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Relativistic mean-field approximation in a density dependent parametrization model
at finite temperature
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In this work we calculate the relativistic equation of state of nuclear matter for different proton fractions at
zero and finite temperatures within the Thomas-Fermi approach considering three different parameter sets: the
well-known NL3 and TM1 and a density-dependent parametrization proposed by Typel and Wolter. The main
differences are outlined, and the consequences of imposingb stability in these models are discussed.
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I. INTRODUCTION AND FORMALISM

Understanding the properties of nuclear matter at b
normal and high densities is of crucial importance in expla
ing the appearance of neutron stars after the supernova
plosion and the formation of transiron elements in nucl
reactions.

One of the most popular relativistic models is the nonl
ear Walecka model@1,2#, which can be used in order to ob
tain different equations of state~EOS! as far as different
parameter sets are employed. This model was extende
several ways to include many-body correlations as dens
dependent meson couplings in the relativistic Lagrang
@3–6#. In this work we investigate the consequences in
EOS when the parametrizations of the well-known N
model @7#, which is a good parametrization in describin
finite nuclei properties, are changed to the density-depen
one proposed in Ref.@8#. The new parametrization is dete
mined by fitting several nuclear matter bulk properties a
also some finite nuclei. Both models were investigated c
sidering two types of proton fractions: fixed ones and th
arising whenb equilibrium is incorporated. Some conside
ations are also done in relation with the TM1 parameter
@9#. The extension of the density-dependent parametriza
to finite temperature EOS is also investigated. This extens
has been partially studied in Ref.@10# for symmetric nuclear
matter only. In nuclear collisions involving stable or radi
active neutron rich nuclei, in experiments yielding nucle
multifragmentation, in protoneutron stars, among innum
ous examples, the resulting matter is known to carry a r
sonable amount of isospin asymmetry. Hence, in the pre
work, a more complete and detailed study is performed
order to account for asymmetric matter as well.

We start from the Lagrangian density of the relativis
nonlinear model, adapted in order to accommodate the N
TM1 forces and the density-dependent meson-nucleon
pling constants@8#:
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where s, vm, and rmW are the scalar-isoscalar, vecto
isoscalar, and vector-isovector meson fields respectiv
vmn5]mvn2]nvm , and rW mn5]mrW n2]nrW m2Gr(rW m3rW n).
Besides this,M is the nucleon mass,ms , mv , mr are the
masses of the mesons andGs , Gv , Gr are the nucleon-
meson coupling constants.k, l, and j are the self-
interacting scalar and vector coupling constants. In this w
we investigate the differences arising from three param
sets, namely, NL3@7#, TM1 @9#, and TW@8#. In the first two
cases,Gs , Gv , andGr are the usualgs , gv , andgr . In the
second case, the density-dependent coupling constants
adjusted in order to reproduce some of the nuclear ma
bulk properties, using the following parametrization:

G i~r!5G i~rsat! f i~x!, i 5s,v ~2!

with

f i~x!5ai

11bi~x1di !
2

11ci~x1di !
2

, ~3!

wherex5r/rsat and

Gr~r!5Gr~rsat!exp@2ar~x21!#, ~4!

with the values of the parametersmj , G j , aj , bi , ci , and
di , j 5s,v,r given in Ref.@8#. Other possibilities for these
©2003 The American Physical Society01-1
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parameters are also found in the literature@10#. In the TW
parametrization the meson self-coupling constantsk, l, and
j are zero. The nuclear matter bulk properties described
these three parameter sets are displayed in Table I.

From the Euler-Lagrange equations we obtain the fi
equations of motion in the mean-field approximation for
finite matter, where the meson fields are replaced by t
expectation values. In this approximation, the expecta
value of thes, v, andr meson fields are calledf0 , V0, and
b0, respectively. The coupled equations read

ms
2f01

1

2
kf0

21
1

3!
lf0

32Gsrs50, ~5!

mv
2 V01

1

3!
jGv

4 V0
32Gvr50, ~6!

mr
2b02

Gr

2
r350, ~7!

F igm]m2g0S GvV01
Gr

2
t3b01S0

RD2M* Gc50, ~8!

where therearrangementterm S0
R is given by

S0
R5

]Gv

]r
rV01

]Gr

]r
r3

b0

2
2

]Gs

]r
rsf0 , ~9!

and the scalar and baryonic densities are defined as

rs5^c̄c&, ~10!

r5^c̄g0c&, ~11!

r35^c̄g0t3c&. ~12!

In the following discussion we consider nuclear matter
the the mean-field approximation only for the TW parame
set. Due to translational and rotational invariance the
grangian density reduces to

TABLE I. Nuclear matter properties.

NL3 @7# TM1 @9# TW @8#

B/A(MeV) 16.3 16.3 16.3

r0 (fm23) 0.148 0.145 0.148

K(MeV) 272 281 240

Esym. (MeV) 37.4 36.9 32.0

M* /M 0.60 0.63 0.56
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LMFT5c̄F igm]m2g0GvV02g0
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2
t3b02~M2Gsf0!Gc

2
1

2
ms

2f0
21

1

2
mv

2 V0
21

1

2
mr

2b0
2 . ~13!

The conserved energy-momentum tensor can be der
in the usual fashion@11#,

T MFT
mn 5c̄ igm]nc2gmnF1

2
ms

2f0
22

1

2
mv

2 V0
22

1

2
mr

2b0
2

2c̄g0S0
RcG . ~14!

Note that the rearrangement term included above and defi
in Eq. ~9! assures the energy-momentum conservation,
]mT mn50. From the energy-momentum tensor one eas
obtains the Hamiltonian operator

HMFT5E d3xT MFT
00 5E d3x c†S 2 iaW •“1bM* 1GvV0

1
Gr

2
t3b0Dc1V~ 1

2 ms
2f0

22 1
2 mv

2 V0
22 1

2 mr
2b0

2!,

~15!

whereM* 5M2Gsf andV is the volume of the system. In
the above equation the rearrangement term cancels out.
tice that as a consequence, the energy density does not
the rearrangement term either and can be written in the se
classical Thomas-Fermi approximation as

E52 (
i 5p,n

E d3p

~2p!3
Ap21M* 2~ f i 11 f i 2!1GvV0r

1
Gr

2
b0r31

ms
2

2
f0

22
mv

2

2
V0

22
mr

2

2
b0

2 . ~16!

Note that for the NL3 parametrization, the termkf0
3/6

1lf0
4/24 also appears in the energy density equation and

the TM1 these two terms come together with2jGv
4 V0

4/24.
Following the notation in Ref.@12#, the thermodynamic po-
tential can be written as

V5E2TS2mprp2mnrn , ~17!

whereS is the entropy density of a classical Fermi gas,T is
the temperature,mp (mn) is the proton~neutron! chemical
potential, andrp and rn are, respectively, the proton an
neutron densities calculated in such a way thatr5rp1rn .
We have

r i52E d3p

~2p!3
~ f i 12 f i 2!, i 5p,n, ~18!

where the distribution functionsf i 1 and f i 2 for particles and
antiparticles have to be derived in order to make the therm
1-2
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dynamic potential stationary for a system in equilibrium. A
ter straightforward substitutions, Eq.~17! becomes

V52 (
i 5p,n

E d3p

~2p!3
Ap21M* 2~ f i 11 f i 2!1GvV0r

1
Gr

2
b0r31

ms
2

2
f0

22
mv

2

2
V0

22
mr

2

2
b0

2

12T (
i 5p,n

E d3p

~2p!3 F f i 1lnS f i 1

12 f i 1
D1 ln~12 f i 1!

1 f i 2lnS f i 2

12 f i 2
D1 ln~12 f i 2!G

22 (
i 5p,n

E d3p

~2p!3
m i~ f i 12 f i 2!. ~19!

For a complete demonstration of the above shown exp
sions obtained in a Thomas-Fermi approximation for
nonlinear Walecka model, please refer to Ref.@12#. At this
point, Eq.~19! is minimized in terms of the distribution func
tions for fixed meson fields, i.e.,

]V

] f i 1
U

f i 2 , f j 6 ,f0 ,V0 ,b0

50 iÞ j . ~20!

For the proton distribution function, the above calculati
yields

E* ~p!1S0
R2mp1GvV01

Gr

2
b052T lnS f p1

12 f p1
D ,

~21!

where E* (p)5Ap21M* 2. Similar equations, with some
sign differences are obtained for the antiproton, neutron,
antineutron distribution functions. The effective chemical p
tentials are then defined as

mp* 5mp2GvV02
Gr

2
b02S0

R,

mn* 5mn2GvV01
Gr

2
b02S0

R, ~22!

and the following equations for the distribution functions c
be written as

f i 65
1

11exp@~E* ~p!7m i* !/T#
, i 5p,n. ~23!

In the above calculation we have used

rs52 (
i 5p,n

E d3p

~2p!3

M*

E* ~p!
~ f i 11 f i 2!

and r35rp2rn . The proton fraction is defined asYp
5rp /r.
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Within the Thomas-Fermi approach the pressure beco

P5
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3p2 (
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2
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]r D . ~24!

In the NL3 model, the term2kf0
3/62lf0

4/24 is also presen
in Eq. ~24!, and in the TM1 model these terms are also a
companied byjGv

4 V0
4/24. It is also important to stress tha

the thermodynamical consistency which requires the equa
of the pressure calculated from the thermodynamical defi
tion and from the energy-momentum tensor, discussed
Ref. @14#, is also obeyed by the temperature-dependent
model.

Another quantity of interest is the nuclear bulk symme
energy discussed in Ref.@15#. It is usually defined as

Esym5
1

2

]2E
]d2U

d50

, ~25!

with d5r3 /r and which can be analytically rewritten as

Esym5S kF
2

6E* ~p!
1

Gr
2

8mr
2D r, ~26!

where

kFp5kF~11d!1/3, kFn5kF~12d!1/3,

with kF5(1.5p2r)1/3. The value and behavior of the sym
metry energy at densities larger than nuclear saturation d
sity are still not well established. This quantity is importa
in studies involving neutron stars and radioactive nuclei.
general, relativistic and nonrelativistic models give differe
predictions for the symmetry energy. A comparison betwe
the symmetry energies coming from the NL3 and TW mo
els is also discussed in the present work.

II. CONSIDERING b STABILITY

At this point, we introduce the ideas ofb stability and
charge neutrality. In an ideal system of protons, neutro
electrons, and muons in equilibrium, the particle levels
filled in such a way that theb decays are forbidden. In orde
to study the conditions ofb equilibrium, one has to incorpo
rate leptonic degrees of freedom in the Lagrangian densit
equation~1!. As far as the leptons exchange mesons neit
with the baryons nor with themselves, they can be introdu
as free Fermi gases, as usually done in the literature.
weak interaction beteween leptons and hadrons is taken
account through the constraint of charge neutrality. The n
Lagrangian density reads

Llb5L1Lleptons, ~27!
1-3
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where

Lleptons5(
l

c̄ l~ igm]m2ml !c l , ~28!

L is given in Eq.~1! andl describes the two lightest lepton
i.e., the electron and the muon, whose masses are, res
tively, me50.511 MeV andmm5106.55 MeV. The expres
sions for the energy densityElb and the pressurePlb are also
modified by the leptons, reading

Elb5E12(
l
E d3p

~2p!3
Ap21ml

2~ f l 11 f l 2! ~29!

with

f l 65
1

11exp@~e7m l !/T#
, l 5e,m, ~30!

wherem l being the chemical potentials for leptons of typel,
e5Ap21ml

2 and

FIG. 1. Binding energy in terms of the baryon density for d
ferent proton fractions andT50. From top to bottom we show th
EOS withb stability for NL3 ~dotted line! and for TW~long-dashed
line!; Yp50 for NL3 ~solid line! and TW~large spaced dotted line!;
Yp50.3 for NL3 and TW andYp50.5 for NL3 and TW.

FIG. 2. Binding energy in terms of the baryon density for d
ferent proton fractions andT510 MeV. From top to bottom we
show the EOS withYp50 for NL3 and TW;Yp50.3 for NL3 and
TW; Yp50.5 for NL3 and TW.
02430
ec-

Plb5P1
1

3p2 (
l
E p4dp

Ap21ml
2 ~ f l 11 f l 2!, ~31!

whereE andP are given by Eqs.~16! and~24!, respectively.
Notice that the leptons are considered as a gas of no

teracting relativistic particles, in such a way that the minim
zation of the thermodynamic potential is not altered by th
presence. The already mentioned requirement of charge
trality yields

rp5re1rm , ~32!

where the electron and muon densities can be read off f
Eq. ~18! by substitutingi by l. From the condition of chemi-
cal equilibrium in the weak processes, obtained from
minimization of the Gibbs potential with the conditions
baryon number and electric charge conservation, one is
with the following relations between the chemical potentia

mp5mn2me , ~33!

mm5me . ~34!

FIG. 3. Binding energy in terms of the baryon density for d
ferent temperatures,Yp50 and TW. From top to bottom we show
the EOS forT5100 MeV, T550 MeV, T510 MeV, andT50.

FIG. 4. Binding energy in terms of the baryon density for d
ferent temperatures,Yp50.5 and TW. From top to bottom we show
the EOS forT5100 MeV, T550 MeV, T510 MeV, andT50.
1-4
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Common definitions for the lepton fractions areYl5r l /r,
although the lepton densities are not part of the baryon d
sity. Some consequences of the imposition ofb stability in
relativistic models are discussed in Ref.@16#.

III. RESULTS AND CONCLUSIONS

In this work, as in other recent papers~Ref. @9#, for in-
stance!, the important range of temperature which should
discussed lies between 10 and 150 MeV since the liquid-
phase transition takes place around 10 MeV and the ph
transition from hadronic to quarkionic matter around 1
MeV.

In Fig. 1 we show the zero temperature EOS for differe
proton fractions and two of the parameter sets used in
work, i.e., NL3 and TW. The TW parametrization makes t
EOS softer not only for symmetric nuclear matter (Yp
50.5), as discussed in Ref.@8#, but also for all other proton
fraction possibilities. The same is true ifb stability is im-
posed. In Fig. 2 the EOS is plotted forT510 MeV and
again, a behavior similar to that of Fig. 1 is observed. Noti
however, that the minima of all curves are shifted upwa
and that the curves forYp50, which do not exhibit minima
for T50 acquire them once the temperature increases.

FIG. 5. Energy density per nucleon in terms of the baryon d
sity for zero temperature andYp50.5. From top to bottom we show
the EOS for NL3, TM1, and TW.

FIG. 6. Energy density per nucleon in terms of the baryon d
sity for T550 MeV andYp50.5. From top to bottom we show th
EOS for NL3, TM1, and TW.
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In Fig. 3 we show the EOS for neutron matter (Yp50) at
different temperatures, namely,T50, T510 MeV, T
550 MeV, andT5100 MeV. At very low densities the in-
clination of the curves vary substancially from low to hig
temperatures. This is because in this region of low densit
the thermal energykT is an appreciable fraction of th
Fermy energyeF , making the effects of the temperature,
particular, the particle-antiparticle creation, more dramatic
this regime than at high densities, wereeF is greater. In Fig.
4 the EOS is plotted, this time for symmetric nuclear mat
One can see the change in the minimum from a negative
positive value, which becomes very large for high tempe
tures. One can also notice that the minima of all curves
slightly shifted to higer densities.

From the analysis of Figs. 1 and 2 we conclude that
TW parametrization is softer than the NL3 one. This can
explained looking for theG parametrizations~2! and ~4! in
the limit of r/rsat@1. In this limit we have

G i~r!→0.7G i~rsat!, i 5s,v, ~35!

Gr~r!→0. ~36!

-

-

FIG. 7. Symmetry energy in terms of the baryon density, resp
tively, for Yp50.0 and 0.5 for NL3~dotted curves! and TW~dashed
and solid curves!.

FIG. 8. Particle composition in terms of the baryon density
T50 and NL3. From top to bottom we show the distribution
neutrons, protons, electrons, and muons.
1-5
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At such high densities, the system interacts mainly throu
the exchange of the mesonv, once the scalar mesons satu-
rates asm* →0. TheGv coupling constant of the NL3 mode
is the same as at the saturation density, while Eq.~35! says
that, in this limit, theGv coupling constant for the TW pa
rametrization is lower than the value at the saturation po
TW is thus less repulsive at high densities than NL3, wh
makes its EOS softer. This fact has important consequen
for example, when modeling neutron stars. A soft EOS p
vides a neutron star with a total mass lower than the va
obtained with a stiff EOS@13#.

We have also checked that the TW parametrization p
vides an EOS softer than that obtained with the TM1 fo
@9# and closer to the relativistic Brueckner-Hartree-Fo
~RBHF! EOS @17#, as can be seen in Figs. 5 and 6 forT
50 andT550 MeV and symmetric nuclear matter. Notic
that the EOS which is stiffest at zero temperature remain
at higher temperatures. The same is true for other pro
fractions. The RBHF theory produces well the nuclear ma
saturation based on the nucleon-nucleon interaction de
mined by scattering experiments. The TM1 parametrizat
includes a nonlinearv term, and hence works with one ext
parameter which is also adjusted in order to reprod
nuclear matter bulk properties. We then conclude that
TW parameter set is a very useful force in the studies invo
ing EOS at high densities.

In Fig. 7 the symmetry energy is displayed for NL3 a
TW for pure neutron matter and symmetric nuclear mat
Different proton fractions give rise to slightly differen
curves because of the difference in Fermi momenta an
the effective mass, which enters inE* (p). According to Ref.
@15#, the symmetry energy at normal nuclear matter den
is found to lay in between 27–36 MeV in the mass formu
calculations, in the range of 28 to 38 MeV in nonrelativis
models and in between 35 and 42 MeV in relativistic mode
Notice that at the saturation point, the value for the T

FIG. 9. Particle composition in terms of the baryon density
T50 and TW. From top to bottom we show the distribution
neutrons, protons, electrons, and muons.
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parametrization~32 MeV! is somewhat lower than for the
NL3, remains in the accepted range of validity, and is clo
to the predictions of nonrelativistic models. Moreover, t
curves obtained for the TW model present a much sma
symmetry energy at larger densities and also a smoother
havior as compared with the curves arising from the N
model, which gives a more linear tendency to the curve. T
result can be explained looking at Eq.~36!, which tell us that
Gr goes to zero at high densities, consequently so doe
contribution in Eq.~26!. On the opposite,Gr in the NL3
parametrization is constant as a function of density.

We have finally studied the particle composition onceb
stability is imposed. In Figs. 8 and 9 the particle composit
obtained atT50, respectively, for NL3 and TW are shown
In Fig. 10 we show the proton and neutron composition
NL3 and TW atT50 MeV and TW atT510 MeV. One can
see that if the temperature does not increase much, the
ticle composition for a fixed parameter set remains basic
the same. Nevertheless, it changes substancially from NL
TW. In particular, at high densities, we can see that TW
less isospin symmetric than NL3. This is due, again, to re
~36!, which says that, for TW, ther-nucleon interaction is
suppressed at high densities. It is precisely this interac
which drives the systems to a more isospin symmetric c
figuration at high densities, as we can see in Fig.~8! for NL3,
where this interaction survives in this limit.

An extension of this work in order to study liquid-ga
phase transition and consequent droplet formation is c
rently under investigation.
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r FIG. 10. Proton and neutron composition in terms of the bary
density. The upper curves shown the neutron composition and
lower ones show the proton composition. The curves which
practically coincident stand for the TW atT50 andT510 MeV.
The other curves stand for the NL3 force.
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