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Nucleon-deuteron scattering withA-isobar excitation: Chebyshev expansion
of two-baryon transition matrix
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A new technique for solving three-nucleon scattering equations is developed. It is based on the two-
dimensional Chebyshev expansion of the two-baryon transition matrix. Its validity and its effectiveness are
demonstrated. The dynamics of the examples is based on a two-baryon potential which allows for the excita-
tion of a nucleon to a\ isobar; the coupled-channel potential yields an effective three-nucleon force in the
three-nucleon system. The purely nucleonic reference potential is the charge-dependent Bonn potential.
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I. INTRODUCTION IIl. GENERAL FORMALISM

i Our description of nucleon-deuteron scattering is based
We embarked on the description of nucleon-deuteron scat- :
tering with A-isobar excitation. Referendd] developed a  °" the Alt-Grassberger-Sandhi@«GS) version|8] of nonrel-

coupled-channel formulation within the framework of non- ativistic three-particle scattering theory. The symmetrized

relativistic quantum mechanics: Three-nucleon channels a tiltichannel transition. matrix between two-body phannels
coupled to those in which one nucleon is turned into a sing| () and the symmetrized breakup transition matiy(Z)

A isobar. TheAr%isobar is considered a stable baryon with are given in Ref[1], i.e.,

spin and isospiry. The description applies to scattering en- _pr-1

ergies well below the pion-production threshold. The virtual U(2)=PGo(2)+PTu(2)Go(2)U(2), (13
excitation of theA isobar yields an effective three-nucleon
force, besides othen-isobar effects. First results of that
coupled-channel description of nucleon-deuteron scattering
are given for elastic scattering in Ref&,3], for breakup in

Ref. [4] and for electromagnetic reactions in the three'namics; the labekr indicates the interacting paii8y) ac-
nucleon system in Ref§S,6]. Compared to Ref§2-6], the cording to Fig. 1. In Egs(1) Gy(Z) is the free resolvent

underlying purely nucleonic reference potential is a mOderQZ—HO)‘l, H, being the free Hamiltonian with the inclu-

one, the charge-dependent CD-Bonn poterﬁﬂ@il .__sion of rest masses, a= P4,5+ P43, the sum of the cyclic
T'”. now, we have solved the three-particle scatter|nga?d anticyclic permutation operators of three particless
equations in momentum space by a separable expansion g general complex number and will for physical amplitudes
the two-baryon transition matrix. Though the validity of the |, .o )« the available energyfor three-particle scattering
separable expansion is tested in Ré&f.and confirmed there ie., Z=E+i0. The term (1 P)Gy4(2) in the breakup,

to be quite reliable, this paper radically improves the numeris - - ivion matrixU,(Z) does not contribute to on-shell ma-

cal technique. Instead of using separable expansions as d%.-
S e o ix elements ofUy(Z) needed for breakup observables.
namic input, the two-baryon transition matrix is calculated The dynamicsO(of)the description aIIo[\)/vs the interacting

exactly, but for further applications its momentum depen- . ; .
dence is represented and effectively interpolated with the ucleons to be excited to & isobar. A three-baryon Hilbert

help of Chebyshev polynomials. The three-particle scatterin&pace is employed which has a purely nucleonic sector and a
equations are then solved without any further approximation.

This interpolation scheme works for the three-particle scat-

tering equations more efficiently than the spline interpola- pz(sss.)S)I(tst,)TB
tion.

Section Il develops the Chebyshev interpolation scheme
of the two-baryon transition matrix; it also describes the
technique for solving the three-particle scattering equations
and demonstrates its advantages. Section Il tests the nove )
technique and gives examples of physics results for three- als)stb
nucleon scattering obtained with it. Section IV presents our g 1. Three-baryon Jacobi momenta and discrete

summary. quantum numbers. The spectator baryon is labeledhe pair
is made up of baryong and y. The Jacobi momenta are de-
noted by p and g. The abbreviationyv(lj) for the employed
*Electronic address: deltuva@itp.uni-hannover.de; on leave fronpartial-wave basis stategpqu(lj)), stands for the set
Institute of Theoretical Physics and Astronomy, Vilnius University, [([L(sgs,)S]I(Is)j)JM;[ (tgt,) Tt]ZM:Bb] of discrete quantum
Vilnius 2600, Lithuania. numbers.

Uo(Z)=(1+P)Gy (Z)+(1+P)T,(Z)Go(2)U(2).
(1b)

The two-baryon transition matrixt ,(Z) carries the dy-
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sector in which one nucleon is replaced byAdsobar. The m, are projections of the quantum numbérs andt defined
dynamics is based on a two-baryon potential which couple, Fig. 1. For computational convenienté,(q)v,) is ex-

both sectors of the Hilbert space. The employed method fof)anded into the partial-wave coupled stdtbgy,),, accord-
extending a purely nucleonic reference potential to 8ng to

coupled-channel one is given in RE3)]. The notation is also

taken over from Refl1]. The three-particle partial-wave ba-

sis stategpqv(lj)), of both sectors of Hilbert space, de- |fa(@ve)
fined there as eigenstates Hf,, are used; their quantum

numbers are illustrated in Fig. 1. In the following, all opera- .y Tj\;, ; |[daf[1o(1S0)j ITTM A Tote) TMbo})
tors acting in the assumed Hilbert space have discrete quan- TMGIMAm;Im

tum numbers. Among them, three-particle palfitytotal an- X (1oMjm; | TM 2{Im;somg|jm;)

gular momentumJ with projection M, and, if charge .

independence of the interaction is assumed, total isopin X(ToMr tomy TM 7 YT, (G), (2b)

with projection M, are conserved and can be fixed for the
operators once and.for all; due to rotf'monal symmetry allyith the abbreviatiodqy,), for the partial-wave projected
operators are even |_ndependent/0fj, in case of charge ,,cleon-deuteron state, i.e.,
independence even independent./of;; we will therefore
often omit those quantum number$l M ;7M ;) in our _ .
explicit notation. The two-baryon transitior{ matrix in three- |[daxa)«=[daf[1o(150)] JTM A Toto) TM1bo}) e - (20
baryon spacé ,(Z) which carries the dynamics is—due to )
geometric reasons—diagonal with respect to all discretd the notation/dgyg), of the coupled state the symbg)
spectatorquantum numbers, i.e., orbital angular momentumstands for the setfol o TolSojtobo) of quantum numbers
|, Spin S, total angu|ar momentum isospint, and baryon with 770:1; there are t\N((threé distinct COUpled states for
characterb. With respect to pair quantum numbef®,(Z)  €ach set of three-particle quantum numberB7M M)
is—due to dynamic reasons—diagonal in the pair patity with J= 3(J=%); those three-particle quantum numbers are
=(—)", in the total pair angular momentuinand in the notationally suppressed daxg)q. .
total pair isospirT, but it can couple states with different pair ~ The solution of the integral equatidiia) for the multi-
orbital angular momenturh, spinS, and baryonic conter®. ~ channel transition matrixJ(Z) for the initial energyZ=E;
The abbreviationp=(LSB) stands for all nonconserved +i0, Ei=eq+q’/2M,, acting on the initial nucleon-
quantum numbers, the abbreviatigni.e., y=(mITlIsjtb),  deuteron stategld;xq )
for all conserved ones. Thus, there are three sets of discrete
three-particle quantum numbers, which our notation will dis- o
tinguish, i.e., v(lj)z[n,x,(HJ/_\/_leMg)]. However, in U(E+i0)|dGixg)u= > [PT(Ei+i0)Go(E;+i0)]"
contrast to the two-baryon transition matfix(Z) and to the ' n=0
free resolventG,(Z), the permutation operatétin Egs. (1)
couples not only the quantum numbeysbut also the dy-
namically conserved quantum numbets

If charge dependence is allowed for as in the calculationgs constructed from the Neumann series of finite order using
of this paper, the two-baryon transition matilx,(Z) be- the method of Padapproximants. The breakup transition
comes dependent on the projectilgiy- of the pair isospiil.  matrix Uy(Z) is then obtained by quadrature. Because of the
Thus, its matrix elements in the three-particle basispermutation operatolP, at each iteration step in E€B) in-
Ipar(lj)), couple states of total isospifi=3 and7=3. In  terpolation is required in at least two continuous variables,
this case of charge dependence the discrete three-partiaiepending on the used representationPofUsually, cubic
guantum numbers are therefore to be split up into differenspline interpolation is used. However, in this work we
sets, i.e., v(lj)=[nx,IIIMM7p], compared with present an alternative interpolation technique in terms of
charge independence. The total isospihas to be included Chebyshev polynomials. We do so for the two-baryon tran-
among the nonconserved quantum numbers (LSB7). sition matrix T ,(Z) with respect to both the initigb and
Otherwise, the formalism to be developed in this paper refinal p’ relative momenta of the interacting pair. That novel
mains entirely unchanged. interpolation technique will then yield a novel technique for

In nucleon-deuteron scattering the transition matricesolving the AGS equationil).
U(Z) andUy(Z) act on the initial nucleon-deuteron channel ~ Why Chebyshev polynomials? We follow the so-called
state. The general nucleon-deuteron channel sateq) v ,) moral principle 1of Ref.[10].
of energyE=e4+0%/2M,, e4 being the deuteron binding (i) When in doubt, use Chebyshev polynomials, unless the
energy, M ,=3my being the reduced mass, amdy the  solution is spatially periodic, in which case an ordinary Fou-
nucleon mass, is a product state of the form rier series is better.

(i) Unless you are sure another set of basis functions is
| (@ va)=[dIoM ToM1 ) ulaSomstomibo)., (28 better, use Chebyshev polynomials.
(iii) Unless you are really, really sure that another set of

with I,=1, Tg= M+ =0, andsy=to=by=3; M,, mg and  basis functions is better, use Chebyshev polynomials.

XPGy '(Ei+i0)[dgixa)a, (3
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Whereas the following section develops the interpolation=(p?—a?)/(p>+a?) is the function which maps the interval
scheme in terms of Chebyshev polynomials, Appendix A0,) of the physical values of momentumto the interval

gives more formal reasons for its validity. [—1,1]. The form of the mapping functior.(p) and the
parameters and a; are chosen beforehand by experience.
A. Chebyshev interpolation The parameters and a, are taken to be the same for all

polynomials. Separating out factors of typé/(p?+a?)-"
space is calculated using the full form of the two-baryonmakes the remaining functlon, which is to be represented by
Chebyshev polynomials, smoother and ensures correct

potentialv,,, but for further applicationd ,(2) is rewritten symptotic behavior of the expansion for small momenta of
in an approximate Chebyshev representation, employed lat pymp . : P )
e interacting pair. The expansion parameters are the

on for an efficient interpolationT ,(Z) is of the general o i ]
structure Chebyshev coefﬁuentiﬂ,”(xq,Z). They are independent

of the pair label a. They are calculated forif{,i)

T(2)=v,+v,Go(2)T(2), (49  =0,...N—1, N=n. in Appendix A from the exact matrix
elements ofT,(Z) at the pair momenta, and p, corre-
(4b) sponding to all _theN zeros of Tn(X), i.e., Ty(Xe(py))=0.
The representatiofba) is exact for all those momentg, and

Pk, provided n; is chosen am.=N for the number of

Chebyshev polynomialglO]; in this case the representation
Ta(z)zz f perprf qudq/J' pdef quq Y polyl El- ] p

The two-baryon transition matriX ,(Z) in three-particle

T(2)= Vas

+ R
Va vaZ_HO_Ua

(53 is a true interpolation between the momepfaandpy,.
If n.<N, the representatiofba) is an approximation also for

X[p'a" v (1']")aclp'a" v (1"} ")] the momenta, andp,; we shall usually choose,<N, but
XT (2)|par(1]))ael Par(1j)]. (40) ggr\]/:rr;r;eless we shall call representaiisg an interpolation
The two-baryon potentiab,, acts between the pair8(). In Eq. (5b) the states

According to Eq.(4b) the dependence af,(Z) on the final

and initial pair momenta’ andp arises from the momentum _ _

dependence of the potential,; that dependence is repre- |t'qv)a==f p2dplpgr(1j)).tL(p) (7)
sented in terms of Chebyshev polynomials as follows:

changing the order of the summation on the Chebyshev label
i and the corresponding integration on the momenfym
i, i i . that interchange has to be done with care; however, we
X_,ZO t(p )5X,XT7],77(Xq,Z)tL(p)a<pqv(lj)|, note that in all calculations only the components
b A9’ v'(1'j")|t'gr), of those states, together with well-
(5a) behaved operators, will be needed. In Efc) the states
|t'qv), are collected into the vectdt,) whose components
Ta(Z)=2 ququrj 92dq are to be differentiated by the Chebyshev labeby the
o continuous variablg and by the discrete three-particle quan-
tum numbersv. In the same spirit, a matrix-element form is
introduced in Eq(5b) for the Chebyshev coefficients, i.e.,

T“(Z)%Z f qquf p'2d p,f p2dplp'qr'(1'] N are introduced for compact notation. They arise, when inter-

n.—1

ne—1
X 2t v ) (i'9 v | To(2)|igr) o(tiay],
i"i=0
(5b) 8(q' —
(i’q’v’|Ta(Z)|iqv):=(q—2q)5X,XT'7],'7](xq,Z). 8
TA(Z2)=t)T(Z)(t,l. (50 a

The representatiotba) of the two-baryon transition matrix is
only approximate, since the expansion is in a finite numbe
n. of polynomials; in contrast, the manipulations Ieadingb
from Eq. (5a) to Egs.(5b) and(5c) are exact. The employed
momentum functions

hose matrix elements are collected into the operajg).

hus, Eq.(5¢) is a concisely abbreviated form of the two-
aryon transition matrix used for developing the integral
equation to be solved in practice; then, the operator depen-
dence on the continuous varialtj@nd on the discrete three-

ot particle quantum numbernshas to be recovered.
t(p)= ————Ti(x:(P)) (6) A similar expansion can be given for the nucleon-
- (p2+a?)t2 e deuteron statelqyg),, €.9., in the form

are related to the Chebyshev polynomial$;(x) L _
=cos{ arccosx), defined in the intervall—1,1]. x(p) Go (E+i0)[daxa)a=valdAXa)a (9a)
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Go M(E+i0)|daxg)a
=> f pzdpf q'2dq’[pa’ v(1j)),

X (A" v(1j)|v,ldaxe)a . (9b)

with E=e4+q?%/2M . The resulting expansion correspond-

ing to the expansion of the two-baryon transition matéx
is

Gy '(E+i0)|daxa)a

ne—1

~2 Jpzdplpqvuj»aﬁm;, tL(p)dy ,
(108
ne—1 ‘
Gy H(E+i0)daxg)a=2 2, [tav)ady,di.
(10b)
(Idaxa)a) = Go(E+i0)|t,)d. (100

The calculation of the Chebyshev coefficiedsis also de-
scribed in Appendix A. In Eq(10¢) the compact notation of

PHYSICAL REVIEW C67, 034001 (2003

(ta|Go(2)U(Z)Gy(2)]t,)d
= <ta| PGO(Z)|ta>d+ <ta| PGO(Z)|ta>T(1(Z)

X (t,|Go(Z)U(Z)Go(2)|t,)d. (13

We note, that the structure of this integral equation is for-
mally the same as Eq7) of Ref.[4]; it arises there from the
separable expansion of the two-baryon transition matrix. In
fact, any discretization of the two-baryon transition matrix
T,(2), i.e., any interpolation scheme which assuriigéZ)

to be calculated for a finite set of initial and final momenta
and which then interpolateE,(Z) to any desired momenta
with the help of an expansion into a set of analytic functions,
can formally be treated as a separable expansion. The form
factors used in the context of the separable expansion of Ref.
[4] were denotedg,) instead of|t,). The differences be-
tween|g,) and|t,) are threefold.

(1) The|g,) are independent from the spectator momen-
tum and from the spectator discrete quantum numbers, the
t,) are not.

(2) Each of thelg,) has components for all nonconserved
discrete quantum numberg the propagatof ,(Z) of the
separable expansion is independentofn contrast, each of
the |t,) has only one component for one fixegl since the

Eq. (5¢) is taken over; the round brackets on the left handcorresponding propagatdr,(Z) depends ony and couples

side indicate that all distinct coupled stafds)y,), are con-
sidered together; the matrtk abbreviates théXde'L for all

those states.

different #.
(3) Each of the distinctG, *(E;+i0)|dgixa). was a
single element in the statgg,); in contrast, each nucleon-

The expansion9) of v,|dqyg), represents the depen- deuteron stat&, *(E;+i0)[ddixq), in the present context
dence of the potential,, on the pair momentum in the same involvesall Chebyshev polynomials considered for interpo-
way as the corresponding expansion of the two-baryon tranation; this fact implies that the produgt,)d should never

sition matrix T,(Z). Furthermore,v,|ddxq)a (ddxqlva

be separated into its individual Chebyshev building blocks,

builds up the residue OTa(Z) at the deuteron p0|e; at that in order to preserve a minimal number of initial states for
pole the singular factor is separated out analytically and th&hich the integral equatio(iL3) has to be solved.

residue is expanded according to E(®.and (10), i.e., the

We now explain our techniques for practically solving the

Chebyshev coefficients of the two-baryon transition matrixintegral equatior{13); we make all integrations and summa-

(5a) at the deuteron pole are

il .
T (xa0,2)= i (11)
7' P\ Xda: 7

—eq—q%2M

B. Nucleon-deuteron scattering equations with Chebyshev
representation of two-baryon transition matrix

For a given initial nucleon-deuteron state with on-shell

momentum ¢;, three-nucleon energf;=ey4+ 3qi2/4mN,
and initial quantum number,sdi the integral equatiorila)

has to be solved fod(Z)|dgixq ). With Z=E;+i0, i.e.,
U(Z)|ddixa)a=[PGy (Z2)+P|t,)To(2)

X(tal Go(2)U(2)][daixg ) e - (12

Thus, the integral equation to be solved is an integral

equation for(ta|GO(Z)U(Z)ldqixdi>a. It has the general
structure

tions, hidden in the compact for(d3), explicit, i.e.,

a<ti’q/y'|GO(Ei+i0)U(Ei+iO)|inXdi>a

={t"a"v'[Pldaixg)et 2 2 | adg
v i//V//
R R
X dX—L’—
-1 p'-(q',9,x)
GV’V(q,Yq’X)
. a? a* d’q
E+i0— M- —— ——— —X
Zlua 2,&& ma

tL.(p(q’,q,%)) i
X_—5 rrT " ,E+|O
pL(q’1q,X) XX nn (Xq | )

X (1" qV"|Go(Ei+i0)U(Ei+i0)|ddixg)e-  (14)
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This representation of the integral equation is derived fromare obtained first by carrying out the tkentegration which
the form involves only known functions. Correspondingly, the Born
term of Eq.(14) could be calculated according to

Ap'a’ v (1'])|Plpaw(1])), 19" v'|Plddixg) e
1 8(p'—p’(q',9,%) 8(p—p(q’,q,X)) , o 4
:f_ldx pr'+2 pt+2 :iE ot q,V/|PGO(Ei+IO)lthv)“g”di L
XG, (q',,X) (15) (16b

starting from ,(t''q’ v'|PGo(E;+i0)|t'qr),. The integral

of the permutation operat®, defined in Appendix A of Ref. equation(14) is then solved in one continuous variable, i.e.,
[2]; the function$p(q’,9,X), P’ (q’,q,X), andG,.,(q’,q,X) in the spectator momentuq That procedure is a viable one,
are given there. The driving te”U(ti,Q'V'|P|inXd.>a in and we refer to it as the sepa}rablg expansion technl_que .for

. . C O solution. However, that technique is very uneconomical in
the integral equatiofil4) has to be_’calculated using B35 case of a substantial number of Chebyshev polynomials in
we keep it in its compact form(t' q’v’IPquiXdi)a, since  the adopted interpolation scheme; that number is usually
that part of the integral equation will not be essential for ourmuch larger than the corresponding ranks of the separable
further considerations. In Edq14), m, is the mass of the expansion in Refs[1—-4]. The matrix a(ti'q’v’|PG0(Ei
spectator,u,=mgm, /(mg+m,) the reduced mass of the +i0)|t'qw), is of formidable size, it typically requires
pair, andoM the rest mass of the three-baryon state, normaleomputer storage of the order of 100 GB; thus, it can not
ized to zero for three-nucleons; since the permutation operase stored in any medium-sized computer and has to be
tor P only couples states with the same three-baryon contentomputed many times when calculating the Neumann series
oM is the same for the quantum numberfsand v. (3). Besides that, it couples all labels and quantum numbers

The kernel of the integral equatiorfl4) contains (iqwv) with each other yielding lengthy matrix multiplica-
singularities. The term E;+i0—SM—q'%/2u,—q?2u., tions, whereas all building blocks within the forii6a
—(q’a/m,)x]~*, arising from the free resolvenBo(E;  of (t'q’'»'|PGy(E;+i0)|tiqr), have block-diagonal
+i0), develops so-callechovingsingularities of kinematical structure.
origin above breakup threshold, whereas the matrix of the In the second Optionhe same Neumann seri@ is cal-
Chebyshev coefficienté’ij]:],,(xq,EiJriO) shows the deu- culated. However, the integrations and summations in Eq.
teron bound state polél1). That deuteron pole is handled (14) are carried out, whenever they arise, starting from right

easily by regularization through subtraction. The treatment of0 left. This is the natural order of matrix multiplications
the moving Singu|arities is taken over from Reﬁ4], it is tak|ng adVantage of the blOCk-dIagonal structure of the quan'

based on real-axis integration; changes compared with Refities entering Eq(14). This procedure reduces the number

[4] required by the special forit14) of the integral equation ©Of requw_(’ad floating point operations considerably. The Born

are minimal. term (t' q’v’|P|dindi)a is calculated also directly with-
The calc_urlation of the first terms of the Neumann seriesout any reference to the matrix elemefit6a. That impor-

(3) for (t'q'v'[Go(Ei+i0)U(E;+i0)|dgixy ), Of Eq. tant logistic change constitutes the new technique of this

(14) requires many matrix multiplications. We have two op- Paper for solving the AGS equations, compared with the

tions for this step. technigue of separable expansion, calliest optionin this
The first option follows the strategy of Refd2,4] for a  Paper and used by us before in Refs-4].

separable expansion of the two-baryon transition matrix. Finally, the partial-wave projected matrix elements
When solving the integral equatiaii4) as in Ref.[4], the ~ needed for the calculation of the observables of elastic and

matrix elements inelastic  nucleon-deuteron  scattering follow from
1 qv'[Go(E; +i0)U(E; +i0)|dg;xg ), in the forms

Q"' [PG(Ei+i0)|t'qr), «{dGixg |U(Ei+10)|ddixg )
_fl dXtL’r(E’(q',q,X)) = o{dixa,|P Gy H(E;i+i0)|d 0 xa )
-1 p/l_’(q/’q’x) " , .
+> J q°da.{ddixq | Plt'ar)
GV’V(q’aan) v 0
X q/Z q2 q/q __,
. ii .
Ei+|o_5M_2_,ua_2_M;_m_ax Xi%:, 5XX/T7]7’,(Xq,Ei+I0)
t.(p(a’,q,)) 163 X o1V’ | Go(Ey+10)U(E;+10)|dxg Y
pH(a’,a.%) (178
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Lpav(lj )|Ta(Ei+iO)GO(Ei+iO)U(Ei+iO)|dindi>a scgle of accuracy which present-day experimental data re-
quire.
i i’ _ The calculations are in momentum space and leave the
=Ei tL(p)_Z, 5XX,TW()(q,Ei+|O) Coulomb interaction between the charged particles out.
v

Though most data taken for the comparison with theoretical

X {(t'qv'|Go(E;+i0)U(E;+i0)|dgixq ). (17b  Predictions are from proton-deuteron scattering, the calcu-

: lations therefore refer to the neutron-deuteron system; cor-

Equations(17) suggest that it is more convenient to solve _respondingly, the calcula}t?ons of the trinucleon bound state

i’ . i, in Appendix B refer to tritium. We use the neutron-neutron

Eq. (14) for Ei’V’5XX’Tnn’(Xq’Ei+'0)a<t_,q” [Go(Ei and proton-neutron components of the CD-Bonn and

+i0)U(E;+i0)[dqgixq ). instead for ,(t' qv'|Go(E; the coupled-channel two-baryon potentials. In the free
+i0)U(Ei+i0)|dindi>a_ The former quantity is directly HamiltonianH,, we use an averaged nucleonic masg

needed in Eqgs(17); it corresponds to the alternative form =938.919 MeV, in order to ensure charge independence for

T(Z) =T (Z)Go(Z)U(Z) of the multichannel transition ma- the moving singularities in the integral equatida). Due to
trix used in Ref[11]. The on-shell elements of the symme- this choice of masses the neutron-neutron transition matrix is

trized multichannel transition matris) (E;+i0) between calculated differently compared with R¢f], which carried
two-body channel$2a) are obtained from the resulL7a. out the fit to data; the resulting difference in neutron-neutron
The on-shell elements of the symmetrized breakup transitioR"@Se shifts between this paper and Ref.is entirely neg-
matrix Uy(E;+i0) are obtained from the resull7b) ac- ligible. The mass of tha isobar is assumed to be 1232 MeV.
|

cording to Eq.(1b); it is advantageous to transform the ma-
trix elements(17b) first to plane-wave basis and then to ap-
ply also the permutation operatd® of the part (& P)

A. Test of Chebyshev expansion of the two-baryon transition
matrix and of the deuteron wave function

according to Eq(1b) in that plane-wave basis. The Chebyshev expansion works equally well for the two-
baryon transition matrix according to E¢5) and for the
IIl. RESULTS deuteron wave function according to E¢$0). Figure 2 dis-

e\;)Iays examples of the Chebyshev coeﬁicieﬁi;]/éﬂ(x q,2)

First, this section tests the efficiency of the Chebysh of the two-baryon transition matrix and of the Chebyshev

expansion for the two-baryon transition matrix and for the efficientsdl of \da),; their fast decrease with in-
deuteron wave function. Second, the Chebyshev expansion Iy L Of UalU0Xd)a:

employed as an interpolation scheme when solving the threé&f€asing order of the polynomial is impressive; the conver-

particle scattering equations with the two-baryon transitiond€"ce appears subgeotwetnfc as des_glrlbed |nhAppend|>éA; tge
matrix as dynamic input. In this context, our numerical expansion converges herefore rapidly as shown in #g. .

scheme is tested for accuracy and the advantage of the use-gfus' the truncation of the' Chebyshgy expansion at the
rgther small orders 16 or 24 is well justified, except for very

the Chebyshev expansion is discussed. Furthermore, we gi ¢ | tant for th | tteri t
new physics results for elastic nucleon-deuteron scatterin\&rge momenta, unimportant for threée-nucieon scattering a
e rather modest available energies considered in this paper.

and nucleon-deuteron breakup. S ; A
Unless otherwise stated, our calculations are based on tﬁ@e Chebyshev expansion is systematic and efficient; in

purely nucleonic CD-Bonn potentifll]; it is extended as the qqntrast, when using spline interpolatjon for the §ame quan-
Paris potential in Ref9] to include theA isobar degree of tities all spline functlo_ns are of same |mp0rt<’_:1nce, there IS no
freedom. The CD-Bonn potential allows for charge depen-Way for_ a corresponding systematic truncation of the spline
dence in the isospin triplet partial waves uplte 4. The expansion.
coupled-channel potential derived from CD-Bonn shows the i o _
same charge dependence. The charge dependence of th&- Test of new teghnlque for solving |ntegral equation(14)
nucleon-nucleon interaction is treated exactly in H$g par- using Chebyshev expansion
tial wave, yielding total isospiff=3 channels; in other two- We performed the following tests, in order to assure the
baryon isospin triplet partial waves up te=4 the charge technical reliability of our numerical apparatus, calleet-
dependence is treated approximately, i.e., without couplingnd optionin Sec. Il B.
to 7=3 states; this approximate treatment weights the com- (1) Reference§1—4] employed the coupled-channel po-
ponents of the isospin triplet partial waves in the ratdfor  tential A2 [9] and the Paris potentidll2] as its nucleonic
the proton-neutron and neutron-neutron parts; in those higheeference potential in separable forms as dynamic input for
partial waves the coupling t@=3 states was checked to be calculations. We take those separable forms now as numeri-
guantitatively irrelevant. cal test cases, but do not exploit their separable structure.
Partial waves up to total two-baryon angular momentuminstead, we use a Chebyshev expansion for their separable
=5 in purely nucleonic channels and up te=4 in  expansions and interpolate them accordingly when solving
nucleonA channels and up to total three-baryon angularintegral equation(14) with the technique of theecond op-
momentum7=% are taken into account. The results appeartion of Sec. Il B. The agreement with all previous results of
fully converged with respect to higher two-baryon angularRefs.[2,4] is so excellent that differences cannot be docu-
momental, with respect to higher three-baryon angularmented in any plot. This fact is one indication that the new
momenta, and with respect ta\-isobar coupling on the technique for solving the integral equati¢t¥) is reliable.
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FIG. 2. Chebyshev coefﬁcient§i,;,i,7(x q,Z) of the So(NN)—°Dy(NA) two-baryon transition matrix fori=1, q=0, and
Z=100 MeV and Chebyshev coefficierdlg of the deuteron wave function as functions of the oiideor i of the Chebyshev polynomials.

(2) In Sec. Il B two options for solving the basic integral with that number; the ratio is about 10 when using 24 Cheby-
equation (14) with Chebyshev interpolation of the two- shev polynomials.
baryon transition matrix and the deuteron wave function are (3) Figure 4 studies the convergence of sample physics
discussed; the technique preferred by us isséheond option  observables with the number of Chebyshev polynomials em-
Since both techniques differ only in the order of matrix mul- ployed. The convergence is impressively rapid. Understand-
tiplications, they have to yield identical results. In fact, theyably it is faster for lower energies. The Chebyshev expansion
do so in our test calculations within at least ten significantis favored by us and will be used by us from now on. Nev-
figures and thereby prove the numerical reliability of thatertheless, as an alternative, also spline interpolation is used,
part of our calculational scheme. These test calculations alsas usually adopted in few-body numerics when solving the
prove our expectation, that the technique of #eeond op- integral equatior(14). In both interpolation schemes the in-
tion is the much more economical one for solving the inte-tegral equation14) has the same general structure as dis-
gral equation(14), being faster by a factor of the order of 10 cussed in Appendix C. The results provided by both interpo-
than the separable expansion of tiirst optiontechnique. lation schemes are indistinguishable; however, spline
Furthermore, the actual computer time for the technique ofnterpolation reaches the same quality of results only with a
the second optiordepends only weakly on the number of considerably larger number of functions than the correspond-
Chebyshev polynomials employed, whereas in the case dfg Chebyshev expansion. The results of Fig. 4 confirm our
the technique of thdirst option it increases quadratically previous conclusionThe Chebyshev expansion is systematic
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0.0
3x10%
E .01
x
2 .5
w® 02 2x10
=
S 03
2 1x10°
v
c
S .04
= 5
0x10°
05
06 . . : ) e 0.00 2 . . T, Ax10%
0 2 4 6 8 10 15 20 25 30 35 40 0 1 2 10 15 20 25 30 35 40

p (fm™ o (im™ b (fm™) p (fm™)

FIG. 3. Convergence of the Chebyshev expansion. On the left side the real part:8¢tNN) —°Do(NA) two-baryon transition matrix
is shown as function of the final momentymThe transition*Sy—°D,, at q=0 with the available energg=100 MeV for the initial pair
momentum p;=1fm™! is plotted. On the right side theL=0 component of the deuteron wave functiog (p)
z(p(LS)IOM,TOMTOB|dIOM,T0MTO) is shown. The dot-dashed, dotted, dashed, and solid curves correspond to Chebyshev interpolation
using 12, 16, 24, and 48 polynomials, respectively. All curves are indistinguishable in the resolution adopted for momenta up to 10 fm
Differences can only be seen for momenta beyond 10'fmith an especially fine resolution. The standard of reference is spline interpo-
lation with 48 spline functions. The solid curves turn out to be identical with those reference curves.
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FIG. 4. Fivefold differential cross section for nucleon-deuteron breakup at 65 MeV nucleon lab energy in the space star configuration
(54.0°,54.0°,120.0°and deuteron analyzing powAy, for elastic nucleon-deuteron scattering at 135 MeV nucleon lab energy. The conver-
gence of the Chebyshev expansion is studied. The dotted and dashed curves are results obtained with eight and 12 Chebyshev polynomials
respectively, the solid curve corresponds to the indistinguishable results obtained with 16, 24, and 48 Chebyshev polynomials and with 48
spline functions; always more than 24 spline functions are needed to reproduce the solid curve very well.

and efficient and thereby superior to spline interpolatidh.  discernible, but the separable expansion is again proven to be
results which are given in Secs. Il C and Il D are obtainedquite reliable, enforcing the conclusions of REf].
with 24 Chebyshev polynomials.

D. New physics results

C. Test of separable expansion The calculations of Ref$1—4] required separable expan-

The quality of the separable expansion employed in Refssions for the dynamic input of the three-nucleon scattering
[1-4] is well established for the purely nucleonic referenceequations; only the two-baryon coupled-channel potentials,
potential; for the two-baryon coupled-channel potential thederived from the nucleonic Paii&] and Bonn B[15] poten-
separable expansion could be tested in the two-nucleon sytals have been available to us, and both potentials are rather
tem and for the three-nucleon bound state and was found toutdated. Furthermore, the calculations of Rgfs-4] used
be quite accuratgl]. We are now able to complete the latter only rather low partial waves, not sufficient for full conver-
tests also for three-nucleon scattering. Sample results basgénce at higher scattering energies. Those restrictions are
on the coupled-channel potential A2 of Rdf$—4] and ob- now gone. We therefore use the CD-Bonn poterjffaland
tained from the integral equatidti4) are compared in Fig. 5 extend it for A-isobar excitation as in Ref9]. Sample re-
with corresponding results for the separably expanded fornsults for a variety of physics aspects of nucleon-deuteron
of A2 derived either from the integral equati@h¥) or by the  scattering is now given. The short-hand for specifying the
technique of Ref{4]. Differences of results obtained for the kinematics to which breakup observables refer is taken over
separably expanded and the unexpanded forms of A2 arfeom Ref.[4].

0.20 T T T T T 0.3 {,
. il
0.15 ¥
¥
™) i
€ 0.10 : :
< -
3
0.05
0.00 g L 1 L L 1 -0.1 1 L \
0 30 60 90 120 150 180 0 20 40 60
Scattering Angle (deq) S (MeV)

FIG. 5. Nucleon analyzing powek, for elastic nucleon-deuteron scattering as function of ¢.m.scattering angle at 10 MeV nucleon lab
energy and for nucleon-deuteron breakup as function of arcleBgtlong the kinematical curve at 65 MeV nucleon lab energy in the
collinear configuration30.0°,98.0°,180.0° The separable expansion of the underlying two-baryon potential A2 Avifobar excitation is
tested. The dashed curves are results of the separably expanded potential form, the solid curves of the unexpanded form. The experimental
data are from Refd.13,14.
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FIG. 6. Neutron analyzing powd,(n) as function of the c.m.scattering angle for elastic neutron-deuteron scattering at 10 MeV nucleon
lab energy. Results of the coupled-channel potential withobar excitation including spin-orbit interacti¢solid curve are compared with
results of the CD-Bonn potentigtlashed curve On the right side the peak results are shown in finer resolution; there also the result for
A-isobar excitation without spin-orbit interactiqdotted is shown. The partial three-nucleon force effect arising fromAhieobar with
spin-orbit interaction is given for comparis¢dashed dotted The experimental data are from RE4].

(1) Before entering the discussion of nucleon-deuterorthe CD-Bonn potential and from its coupled-channel exten-
scattering, we want to draw the attention of the reader tsion to singleA-isobar excitation, are listed. For comparison,
Appendix B. There, the hadronic properties of the tritiumresults based on the AV186] and Nijmeger]{17] potentials
bound state, as derived by the technique of this paper fromare also given. Due to its strong nonlocality and therefore
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FIG. 7. Differential cross section and nucleon analyzing pogn) as function of the arclengt8 along the kinematical curve for two
configurations of nucleon-deuteron breakup at 13 MeV nucleon lab en@igi) collinearity configuration50.5°,62.5°,180.0°and(c),(d)
FSI configuration(39.0°,62.5°,180.0° Results of the coupled-channel potential witfisobar excitation are shown. The results shown as
solid curves take the charge dependence in'Sgepartial wave fully into account, i.e., with coupling to three-particle channels with total
isospin%. That coupling is left out in the results shown as dashed curves. The experimental data are frh®]Referring to neutron-
deuteron scatterincircles and from Ref[20] referring to proton-deuteron scatterifiyosses
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FIG. 8. Differential cross section and nucleon analyzing potgn) as function of the arclengtB along the kinematical curve for
various configurations of nucleon-deuteron breakup at 65 MeV nucleon lab ef@r@y: QFS configuratiori44.0°,44.0°,180.0°and(c),(d)
collinear configuratior(45.0°,75.6°,180.0° Results of the coupled-channel potential witkisobar excitationsolid curvg are compared
with results of the CD-Bonn potentiélashed curve The experimental data are from Ref$3,21] and refer to proton-deuteron scattering.

due to a comparatively weak tensor force, the CD-Bonn pomined by thep parameters used in the standard transition
tential provides more trinucleon binding than the local AV18, potential from two-nucleon to nucleahstates. The obtained
and Nijmegen |l potentials or the only mildly nonlocal results are disappointing: The inclusion of the spin-orbit
Nijmegen | potential. The respective coupled-channel potenmechanism op exchange does not significantly decrease the
tials with A-isobar excitation show the well-known competi- long-standing discrepancy. Although the three-nucleon force
tion between two physically distingt-isobar effects, i.e., the effect is quite significant, it is canceled by the dispersive
repulsive two-nucleon dispersion and the three-nucleon atffect, leaving the fullA-isobar effect small. A similar small
traction. The coupled-channel potential derived from CD-effect is found for the deuteron vector analyzing povilgy i
Bonn potential still misses the tritium binding, but the re- The effect of the spin-orbit contribution th-isobar effects is
maining discrepancy is quite small. negligible for other observables.

(2) Results for the neutron analyzing powsgy(n) of elas- (3) Results for spin-averaged and spin-dependent observ-
tic neutron-deuteron scattering at 10 MeV nucleon lab enables of nucleon-deuteron break-up at 13 MeV nucleon lab
ergy are given in Fig. 6. This observable is haunted by a&nergy are given in Fig. 7. The proper treatment of charge
persistent discrepancy with theoretical predictions, called thelependence, including three-baryon partial waves with total
A, puzzle. All calculations based on realistic two-nucleonisospin7=3 and 7=3, is necessary in order to reproduce
potentials and complemented by a three-nucleon force, eithehe height of the differential cross section peaks at arclength
by an irreducible one or by an effective one as due toSaround 10 MeV in the collinearity and in the FSI configu-
A-isobar excitation, are unable to account for the experimenrations of Figs. 7 and 7c), the corresponding spin observ-
tal height of the peak. Referendd8] discusses a three- ables appear only mildly affected. In contrast to charge de-
nucleon force as possible remedy which has a phenomenpendence, the effect of thA isobar is irrelevant at this
logical spin-orbit component with rather long range. Wescattering energy; it is therefore not separately documented
therefore test an effective three-nucleon force which obtaingn the figure.

a microscopically motivated spin-orbit component arising (4) Sample results for nucleon-deuteron breakup at 65
from the spin-orbit part of th@-meson exchange mediating MeV nucleon lab energy are given in Fig. 8. The effects of

single A-isobar excitation; that spin-orbit component is of the A isobar and of its mediated three-nucleon force become
rather short range, its strength and range being predetemore noticeable at this higher energy in some observables,

034001-10



NUCLEON-DEUTERON SCATTERING WITHA-ISOBAR . .. PHYSICAL REVIEW C 67, 034001 (2003

; : . : . . . EN.lab . 120'Mev
0.4
G
= 00
<C
0.4
ese  Enmp=135MeV
0.4 7
=
— = 00
% <
o]
£ -0.4
] ‘.
9 t } . } }
-g ’0,"' ENIab = 150 MeV
z
<>\
=
1 1 1 1 1 <>
0 30 60 90 120 150 180
Scattering Angle (deg)
FIG. 9. Differential cross section as function of the c.m. scatter- 0 30 60 90 120 150 180
ing angle at 65 MeMupper curvesand 135 MeV(lower curve$ Scattering Angle (deg)

nucleon lab energy. Results of the coupled-channel potentialAvith
isobar excitation(solid curve$ are compared with results of the
CD-Bonn potentialdashed curvesThe experimental data are from
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FIG. 10. Nucleon analyzing powek,(n) of elastic nucleon-
deuteron scattering as function of the c.m. scattering angle at 120,
135, 150, and 170 MeV nucleon lab energy. Results of the coupled-
channel potential with\ isobar excitation(solid curve$ are com-
e.g., for the differential cross section in collinear configura-pared with results of the CD-Bonn potentiaashed curves The
tions, as shown in Fig.(8). experimental data are from RdR4] and refer to proton-deuteron

(5) The Sagara discrepancy of elastic nucleon-deuterofcattering.
scattering is revisited. Figure 9 shows the spin-averaged dif-

ferential cross section and Fig. 10 the nucleon analyzinghose of the Paris potential. The modern potentials incorpo-
power at various energies. The removal of the Sagara digzte the charge dependence of the two-nucleon interaction
crepancy in the diffraction minima of the elastic differential and are fitted to more modern data. unavailable when the

Su;:il\t/eodn-f(:erl:ﬁrhorgr}rosbs rS?Ct'OT]Sﬁr?X ghet;hreexucliron tf?rclgaris potential was created. Since the difference in fits is
foeun(;ain t%e mi?]imzoofathz r?gcleonea,naly’/azi?]ag ICi)\'fle(rac.l_hseresponsible for the difference in predictions, Fig. 11 only
theoretical predictions miss the experimental data in forwar%ir;fov;/snresuil;[‘s mth purrr;el)ll nucrleé)in;ic rnefferf:nnce IDOtiné'ali' :—hne
direction up to an scattering angle of about 40°; this discrepo " ¢ e C€ € sampie prediction for nucleon-geutero

ancy is due to the omission of the Coulomb interaction bePréakup at 13 MeV nucleon lab energy reflects the charge

tween protons. dependence of the modern potentials which is not taken into

(6) Compared to our previous results based on the paridccount in the Pari§ potential; the difference in _the sample
potential[12] and its extension to the inclusion of\aisobar, prediction for elastic nucleon—deut(_aron scatt_erlng at 135
most observables of elastic nucleon-deuteron scattering afjeV nucleon lab energy reflects the improved fit of the mod-
of breakup get changed in predictions based on CD-Bon&n potentials to more recent spin observables of two-
and its extension. We show two typical examples in Fig. 11ucleon scattering.
where also predictions of AV18 and the Nijmegen potentials  (7) In the discussion of items 1 to 6, we conclude that the
are given for comparison. The results of the modern potenuse of well-fitted two-nucleon potentials appears important.
tials are very close to each other, but differ markedly fromlin this respect, the CD-Bonn potential is beyond doubt a
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FIG. 11. Comparison of observables derived from various potentials, i.e., CD-Buofid), AV18 (long-dahegl Nijmegen I (short-
dashed, Nijmegen lI(dotted, and Parigdashed dotted Differential cross section of nucleon-deuteron breakup as function of the arclength
S along the kinematical curve at 13 MeV nucleon lab energy in collinear configureg®a®,75.5°,180.0°and deuteron analyzing power
Ay(d) of elastic nucleon-deuteron scattering as function of the c.m. scattering angle at 135 MeV nucleon lab energy are shown. All
predictions refer to the purely nucleonic reference potentials. The results of the modern potentials cluster around each other and are hardly
distinguishable from each other in the plots. The experimental data are from[ R&22.

realistic potential as the modern two-nucleon potentials Using the CD-Bonn potential, we confirm most physics
[16,17 used under iten6) in this section and in Appendix results forA-isobar effects obtained previously with the Paris
B. However, we start to worry about our proced(i®¢ for  potential. Noteworthy are the following special physics re-
constructing coupled-channel potentials with sintsobar  sults of this paper:

excitation in isospin triplet partial waves: We avoid a careful (1) TheA, puzzle of elastic nucleon-deuteron scattering at
fit and only make sure that exact phase equivalence i3g MeV nucleon lab energy cannot be resolved Byiaobar
achieved at zero kinetic energy. Thus, phase differences betfect, even if the\-mediated three-nucleon force has a spin-
tween the nucleonic reference potential and the coupledshit contribution; the considered spin-orbit contribution is

channel potential arise, in general, and increase with increa%-f short range, since it arises from the exchange of the
ing energy; e.g., at 100 MeV nucleon lab energy the phas?neson ’

differences amount to about 3° itS,, to about 1° in®P, : ,
and to less than 0.2° in the higher partial waves. We are in (2) The charge dependence of the two-nucleon interaction

. . . is important for nucleon-deuteron breakup in particular kine-
the process of improving our procedure for extending two-

. S o matic configurations.
nucleon potentials allowind-isobar excitation. . . .
P 9 (3) The removal of the Sagara discrepancy in the diffrac-

tion minima of the elastic differential nucleon-deuteron cross
sections by the three-nucleon force derived fromAhisobar
The paper develops a novel momentum-space technique confirmed; the same effect is found in the minima of the
for solving the AGS equations without Coulomb for elastic nucleon analyzing power.
nucleon-deuteron scattering and for nucleon-deuteron break- (4) Compared to our previous results, based on the Paris
up. The technique is based on the expansion of the twopotential and its extension to the inclusion ofAaisobar,
baryon transition matrix and of the deuteron wave functionsome observables of elastic nucleon-deuteron scattering and
in terms of Chebyshev polynomials. The Chebyshev expanof break-up get substantially changed in predictions based on
sion is systematic and found to be highly efficient when usedp Bonn and its extension to the inclusion ofAaisobar.
for interpolation. The solution of the AGS equations is car-These Changes are due to the fact that CD Bonn is the more
ried out without any further approximation. The results agreemodern potential accounting for the now existing database of
very well with those obtained with alternative interp0|ati0n two-nucleon Scattering much better than the outdated Paris

techniques. o potential does.
The dynamics of three-nucleon scattering is based on the

CD-Bonn potential; its charge dependence is kept in full for

IV. SUMMARY
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APPENDIX A: CALCULATION OF CHEBYSHEV oscillatory function with N_ equal extrema distributed
COEFFICIENTS smoothly over the interval—1,1]. This smooth spreading

In this appendix, we give some important properties of theOUt of the error is a very important property of the Cheby-

; . : shev expansioifiA4): The Chebyshev expansion is close to
fcotizyisnhgvefe[)l(gf nsion of functions. More details can b'?he representation by the so-calledinimax polynomial

. .. which among all polynomials of the same degree has the
The Chebyshev polynomial of degrees smallest maximum deviation from the true functié(x).
T,(X)=cogi arcco). (A1)  Thatminimax polynomial is very difficult to find; the Cheby-
shev expansion is an efficient substitute for it.
The Chebyshev polynomials are orthogonal in the interval The Chebyshev expansidA4) can be extended to arbi-
[—1,1] over the weight (+x?) %2 i.e., trary intervals of definition by an appropriate mapping of
[—1,1] and to functions of several variables. When mapping
I T,(X)Te(x) to infinite or semi-infinite intervals, the convergence may
4 W becomesubgeometrici.e., |cj|~exp(— ") with 0<r<1 for
sufficiently largei. However, the asymptotic rate of conver-
The Gauss-Chebyshev quadrature formula gence will often be academic for practical applications any-
how: The expansioitA4) may already be sufficiently accu-
1 f(x) N rate for the desired accuracy of the problem even without
J_ ﬁdxmkz wif (X)), (A3)  reaching the asymptotic region.
1 yl=x -t Finally, we give the definition of the Chebyshev co-
efficients of the two-baryon transition matrix and of the
deuteron wave function as used in the calculations of this

dx=géik(1+ 5.0). (A2)

the abscissasg,=cog(#/N)(k—3)] being all theN zeros of
Tn(X) and the weights beingy = 7/N, were exact, if the .
function f(x) could be expressed as a linear combination ofP2PET. 1€,
Chebyshev polynomials up to degre®&21. Using Egs.

(A2) and(A3), it is easy to show that the Chebyshev expan- 5X,Xm-ri T x2)
sion of any arbitrary functiorf(x), defined in the interval q? ”"
[—1,1] as N
ne-1 = 3 L (Pe)ulped’y' (1))
f0~ 2 ¢Ti(x), (A4a) Kot
1= ) J—
XTo(2)Ipkqr(1]))atL(P), (A5a)

with the Chebyshev coefficients

2—

N
5o di= 2, TL(P(P(LS) oM ToM 1 Blv.dIoM ToM ).
C=N kZl f(X) Ti (%), (Adb) B

(A5b)

is exact for allx equal to theN zeros of Ty(x), provided Here, the relative pair momenfg andpy. correspond to all
n.=N. the N zeros of Ty(x), i.e., Tn(Xc(Pw)) =Tn(Xc(Pk))=0.
What is the advantage of the Chebyshev expanéfel)  The functionst| (p,) are defined to be
for the interpolation of the functiofi(x), in comparison with s 2
interpolation schemes based on other polynomial? Suppose — 2— 8o (pict+ap) )
N is so large that the expansi®A4a) with n.=N is prob- Pl =—x o Tikxe(pW);  (ASC)
. . . k
ably a perfect representation 6fx). That representation is
not necessarily more accurate than other polynomial expanhey are related to th@(p) of Eq. (6) used in the Chebyshev
sions of the same ordeX, exact on some other set &  expansiong5) and(10).
points. However, the truncated Chebyshev expanéicta)

with n;=N-, N being considerably smaller tha# may APPENDIX B: THREE-NUCLEON BOUND STATE
still be sufficiently accurate, since in typical cases the coef-
ficientsc; are rapidly decreasing. In fact, i{x) has no sin- At the three-nucleon bound state pole the inhomogeneous

gularities in the interval[—1,1], the convergence of the integral equatiorila) becomes the homogeneous one for the
Chebyshev expansiorfA4) is geometri¢ i.e., |c]|~exp Faddeev amplitudpy,) of the bound statéB) with binding
(—9i) for sufficiently largei. Singularities off(x) in the  energyEg, i.e.,

complex plane can slow down that convergence, but they can

never destroy it, as demonstrated in R&f]. The difference |2) = Go(Es) Ta(Es) P|#4), (B1a)
between the Chebyshev expansidégl) with n,=N and
n.=N_ can be no larger than the sum of the absolute values [B)=M1+P)[¢a), (B1b)

of all neglected Chebyshev coeﬁicierﬁ§=’N1<|ci|, since all A/ peing the normalization factor of the bound state. We
[Ti(x)|=<1. In fact, the error is dominated toy,_Tn_(X), an  solve the homogeneous integral equatiBia using Lanc-
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TABLE |. Hadronic properties of tritium. Results for modern potentials CD-Bonn, AV18, Nijmegen | and Il are listed and compared to
those of the Paris potential. Theisobar effect on the binding ener@g is split up as arising from the two-nucleon dispersibg, and
from the effective three-nucleon foreeE;. The probabilityP . of the wave function components refers to total three-baryon orbital angular
momentum,Pg, to the Tz% wave function component arising from charge dependence Pantb the wave function components with
A-isobar configurations. All energies are given in MeV, all probabilities are given in percent; always three digits are quoted, only for the very
small quantityP5, four are quoted; they appear converged. With respect to the Chebyshev expansion, the results with 16 Chebyshev
polynomials are already fully converged within this accuracy.

Eg AE, AE; Ps Ps Pp Pp P32 Pa
CD-Bonn —8.004 91.621 1.307 0.047 7.020 0.0046
CD-Bonnt+A —8.259 0.661 —0.916 88.797 1.210 0.072 7.232 0.0043 2.685
AV18 —7.627 90.132 1.291 0.066 8.509 0.0024
AV18+A —8.052 0.630 —1.055 87.500 1.145 0.095 8.780 0.0022 2.477
Nijmegen | —7.740 90.286 1.268 0.066 8.375 0.0047
Nijmegen KA —8.162 0.629 —1.051 87.552 1.125 0.096 8.634 0.0044 2.589
Nijmegen Il —7.660 90.312 1.290 0.064 8.329 0.0038
Nijmegen IH+A —8.084 0.648 -1.072 87.661 1.145 0.095 8.604 0.0036 2.491
Paris —7.462 90.112 1.392 0.064 8.431
ParistA —7.820 0.590 —0.948 87.630 1.252 0.088 8.648 2.383
Experiment —8.482

zos method25]. The dependence of the Faddeev amplitudeneeded for the existing nucleon-deuteron scattering data;
on the pair momenturp is represented by Chebyshev poly- there, we restrict the interaction to act in partial waves up to
nomials in the form I =5. Our tritium results derived from purely nucleonic po-
tentials agree with those of Rgf26] within 1 keV for the
- i . binding energyEg and within the accuracy given in R¢R26]
1 —~ 2 B
Go (EB)|</fa>~EV fq dq ;O [tav)a(iav]de). for the wave function probabilities.

(B2)

ne—1

. . . . APPENDIX C: SPLINE INTERPOLATION
The homogeneous integral equati@ia) yields directly the

Chebyshev coefficientddv|,), i.e., The spline interpolation has the general form

(i'a"v'|a) f(x)~2i f(x)S(x), (CY)

s}

1 i
— 2 i r Nt
_iz,," % of dqfildxéxfqun,n,,(X .Ee)

with exact function value$(x;) at an appropriately chosen
set of grid points and known functior§(x) described in

[ ’
xtﬂ(p,,(q 4%)) G (@7,9:%) detail in Ref.[27]; we used a slightly different spline inter-
P’ (9",a.%) q'? 9> q'q polation algorithm in Ref[4], more appropriate there. Since
Eg—oM~— ﬂ B 7 - m—x the spline interpolatioC1) and the interpolation in terms of
« CHa T the Chebyshev polynomialéA4) have the same general
tl (p(q’,9,X)) structure, it is obvious that the numerical technique of this
X—————(iq v|i,). (B3)  paper for solving integral equatiorid4) and (B3) can also
p-(q".9.x) be based on spline interpolation. The only difference is that

. i — . N
Resulting hadronic properties of the tritium bound state, i.e.(N€ functionst; (p) andt, (py), entering the definition of all

the binding energyEg and the wave function probabilities 1iSing matrix elements, are
P., Pr, and P35, are shown in the Table I. We include

partial waves up to total pair angular momentlm6 in -

p

I
contrast td <5 used in remaining calculations of this paper; t (p)= —(p2+af)”23(p)’ (C239
charge dependence amdisobar coupling is treated as dis-
cussed for scattering. The contribution of the proton and neu- (p2+a2)L?2
tron mass difference is evaluated perturbatively; it amounts t—:_(pk): k—LL‘Sik: (C2b)
6—7 keV more binding for all potentials; that perturbative Pk

shift of energy is included in the quoted values Ey. The

inclusion ofl =6 partial waves changes the tritium results byin case of spline interpolation. Of course, the grid points

less than 2 keV for the binding ener&y and by 0.001% for are in this case not necessarily chosen as the zeros of a
the wave function probabilities. Such a high accuracy is noChebyshev polynomial.
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