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Induced pseudoscalar form factor of the nucleon at two-loop order in chiral perturbation theory
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We calculate the imaginary part of the induced pseudoscalar form factor of the nuglgoh in the
framework of two-loop heavy baryon chiral perturbation theory. The effect of the calculated three-pion con-
tinuum on the pseudoscalar constgpt=(m,/2M)Gp(t= —0.877mi), measurable in ordinary muon capture
u~p—w,n, turns out to be negligibly small. Possible contributions from counterterms at two-loop order are
numerically smaller than the uncertainty of the dominant pion-pole term proportional to the pion-nucleon
coupling constang,y=13.2-0.2. We conclude that a sufficiently accurate representation of the induced
pseudoscalar form factor of the nucleon at low momentum transigigiven by the sum of the pion-pole term
and the Adler-Dothan-Wolfenstein ternGp(t)=4g,\Mf,./(m2—t)—2g,M?(r3)/3, with (ri)=(0.44
+0.02) fn? the axial mean square radius of the nucleon.
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The structure of the nucleon as probed by charged wealniquely expressed in terms of the mean square axial radius
currents is encoded in two form factors, the axial and thef the nucleor(r%) by making use of the chiral Ward identity
pseudoscalar ones. To be specific, consider the matrix elef QCD [4]. Exactly the same term, derived originally by
ment of the isovector axial current between nucleon states:adler, Dothan and Wolfensteis], is also found in the small

scale expansion of Ref6] where additional diagrams with
Y GA(t) intermediateA (1232)-isobars contribute. While the one-loop
prediction for the pseudoscalar coupling constgpt 8.4
+0.2[4,6] is consistent with the earlier result of the Saclay
vs57U(P), experimentgp= 8.7+ 1.9 [2] a reanalysig1] of that experi-
ment using the modern world average of the muon mean
(1) lifetime gives the enhanced valge=10.6+2.7. For further
) o details on that and the conflicting situation concerning radia-
wheret=k* denotes the Lorentz-invariant square_d momentive muon captureu” p—v,ny see the recent review of
tum transfer andu(p) stands for a Dirac spinorM Gorringe and Fearinfl] and also Ref[3].
=938.92 MeV is the(average nucleon mass. The form in The purpose of the present short paper is to investigate the
Eq. (1) follows from Lorentz covariance, isospin conserva-two-loop corrections to the induced pseudoscalar form factor
tion, and the discrete symmetri€sP, andT. G(t) is called  Gy(t) in order to clarify whether these could afféaumeri-
the axial form factor of the nucleon a@h(t) is the induced  cally) the theoretical prediction fogp used so far. The es-
pseudoscalar form factor of the nucleon. While experimensentially new feature at two-loop order is a nonvanishing
tally much attention has been focussed on the first one, thi?naginary part InGp(t) for t>gm727, which originates from
latter is generally believed to be well understood in terms ofne (direct and indiredtcoupling of the isovector axial cur-
pion-pole dominance as indicated from ordinary muon caprent to the three-pion intermediate state. The pertinent ten
ture experimentsu” p—w,n (see, e.g., Refd1-3)). The  tgpologically distinct two-loop diagrams generated by lead-
pseudoscalar coupling constagt as measured in ordinary ing order vertices of the effective chiral Lagrangiar?)
muon capture is defined via +.£%) are shown in Fig. 1. The Feynman rules for the rel-
m evant interaction vertices can be found in Appendix A of Ref.
gp=p Gr(ty), 71
2M . Let us now turn to the evaluation of the imaginary part
(2 Im Gp(t) from the two-loop diagrams shown in Fig. 1. Ap-
plication of the Cutkosky cutting rules gives the spectral
function ImGp(t) as an integral of the product dxial
source—~3m and 3r— NN transition amplitude over the
with t,, the Lorentz-invariant squared momentum transfer ifLorentz-invariant three-pion phase space. Some details about
the proton and muon are initially at rest,, = 105.66 MeV is  these techniques can be found in R¢8&9], where the same
the muon massM ,=938.27 MeV is the proton mas#/, method has been used to calculate {tveo-loop spectral
=939.57 MeV is the neutron mass, amg=139.57 MeV is  functions of the isoscalar electromagnetic nucleon form fac-
the charged pion mass. tors and the @-exchange nucleon-nucleon potential. The

Chiral perturbation theory allows to calculate systemati-choicese-k=0 ande”=k" for the polarization vectoe” of
cally the corrections to the dominant pion-pole tern@ig(t) the external isovector axial source allow a separation of
[see Eq.(7) below]. At one-loop order, this correction is ImGu(t) and Im[G(t) +tGp(t)/4M?]. Alternatively, one

(N(p+K)|ay"¥s7aGIN(p))=u(p+k)
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+mGp(t)
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Mim,
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K Mp+m,

— 2 _ 2
—M,pm,=—0.877m2=—0.502mZ,
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s S Here,f ,=92.4 MeV denotes the pion decay constant and we
S SO have employed the Goldberger-Treiman relatian:f
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“ '. /. =gaM. The inequalityz’<1 determines the kinematically
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allowed region in thew,w, plane (which is bounded by a
cubic curve together with the obvious kinematical con-
straints m,<w,,<\t—2m, and M, <o;+w,<\t
—m,.. Furthermore, one derives from the last two diagrams

. N . in Fig. 1 which are proportional tg3/f# the following con-
’:" e “;‘M/\, ':_'MN tribution to the imaginary part I1&p(t):
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FIG. 1. Two-loop diagrams contributing to the imaginary part of
the induced pseudoscalar form factor of the nucl&giit). Dashed X
and solid lines denote pions and nucleons, respectively. The wiggly
line symbolizes the external isovector axial source. The combina-
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toric factor of the first four diagrams is 1/6 and the next four graphs _4\/{0) ® ]m ) (5)
have the combinatoric factor 1/2. The last two diagrams scaig as v 2kqkp\1— 2

whereas the other eight graphs scalgas
In the chiral limitm,_,=0 the total(two-loop) spectral func-

can use projection operators and tensorial integrals over tHEn ImGp(t) shows a simple lineat dependence of the

3m-phase space can be reduced to scalar ¢ses Eq(13) form

in Ref.[8]). The _pertinent three—bpdy phase space integrals AM?2

are most conveniently performed in the three-pion center-of- IMGp(t)|m o= — ——IM Ga(t)

mass frame. The corresponding on-mass-shell four-momenta m t

m_=0
of the three pions read in this framé&}=(wy,ky), ki )
=(w5,kp) and ki=(Vt—w;—w;,—K;—kp). The mass- ZQLMIS[l_ng 1+ 647 ”
shell conditionk3=m?2 determines the cosine of the angle 9(8wf,) 35
betweenk, andk, (calledz) as 3t
=z ©

— 2
Zkiko= 0102~ \t(@1+ @) + 5 (t+m2), The first part of this equation follows from the fact that the

(3)  combinationG,(t) +t Gp(t)/4M? is the form factor of the
divergence of the isovector axial current, which vanishes in
Kyo= \/wliyz—mi. the chiral limit m,=0 (QCD chiral Ward identity. The
(two-loop) result for ImGA(t)|mﬁ:o has been taken over
from Eq.(27) in Ref.[8].
The ten diagrams in Fig. 1 fall into two classes. The first In Fig. 2 we show by the full line the total imaginary part
eight diagrams carrying the common prefacg;r/ff, give ImGp(t), calculated from Eq94) and(5) after division by
rise altogether to the following contribution to the imaginary a factort. The horizontal dashed line in Fig. 2 indicates the
part of the induced pseudoscalar form factor of the nucleonasymptotic behavior of I®p(t)/t for t—oo.
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0.00 Let us now turn to numerical results. From the twice-
subtracted dispersion integral in E@) one gets a tiny con-
-0.01 | tribution to the pseudoscalar coupling constant d&ifp
=—1x10 5. The extreme smallness of this number comes
-0.02 - partly from the proximity of the chosen subtraction pdigt
— =0tot,= —0.5021137. Nevertheless, when varying the sub-
E 003 r traction point [via the substitutiont?/t’?— (t—to)2/(t’
£ —10)2 in Eq. (7)] in the broad range- 24m2<t,<9m?, the
<-E7m 004 1 contribution of the dispersion integral to the pseudoscalar
- 005 | coupling constant stays in magnitude smaller than 1%, 0
’ > 8gp>—1%x10 2. Note that a change of the subtraction
pointt, is equivalent to changes of the low-energy constants
-0.06 | - S ) ;
{01 Parametrizing the polynomial piece in E). Since we
0,07 ——= X - - cannot accurately determine the coefficiedits, we turn
0 20 40 60 80 100 here the argument around and ask only for some upper

t{m,’ bound. For example, in order to cause a correctiordgf
FIG. 2. The spectral function 11&p(t) of the induced pseudo- :.0'09’ corresponding to a relative 1% chang@gy in the
scalar form factor of the nucleon divided by The horizontal pion-pole term, the rEIatloné%_gl.zzl must hold. Such
dashed line indicates its asymptotic form obtained by taking thevalues 0f o, exceed the e>§pectat|0n from naturalness al-
chiral limit m-=0. ready by one order of magnitude.
" The delta-nucleon mass-splittidg=293 MeV introduces
another small scale to the problem. The systematic power
unting scheme inherent to the small scale expansion of
efs.[3,6] ensures, however, that the contributionGg(t)
from two-loop diagrams with intermediat®(1232) excita-
A0 M? 5 M2 tions is a homogeneous function of degree one in the three
Gp(t)= M7 —gAM2<r2>+ (Lo + ) variables (,mfr,Az). Consequently, possible negative pow-
m2— 3 A (2wt ) N ers of A get always overcompensated by two more powers of
the numerically smaller scales,, and/or\/Jt,[ in Gp(t,).
t2 [ . ImGp(t') One may, therefore, conclude that all two-loop corrections
_Lmi 2t —t—i0*) (@) to the pseudoscalar coupling constgptare numerically in-
significant. A sufficiently accurate representatiorGaf(t) at
andIOW momentum transfersis given by the sum of the pion-
s pole term and the Adler-Dothan-Wolfenstein term. Using for
Fhe 7N-coupling constang,n=13.2+0.2[11,12, which is
consistent with recent results fromN-dispersion relation
analyseq12] and(r3)=12M3=(0.44+0.02) fn? [10] for
the axial mean square radius one gets in this case:

With the help of the spectral function I®(t) the com-
plete two-loop representation of the induced pseudoscal
form factor of the nucleon can be written as

™

™

The first two terms are the well-known pion-pole term
Adler-Dothan-Wolfenstein term[4,5]. The parameter
g.n.f-.m, (r3), etc., are to be understood as the physica
ones including their individual one- and two-loop chiral cor-
rections. Thesgnot explicitly calculated two-loop renor-
malization effects come along with the real parts of the dia
grammatic amplitudes. Note that the dispersion integral in

Eq. (7) requires two subtractions because of the asymptotic 9p=8.3+0.2. ®
linear growth of the imaginary part I@p(t). The third term . ) . )

in Eq. (7) involving the two dimensionless low-energy con- 1 N€ major theoretical uncertainty @p comes obviously
stants {, and ¢; subsumes all polynomial contributions oM the 7N-coupling constangy entering the dominant
which arise from(tadpole-typg loop diagrams and possible Pion-pole term. ,

chiral-invariant countertermsbeyond renormalizing the L€t us finally consider the form factor of the nucleon re-
Adler-Dothan-Wolfenstein terin The prefactor of this term ated to the divergence of the isovector axial current:

i[s (;hosen suclh thattthe r:ﬁg.ative mas? (zjin;ensbion of the qotjn- . gum2

erterm coupling strength is accounted for by appropriate v _ 9Alllg
powers of the chiral symmetry breaking scald, Cal)+ g2 Crlt)= m2—t D(®). ©
=227f_=0.82 GeV. Based on naturalness arguments one

expects that the dimensionless low-energy constggdsare  The prefactor on the right-hand side expresses the vanishing
of order one. Indeed the same considerations applied to thef this form factor in the chiral limitm,,=0 as well as the
Adler-Dothan-Wolfenstein term give for the analogouspresence of a pion-pole contribution. The imaginary part
dimensionless low-energy constant at one-loop orderimD(t) (at two-loop order can be easily constructed from

— (27 ;) 2ga(ra) /3= —ga(47f . IMA)?=—1.63. Here, we the expressions of IIBp(t) given here in Eqs(4) and(5) as
have inserted the value of the axial dipole mdgg=(1.03  well as from the formula of InG,(t) written in Eq.(26) of
+0.02) GeV as extracted in Rdf10] from (quas) elastic  Ref.[8]. As a further nontrivial result we give here only the
neutrino and antineutrino scattering experiments. spectral function InD(t) in the chiral limit:
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2

2 nucleon ImGp(t) at two-loop order in heavy baryon chiral
Im D(t)|m,’r=0: 97 (8f )4

5+ 35 ” (10 perturbation theory. Two-loop corrections to the pseudoscalar
coupling constangp measurable in ordinary muon capture
u~p—wv,n are numerically unimportant in view of the

1+gi

‘é";‘iﬂat'::y be useful for some quick order of magnitude egent ‘uncertainty of the pion-nucleon coupling constant

In summary, we have calculated in this work the imagi-g”N'
nary part of the induced pseudoscalar form factor of the | thank T. Hemmert for useful discussions.
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