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Induced pseudoscalar form factor of the nucleon at two-loop order in chiral perturbation theory

N. Kaiser
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~Received 15 November 2002; published 27 February 2003!

We calculate the imaginary part of the induced pseudoscalar form factor of the nucleonGP(t) in the
framework of two-loop heavy baryon chiral perturbation theory. The effect of the calculated three-pion con-
tinuum on the pseudoscalar constantgP5(mm/2M )GP(t520.877mm

2 ), measurable in ordinary muon capture
m2p→nmn, turns out to be negligibly small. Possible contributions from counterterms at two-loop order are
numerically smaller than the uncertainty of the dominant pion-pole term proportional to the pion-nucleon
coupling constantgpN513.260.2. We conclude that a sufficiently accurate representation of the induced
pseudoscalar form factor of the nucleon at low momentum transferst is given by the sum of the pion-pole term
and the Adler-Dothan-Wolfenstein term:GP(t)54gpNM f p /(mp

2 2t)22gAM2^r A
2&/3, with ^r A

2&5(0.44
60.02) fm2 the axial mean square radius of the nucleon.
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The structure of the nucleon as probed by charged w
currents is encoded in two form factors, the axial and
pseudoscalar ones. To be specific, consider the matrix
ment of the isovector axial current between nucleon stat

^N~p1k!uq̄gng5taquN~p!&5ū~p1k!FgnGA~ t !

1
kn

2M
GP~ t !Gg5tau~p!,

~1!

where t5k2 denotes the Lorentz-invariant squared mom
tum transfer andu(p) stands for a Dirac spinor.M
5938.92 MeV is the~average! nucleon mass. The form in
Eq. ~1! follows from Lorentz covariance, isospin conserv
tion, and the discrete symmetriesC, P, andT. GA(t) is called
the axial form factor of the nucleon andGP(t) is the induced
pseudoscalar form factor of the nucleon. While experim
tally much attention has been focussed on the first one,
latter is generally believed to be well understood in terms
pion-pole dominance as indicated from ordinary muon c
ture experimentsm2p→nmn ~see, e.g., Refs.@1–3#!. The
pseudoscalar coupling constantgP as measured in ordinar
muon capture is defined via

gP5
mm

2M
GP~ tm!,

~2!

tm5
Mn

2mm

M p1mm
2M pmm520.877mm

2 520.502mp
2 ,

with tm the Lorentz-invariant squared momentum transfe
the proton and muon are initially at rest.mm5105.66 MeV is
the muon mass,M p5938.27 MeV is the proton mass,Mn
5939.57 MeV is the neutron mass, andmp5139.57 MeV is
the charged pion mass.

Chiral perturbation theory allows to calculate systema
cally the corrections to the dominant pion-pole term inGP(t)
@see Eq.~7! below#. At one-loop order, this correction i
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uniquely expressed in terms of the mean square axial ra
of the nucleon̂ r A

2& by making use of the chiral Ward identit
of QCD @4#. Exactly the same term, derived originally b
Adler, Dothan and Wolfenstein@5#, is also found in the smal
scale expansion of Ref.@6# where additional diagrams with
intermediateD(1232)-isobars contribute. While the one-loo
prediction for the pseudoscalar coupling constantgP58.4
60.2 @4,6# is consistent with the earlier result of the Sacl
experimentgP58.761.9 @2# a reanalysis@1# of that experi-
ment using the modern world average of the muon m
lifetime gives the enhanced valuegP510.662.7. For further
details on that and the conflicting situation concerning rad
tive muon capturem2p→nmng see the recent review o
Gorringe and Fearing@1# and also Ref.@3#.

The purpose of the present short paper is to investigate
two-loop corrections to the induced pseudoscalar form fac
GP(t) in order to clarify whether these could affect~numeri-
cally! the theoretical prediction forgP used so far. The es
sentially new feature at two-loop order is a nonvanish
imaginary part ImGP(t) for t.9mp

2 , which originates from
the ~direct and indirect! coupling of the isovector axial cur
rent to the three-pion intermediate state. The pertinent
topologically distinct two-loop diagrams generated by lea
ing order vertices of the effective chiral LagrangianL pp

(2)

1L pN
(1) are shown in Fig. 1. The Feynman rules for the r

evant interaction vertices can be found in Appendix A of R
@7#.

Let us now turn to the evaluation of the imaginary pa
Im GP(t) from the two-loop diagrams shown in Fig. 1. Ap
plication of the Cutkosky cutting rules gives the spect
function ImGP(t) as an integral of the product ofaxial

source→3p and 3p→N̄N transition amplitude over the
Lorentz-invariant three-pion phase space. Some details a
these techniques can be found in Refs.@8,9#, where the same
method has been used to calculate the~two-loop! spectral
functions of the isoscalar electromagnetic nucleon form f
tors and the 3p-exchange nucleon-nucleon potential. T
choicese•k50 anden5kn for the polarization vectoren of
the external isovector axial source allow a separation
Im GA(t) and Im@GA(t)1tGP(t)/4M2#. Alternatively, one
©2003 The American Physical Society02-1
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can use projection operators and tensorial integrals over
3p-phase space can be reduced to scalar ones„see Eq.~13!
in Ref. @8#…. The pertinent three-body phase space integ
are most conveniently performed in the three-pion center
mass frame. The corresponding on-mass-shell four-mom

of the three pions read in this frame:k1
n5(v1 ,kW1), k2

n

5(v2 ,kW2) and k3
n5(At2v12v1 ,2kW12kW2). The mass-

shell conditionk3
25mp

2 determines the cosine of the ang

betweenkW1 andkW2 ~calledz) as

zk1k25v1v22At~v11v2!1 1
2 ~ t1mp

2 !,
~3!

k1,25Av1,2
2 2mp

2 .

The ten diagrams in Fig. 1 fall into two classes. The fi
eight diagrams carrying the common prefactorgA / f p

4 give
rise altogether to the following contribution to the imagina
part of the induced pseudoscalar form factor of the nucle

FIG. 1. Two-loop diagrams contributing to the imaginary part
the induced pseudoscalar form factor of the nucleonGP(t). Dashed
and solid lines denote pions and nucleons, respectively. The wi
line symbolizes the external isovector axial source. The comb
toric factor of the first four diagrams is 1/6 and the next four grap
have the combinatoric factor 1/2. The last two diagrams scale agA

3

whereas the other eight graphs scale asgA .
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Im GP
(1)~ t !5

gpNM

~2p f p!3Ez2,1
dv1dv2H 1

18
2

mp
4

12~ t2mp
2 !2

1
4v1

22mp
2

6t
1

v1
2~3mp

2 2t !

~ t2mp
2 !2 1

2mp
2 v1v2zk2

t~ t2mp
2 !k1

J .

~4!

Here,f p592.4 MeV denotes the pion decay constant and
have employed the Goldberger-Treiman relation:gpNf p

5gAM . The inequalityz2,1 determines the kinematicall
allowed region in thev1v2 plane ~which is bounded by a
cubic curve! together with the obvious kinematical con
straints mp,v1,2,At22mp and 2mp,v11v2,At
2mp . Furthermore, one derives from the last two diagra
in Fig. 1 which are proportional togA

3/ f p
4 the following con-

tribution to the imaginary part ImGP(t):

Im GP
(3)~ t !5

gpNMgA
2

~2p f p!3t
E

z2,1
dv1dv2H ~mp

2 2Atv1!

3S z1
k2

k1
Darccos~2z!

A12z2
1

k1
2

3
1

t

9

1
mp

2

t2mp
2 S 7

8
At2v12v2D

3F2v1

zk2

k1
1At1@~ t1mp

2 !~4v12At !

24Atv1v2#
arccos~2z!

2k1k2A12z2G J . ~5!

In the chiral limit mp50 the total~two-loop! spectral func-
tion ImGP(t) shows a simple lineart dependence of the
form

Im GP~ t !ump5052
4M2

t
Im GA~ t !U

mp50

5
gpNMt

9~8p f p!3 F12gA
2 S 11

64p2

35 D G
.2

3t

M2 . ~6!

The first part of this equation follows from the fact that th
combinationGA(t)1t GP(t)/4M2 is the form factor of the
divergence of the isovector axial current, which vanishes
the chiral limit mp50 ~QCD chiral Ward identity!. The
~two-loop! result for ImGA(t)ump50 has been taken ove
from Eq. ~27! in Ref. @8#.

In Fig. 2 we show by the full line the total imaginary pa
Im GP(t), calculated from Eqs.~4! and~5! after division by
a factort. The horizontal dashed line in Fig. 2 indicates t
asymptotic behavior of ImGP(t)/t for t→`.
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With the help of the spectral function ImGP(t) the com-
plete two-loop representation of the induced pseudosc
form factor of the nucleon can be written as

GP~ t !5
4gpNM f p

mp
2 2t

2
2

3
gAM2^r A

2&1
M2

~2p f p!4 ~z0mp
2 1z1t !

1
t2

pE9mp
2

`

dt8
Im GP~ t8!

t82~ t82t2 i01!
. ~7!

The first two terms are the well-known pion-pole term a
Adler-Dothan-Wolfenstein term @4,5#. The parameters
gpN , f p ,mp ,^r A

2&, etc., are to be understood as the physi
ones including their individual one- and two-loop chiral co
rections. These~not explicitly calculated! two-loop renor-
malization effects come along with the real parts of the d
grammatic amplitudes. Note that the dispersion integra
Eq. ~7! requires two subtractions because of the asympt
linear growth of the imaginary part ImGP(t). The third term
in Eq. ~7! involving the two dimensionless low-energy co
stants z0 and z1 subsumes all polynomial contribution
which arise from~tadpole-type! loop diagrams and possibl
chiral-invariant counterterms~beyond renormalizing the
Adler-Dothan-Wolfenstein term!. The prefactor of this term
is chosen such that the negative mass dimension of the c
terterm coupling strength is accounted for by appropri
powers of the chiral symmetry breaking scaleLx

52A2p f p.0.82 GeV. Based on naturalness arguments
expects that the dimensionless low-energy constantsz0,1 are
of order one. Indeed the same considerations applied to
Adler-Dothan-Wolfenstein term give for the analogo
dimensionless low-energy constant at one-loop ord
2(2p f p)2gA^r A

2&/352gA(4p f p /MA)2.21.63. Here, we
have inserted the value of the axial dipole massMA5(1.03
60.02) GeV as extracted in Ref.@10# from ~quasi! elastic
neutrino and antineutrino scattering experiments.

FIG. 2. The spectral function ImGP(t) of the induced pseudo
scalar form factor of the nucleon divided byt. The horizontal
dashed line indicates its asymptotic form obtained by taking
chiral limit mp50.
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Let us now turn to numerical results. From the twic
subtracted dispersion integral in Eq.~7! one gets a tiny con-
tribution to the pseudoscalar coupling constant ofdgP
.2131025. The extreme smallness of this number com
partly from the proximity of the chosen subtraction pointt0

50 to tm520.502mp
2 . Nevertheless, when varying the su

traction point @via the substitution t2/t82→(t2t0)2/(t8
2t0)2 in Eq. ~7!# in the broad range224mp

2 ,t0,9mp
2 , the

contribution of the dispersion integral to the pseudosca
coupling constant stays in magnitude smaller than 1%
.dgP.2131022. Note that a change of the subtractio
point t0 is equivalent to changes of the low-energy consta
z0,1 parametrizing the polynomial piece in Eq.~7!. Since we
cannot accurately determine the coefficientsz0,1, we turn
here the argument around and ask only for some up
bound. For example, in order to cause a correction ofdgP
50.09, corresponding to a relative 1% change ofgpN in the
pion-pole term, the relation 2z02z1.21 must hold. Such
values ofz0,1 exceed the expectation from naturalness
ready by one order of magnitude.

The delta-nucleon mass-splittingD5293 MeV introduces
another small scale to the problem. The systematic po
counting scheme inherent to the small scale expansion
Refs. @3,6# ensures, however, that the contribution toGP(t)
from two-loop diagrams with intermediateD(1232) excita-
tions is a homogeneous function of degree one in the th
variables (t,mp

2 ,D2). Consequently, possible negative pow
ers ofD get always overcompensated by two more powers
the numerically smaller scalesmp and/orAutmu in GP(tm).

One may, therefore, conclude that all two-loop correctio
to the pseudoscalar coupling constantgP are numerically in-
significant. A sufficiently accurate representation ofGP(t) at
low momentum transferst is given by the sum of the pion
pole term and the Adler-Dothan-Wolfenstein term. Using
the pN-coupling constantgpN513.260.2 @11,12#, which is
consistent with recent results frompN-dispersion relation
analyses@12# and ^r A

2&512/MA
25(0.4460.02) fm2 @10# for

the axial mean square radius one gets in this case:

gP58.360.2. ~8!

The major theoretical uncertainty ofgP comes obviously
from the pN-coupling constantgpN entering the dominan
pion-pole term.

Let us finally consider the form factor of the nucleon r
lated to the divergence of the isovector axial current:

GA~ t !1
t

4M2 GP~ t !5
gAmp

2

mp
2 2t

D~ t !. ~9!

The prefactor on the right-hand side expresses the vanis
of this form factor in the chiral limitmp50 as well as the
presence of a pion-pole contribution. The imaginary p
Im D(t) ~at two-loop order! can be easily constructed from
the expressions of ImGP(t) given here in Eqs.~4! and~5! as
well as from the formula of ImGA(t) written in Eq.~26! of
Ref. @8#. As a further nontrivial result we give here only th
spectral function ImD(t) in the chiral limit:

e
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Im D~ t !ump505
2t2

9p3~8 f p!4F11gA
2 S 51

68p2

35 D G , ~10!

which may be useful for some quick order of magnitu
estimates.

In summary, we have calculated in this work the ima
nary part of the induced pseudoscalar form factor of
er

s.
l-

e

er

02700
-
e

nucleon ImGP(t) at two-loop order in heavy baryon chira
perturbation theory. Two-loop corrections to the pseudosc
coupling constantgP measurable in ordinary muon captu
m2p→nmn are numerically unimportant in view of th
present uncertainty of the pion-nucleon coupling const
gpN .
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