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In this work we calculate the relativistic equation of state of nuclear matter for different proton fractions at
zero and finite temperatures within the Thomas-Fermi approach considering three different parameter sets: the
well-known NL3 and TM1 and a density-dependent parametrization proposed by Typel and Wolter. The main
differences are outlined, and the consequences of impgistgbility in these models are discussed.
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I. INTRODUCTION AND FORMALISM r ..
£=4 yﬂ( i94=T = =7 p’“) —(M—=T,0) |¢

Understanding the properties of nuclear matter at both 1 1 1 1
normal and high densities is of crucial importance in explain- +5(0,00"0— m(zrg?) — a,«ﬁ_ 47)\0'4— waww
ing the appearance of neutron stars after the supernova ex- : :
plosion and the formation of transiron elements in nuclear 1 1 1. .
reactions. +§miw#w“+ Egri(wﬂw”)z— 2Puv P’

One of the most popular relativistic models is the nonlin- ’
ear Walecka moddl1,2], which can be used in order to ob- 1, -
tain different equations of stattEQOS as far as different + Emppu'l’”’ @

parameter sets are employed. This model was extended in

several ways to include many-body correlations as densitywhere o, w*, and p” are the scalar-isoscalar, vector-
dependent meson couplings in the relativistic Lagrangiansoscalar, and vector-isovector meson fields respectively,
[E?gg] In this work we mv_estl_gate the consequences in theww_:%wy_— av(f),u' and p,,=,0,~ 3,p,—T (P X p)).
when the parametrizations of the well-known NL3pggsiges thisM is the nucleon massn,, m,, m, are the
model [7], which is a good parametrization in describing masses of the mesons afig, T',, T, are thepnucleon—
finite nuclei properties, are changed to the density-dependeRteson coupling constantsc, \, ana & are the self-
one proposed in Ref8]. The new parametrization is deter- interacting scalar and vector coupling constants. In this work
mined by fitting several nuclear matter bulk properties andye investigate the differences arising from three parameter
also some finite nuclei. Both models were investigated consets, namely, NL37], TM1 [9], and TW[8]. In the first two
sidering two types of proton fractions: fixed ones and thoseases[',,, I',,, andT", are the usuay, , g,,, andg, . In the
arising wheng equilibrium is incorporated. Some consider- second case, the density-dependent coupling constants are
ations are also done in relation with the TM1 parameter seadjusted in order to reproduce some of the nuclear matter
[9]. The extension of the density-dependent parametrizatiohulk properties, using the following parametrization:
to finite temperature EOS is also investigated. This extension ,
has been partially studied in R¢1.0] for symmetric nuclear li(p)=Ti(psapfi(x), =00 2
matter only. In nuclear collisions involving stable or radio- with
active neutron rich nuclei, in experiments yielding nuclear
multifragmentation, in protoneutron stars, among innumer- 1+b;(x+d;)2
ous examples, the resulting matter is known to carry a rea- fi(x)zai—z, (3)
sonable amount of isospin asymmetry. Hence, in the present 1+ci(x+dj)
work, a more complete and d_etalled study is performed 'nwherex=p/psat and
order to account for asymmetric matter as well.

We start from the Lagrgngian density of the relativistic T ,(p)=T ,(psapexfd —a,(x—1)], (4)
nonlinear model, adapted in order to accommodate the NL3,
TM1 forces and the density-dependent meson-nucleon cowvith the values of the parametens, I';, a;, b;, ¢;, and
pling constantg8]: d;, j=0,m,p given in Ref.[8]. Other possibilities for these
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TABLE I. Nuclear matter properties.

NL3 [7] T™M1 [9] TW [8]
B/A(MeV) 16.3 16.3 16.3
po (fm~3) 0.148 0.145 0.148
K(MeV) 272 281 240
Esym (MeV) 37.4 36.9 32.0
M*/M 0.60 0.63 0.56

parameters are also found in the literat{it€]. In the TW
parametrization the meson self-coupling constants, and

& are zero. The nuclear matter bulk properties described by

these three parameter sets are displayed in Table I.
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1 1 1

2,2 2y/2 212
—Emg¢0+§mwvo+ Empbo. (13)

The conserved energy-momentum tensor can be derived
in the usual fashiof11],
1 1 1
§m§¢§—§m§)vg— Emibg

Thir= i7" =g

. (14)

—yyoS Ry

Note that the rearrangement term included above and defined
in Eq. (9) assures the energy-momentum conservation, i.e.,
. T""=0. From the energy-momentum tensor one easily

obtains the Hamiltonian operator

From the Euler-Lagrange equations we obtain the field

equations of motion in the mean-field approximation for in-

finite matter, where the meson fields are replaced by theirHMFT:f dx MOFT:f d®x lﬁT( —ia-V+pBM*+T,V,
expectation values. In this approximation, the expectation

value of theo, w, andp meson fields are called,, Vq, and
by, respectively. The coupled equations read

2 1 2 1 3
My$o+ §K¢O+ a)\d)o_ral)s: 0, (5)
2 1 44,3
MeVo+ 57 EGVo—T,p=0, 6)
r

mgbo_ 7PP3: 0, (7

vty — & Rl _M* | =
1749, = vo[ Vot 5 T3bp+ 35| —M* [=0, (8)

where therearrangementerm 25 is given by

ER_aFw V+¢9Fp by ', g
0=, PVot 5 psy ﬁps%, ©)

and the scalar and baryonic densities are defined as

ps=(Y¥), (10
p=(y°¥), (11)
p3={ 7y ). (12

In the following discussion we consider nuclear matter in

r
+?p 73bo |+ V(3 MG — 3 mZV5— %mibg),

(15

whereM* =M —TI"_ ¢ andV is the volume of the system. In

the above equation the rearrangement term cancels out. No-
tice that as a consequence, the energy density does not carry
the rearrangement term either and can be written in the semi-

classical Thomas-Fermi approximation as

dp
&= 2i=§p)n (277)3\/p2+ M*2(f, +f; )+ T Vop
r m? 2 m?
"'?pbops"' Tﬁbg_ TVg_prg- (16)

Note that for the NL3 parametrization, the terry3/6

+ )\(/)3/24 also appears in the energy density equation and for
the TM1 these two terms come together withé["?V§/24.
Following the notation in Refl12], the thermodynamic po-
tential can be written as

QIS_TS_MpPp_MnPny (17

whereS is the entropy density of a classical Fermi gass
the temperaturep, (w,) is the proton(neutron chemical
potential, andp, and p,, are, respectively, the proton and
neutron densities calculated in such a way thatp,+p, .
We have

d°p .
Pi_zj W(fw—fi—): 1=p.n, (18)

the the mean-field approximation only for the TW parameter
set. Due to translational and rotational invariance the Lawhere the distribution function, andf;_ for particles and

grangian density reduces to

antiparticles have to be derived in order to make the thermo-
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dynamic potential stationary for a system in equilibrium. Af-  Within the Thomas-Fermi approach the pressure becomes
ter straightforward substitutions, E(L7) becomes

op P= J Pt i)
Q=22 j(2 )3\/p2+M*2(fi++fif)+FonP 32 1%
i=p.n 77
2 2 2 m0¢2(1+2p s +m2 1+2p (9Fw>

r m;, m;, m 5 %o T a5
+ 5 bopat & b5~ - Vo— - bg 2 Lo dp 2 Lo o

2 2 2 2 ) o

m
.l +7”b§ 1+2r£a_;)' (24)
+2T In{ =———| +In(1—f, p
|2pn (277)3 |+ (1_f|+ ( I+)

In the NL3 model, the term- k $3/6— \ ¢3/24 is also present

in Eq. (24), and in the TM1 model these terms are also ac-
+fi|n< - f +In(1-f )} companied byeT'#V4/24. 1t is also important to stress that
the thermodynamical consistency which requires the equality
d®p of the pressure calculated from the thermodynamical defini-
—Zinn f(zw)gm( i+—fi-). (19 tion and from the energy-momentum tensor, discussed in

Ref.[14], is also obeyed by the temperature-dependent TW
For a complete demonstration of the above shown exprednodel-
sions obtained in a Thomas-Fermi approximation for the Another quantity of interest is the nuclear bulk symmetry
nonlinear Walecka model, please refer to Ra]. At this energy discussed in RefL5]. It is usually defined as
point, Eq.(19) is minimized in terms of the distribution func- 1 2¢
tions for fixed meson fields, i.e., Eo =

sym— o 2

96| 5

: (29

Q) o
oty 0 Vb =0 1=, (20 with 6= p3/p and which can be analytically rewritten as
i—Tj+%0:Vo:Po

For the proton distribution function, the above calculation _ k% v Fz P 26)
yields oM\ 6E*(p) 8m2) T

R I fps where

E*(p)+20—mptT,Vot — > —Lbe=—TIn T
p+
(21 Kep=Ke(1+ ™, Ken=Kg(1-8)"3,

where E* (p)=Jp?+M*2. Similar equations, with some with kr=(1.572p)3. The value and behavior of the sym-
sign differences are obtained for the antiproton, neutron, anthetry energy at densities larger than nuclear saturation den-
antineutron distribution functions. The effective chemical po-sity are still not well established. This quantity is important

tentials are then defined as in studies involving neutron stars and radioactive nuclei. In
r general, relativistic and nonrelativistic models give different
ME — =T Vo _Pbo_zg, predictions for the symmetry energy. A comparison between

the symmetry energies coming from the NL3 and TW mod-
els is also discussed in the present work.

r
* _ _ _PL _$R
#n =~ TWVot 5 bo—2, (22) Il. CONSIDERING B STABILITY
and the following equations for the distribution functions can At this paint, we introduce the ideas @ stability and
be written as charge neutrality. In an ideal system of protons, neutrons,
electrons, and muons in equilibrium, the particle levels are
1 filled in such a way that th@ decays are forbidden. In order
PO i=p,n. (23)  to study the conditions g8 equilibrium, one has to incorpo-
1+exd (E*(p)+pi)/T] rate leptonic degrees of freedom in the Lagrangian density of

equation(l). As far as the leptons exchange mesons neither
with the baryons nor with themselves, they can be introduced
4 M* as free Fermi gases, as usually done in the literature. The
Ps:2 f apr —(fi ) weak interaction beteween leptons and hadrons is taken into
(27)% E*(p) account through the constraint of charge neutrality. The new

Lagrangian density reads

In the above calculation we have used

and p3=p,—p,. The proton fraction is defined a¥,
=pp/p. lezﬁ"_ﬁleptonsa (27)
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FIG. 1. Binding energy in terms of the baryon density for dif-

ferent proton fractions an@i=0. From top to bottom we show the
EOS with B stability for NL3 (dotted ling and for TW(long-dashed
line); Y,=0 for NL3 (solid line) and TW(large spaced dotted lijie
Yp=0.3 for NL3 and TW and¥,=0.5 for NL3 and TW.

where

Eleptons: EI %(' ‘Y}Lalu_ my) i, (28)

L is given in Eqg.(1) andl describes the two lightest leptons,
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FIG. 3. Binding energy in terms of the baryon density for dif-
ferent temperature&/,=0 and TW. From top to bottom we show
the EOS forT=100 MeV, T=50 MeV, T=10 MeV, andT=0.

1 p*dp
P NS

where& andP are given by Eqs(16) and(24), respectively.
Notice that the leptons are considered as a gas of nonin-

teracting relativistic particles, in such a way that the minimi-

zation of the thermodynamic potential is not altered by their

Pi=P+ S(fio+f0), (3D

, the electron and the muon, whose masses are, respgresence. The already mentioned requirement of charge neu-

tlvely, m.=0.511 MeV andm,=106.55 MeV. The expres-
sions for the energy densnS(b and the pressurg, are also
modified by the leptons, reading

dp
)3¢p2+mﬁ<f|++f.,>

Ep=

(29

with

1
W= T exd(ez ayiT]’ |

=eu, (30

whereu, being the chemical potentials for leptons of tyipe

=p?+m? and

40

[N] [}
(=] (=1

elp— M (MeV)
s

04

FIG. 2. Binding energy in terms of the baryon density for dif-

ferent proton fractions and=10 MeV. From top to bottom we
show the EOS withy ;=0 for NL3 and TW;Y,=0.3 for NL3 and
TW; Y,=0.5 for NL3 and TW.

trality yields

Pp=Pet Py, (32
where the electron and muon densities can be read off from
Eq. (18) by substituting by I. From the condition of chemi-
cal equilibrium in the weak processes, obtained from the
minimization of the Gibbs potential with the conditions of
baryon number and electric charge conservation, one is left
with the following relations between the chemical potentials:

Mp=Mn— Me, (33

M= Me- (34)

1
0.25

0 0.05 0.1 0.15 03 035 04

02
p (fm ™)

FIG. 4. Binding energy in terms of the baryon density for dif-
ferent temperature¥|,=0.5 and TW. From top to bottom we show
the EOS forT=100 MeV, T=50 MeV, T=10 MeV, andT=0.
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FIG. 5. Energy density per nucleon in terms of the baryon den- FIG. 7. Symmetry energy in terms of the baryon density, respec-
sity for zero temperature and,=0.5. From top to bottom we show tively, for Y,=0.0 and 0.5 for NL3dotted curvesand TW(dashed
the EOS for NL3, TM1, and TW. and solid curves

Common definitions for the lepton fractions arg=p,/p, In Fig. 3 we show the EOS for neutron mattaf,&0) at
although the lepton densities are not part of the baryon denyifferent temperatures, namelyT=0, T=10 MeV, T
sity. Some consequences of the impositiono$tability in =50 MeV, andT=100 MeV. At very low densities the in-

relativistic models are discussed in REI6]. clination of the curves vary substancially from low to high
temperatures. This is because in this region of low densities,
Ill. RESULTS AND CONCLUSIONS the thermal energkT is an appreciable fraction of the

Fermy energyer , making the effects of the temperature, in

In this wprk, as in other recent pape(ief. [9]’ for in- articular, the particle-antiparticle creation, more dramatic in
stancg, the important range of temperature which should b his regime than at high densities, weseis greater. In Fig.

discussed lies between 10 and 150 MeV since the quuid—gag ;
phase transition takes place around 10 MeV and the pha%

}\r/larllsnmn from hadronic to quarkionic matter around 150positive value, which becomes very large for high tempera-
ev. tures. One can also notice that the minima of all curves are

In Fig. 1 we show the zero temperature EOS for dif'feren_tSlightly shifted to higer densities.

proton fractions and two of the parameter sets used in this From the analvsi :
. L ysis of Figs. 1 and 2 we conclude that the
work, i.e., NL3 and TW. The TW parametrization makes theTW parametrization is softer than the NL3 one. This can be

EOS softer not only for symmetric nuclear mattey ,( : ; o .
. . explained looking for thd" parametrization$2) and (4) in
=0.5), as discussed in R¢B], but also for all other proton theplimit of plp g>1 In thig limit we have$ ) 4)
sat .

fraction possibilities. The same is true ff stability is im-
posed. In Fig. 2 the EOS is plotted far=10 MeV and
again, a behavior similar to that of Fig. 1 is observed. Notice, Fi(p)—0.Ti(psay), =0, 0, (35
however, that the minima of all curves are shifted upwards

and that the curves for,=0, which do not exhibit minima

ne can see the change in the minimum from a negative to a

for T=0 acquire them once the temperature increases. I'y(p)—0. (36
1030 T T T T T T T 1 ELETEr— T T T T T
1025 | A T e
1020 ’ 08l e 1
1015 -}
% 1010 4
S 506 [ R
8_1005 g
“ 1000 >~
04 A
995
990
985 02
980
975 | | | 1 | | 1 0
0 0.05 0.1 0.15 03 0.35 04 0

02 _, 0325
p (fm ™)

FIG. 6. Energy density per nucleon in terms of the baryon den- FIG. 8. Particle composition in terms of the baryon density for
sity for T=50 MeV andY,=0.5. From top to bottom we show the T=0 and NL3. From top to bottom we show the distribution of
EOS for NL3, TM1, and TW. neutrons, protons, electrons, and muons.
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FIG. 9. Particle composition in terms of the baryon density for ~ FIG. 10. Proton and neutron composition in terms of the baryon

T=0 and TW. From top to bottom we show the distribution of density. The upper curves shown the neutron composition and the
neutrons, protons, electrons, and muons. lower ones show the proton composition. The curves which are

practically coincident stand for the TW at=0 andT=10 MeV.

. o . . The other curves stand for the NL3 force.
At such high densities, the system interacts mainly through

the exchange of the mesen once the scalar mesensatu-  parametrization32 MeV) is somewhat lower than for the
rates asn* —0. Thel,, coupling constant of the NL3 model NL3, remains in the accepted range of validity, and is closer
is the same as at the saturation density, while (B says 10 the predi_ctions of nonrelativistic models. Moreover, the
that, in this limit, thel',, coupling constant for the TW pa- CUrves obtained for the TW model present a much smaller
rametrization is lower than the value at the saturation pointSYmMmetry energy at larger densities and also a smoother be-
TW is thus less repulsive at high densities than NL3, which1avior @s compared with the curves arising from the NL3
makes its EOS softer. This fact has important consequence§0d€!, which gives a more linear tendency to the curve. This

for example, when modeling neutron stars. A soft EOS pro-réSUIt can be explained looking at EG6), which tell us that

vides a neutron star with a total mass lower than the valug p 9OES _to ZE€ro at high densities, con_seque_ntly so does its
obtained with a stiff EO$13]. contribution in Eq.(26). On the opposite]’, in the NL3

We have also checked that the TW parametrization proparametrization is constant as a function of density.

vides an EOS softer than that obtained with the TM1 force We. hgvg finally studigd the particle composition orﬂ:g
[9] and closer to the relativistic Brueckner-Hartree-FockStability is imposed. In Figs. 8 and 9 the particle composition

(RBHF) EOS[17], as can be seen in Figs. 5 and 6 for obtained aff=0, respectively, for NL3 and TW are shown.
—0 andT=50 Mév and symmetric nuclear matter. Notice In Fig. 10 we show the proton and neutron composition for

that the EOS which is stiffest at zero temperature remains shLs3 and _TW afT=0 MeV and TW atT_= 10 MeV. One can

at higher temperatures. The same is true for other protoﬁee that if th?. temperat_ure does not increase m_uch, th_e par-
fractions. The RBHF theory produces well the nuclear mattef'cIe composition for a f'X.Ed parameter set remains basically
saturation based on the nucleon-nucleon interaction dete _V?/s;ame. I\'Ievlertheler?_s,k:tdchar?ges substancially ILOT_I'_\IVI\‘/:g.tO
mined by scattering experiments. The TM1 parametrizatior? - In particular, at high densities, we can see tha IS
includes a nonlineaw term, and hence works with one extra '€>> 1SOSPIN symmetric than NL3. This is due., again, to rgsult
parameter which is also adjusted in order to reproducé3®): Which says that, for TW, the-nucleon interaction is

nuclear matter bulk properties. We then conclude that théuppressed at high densities. It is precisely this interaction

TW parameter set is a very useful force in the studies involv-WhICh drives the systems to a more isospin symmetric con-

ing EOS at high densities. figuration_ at high d_ensities,_as we can see in Byfor NL3,

In Fig. 7 the symmetry energy is displayed for NL3 and where this Interaction survives in this limit. -
TW for pure neutron matter and symmetric nuclear matter. An extension of this work in order to study I|.qU|d_—gas
Different proton fractions give rise to slightly different phase transfuon a.nd .consequent droplet formation is cur-
curves because of the difference in Fermi momenta and iFFNtY under investigation.
the effective mass, which enterskt (p). According to Ref.
[15], the symmetry energy at normal nuclear matter density
is found to lay in between 27-36 MeV in the mass formula This work was partially supported by CNPg—Brazil. One
calculations, in the range of 28 to 38 MeV in nonrelativistic of the authorgD.P.M. would like to thank Dr. Constaiac
models and in between 35 and 42 MeV in relativistic models Providencia for very useful suggestions and productive dis-
Notice that at the saturation point, the value for the TWcussions related to this work.
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