27.740 90.286 1.268 0.066 8.375 0.0047
Nijmegen I1D 28.162 0.629 21.051 87.552 1.125 0.096 8.634 0.0044 2.589
Nijmegen II 27.660 90.312 1.290 0.064 8.329 0.0038
Nijmegen II1D 28.084 0.648 21.072 87.661 1.145 0.095 8.604 0.0036 2.491
Paris 27.462 90.112 1.392 0.064 8.431
Paris1D 27.820 0.590 20.948 87.630 1.252 0.088 8.648 2.383
Experiment 28.482
d
y-
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of a
zos method@25#. The dependence of the Faddeev amplitu
on the pair momentump is represented by Chebyshev pol
nomials in the form

G0
21~EB!uca&'(

n
E q2dq (

i 50

nc21

ut iqn&a~ iqnuca&.

~B2!

The homogeneous integral equation~B1a! yields directly the
Chebyshev coefficients (iqnuca&, i.e.,

~ i 8q8n8uca&

5(
i 9n9

(
in

E
0

`

q2dqE
21

1

dxdx8x9Th8h9
i 8 i 9 ~x8q8,EB!

3
tL9
i 9
„p̄8~q8,q,x!…

p̄8L9~q8,q,x!

Gn9n~q8,q,x!

EB2dM2
q82

2ma
2

q2

2ma9
2

q8q

ma
x

3
tL
i
„p̄~q8,q,x!…

p̄L~q8,q,x!
~ iqnuca&. ~B3!

Resulting hadronic properties of the tritium bound state, i
the binding energyEB and the wave function probabilitie
PL , PD , and P3/2, are shown in the Table I. We includ
partial waves up to total pair angular momentumI 56 in
contrast toI<5 used in remaining calculations of this pape
charge dependence andD-isobar coupling is treated as dis
cussed for scattering. The contribution of the proton and n
tron mass difference is evaluated perturbatively; it amou
6–7 keV more binding for all potentials; that perturbati
shift of energy is included in the quoted values forEB . The
inclusion ofI 56 partial waves changes the tritium results
less than 2 keV for the binding energyEB and by 0.001% for
the wave function probabilities. Such a high accuracy is
03400
e

.,

;

u-
ts

t

needed for the existing nucleon-deuteron scattering d
there, we restrict the interaction to act in partial waves up
I 55. Our tritium results derived from purely nucleonic p
tentials agree with those of Ref.@26# within 1 keV for the
binding energyEB and within the accuracy given in Ref.@26#
for the wave function probabilities.

APPENDIX C: SPLINE INTERPOLATION

The spline interpolation has the general form

f ~x!'(
i

f ~xi !Si~x!, ~C1!

with exact function valuesf (xi) at an appropriately chose
set of grid points and known functionsSi(x) described in
detail in Ref.@27#; we used a slightly different spline inter
polation algorithm in Ref.@4#, more appropriate there. Sinc
the spline interpolation~C1! and the interpolation in terms o
the Chebyshev polynomials~A4! have the same genera
structure, it is obvious that the numerical technique of t
paper for solving integral equations~14! and ~B3! can also
be based on spline interpolation. The only difference is t
the functionstL

i (p) and t̄ L
i (pk), entering the definition of all

arising matrix elements, are

tL
i ~p!5

pL

~p21aL
2!L/2

Si~p!, ~C2a!

t̄ L
i ~pk!5

~pk
21aL

2!L/2

pk
L

d ik , ~C2b!

in case of spline interpolation. Of course, the grid pointspk
are in this case not necessarily chosen as the zeros
Chebyshev polynomial.
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Phys. Rep.274, 107 ~1996!.
@12# M. Lacombe, B. Loiseau, J.M. Richard, R. Vinh Mau, J. Co´,

P. Pirès, and R. de Tourreil, Phys. Rev. C21, 861 ~1980!.
03400
.

.

.

-

.

@13# M. Allet et al., Phys. Rev. C50, 602 ~1994!.
@14# C.R. Howellet al., Few-Body Syst.2, 19 ~1987!.
@15# P.U. Sauer, K. Chmielewski, S. Nemoto, and S. Oryu, Nu

Phys.A684, 531c~2001!.
@16# R.B. Wiringa, V.G.J. Stoks, and R. Schiavilla, Phys. Rev. C51,

38 ~1995!.
@17# V.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen, and J.J.

Swart, Phys. Rev. C49, 2950~1994!.
@18# A. Kievsky, Phys. Rev. C60, 034001~1999!.
@19# J. Strateet al., Nucl. Phys.A501, 51 ~1989!.
@20# G. Rauprich, S. Lemaitre, P. Niessen, K.R. Nyga, R. Reck
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@27# W. Glöckle, G. Hasberg, and A.R. Neghabian, Z. Phys. A305,

217 ~1982!.
1-15


