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Two-body Dirac equations for nucleon-nucleon scattering
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We investigate the nucleon-nucleon interaction by using the meson exchange model and the two-body Dirac
equations of constraint dynamics. This approach to the two-body problem has been successfully tested for
QED and QCD relativistic bound states. An important question we wish to address is whether or not the
two-body nucleon-nucleon scattering problem can be reasonably described in this approach as well. This test
involves a number of related problems. First we must reduce our two-body Dirac equations exactly to a
Schralinger-like equation in such a way that allows us to use technigques to solve them already developed for
Schralinger-like systems in nonrelativistic quantum mechanics. Related to this, we present a new derivation of
Calogero’s variable phase shift differential equation for coupled Siitger-like equations. Then we deter-
mine if the use of nine meson exchanges in our equations gives a reasonable fit to the experimental scattering
phase shifts fon-p scattering. The data involve seven angular momentum states including the singlet states
15, 'P;, D, and the triplet statedP,, °P,, 3S;, °D;. Two models that we have tested give us a fairly
good fit. The parameters obtained by fitting thg experimental scattering phase shift give a fairly good
prediction for most of thep-p experimental scattering phase shifts examitfed the singlet statesS;, D,
and triplet stateSP,, 3P;). Thus the two-body Dirac equations of constraint dynamics present us with a fit
that encourages the exploration of a more realistic model. We outline generalizations of the meson exchange
model for invariant potentials that may possibly improve the fit.
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I. INTRODUCTION used in the nucleon-nucleon scattering problem, none of the
other approaches have been tested nonperturbatively in both
In this papelf1], we obtain a semiphenomenological rela- QED and QCD as they have been with the two-body Dirac
tivistic potential model for nucleon-nucleon interactions byequations of constraint dynamidg,6,22—-24. Unlike the
using two-body Dirac equations of constraint dynamicsearlier local two-body approaches of Brggs—27, the rela-
[2—7] and Yukawa’s theory of meson exchange. In previousivistic spin corrections need not be treated only perturba-
work Long and Crate[8] have derived the two-body Dirac tively. This means that we can use nonperturbative methods
equations for all nonderivative Lorentz invariant interactions(numerical methodsto solve the two-body Dirac equations.
acting together or in any combination. They also reduced th&his is a very important advantage of the constraint two-
two-body Dirac equations to coupled Sctimger-like equa- body Dirac equation§CTBDE). The successful numerical
tions in which the potentials appear as covariant generalizaests in QED and QCD give us confidence that they may be
tions of the standard spin dependent interactions appearing dippropriate relativistic equations for phase shift analysis of
the early phenomenological works in this af®a-15 based nucleon-nucleon scattering.
on the nonrelativistic Schainger equation. This allows us to In Sec. Il we introduce the two-body Dirac equations of
take advantage of earlier work done by other people on theonstraint dynamics. In Sec. Ill we obtain the Pauli reduction
nonrelativistic Schrdinger equation. In particular, we use of the two-body Dirac equations to coupled Sakinger-like
the variable phase method developed by Calogero and Dequations. We go a step further than that achieved in the
gasparig16,17] for computation of the phase shift from the paper of Long and Crater in that we eliminate the first de-
nonrelativistic Schrdinger equation, presenting a new deri- rivative terms that appear in the Sctioger-like equation.
vation for the case of coupled equations. Our potentials folThis is relatively simple for the case of uncoupled equations,
different angular momentum states are constructed fronput not so for the case of coupled Sdttirmger-like equation.
combinations of several different meson exchanges. FurthefFhe reason we perform this extra reduction is that the for-
more, our potentials, as well as the whole equations, arenulas we use for the phase shift analysis, the variable phase
local, yet at the same time covariant. This contrasts our apmethod developed by Calogero, have been worked out al-
proach with other relativistic schemes such as those by Grosgady for coupled equations, but ones in which the first de-
and otherd18-21]. It is the aim of this paper to see if the rivative terms are absent. This step then becomes an impor-
meson exchanges we use are adequate to describe the elassiet part of the formalism, allowing us to take advantage of
nucleon-nucleon interactions from low energy to high energyprevious work. In Sec. IV, we discuss the phase shift meth-
(<350 MeV) when using them together with two-body ods used in our numerical calculations, which include phase
Dirac equations of constraint dynamics. shift equations for uncoupled and coupled states and the
Although numerous relativistic approaches have beemphase shift equations with Coulomb potential. In Sec. V we
present the models used in our calculations, including the
expressions for the scalar, vector, and pseudoscalar interac-
*Email address: hcrater@utsi.edu tions, and the way they enter into our two-body Dirac equa-
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tions with the mesons used in our fits. In Sec. VI we present Using techniques developed by Dirac to handle con-
the results we have acheived and in Sec. VII are the summatraints in quantum mechanics and the method developed by

ries and conclusions of our work. Crater and Van Alstine, one can derive the two-body Dirac
equations for eight nonderivative Lorentz invariant interac-

Il REVIEW OF CONSTRAINT TWO-BODY t|on;sd actmlg sefparately or tog&athé%,ﬁ]. Thlese_lnclude_:
DIRAC EQUATIONS world scalar, four vector, and pseudoscalar interactions

among others. We can also reduce the two-body Dirac equa-
The two-body Dirac equations that we will use for study-tions to coupled Schdinger-like equations even with all
ing nucleon-nucleon interaction bear a close relation to theéhese interactions acting together. Before we test this method
single particle equation proposed by Dirac in 1928]. in nuclear physics in the phase shift analysis of the nucleon-
nucleon scattering problems, we review highlights of the
[a-p+Bm+V(r)]y=E. (2.1)  constraint formalism and the form of the two-body Dirac
equations.

For interactions that transforms as a time component of a
four vector and world scalar we ha¥qr)=A(r)+ B8S(r). A. Hamiltonian formulation of the two-body problem
Of course, the single particle Dirac equation is not suitable to from constraint dynamics
describe systems such as the mes@msarkonium, muo-
nium, positronium, the deuteron, and nucleon-nucleon scats
tering because the particles may have equal or near equ
masses.
The earliest attempt at putting both particles on an equal én(q,p)~0, Nn=1,23... N. (2.2
footing was in 1929 by Breif25-27. However, the Breit
equations do not retain manifest covariant form and in QEBpjith these constraints the Hamiltonian of the syst@ith
the equations cannot be treated nonperturbatively beyond thg, over repeated indices
Coulomb term[26,29. There have been many attempts to
bypass the problems of the Breit equation and also of the full H=dop— L
four-dimensional Bethe-Salpeter equation. These are dis- = UnPn
cussed in a number of different contexts in R¢&-6]. The . ) L .
approach of the CTBDE provides a manifestly covariant yefS Not unique. The Dirac Hamiltoniaft includes the con-
three-dimensional detour around many of the problems thattraints
hamper the implementation and application of Breit's two-
body Dirac equations as well as the full four-dimensional H=H+N\qén, (2.4
Bethe-Salpeter equatiaisee also Refl30]). In addition, as ) ) o )
mentioned above’ the approach can by a Pau" reductiorlll:] Wh|Ch His the Legendre Ham||t0n|a.n 0bta|ned from the
give us a local Schidinger-like equation. Lagrangian by means of a Legendre transformation. Nhe
The CTBDE make use of Dirac’s relativistic Hamiltonian may be functions of conjugate variablgss and p’s. The
formalism. In a series of papefi: addition to those cited €quation of motion for any arbitrary functian(without ex-
above see Ref$31,32) Crater and Van Alstine have incor- plicit time dependendeof the conjugate variableg's and
porated Todorov's effective particle idea developed in hisp’s is then
quasipotential approadi83] into the framework of Dirac’s
Hamiltonian constraint mechani¢84] for a description of g=[g,H]. (2.5
two-body systems. Their approach yields manifestly covari-
ant coupled Dirac equations. The standard reduction of thgiac called the conditional equality a “weak” equality
Breit equation to a Schdinger-like equation for QED yields meaning the constraints,~0 must not be applied before
highly singular operatoréike & functions and attractive a7 working out the Poisson brackets. Dirac catea noncondi-

potentialg that can only be treated perturbatively. In the jona equality or a “strong” equality. The equations of mo-
treatment of the CTBDE for QEI22,32, for example, one  ion are

finds that all the operators are quantum mechanically well
defined so that one can therefore use nonperturbative tech-

Dirac [34] extended Hamiltonian mechanics to include
?njugate variables related by constraints of the form
%(q,p)zo. For N constraints, we may write

(2.3

nigues(analytic as well as numerigalo obtain solutions of 9=[9.H]=[9.H+N\n]

bound state problems and scatterif§.quantum mechani- =[g,H]+N\,[9, ]l +[9. N ] P

cally well defined, potential is one no more singular than

—1/4r2. If it is not quantum mechanically well defined, it ~[g,H]+ N9, ¢n] (2.6

can only be treated perturbativelilthough it is encourag-

ing that good results have been obtained for QED and QCDBor ¢,~0.

meson spectroscopy, that is no guarantee that the formalism In the two-body system, we have two constraints
so developed will lead to effective potentials in the case of¢,(q,p)~0, n=1,2. For spinless particles they are taken to
nucleon-nucleon scattering that render reasonable fits to thee the generalized mass shell constraints of the two particles
phase shift data. [32,37, namely,
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Hl:pi—’—mi—'—q)l(x!plva)%O! szoy (21&

2.7) where the center of momentu(@M) energy eigenvalue is

Ho=p5+m5+D5(X,p1,P2)~0, defined from

where {P2+w3}|y)=0. (2.19
X=X1—Xp. (2.8)  Taking the difference of the two constraints,
Dirac extended his idea of handling constraints in classi- (p5—p3)| ) =—(mi—m3)| ), (2.20

cal mechanics to quantum mechanics by replacing the clas- N L
. : ) . we can show that the longitudinal or timelike components of
sical constraintsp,(q,p)~0 with quantum wave equations

-(q.p)| ) =0, whereq andp are conjugate variables, Thus the momenta in the CM system have the invariant forms

the quantum forms for each individual particle constraint be- w2+ mf— mg
come Schrdinger-type equations36] S R
Hi|p)=0 for i=1,2. (2.9 w2+ m2—m?
o ) ) go=m———. (2.21
The total Hamiltoniar{ from these constraints alone is 2w
H=\Hy+ N\ Hy (2.10  Thus, on these statég) we obtain

2 Ch2(w2 m2 2 _
(with \; as Lagrange multipliejsIn order that each of these {p*+@(x,)—b* (W mi,my)}y) =0, (222

constraints be conserved in time we must have where
[HiaH]|¢>:i%|¢>:O, (2.12) b2(w?,mi mj) = e~ mi=e5—m;
50 that 2w )+ ()Y
[Hi N1 H1i+NoHo]| ) 223
~ ([ ML) ML ) omatics. By his Statement we mean that classcal’
LM Aol Ml )+ 0ol Hi Ha T} ) =0, (212 —b?=0 would imply w=p?+mZ+ \p?+m3.) Note that

) ) ) both of the constituent invariant CM energiesande, are
~ Using Eq.(2.9), the above equation leads to this compat-positive for positive total CM energy greater than the
ibility condition between the two constraints, square root ofm?—m2|. This is a direct consequence of Eq.
_ (2.20), which in turn depends on the “third law” condition
[#. 7114 =0. (213 necessary for compatibility. In our scattering applications be-

This condition guarantees that with the Dirac Hamiltonian,/1OW. this guarantees that nucleons cannot scatter into a final
the system evolves such that the “motion” is constrained toSt&t® having an overall positive energy but with constituent
the surface of the mass shell described by the constraints 8PSitive and negative energy nucleons.

H, and’, (Refs.[37,32,31). As described most recently in N the center-of-momentum system=p, =(0,p), X,

Ref.[37], this requires that =(0,), and the relative energy and time are removed from
the problem. The equation for the relative motion is then
D1 Pam D) (219 (P24 (1)~ b3 4)=0, (2.24
(a kingl of relati_vistic Newton’s third laywvith the transverse which is in the form of a nonrelativistic Schimger equa-
coordinate defined by tion (with 2mV—d, 2mEyz—b?). Thus the relativistic
o _ 2 treatment of the two-body problem for spinless particles
Xor =42 70— PP 1P, 215 gives a form that has the simplicity of the ordinary nonrela-
and total momentum by tivistic two-body Schrdinger equation and yet maintains
relativistic covariance. Spin and different types of interac-
P=p;+p,. (2.16 tions can be included in a more complete framework
[8,30,35,38], and will be reviewed later in this section.

To complete our review of the spinless cagef. [37]) In addition to exact relativistic kinematical corrections,
and establish notation we introduce the transverse relativEq. (2.24) displays through the potentigd relativistic dy-
momentum namical corrections. These corrections include dependence

of the potential on the CM energy and on the nature of the
_& & (2.17) interaction. For spinless particles interacting by way of a
P= WP P2 ' world scalar interactior, one finds[31,32,39,40
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®=2m,S+S?, (2.25 muonium bound statgsnd is found to give excellent results
when applied to the highly relativistic circumstances of QCD
where (quark model for mesonsAn important question we wish to
answer in this paper is whether such structures are also valid
— m;m; (2.26 in the two-body nucleon-nucleon problem. This is an impor-
ww ' tant test since the quadratic forrfsee, e.g., Eqg2.25 and

(2.27] that appear could very well distort possible fits based
while for (timelike) vector interactiongdescribed byA), on Yukawa-type potentials with strong couplings.
one finds[31,33,39,40 Before going on to describe the constraints for two spin-
one-half particles we mention an important but often over-
D =2¢,A- A%, (2.27) looked aspect of the foundations of the generalized mass
shell contraint equations given in E@.9). It involves their
derivation from an alternative starting point. In addition to
W2 —m?—m3 the connection with the Bethe-Salpeter equation described in
ew= (2.28 Ref. [36], there exists a connection between constraint dy-
namics and Wigner’s early formulation of relativistic quan-

For combined spacelike and timelike vector interactiondUm mechanic$42]. In particular, Polyzoy43] has demon-

(which reproduce the correct energy spectrum for scala?trat?d that the assump_tion of both Poincaneariance and
QED[32]) manifest Lorentz covariance forces the scalar product for

guantum mechanical state vectors to be interaction depen-
1 dent. So, whereas for a free particle the kernal involved in
P =2¢e,A- A%+ §V2|n(l—2A/W) the scalar product has the forép>+m?) 6(p°), in cases of
interactions the self-adjoint nature of the kernal demands the
1 5 forms 6('H,) 6(H,) with compatible constraints{, and H,
+7[Vin(1-2A/w)]". (229  (a related use of such delta functions to construct the state
vectors themselves is discussed in R8f]).
The variablesm,, and ¢, (both of which approach the re-
duced masg =m;m,/(m;+m,) in the nonrelativistic limit B. Two spin-one-half particles
are called the relativistic reduced mass and energy of the \va continue our review in this section by introducing the

fictitious particle of relative motion. These were first intro- _poqy Dirac equations of constraint dynamics. The Dirac
duced by Todoroy33] in his quasipotential approach. Thus, oqations for two free spin-one-half particles are
in the nonrelativistic limit,® approaches 2(S+.4) for

where

2w

combined interactions. In the relativistic case, the dynamical S10= (01 P+ M1 051)|h) =0,
corrections tod referred to above include both quadratic
additions toS and .4 as well as CM energy dependence Sogthr= (0 P+ Mybsy)| ) =0, (2.30

throughm,, ande,,. The two logarithm terms at the end of

Eq. (2.29 are due to the transverse or spacelike part of thavherey is the product of the two single-particle Dirac wave
potential. Without those terms, spectral results would nofunctions (these equations are equivalent to the free one-
agree with the standartbut more complexspinless Breit body Dirac equation The “theta” matrices are related to the
and Darwin approachésee references in RéB2] including ~ ordinary gamma matrices by

Ref. [33]).

Equation(2.24) provides a useful way to obtain the solu- ol \ﬁ o —0123 =12
tion of the relativistic two-body problem for spinless par- : 28y KTELES o
ticles in scalar and vector interactions and, as reviewed be-
low, has been extended to include spin. In that case they have N1
been found to give a very good account of the bound state Osi=1 5 7si
spectrum of both light and heavy mesons using reasonable
input quark potentials. and satisfy the fundamental anticommutation relations

These ways of putting the invariant potential functions for
scalarSand vectorA interactions intoP will be used in this [6/,67],.=—7n"",
paper for the case of two spin-one-half particlese Egs.

(2.67) to (2.71) and(4.1) to (4.3)]. These exact forms are not [ 65 ,6"].=0,

unique but were motivated by work of Crater and Van Al-

stine in classical field theory and Sazdjian in quantum field [0s ,65].=—1. (2.32
theory[40,41]. Other closely related structures will also be

used. These structures play a crucial role in this paper sincé is much more convenient to use the “theta” matrices in-
they give us a nonperturbative framework in whisland. A stead of the Dirac gamma matrices for working out the com-
appear in the equations we use. This structure has been sygatibility conditions. In the reduction of complicated com-
cessfully tested(numerically in QED (positronium and mutators to simpler form one uses reduction brackets that

(2.3)
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involve anticommutators for odd numbers of theta matricegeractions meet the compatibility condition for scalar inter-
and commutators for even numbers of theta matrices andctions[2,3,35 we present here the form of the compatible
coordinate and momentum operators. This property followsonstraints for general covariant interactions,

from the relation of the theta matrices to the Grassmann vari-

ables used in the pseudoclassical form of the constré&ets Si|y=[coshA)S, +sinh(A)S;]|¢) =0,
Refs.[2,3,5]). These fundamental anticommutation relations )
guarantee that the Dirac operatdtg andS,, are the square Solh)=[coshA)S,+sinh(A)S,)[)=0,  (2.40

T2 2 12 3 .
r°°t2°f the mass shell operators;(p1+my) and —3(P2  \yhere the operators, andS, are auxiliary constraints of the
+my3). Differencing these implies that the relative momen-¢,m,

tum p in Eq. (2.18 satisfiesP- p|#)=0.
Writing p; andp, in terms of the total and relative mo- S| ) =[S10c0SHA) + S,psinh(A) ]| 4) =0,

menta we obtain _
Sol4h) =[Saoc0sHA) + Syesinh(A) ][¢)=0.  (2.4D)
Both of these sets of constrairits, 30,35 are compatible
Sooh=(— 05, - P+ €20, P+my05) ) =0. (2.33 [S1,S,]|4)=0, (2.42)

The projected theta matrices then satisfy

S1op= (01, - p+€160,- P+my65)|4)=0,

[S1,S][#)=0, (243
[6:-P.6i-P] =1, provided only that
[6;-P,6"],=0, (2.39 AX)=A(X,). (2.44
where Furthermore,
04 = 6,,(p*"+ PEPY). (2.39 P-pl#)=0, (2.49

the same constraint equation on the relative momergas
in the spinless case.
The covariant potentials are divided into two categories,

Defining af} =26iI56{’i and 3;=26,P6s;, the above two-
body Dirac equations become

(ap-p+BiMmy) = €11, four “polar” and four “axial” interactions. The four polar
interactions (or tensors of rank 0,1)2are the following:
(—az P+ Bamp) Y= €2, (2.3  scalar

which have the form of single free particle Dirac equations.
Recall that in the spinless case we had the compatibility
condition

L
AL =—L 0519522 - 501 ’Olz — V51752 (246)

timelike vector
[H1,Ho][)=0. (2.37)

.. J J
It was a requirement that followed in the classical cése A;=36,-Pby: PEOZQZBLBZEOL (2.47)
the Heisenberg picture in the quantum dasem the indi-
vidual constraintg<; being conserved in time. Similarly here spacelike vector
with §; designating the form of the Dirac constraint with
intereactions present, the commutator condition guaranteeing

g g
that the Dirac equations for two spinparticles form a com- Bg=G01. 02, =055= 711 721 501, (2.48

patible set is
and tensoipolar
[S1,8:]l¢)=0. (2.39
~ « F F
[It would follow from an’{ as in Eq.(2.10 composed of a ~ Az=4F01, - 02, O5505:01- POy P=0s5 = a1-a; 50
sum of thes; .] (2.49

We found that even for the simplest interaction, a Lorentz
scalar, the naive replacement such as making the minimalMe may use each equation in Eq2.40 and (2.41) sepa-
substitutiong corresponding in the case of the single particlerately or as a sum,
Dirac equation to Eq(2.1) with V(r)=8S(r)],
Ap=A +A;+Ag+ A, (2.50
miHMi(r):mi‘*’Si i=1,2, (239

to generate the sets of two-body Dirac equations with corre-
does not lead to compatible constraints. Rather than detailingponding interactions. A particularly important combination
here the earlier work steps that were taken to make the ineccurs for electromagnetic inteactions. While timelike and
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spacelike vector interactions are characterized by the respec- | ) ={coSHA)[ S,coSHA) + S;sinh(A) ]+ sinh(A)
tive matricesB,8, andy4, - y», , a potential proportional to )

¥1v» would correspond to an electromagneticlike interaction X[S1oc0SHA) + Spesinh(A) ]} ) =0.  (2.57)
and would require thal=—g,

_ ) and bringing theS;o operators through to the right. Refer-
A5M2(03 02)90x) _ 71 yzg(xi)ol_ (251  enceq8,35 gives the “external potential” forms of the con-

2 2 straint two-body Dirac equations for each of the eight inter-
action matricesA |, A;, Ag, A, Ac, Ay, Ay, Ay acting
alone. These forms are similar in appearance to individual
Dirac equations for each of the particles in an external po-
pseudoscalar tential. In Ref.[8] appeared also the form with all eight in-

teractions acting simultaneously,

The four “axial” interactions(or pseudotensors of rank
0,1,2 are the following:

C
Ac=5=& :_751752501, (2.52

i
) A Sl|¢>: eX[Xg+.7:52+I(91+Y(92)[91p——02r9(L(’)1
timelike pseudovector 2

5, & H H —J0,— GOy~ FO,~CE+HE 1 E5+
AH:_2H91'P92‘P9510525_5252/317’51,32752501, 10, =005 = FO,~CE T HE T £ Y&)}

(2.53 + €,COSHIO,+ FO,+ HE -+ YE,) ;- P

spacelike pseudovector €SI IO+ FOu+ HE -+ YEy) 0, P

| |
A=—210,, -0, O505,= —535 =~ Ys51Y1L " Vs2Y2L 501,

(2.59

+mycosi —LO1+FO,+HE+1E3) 051

+m,sinh( — LO; + FO,+ HE+1E3) 952] |)=0,
and tensofaxial)

(2.58
~ ~ Y Y
AY:_2Y01L'02l01'P02'PE_(€4§:_O'1'O'2§OJ_. )
|

Crater and Van Alstine found35] that these and
their sum, —J0,~GO3— FO,~CE + H52+I53+Y84)}

A, =Ac+AL+A+Ay, (2.56 .

aomer TRy + e,SINNMIO,+ FOL+HE,+YE,) 6, P

would be used in Eq92.40 and Egs.(2.41 but with the A

sinh(A,) terms in Eqs(2.40 appearing with a negative sign + €,c0SHIO0,+ FO4,+HE+YE,) 65+ P
instead of the plus sign as in the case of polar interactions. n inh — LO.+ FHE A 1E)0

There is no sign change in Eq.41) for A,. My SINA(—L O+ FO4+ HET185) s

For systems with both polar and axial interactid@$],
one uses\,— A, to replaced in Egs.(2.40, andA,+ A, to +mycosi —LO; + FO,+HE+1&3) 952]|¢>:0-
replaceA in Eqgs.(2.4). L, J, G, F, C, H, |, Y are arbitrary
invariant functions ofx, . In this paper, we include only (2.59

mesons corresponding to the interactidans), G (J=—3),

and C. Thus we are ignoring tensor and pseudovector meynat is remarkable is that the above hyperbolic and expo-
sons, limiting ourselves to vector, scalar, and pseudoscalgential structures account for all of the “interference” terms

mesons, all having masses less than or about 1000 MeV. Westween the various interactions. The interactions acting
are also ignoring possible pseudovector couplings of th@eparately or in subgroupings are simple reductions of the
pseudoscalar mesons. above. For example, in the case of the combined scalar, time-

For computational convenience we have found it necesiike spacelike, and pseudoscalar interactions used in this pa-
sary to transform the Dirac equations to “external potential” er,

form. We obtain these forms by combining the two sets o
equations

S1l ) ={cosHA)[S1cosHA) + Sysini(A) ]+ sinh(A)
X[ SocosA) + Sygsinh(A) 1} ) =0, and the two-body Dirac equatiol(2.58),(2.59 reduce to

A:AJ+AL+AQ+A0, (26@
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. where
Siy=|exp(G)b,-p+E16,-P+ M, 65
G=expg) (2.69
+i exao) 0,9(GO3+J0,—LO,;+CE ))| Yy=0
2 2 3T 1+ C&) |1 =0, (with P2=—1, whereP=P/w) while the scalar potentials
2.61) S are given in terms of three invariant functiof%5,6] G,
' My, My,
Soly)y=| —exp(G) 0, p+E,0,- P+ M,0s, i M4
Slel_ml_EGh'M—z, (2.70
exp(G)
L 01-9(GO3+30,—LO;+C&) | |¢h) =0, . M
I 2
=My,—my— =Gy ——. 2.7
(2.62 S 2 275N M, (271
where In QCD, the scalar potentialS, are semiphenomenological
M, =m;cosHL )+ my,sinh(L) long range interactions. The vector potentials are semi-
v 2 ’ phenomenological in the long range while in the short range
M, =m,coshL)+m;sinh(L), (263 are closely related to perturbative quantum field théd#).
Of course, this does not change the fact tiand S, still
E,= €,c0sHJ) + e,sinh(J), satisfy the compatibility condition Eq2.42.
Ez= e,coslJ) + €;sinh(J). (2.69 IIl. PAULI REDUCTION

In the limit m;—oo (or my,—) (when one of the particles Now one can use the complete hyperbolic constraint two-
becomes infinitely massiyethe extra termgG, 4J,JL, and body Dirac equations(2.58 and (2.59 to derive the
dC in Egs. (2.61) and (2.62 vanish, and one recovers the Schralinger-like eigenvalue equation for the combined in-
expected one-body Dirac equation in an external potentiakeractions:L(x,),J(x,),H(x,),C(x,),G(x,),F(x.),1(X.),
The above two-body Dirac equatiofsithout pseudoscalar Y(x,) [8]. In this paper, however, we include only mesons
interactions have been tested successfully in quark modekorresponding to the interactionts J, G(J=—G), C, thus
calculations of the meson spec{é5,23,24. limiting ourselves to vector, scalar, and pseudoscalar interac-

We may rewrite the “left external potential form” of the tions. The basic method we use here has some similarities to
CTBDE for two relativistic spin-one-half particle interacting the reduction of the single particle Dirac equation to a
through scalar and vector potentials[ase Eqs(2.61) and  Schralinger-like form (the Pauli reductionand to related
(2.62 without the pseudoscalar interactjon work by Sazdjian7,38|.

The state vectoty) appearing in the two-body Dirac
Sty =vsl y1-(Pr—A)+ M+ S,][#)=0, (265  equations2.58 and(2.59 is a Dirac spinor written as

Sol)="vsd v2- (P2—A2) + M+ S,]|4h)=0. (2.66 | )1
A andS introduce the interactions that th#h particle ex- |4)2
periences due to the presence of the other particle and are )= |4)s | 3.1
both spin dependeii2—6]. In order to identify these poten-
tials we use Eqs(2.61) and (2.62, and Egs.(2.63 and [#)a

(2.64). Then we find that the momentum dependent vector

potentialsA* are given in terms of three invariant functions Where eachy); is itself a four component spindw) has a
[5,6] G, E;,E,, total of 16 components and the matric€ss, &'s are all

16X 16. We use the block forms of the gamma matrices

G IE1 .\ given by Eq.(4.2) in Ref.[8] and
Al=|(ex—Ep)—i PR E_272P p#
. f=ysBivli, 1=1.2. (3.2
[
+(1-G)p*— 59G- g 2.6 o . .
( P 2 Y2021 (269 The X} are four-vector generalizations of the Pauli matrices
of particles one and two. In the CM frame, the time compo-
Ak e G IR B|pu nent is zero and the spatial components are the usual Pauli
2=|(e2=Ex) i 2 U EL T matrices for each particle. Appendix A details the procedure

_ that leads to a second-order Sdfirger-like eigenvalue
I equation for the four component wave functigh, ) =)
—G)pt—— n 4 1
1-G)p 5 Gy (2.68 +|4), in the general form
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[p?+ D (r,p,00,05,W)]| ¢ )=b?*(W)|o.). (3.3 tion of the final result in Appendix A by using identities
involving o, and o, and grouping by the? term, Darwin
term (f-p), spin-orbit angular momentum term - (o
Below we display all the general spin dependent structures in- 0,), spin-orbit angular momentum difference term
®(r,p,0q,0,,wW) explicitly, ones very similar to those ap- L-(o;— 0), spin-spin term &;- o), tensor term & -f)
pearing in nonrelativistic formalisms such as seen in thex(e,-f), additional spin dependent teras( o, X 0,), and
older Hamada-Johnson and Yale group modais well as  (o-7)(0%-p)+ (0o 7)(oy-p), and spin independent terms,
the nonrelativistic limit of Gross’s equatiprBy simplifica-  we obtain

E,M,+M,E 1 E,My+ M, E,

p?—il2¢’ -2 "1 (341 f~p—ing—Eg’z—E(C+J—L)’(—C+J—L)’+— G'(J+L)
D 2 4 4 2 D
L(0'1+ 0'2) , 1 E2M2+M1E1 , L'(O'l_a'z) 1 EZMZ_MlEl , 1 2 1 2
+ : -3 5 (J+L)' |- : 5 5 (I+L)" + (a1 )| 5 V2G+ 56
1 E,M,+M,E, 1 1¢ 1(-C+J-L)

A |1
+ (01 F) (05 T) —EVZ(—C+J—L)

G'A+L) =59'C' =55

2 D 2r 2 r

L V2g- g (L) —g gt o (—cra-Ly 4 o M2 i
~V2G-G'( ) =GP G o ) b

> (J+L)’(Q—C+J—L)’}

i(J—L)’
2

" L'(0'1><a'2) i MZEl_MlEZ(

s [(«n-f)(«rz-p>+<az-f><al-p>]}|¢+>=exn—2g>62|¢+>, (34

+L)’

where rid of these first derivative terms. In terms of the above equa-
tions, we seek a matrix transformation that eliminates the
D=E;M,+E,M,, terms first order im.
The general form of the eigenvalue equation given in Eq.
. 3.4) is
B?=E*~Mi=E5—M3=b*(w)+ (€l + &3)sint?(J) 34

+2€; €,5iNH(J)cosh ) — (m3+m3)sint?(L) )
2—j ’f~p+g—l:~(o- +0o,)—ih'(oy-T-05-p
—2m;m,sinh(L)coskL). (3.5 P19 2r 1T ! 2

E;,M,;,C,J,L,G are all functions of the invariamt We point top-f-01-p)tkoy-optnoy- oy FHIL- (0

out that Eq.(3.4) differs from the forms presented in Ref.

[8]. Whereas the above equation involves four component —0y)+HijL - (o X o) +m|| . ) =B% 29 ¢,).
spinor wave functions, the ones given in RE8] are ob-
tained in terms of matrix wave functions involving one com- (3.6

ponent scalar and three component vector wave functions.

The form we choose in this paper is easier to compare with ) . i i L
the earlier existing nonrelativistic forms. Themterm is the spin independent part involving derivatives

All of the above equations when reduced to radial formOf the potentials. For the equal mass case, two terms drop out
have first derivative term§from the f-p and (o,-f)(o,  [5€€ EQ(3.4)], and the above equation becomes
-p)+ (o,-F)(o;-p) termg. These can be easily eliminated
for the uncoupled equations but are problematic for the /
coupled equations. The variable phase method developed by | p2—ig’f- p+g_[. (o1t 0y)—ih'(o)-F-05-p
Calogero[16] for computation of phases shifts starts with 2r
coupled and uncoupled stationary state nonrelativistic Schro

dinger equations that do not include the first derivative terms +0,-F-oy-p) ko ot noy - Fooy-FAmM|| By )
in their radial forms. An advantage of the above for the rela-
tivistic case is that they are Schilinger-like equations. Be- =B% 2|¢.). (3.7)

fore we can apply the techniques for phase shift calculations
which have been already developed for the Sdimger-like
system in nonrelativistic quantum mechanics, we must getVe introduce the spin-dependent scale change
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| )=expF+Koy-F-0p-F)|h) —ih'(oy-F-0p-pt oy f-01-p)| )
=(A+Boy-T-0y-1)|hy), (3.9

=(A+Boy-f-0y-F)(—ih'[oy-T 05 P
with F,K,A,B to be determined. We find that +oy- T o p))[:)+Dlyy), (3.12
plep.)=(A+Baoy-Fo,-P)ply) and finally
—i(A"+B' oy F- 0y )P40 P’|¢s)=(A+Bay-t- oy F)p?|ihy)

i —2i(A"+B' 0y F- 0 )P -plys)
_|T[(U'l_a'l'f'fﬂg-f+(0'2—0'2-f-f0-1-f|¢/;+
(3.9 +i— (200 F- 0y F-F-p=(oy-F-0p-p
and + 0y F- 00 pl| ) +E| ), (3.13
! whereC, D, andE do not involvep and are given by
EL'(0'1+0'2)|¢+>
C=—g'(A"+B'oy-T-05-1), (3.19

. 9
=(A+Boy-f- 0y P)5-L- (ot o))

B
D:_Zh,(o'lf(TzfAI+BI)_2h,?[L(0'1+0'2)+2
+%B[20‘10'2—4Ir0'1f02ffp _Ulf02f+0'10'2], (315)
+2ir (o -0y ptoy-T-o1p) =60y T 05-F]| 1) ). and
2
(3.10 E=—(A"+B 0y f- 0y 1) = ~(A'+B' 0y 0y )
We thus find that
—ig'f-pld.)=(A+Boy-T-o5-F)(—ig't-p)|¢y) —Zr—2(01~02—301~f~02~f)- (3.16
+Clyy) (3.11 _ _
The general form of the eigenvalue equation then becomes

and

after some detall1]

!

!

J’_

58[20’1-0'2—4“0'1-?Uz-f-f~p+2ir(0'1~f~0'2~p+0'2-f-0'1-p)—60'1-f~0'2-f]

. . .. . .2B c . .
—2|(A’+B’al-r-az-r)r~p+|T[20-1-r-az-r-r-p—(al-r-02-p+02~r~o-1-p)]
+(k0'10'2+na'1f0'2f)(A+BO'1f02?)+R+m |l/l+>=82exq_2g)(A+Ba'lf(Tzf)ll//+>

(3.17

in whichR=C+D+E.

and find, using the exponential form above that appears in
Now, to bring this equation to the desired Sdafirmer- Eq. (3.8) (and some detajll])
like form with no linearp term we multiply both sides by

(A+Boy-F- 0, F) Y —2i(A'+B 0y-F- 00 1)]F-p

R R (A—Ba-lfa-zf) :_2|(F,+K’0'lf0'2f)fp,
(A+Boy-F-0,-F) 1= PO (3.18

(3.19

and
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2
(A+ B(Tlf 0'2?)_1|T[20'1f 0'2"\'

f-f-p
—(oy -0y ptoyT-01-p)]
2i sinh(K)coshK) . o
= . [201-r-0'2~r-r~p
where(Ref. [1])
2 sintf(K)
=—r—2L~(o-1+o-2), (3.22
and
SN« . I
(A+Boy-f-0,-1) 58[201-02—4|ral-r'az-r-r-p
+2ll’(a'1f(rzp+0'2f0'1p)—60'1f0'2f]
ig’sinh(K)coshK) ~ .
= [—4ro-F-o,-F-F-p
2r
+2r(0’1-f~(rz-p+0'2‘f-0'1-p)—2i(rl-0'2
+6i0q-f-0p-F]+H, (3.22

where(Ref. [1])

e g’sint?(K)

(2L (o1 + )

_2(71?0'2?"'20'10'2"'4]

Note thatG and H do not contain lineap type of terms.
Now collect the three different linear type of terms in Eq.

PHYSICAL REVIEW C67, 024001 (2003

—ih’+ig’sinr(K)cosr(K))

~sinh(K)coshK)
gy StKcosti

(3.29

X(o1-T-0p-pt+oy-T-07-p),

(4i sinh(K)coshK)

; —2isinHK)coshK)g’—2iK’)

(3.29

If we set the first of the above equations to 0, we obtain the

expected resulffor the uncoupled portion of the equatjon
F'=-g'/2. (3.26

If we seth’=—K' and usep="f(f.p)—fXL/r then the two
expression$3.24) and(3.25 combine to form

2sinr‘(K)cosr(K) N

; h' —g’sinh(K)coshK)

0'1?0'2?E(0'1+0'2)
>< 1
r

(3.27

which contains nd - p. Thus the matrix scale change
|¢.)=exp(—glexp(—ho-F-op-F)|p,) (3.28

eliminates the lineap terms.
Further note that

(A+ B(rlf Uz'f)_l(k(fl’ 0'2+ n(Tl'f‘ (Tzf)

=(koy- oo+ noy-f- 0y 1),

(A+Bay-F- 0 1) 1Clys)

(3.17: =—g(F' +K oy T oy 1)| ), (3.29
(=2iF'—ig")f-p, (3.23 and (after some algebraic detdil])
|
(A+Boy-T-0,-F) D[ )=—2n" (K'+F oy-F-0-P)| )
coshK)sinh(K) . R
—2h’+[L~(ol+ o)+ 22—y Top-THo on]|h)
sink(K) R —~ R R
+2h’f[0'1-r-0'2- rL-(o1+05)+30,- T 0y T— 0 05| ). (3.30
Also,

2
(A+Ba-1-f-o-z-f)’lE|z,b+>=—[F”+F’2+K’2+(2F’K’+K”)o-l-fo-2~f]—F[F’—i—K’al-f-azf]

coshK)sinh(K)

2 (0 030y Ty )+ 2

r2

sintP(K) .

5 (orioyt-or0-2).

(3.31)
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So combining all terms and grouping tpf term , spin independent terms, spin-orbit angular momentum tertw;
+ 0,), spin-spin term &, - o), tensor term &;-f)(o,-f), and additional spin independent term, we have our Sthger-

like equation
2g'sint?(K coshK)sinh(K 2 sink?(K
[pz+g_u_g,F,_Zh,K,_4h,M_F,,_F,2_K,2__FM%

+L-(o1+ o
r r r ; (o1+0)

ol O'z'f' L(O’l+ 0'2)

2r r r2

g’ . g’ sint?(K) B 2sintf(K) _2h,cosr{K)rsin}"(K)

" ( 2h,sinh:(K) +25inr(K)c2:ost(K) . ?_ g’sinr(Kr)cosi(K)
r

k+

g’ cosh(K)sinh(K) . g’sint?(K) _Zh,cosk{K)smHK) _Zh,smhz(K) _ZCOSHK)smP(K) _25|nh2(K)

+ o4 o
172 r r r r r2 r2

3g’coshK)sinhK) g’sint?K

2h’ costKsinhK sinf(K)
+6h’

+oy-Poy PN . . g'K'—2h'F' + —(2F'K’'+K")
—EK’+6COS“K:ZSIMK) +2$|nfr?2(K) +m] = B2 y,), (3.32
|
Comparing Eq(3.7) with Eq. (3.4), we find The following are the radial eigenvalue equations for sin-
glet states'S,, P,, D, and triplet statesP,, °P;, S,
, , EaMy+MiEg , , , , D, corresponding to Eq(3.32 with the above substitu-
9'=2¢'-——5——(I+L)'=2¢"~In"D=—2F/, tions. We emphasize that unlike the potentials used by Reid,
(3.33 Hamada-Johnson, and the Yale grdag,14,15, our poten-
(I-L)’ tials are fixed by the structures of the relativistic two-body
h'= =—K’, (3.34 Dirac equations and we do not have the freedom of choosing
2 different potentials for different angular momentum states.
1,01 1 1 1G 'Sy, *Py1, 'D; (a general singlet'J;): For these states
k=5VG+5G""=5G"In"D=5G'C'— 5 —— L-(oy+05)=0, 0y-0,=—3, oy-F- 0, f=—1. There is
. , no off diagonal term. We findadding and subtracting th#
_1(=C+J-L) , (335 term)
2 r .
d® j(j+1)
1, 1_, , -— —+®(r) fv(r)=b%(r),
n=->V¥(=C+J-L)=5V*G-G'(~C+I-L)' =G’ dr r

where our effective potential for above equation is

3 3 1
+5,9 5 (ZCHI-L) + 5In"D(G-C+I-L)", _ [2g—|n(D)—J+L]’2+ [2G—In(D)—J+L]"

(r)
(3.36 4 2
1 11 [26-In(D)-J+L] 1
m= - 5V%G-2G'?~ 2(C+JI-L)(~C+J-L)’ + r +5VA(=CHI-L-30)
1
+%Q’In’D. (337 ~7(C+I-L-G+2ID)'(~C+J-L~30)’
~ B2 29+ b?(w). (3.39

Equation(3.32 and its derivation is an important part of this
paper. It will provide us with a way to derive phase shift Our radial eigenvalue equations for singlet stat8g, P,
equations using work by other authors who developed meth!D, have the same potential forms except for thg
ods for the nonrelativistic Schdinger equation. First we +1)/r? angular momentum barrier term. Later, we shall
need the radial form of the coordinate space form of thisshow that their potentials actually are different due to the
equation. inclusion of isospins - 7, terms.
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%P,(a general triplet 2J;). For these,L-(oy+0y)

=-2,0,-0,=1, 0q-F-0,-F=1. For the®P; state the ra-

dial eigenvalue equation is

&+

+d(r) pv(r)=b%(r)

PHYSICAL REVIEW C67, 024001 (2003

— B2exp(—26G)+b%(w). (3.39

The 3S; and D, are coupled states described iy(r)
andu,(r) and their radial eigenvalue equations fusing
L'(0'1+ 0'2):2(1 _1), 0'1'0'2:1, 0'1?0'2?21/(21 +1)
(diagonal termy and o - f- o5-F=2/j(j +1)/2j + 1(off di-

dr? r2 agonal terny in the form
with d2
_ — K2
[26—In(D)+3—L]'2  [2G—In(D)+JI—L]" [ gz " Puln) U+ ®prju, =b7u-, (340
d(r)= 2 + 5
_l—cY d> 6
+w—%v2(—cu—|_+g) [—ﬁ+r—2+®zz(r) Uy +®y(r)u_=bu,,
1 (3.41
+2[2In(D)=(C+J-L+3G)]'(J-L-C+() where
|
B 8 (2G'—In'D)sintt(h) 8 (J—L)’coskh)sinhh) 16sintf(h) [2G'—In"(D)]?> (J—L)'?
PuN=3 : 3 : 3 i 4
[2G'=In"(D)](I-L)" [2G"=In"(D)] (I—L)" [2G'—=In"(D)]
+ + + +
6 2 6 r
(J_L)’ 1 1v2 C ’ C ! 1| ! Cr 1 12
3 T3] 3V (~CHI-L+G -G (I-L-C+G) '+ 35" (D)(G+I-L-C)' |+ G
1 1
—EQ’C’—Z(C+J—L)’(—C+J—L)’—Bzexq—ZQH—bz(w)], (3.42

22
<I>1z<r)=7f[(2g'—ln’:f>)(

r r

2sinff(h) 1

+ 2

r

3 costih)sini(h) sinhz(h)> r-

—EVZ(—C+J—L+g)—Q’(J—L—C+g)’+

I_),(3sinh’-(h) _cost{h)sinr(h)) 6 costih)sinh(h)
r r 2

r

3(G+J—L—C)’

1
5 + 5N (D)(G+I-L~C)

+[2g'—ln’<D>]<J—L>'+<J—L>"+<J—L>’}, (3.43
2 2 r
8 (2G’' —In'D)sintt(h) 8 (J—L)’cosih)sinh(h) 16sint’(h) [2G'—In"(D)]> (J—L)'?
“)22“):{‘5 . 3 . T 2 L
[2G'=In"(D)]3-L)" [2G"-In"(D)] (I—-L)" 2[2G'—-In"(D)] 2(JI—-L)" (G+I-L-C)’
6 2 6 r 3r r
11V2c;JL ’JLC’ll’D J-L-C)’ Lo
—3| 3V (—CHI-L+G-FI-L=CH+G) '+ 5In'(D)(GH+I-L-C)" ||+ ;G
1 1
—EQ’C’—Z(C+J—L)’(—C+J—L)’—Bzexr(—zg)+b2(w), (3.44
Bss(1) =Byt 3 (J_L),(sinff(h)+2_1r>_2cosmfr1;sinf(h)+(29 ~In D)iosr(msinh(h)] (3.45
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(Note that because of the spin-orbit-tensor term, the potential E;=G(e;— A),
is not symmetrig. In Appendix B we give the coupled equa-
tions for triplet j;_; and ®j; ., ; for generaj. The remaining _ _
special case is for théP, state and has the form Eo=Gle=A), “.0
a2 2 and
——+—=+®(r) v=b%wW)v,
dr? r? 1
G?=—F—r. 4.2
where (1— 2_,4) (4.2)
w
(1) [2G—In(D)—J+L]'? . [2G—In(D)—J+L]"
r =
4 2 The function A(r) is responsible for the covariant electro-
[IN(D)— (4G+J—L—2C)]’ magnetic like Af. Even. though the dependencies of
+ E,,E,,G on A are not unique, they are constrained by the

' requirement that they yield an effective Hamiltonian with the

1 1 correct nonrelativistic and semirelativistic limi{glassical
+ §V2(— C+J-L+G)— 29 'C’ and quantum mechanicgt0,41]). For QCD and QED appli-

cation,M; andM, are functions of two invariant functions
' [3]. [6], A(r) and S(r),

1 5
+ Z[C’Z—(J—L)’Z]+g’ ZQ+J—L—C)
. M32(A,S)=m:i+G?(2m,S+S?),
- EIn’(D)(J—L—C+g)’—82exp(—29)+b2(w).
M2(A,S)=m2+G*(2m,S+S?). 4.3
(3.46
Now we can apply the techniques already developed fo
the radial Schrdinger equation

The invariant functior5(r) is responsible for the scalar po-
fential sinceS; =0, if S(r)=0, while A(r) contributes to the
S; [if S(r)#0] as well as to the vector potential“. So,

2 1(1+1) finally, the five invariant function§, E,, E,, M4, andM,
- > t2mVig(r) Jv=2mEv (3.47 (orG=—J,L) depend on two independent invariant potential
dr r functionsSand.A. [Compare also the spin independentzpor—
in nonrelativistic quantum mechanics to the above radiapons2 0 2Eqs.(2.23 and (2.27) through calculation off;
equations by the substitutions —Mi—b ']_ i
ExpressingG, E{, E;, M4, andM,, in terms ofSand.A
2mVgj(r) — ®yg4(r), 2mE—b?(w). (3.49 is important for semiphenomenological and other applica-

tions that emphasize the relationship of the interactions to
By comparing® and 2n one could determine whether our effective external potentials of the two associated one-body
® is similar to standard type of phenomenological potentialgoroblems. However, the five invarian® E,, E,, M4, and
such as Reid’s potentials. But first, in the following section,M, can also be expressed in the hyperbolic representation
we discuss the models we used in our calculation. This inf35] in terms of the three invariants, J, and G [see Egs.
cludes how we choose thg, L, and C invariant potential (2.63), (2.64), and(2.69]. L, J, andG generate scalar, time-
functions, the mesons we used in our calculation, and th#ke vector, and spacelike vector interactions, respectively,

way they enter into the two-body Dirac equations. and enter into our Dirac equations via the sum+A,
+Ag where EQqs(2.46, (2.47, and (2.48 defineA |, Aj,
IV. THE INVARIANT INTERACTION FUNCTIONS Ag.

We may use Eqs2.4)) to relate the matrix potentials
to a given field theoretical or semiphenomenological Feyn-

Our dynamics depends on how we parametrize the invariman amplitude. As mentioned earlier, a matrix amplitude
ant interaction functiong, L, andC. We first consider how  proportional toy/y,,, corresponding to an electromagnetic-
to modelG andL, corresponding to vector and scalar inter- like interaction would requirg22] J= — G. Matrix amplitude
actions. As we have seen, in order that E2465 and EQ.  proportional to eithell;1, or ;- Py,- P would correspond
(2.66 satisfy Eq.(2.42), it is necessary that the invariant 4 semiphenomenological scalar or timelike vector interac-
functions G, E,,E,, My, and M, depend on the relative tions, The two-body Dirac equations in the hyperbolic form
separationx=Xx; — X, only through the spacelike coordinate of £q. (2.41) give a simple versiofi35] for the norm of the
four vector x{'=x*+P#(P-x), perpendicular to the total sixteen component Dirac spinor. The two-body Dirac equa-
four momentumP. For QCD and QED applicationss,  tions in “external potential” form, Eq(2.65 and Eq.(2.66),
E,,E, are functiond4], [6] of an invariantA. The explicit [or more generally Eqs2.61) and (2.62], are simpler to
forms for functionsg, ,E,, G are reduce to the Schdinger-like form and are useful for nu-

A. The G and L interaction functions
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TABLE I. Data on mesonsT represents isospir; represents  wherew= €, + ¢, is the total energy of two nucleon system.
parity, J represents spin, and represents parily gi, 937' 937’ are coupling constants for mesons », and

!

n', respectively, anan,, m,, andm,, the corresponding

) s - i
Particles MasgMeV) o Width (MeV) masses. This form fo€ yields the correct limit at low en-

T 139.5701&0.00035 1 O ergy.

0 134.9766-0.0006 T O We also initially assume that our vector interactions enter
n 547.3+0.12 0" 0 (1.18+0.11)x10°3 into two-body Dirac equations in the forfisee Eqs(4.1)

P 769.3-0.8 1 150.2+0.8 and(4.2)]

o 782.57-0.12 o 1 8.44+0.09 oMyt . —myr

n 957.78-0.14 0" 0 0.202+0.016 A= (77,97 +g2 +g5 . (4.6

& 1019.41%#0.014 0O 1° 4.458+0.032 r r r

fo 980+10 0" 0" 40 to 100 s o o ,

a 984.81.4 1~ ot 50 to 100 wheregp, g,, gy are coupling constants for mesops w,

Uo 500-700 g o+ 600 to 1000 and¢ andm,, m, andm,, are the corresponding masses.

We use form factors to modify the smalbehaviors inS
C, andA, that is, the shortest range part of nucleon-nucleon

merical calculationgsee Sazdjiai38] for a related reduc- Nteraction. We choose our form factors by replacing S,
tion). We describe the parametrization of the pseudoscalaﬁ:' andA with

interactionC in Eq. (4.5).
a-(4.9 r—\r2+rp. 4.7
B. Mesons used in the phase shift calculations In our first model, we just use two differeng’s to fit the

We obtain our semiphenomenological potentials for twoexperimental data, one, for the pion, one for all the other
nucleon interactions by incorporating the meson exchangeight mesons which are heavier than the pion. We set these
model and the two-body Dirac equations. Because the pion ivo ry’s as two free parameters in our fit. These form factors
the lightest meson, its exchange is associated with the longre different from the conventional choices, usually given in
est range nuclear force. The shortest range behaviors of ogromentum space, but the effects are similar.
semiphenomenological potentials are modified by the form In the constraint equations, andS are relativistic invari-
factors, which are treated purely phenomenologically. We exant functions of the invariant separatios M (see below
clude heavy mesons that mediate the ranges shorter than ttfat the distinction betweent andA). Since it is possible that
modified by the form factors. The intermediate range part ofA andS, as identified from the nonrelativistic limit, can take
our semiphenomenological potentials comes from exchangen large positive and negative values, it is necessary to
of mesons that are heavier than the pion. We use a total ahodify G, E,, E,, M;, andM, so that the interaction func-
nine mesons in our fits. These include scalar mesana,, tions remain real wher\ become large and repulsiy24].
andfy, vector mesong, w, and¢; and pseudoscalar me- These modifications are not unique but must maintain correct
sons, n and%’. In this paper, we are ignoring tensor and limits.
pseudovector interactions, limiting ourselves to vector, scalar We have tested several models, two of which can give us
and pseudoscalar interactions, all with masses less than abduair to good fit to the experimental data.

1000 MeV. See Table | for detailed features of the mesons (a) Model 1. For E;=G(¢—.A) to be real, we

we used45] . only require that G be real or A <w/2. This
restricion on A is enough to ensure thatM,

C. Modeling the invariant interaction functions =Gm?(1—2A/w)+2m,S+ S? be real as wel(as long as

We initially assume the following introduction of scalar S=0)- In order thatd be so restricted we choose to redefine
interactions into two-body Dirac equatiofsee Eqs(2.70, 't a@s
e~ My' e~ Ma,f —mg
S=-¢2 » _(71'72)930 p _Q%O ma— (4.9 A
A= ——, A=0. (4.9
JanTT W

whereg’ , g2 , g7, are coupling constants for the a,, and
(mym) is 1l or —g,forjosospin t(r)iplet or singlet states its second derivative.
Pseudoscalar interactions are assumed to enter into two- We next consider the problems that may arise in the limit

X . i when one of the masses becomes very ldr2#. Even
body Dirac equations in the forsee Eq(3.4)] though both our masses used in this paper are equal, we

5 5 2 demand that our equations display correct limits. We must
gre " gye ™ g, e ™" dify M, andM, so that it has th t static linf
C= (1 1) 2 L2 45 MO ify M; andM, so that it has the correct static linfgay
VRiw o r wor w o or ' m,—o). It does appear thaMl;—m;+S when m,—x.
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However, this is only true ifn;+S=0. In other words, in

the limit m,—oo, the two-body Dirac equations would re-

duce to

(y-p1t|my+8)|4)=0. (4.10

This would deviate from the standard one-body Dirac equa
tion in the region of strong attractive scalar potential
(S<—my). In order to correct this problem, we take advan-
tage of the hyperbolic parametrization. We desire a form forV

M; that has the expected behavidl(—m;+ S in the limit

whenS becomes large and negative and one of the masses

large). So we modify ourL in the following way[24]

G%(e,—A)S

mW\/W7+ ?

) SG
sinhL= W 1+ , S<0 (4.1)

and for

S>0,
Mi=mZ+G?(2m,S+S?),
M3=m32+G?(2m, S+ S?) (4.12
with Egs.(2.63.

A crucial feature of this sinh extrapolation is that for
fixed S, the static limitfn,>m,) form is sinhL—Sw, which

PHSICAL REVIEW C 67, 024001 (2003

2(S+A)
w

sinhL=sin}{—%ln(l— —g}. (4.195

D. Nonminimal coupling of vector mesons

The coupling of the vector mesons in E@.6) corre-
sponds in quantum field theory to the minimal coupling

g,V ¥y" ¢ analogous t@A, ¢y ¢ in QED. In our model,

e are not concerned about renormalization, since the quan-
tum field theory is not fundamental, so that we cannot rule
qut the nonminimal coupling of the, w, ¢ analogous to

e __
ISPl Y TYF (4.16

We can convert the above expressions to something sim-
pler by integration by parts and using the free Dirac equation
for the spinor field. This nonrenormalizable interaction be-
comes

e _
|m¢[ 'yM! ,yv] lpF,MV

demy— 2e —
— i Y YA L = () YA,

(4.17

leads to M,—m,+S. The above modifications are not The first term can be absorbed into the standard minimal

unique, given the correct semirelativistic lim[i24].

(b) Model 2.This model comes from the work of Sazdjian

coupling while the second term gives rise to an amplitude
written below. Changing from photon to vector mesop3 (

[41]. Using a special technique of amplitude summation, hénd using on shell features, we find

was able to sum an infinite number of Feynman diagreohs
the ladder and cross ladder varigtiFor the vector interac-

tions, he obtained results that correspond to EgQ27)—
(2.29 and Egs.(4.1)—(4.2) [modified here in Eq(4.9 for
A=0]. For scalar interactiond_(S,A) ] he obtained two re-
sults. One again agrees with £8.25 and Eqs(4.3). As we
have seen above, this must be modifiede Eq.4.11)] for

S<0. His second result is the one we use here for our sec-

ond model for[L(S,A)]. That replaces Eq4.11) and Eq.
(4.12 with the model

S+A>0,
then
S At OTAW (4.13
4(S+A)%+w?
while if
S+A<0
we let
S—— A+S+A. (4.14

In both cases we let

4.9
ot
13 mg
2(~2 2_
Me(q“+m;—ie)

4f2 7

p

)(p+p’)ﬂ(p+p’>”

4f2(p+p’)? _—4f§(4mﬁ+q2)
M2(q?+mi—ie) M2(g?+mi—ie)’

(4.18

whereq=p—p’. The masdM is a mass scale for the inter-
action, my is the fermion(nucleon) mass, andn, is the p
meson mass.

How does this interaction modify our Dirac equations?
Which of the eight or so invariants are affectezbe Egs.
(2.46—(2.50]? In terms of its matrix structure, the above
would appear to contribute to what we callad [see Eq.
(2.40)]. It is as if we include an additional scalar interaction
with an exchanged mass of @ and subtract from it the
Laplacian[the g terms in Eq.(4.18]. That is,

S—S+S - V2S'/4mZ, (4.19

where

16m2 flexp(—m r)
P P p
S=- r , (4.20

024001-15



BIN LIU AND HORACE CRATER PHYSICAL REVIEW C67, 024001 (2003

so that the modification is rather simple. It has the opposite A. Phase shift equation for uncoupled Schrdinger equation

sign as the vector interaction. That is, it would produce an Referencd 16] gives a derivation of a nonlinear equation
attractive interaction fopp scattering. But to lowest order, for the phase shift for the scattering on a spherically sym-
its attractive effects are canceled by the contribution of thenetrical potential with the boundary condition

first term on the right hand side of EGt.17). In our appli-

cation, this means that E¢4.4) and Eq.(4.6) are replaced u(0)=0 (5.0
[including ther, by Eq. (4.7)] by of the radial uncoupled Schdinger equation
_ - _ 1(1+1)
e Ml e Ma,f e M,f ) u"(r)—l— kZ2— =V(r)|u(r)=0. (5.2
S=-d; - _71'72950 T _gf20 T -5, I r2

(4.2  The radial wave function is real, and it defines the “scatter-
ing phase shift”s; through the comparison of its asymptotic
behavior with that of the sine function:

where
r—o . |7T
2\ g-myr 2\ g-mat ui(r) — constsin kr—7+ 4. (5.3
S'=(m- )0 1- — | —+g.2| 1- — | —
(7 2)9”( 4 ﬁ) w 4m,%,) r The equation that Calogero derives is
Vz e_mfﬁ’_ ’ _ 1 A ~ 2
+gy 1_W> = (4.22 b (== VIOL(kr) =t () (kr)]%, (5.9
N

wheret,(r) has the limiting value taf) with the boundary
conditiont;(0)=0. This is a first-order nonlinear differential

and equation and can be rewritt¢h6] in terms of another func-
B B tion &,(r) defined by
P 0.8 ™ t,(r)=tans(r 5.
A= (7 m)(Q2+ g, D)=+ (Gt 00— (1) =tansi(r) ©9
r r with the boundary condition
2., 2 e r—0
G5+ 95— (4.23 5(r)— 0 (5.6)
and limiting value
whereg/?, g.2, g7 are also coupling constants we will fit. lim 8,(r)=8,(%)=4,. (5.7
r—oo
V. VARIABLE PHASE APPROACH FOR CALCULATING The differential equation fopj(r) is [16]
PHASE SHIFT - - -
SES S 5|’(r)=—k*1V(r)[cosé|(r)J,(kr)—S|n5,(r)n|(kr)]2.
In this section, we discuss and review the phase shift (5.8

he solution of this first-order nonlinear differential equation

include phase shift equations for uncoupled and coupled. : . :
states and the phase shift equations with Coulomb potential !k?(lad?ui?t/i?rf (ts?(tlrgailgy rEg?n\ézll:ﬁeoigngssec?ltjtﬁgn?c?n? gizeég ft

The variable phase approach developed by Calogero has se(g_g) is called the “phase equation.” It is our main tool for

gral advantages over the traditional approach. In the trad%tudying the properties of scattering phase shifts. Equation
tional approach, one integrates the radial Sdimger equa- (5 g hecomes particularly simple in the caseSvaves,
tion from the origin to the asymptotic region where the

potential is negligible, and then compares the phase of the So(r)=—k=V(r)sin’[kr+ o(r)]. (5.9
radial wave function with that of a free wave and thus obtain
the phase shift. In the variable phase approach we need onh/
. . . . . . a
integrate a first-order nonlinear differential equation from the
origin to the asymptotic region, thereby obtaining directly [VZ=b?~®]|y)=0, (5.10
the value of the scattering phase shift. ) .

This method is very convenient for us since we can reWe can directly follow the above steps to obtain the phase

duce our two-body Dirac equations to a Safinger-like  Shift by swappingk—b , andV—®. There is no change in

form for which the variable phase approach was developedn® phé:\se Srtlgt eghljlatioq, even though our quasipotedial
Thus, we can conveniently use this variable phase method t%epen S on the system enengy

compute the phase shift for our relativistic two-body equa- We have found it convenient to put all the angular mo-
tions mentum barrier terms in the potentials, and change all the

phase shift equations to the form Sfstate-like phase shift

methods that we used in our numerical calculations, whicg

Now, since our Schidinger-like equation in CM system
s the form
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equationg16]. This puts our phase shift equations in a much u(r)y=A(r)sinbr+4,(r)], (5.15
simpler form. For spin singlet states, our phase shift equa-
tions become just u’(r)y=bA(r)cogbr+6(r)]. (5.16

! _ _h1 H
8 (r)=—b"d\(r)sir{br+5(r)]. (5.19 Taking the derivative of the first equation we find that
This equation is similar to théS, state phase equatigaee
Eq. (5.9)], but it works well for all the singlet states when the
angular momentum barrier terph(l +1)/r?] is included in
(),

A’ =—As/ cot(br + ) (5.17

and then using this and E¢5.16) the above radial Schro
dinger equation reduces to E¢.11).

1(1+1) The coupled radial Schdinger equation has the form
D(r)=d(r)+ TR (5.12

U”=-b2U+ %(¢Lu+uq>L), (5.18
Because the nucleon-nucleon interactions are short range,

we integrate our phase shift equatiofier both the singlet

and triplet statesto a distancé¢for example, 6 fermikwhere

the nucleon-nucleon potential becomes very weak. Then th

angular momentum barrier term¢l +1)/r? dominate the

where bothU and® are 2x2 matrices. The effective qua-
seipotential matrix is of the form

potential ®,(r) and we let our potentia®(r)=1(1+1)/r? ut M Dy

and integrate our phase shift equations from 6 fm to infinity r2

to get our phase shiftThis can be done analytically in the O = , (6.19
case of the uncoupled equatidis].) B,y Bt Io(15+1)

Because of the modification of our phase shift equations, 2 r2

we also need to modify our boundary conditions for phase
shift equations. For the uncoupled singlet stat®s, D,  while the matrix wave function is assumed to be of the form
and triplet states’P,, 3P,, the modified boundary condi-

tions are{16] U= %[A sin(br+D)+sinbr+D)A],  (5.20

I
5|’(0)=—mb. (5.13

b
o _ - U’'= 5[ Acogbr+D)+cogbr+D)A], (5.2))
This is implemented numerically by an additional boundary 2
condition atr =h, so our boundary conditions for uncoupled

singlet statesP,, D, and triplet stateSP,, 3P, are with (using Pauli matrices to designate the matrix strugture

D=6+D-o,

[
5= 7

+1bh, (5.19

A=a+A-a. (5.22

whereh is the step size in our calculatioh= b?, and, of . . _
courses,(0)=0. So forP and D states, the new boundary (The functionsD, A are not related to earlier functions that
conditions ares;(h)=—1bh and 8,(h)=—2bh, respec- Use the same symbolse further assuméfor real and sym-
tively. metric potentials that both the phase and amplitude func-
tions are diagonalized by the same orthogonal matrix

B. Phase shift equation for coupled Schrdinger equations - )

. . . , U=RUR !=(a+Acj)sinbr+ é+Daoj). (5.23
For coupled Schuinger-like equations, the phase shift

equation involves coupled phase shift functions. We discusgombpining Egs(5.20 and(5.21) together with Eq(5.18 so

an approach here different from that originally presented inyg g produce the analog of the phase shift(d.7) requires

the one presented in a well known quantum tedé]. We

present an appropriate adaptation of this idea here in the ( cose(r)  sine(r)
uncoupled case to demonstrate the general idea and then ex- R= : ) ,
tend it to the coupled case. Consider a radial equation of the —sine(r) - cose(r)
form
rp—1 ’ 0 1 /A
R'R *=¢ (_1 0)—8 ioy. (5.29

d2
( — F‘l‘dﬂ(f)) U:bzu.
In Appendix C we derive the coupled phase shift equations

Following Ref.[46] we assume [6=(81165)12, D=(6,— 65)/2] below:
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o1 l1(1,+1) 17— m
an=-3 q’11+r—2 cos'e(r) Q)L—r—z(% 6+, ) (5.32
[(1,+1)) . . Substitute Eq(5.31) and Eq.(5.32) into Eq. (5.28 and we
+| @ppt ——,—|sirs(r) + ®yz8in 25(r) find
r
X si[br+ 8y(r)], (5.25 a B
T .(h)=hT/(0)=bh 2 , (5.33
B —z+y
, 1 l5(lo+1) 3
52(r)=—5 Dot ——— coge(r)
r where
[1(1,+1 - _
+ d>11+1(1—2) sirfe(r) —d,,sin 2¢(r) ez -
r
1
X sirf[br+ 8,(r)], (5.26) B==3m0, (5.39
Lo 1 1 l1(13+1) 7+
i (”‘bsirwl(m—éz(rn[i Put 5 =5
L(l,+1)| Then we can finde(h), tané_(h), and tans,(h) by
—®p——5—|sin2e(r) — $ €08 Z(r) diagonalizing the matrixT (h). The matrix diagonalizing
' T (h) is
Xsinbr+ 6,(r)]sinbr+ 8,(r)]. (5.27

cose —sSine
sine cose

Similar coupled equations are derived in RéL7] for

coupledSwave equations. Since our potentials include the
angular momentum barrier terms we use simple trigonometThis leads to the initial conditions
ric functions in place of spherical Bessel and Hankel func-

tions. This requires a modification of the boundary condi- E

tions just as in the uncoupled case. To this end, we find it 30
most convenient to rewrite the above three equations in the tan(2e)= 2 7.
matrix form n-— ( 3 + E)

1 .
TL:—B[S|n2(br)<I>L+S|n(br)cos{br)(CI>LTL+TLCI>L) ans (h)=T11=bh{—7; COSZS_E%COSS Sine
- - 3

+cog(bn)T & T, ] (5.28

2
o , | i s ﬁ) sir?e |, (5.39
in which the matrixT, has eigenvalues of tap and tard,. 3 45
The actual phase shifts are
. 2 .
5,= 8y(r—0), tans, (h)=T,,= bh[ — p_sirfe+ 3 70cosesing
0= Op(r—0), (5.29 (2 me
T coe

eE=¢g(l—>),
( : and from these initial conditions we can then integrate our
The first boundary conditions on the above equations is  equations(5.25—(5.27) for the coupled systenjNote how
these reduce to the uncoupled initial condition Eg.14)
T.(0)=0. (5.30  with no coupling]

The further numerical boundary condition that we need for VI. PHASE SHIFT CALCULATIONS
e(h), 81(h), and 8,(h) are from(for small h)
It is our aim to determine if an adequate description of the
T.(h)=hT{(0). (5.3) nucleon-nucleon phase shifts can be obtained by the use of
the CTBDE to incorporate the meson exchange model. In
At smallr, we can approximate owp, for coupledSandD contrast to the relativistic equations used in other approaches
states in terms of their smallbehavior. We find47] [21,48-50,18,1p the CTBDE can be exactly reduced to a
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local Schrainger-like form. This allows us to gain additional TABLE Il. Parameters from fitting experimental data
physical insight into the nucleon-nucleon interactions. We(model 3.
test our two models to find which one gives us the best fit to

’

the experimental phase shift data in nucleon-nucleon scatter- U U o p w ™ Qo
ing. These two models are among many that have beegz 2925 480 479 116 165 133 013
tested. ' ' ' ' . : !

ro(xX107%) 2.843 2.843 2.843 2843 2843 0.645 2.843
¢ fo p o ¢ m
564 199 034 206 310 7241
(X107%) 2.843 2.843 2.843 2.843 2.843

The data sef20] that we used in our test consists @p
and np nucleon-nucleon scattering phase shift data up to,
T ap=350 MeV published in physics journals between 1955
and 1992. In our fits, we use experimental phase shift dats?
for NN scattgeringgin th3e singlet statéds,, P, D, and
triplet states®Py, *Pq, °S;, °D;. We use our parameter fit th_ sex ex
results fromnp scattering to predicate the resultpmp scat- 67— 871>0257 62
tering. (The variable phase method for potentials includingwe let the computer jump out of this loop and generate an-
the Coulomb potential is reviewed in Appendix)Thus we  other set of parameters and test it again until a set of param-
did not put thepp scattering data of singlet statéS,, ‘D, eters passes this restriction. Then we test it on’Bestates
and triplet states’P,, 3P, into our fits. (There is nopp  at 1 MeV with the same restriction. We only calcul#8 at
scattering in'P;, 3S;, and °D; states because of the con- higher energy if a set of parameters passes these two restric-
sideration of the Pauli principle tions. Our code can run at least 50 times faster by these two

We use seven angular momentum states in our fit. Thergestrictions. After we shrink our parameter ranges 2 or 3
are 11 data points for every angular momentum state, in thémes, all of our parameters are confined in a small region. At
energy range from 1 to 350 MeV, so the total number of datahis time, we may change our restriction to
points in our fits is 77. To determine the free coupling con-
stant(and the sigma mass,) in our potentials, we have to | 8"~ 57%>0.15 57 (6.3
perform a best fit to the experimentally measured phase shift -
data. The coupling constants are generally searched by min?—nd put restriction ortP, states or any other states to let our

- ) o 5 . code run more efficiently.
mizing the quantityy®. The definition of oury” is Using this method we tried several different models to fit

Sth_ sexp) 2 the phase shift experimental data of seven different angular
¥2=2>, {IA—I] , (6.1)  momentum states including the singlet statsg, 'P,, D,

! 4 and triplet stateSP,, 3P;, 3S;, 3D;. Two models that we
discussed above can give us a fairly good fit to the experi-
mental data. The parameters which we obtained for model 1
are listed in Table I, and for model 2 are listed in Table IlI.
For the features of mesons in Tables Il and Ill, please refer to

where 5" are theoretical phase shifts™” are experimental
phase shifts, and we l&ts;=1°. (Our model at this stage is
too simplified to perform a fit that involves the actual experi-
mental errork Table | and Eqgs(4.4—(4.6). The sigma mass is in MeV

We have tried several methods to minimize ot the : T
gradient method, grid method, and Monte Carlo simulations\.NhIIe the structure parameteg is in inverse MeV.

Our x? drops very quickly at the beginning if we search by
the gradient method, then it always hits some local minima
and cannot jump out. Obviously, the grid method should lead The theoretical phase shifts that we calculated by using
us to the global minimum. The problem is that if we want to the parameters for model 1 and the experimental phase shifts
find the best fit parameters we must let the mesh size b#®r all the seven states are listed in Table IV. We use param-
small. But then the calculation time becomes unbearablg@ters given above to predict the phase shifppfscattering.
long. On the other hand if we choose a larger mesh, we wilQur prediction for the foupp scattering states that include
miss the parameters that we are looking for. singlet statesS,, D, and triplet stateSP,, 3P, are listed

We found that the Monte Carlo method can solve thein Table V.
above dilemma. We set a reasonable range for all the param- The results fonp scattering are also presented from Figs.
eters that we want to fit and generate all our fitting param-—7 and forpp scattering from Figs. 8—11.
eters randomly. Initially, the calculation time is also very

A. Model 1

long for this method, but it can lead us to a rough area wher TABLE Il. Parameters from fitting experimental - data
. . zmodel 2.

our fitting parameters are located. Then we shrink the rang

for all our fitting parameters and do our calculation again / o © - a

use the gradient method in tandgnour calculation time " " P 0

then being greatly reduced. By repeating several times in thg? 0.88 170 547 258 183 13.6 105

same way, we can finally find the parameters. ro(x107% 1.336 1.264 3.180 6.640 2.627 1.717 9.282
To expedite our calculations further, we put restrictions on ¢ fo p' o’ @' m,

1S, and 3S; states. After every set of parameters is generg? 9.12 335 511 286 121 694.3

ated randomly, we first test it on tHe&, state at 1 MeV. For ro(x1073) 11.45 4.447 6.640 2.627 11.45
s, state, if
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TABLE IV. np scattering phase shift dfS,, *P;, 'D,, 3Py, 3P,, 3S;, and 3D, states(model 1.

Energy s, p, D, P,
(MeV) Expt. Theor. Expt. Theor. Expt. Theor. Expt. Theor.
1 62.07 59.96 —0.187—-0.359 0.00 0.00 0.18 0.00
5 63.63 63.48 —1.487—-1.169 0.04 0.00 1.63 1.55
10 59.96 60.40 —3.039-2.870 0.16 0.05 3.65 3.57
25 50.90 51.95 —6.311-6.641 0.68 0.52 8.138.72
50 40.54 41.65 —9.670—10.23 1.731.13 10.70 11.62
100 26.78 26.64 —14.52-13.49 3.90 2.00 8.460 10.17
150 16.94 15.18 —18.65—15.26 5.79 2.51 3.690 5.688
200 8.940 5.615 —22.18—-16.49 7.29 291 —1.44 0.66
250 1.960—2.719 —25.13-17.60 8.53 3.11 —6.51—-4.38
300 —4.460—10.16 —27.58—-18.63 9.69 3.55 —11.47—9.206
350 —10.59-16.94 —29.66—19.68 10.96 3.311 —16.39—-13.81
Energy %P, s, D, €
(MeV) Expt. Theor. Expt. Theor. Expt. Theor. Expt. Theor.
1 —0.11-0.33 147.747 142.692 —0.005 0.719 0.105 0.287
5 —0.94-0.88 118.178 112.670 —0.183-0.176 0.672 1.224
10 —2.06—-2.26 102.611 98.215 —0.677—-0.256 1.159 1.951
25 —4.88—-5.70 80.63 78.38 —2.799-2.910 1.793 2.587
50 —8.25—-10.18 62.77 62.00 —6.433—-6.947 2.109 2.495
100 —13.24—-16.66 43.23 43.18 —12.23-13.94 2.420 3.013
150 —17.46—22.12 30.72 30.64 —16.48—-19.35 2.750 3.562
200 —21.30—26.98 21.22 20.95 —19.71—-23.78 3.130 4.489
250 —24.84—-31.46 13.39 12.95 —22.21-27.62 3.560 5.682
300 —28.07—35.67 6.600 6.127 —24.14-31.01 4.030 6.982
350 —30.97—39.58 0.502 0.171 —25.57—-34.15 4.570 8.536
B. Model 2 given in Figs. 12—-18 and fqup scattering are given in Figs.

The theoretical phase shifts that we calculated by using9—22. Our results show for this model an improvement over
the parameters for model 2 and the experimental phase shiftgose of model 1, especially for the the singketand D
for all the seven states are listed in Table VI. We also use th&tates. However, there is still much to be desired in the fit.
parameters for model 2 to predict the phase shifppfscat- One possible cause of this problem is that we did not include
tering. tensor and pseudovector interactions in our covariant poten-
The predictions for the foupp scattering states are listed tials, limiting ourselves to scalar, vector, and pseudoscalar.
in Table VII. The results of model 2 fonp scattering are Another may be the ignoring of the pseudovector coupling of

TABLE V. pp scattering phase shift dfS,, 'D,, 2P, and ®P; states(model 1.

Energy s, D, %P, °p,

MeV Expt. Theor. Expt. Theor. Expt. Theor. Expt. Theor.
1 32.68 51.95 0.00%0.091 0.134 0.381 —0.081-1.215
5 54.83 55.47 0.043-0.183 1.582 0.954 —0.902-2.536
10 55.22 54.45 0.165-0.270 3.729 1.773 —2.060—-3.864
25 48.67 47.64 0.696-0.441 8.575 5.422 —4.932-7.932
50 38.90 37.77 1.71+0.504 11.47 9.766 —8.317-13.15
100 24.97 23.63 3.790 0.511 9.450 7.862 —13.26-18.45
150 14.75 12.37 5.606 1.141 4.740 3.812 —17.43—-24.42
200 6.550 3.024 7.058 2.407 —-0.370-1.178 —21.25-28.50
250 —0.31-5.15 8.270 2.994 —5.430-6.193 —24.77-33.26
300 —-6.15-12.55 9.420 3.136 —10.39-10.98 —27.99-37.63
350 —-11.13-19.27 10.69 2.902 —15.30—-15.42 —30.89-41.13
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FIG. 1. np scattering phase shift forS, state(model 1.
FIG. 3. np scattering phase shift fofD, state(model .

the pseudoscalar mesons to the nucleon. Our resulpgpin
scattering show that if we obtain a good fitrip scattering
our predicted results ipp scattering will also be good. This
means that it is unnecessary to inclygle scattering in the
our fit, we may use the parameters obtained mscattering way that eliminates the need for singularity-softening param-

to prgd_lct the rgsu!ts Ipp scattering. Overall,' our result's are oters or finite particle size in semiphenomenological applica-
promising and indicate that the two-body Dirac equations o ions to QCD

(b) Regulates the relative time in a covariant manner.
(c) Provides an exact reduction to four decoupled four-
component wave equations.
(d) Includes non-perturbative recoil effects in a natural

. . . i
constraint dynamics together with the meson ex_change (e) Is canonically equivalent in the semirelativistic ap-
Of)roximation to the Fermi-Breit approximation to the Bethe-

Salpeter equation.
(f) Unlike the Bethe-Salpeter equation and most other

relativisitc approaches has a local momentum structure as
The two-body Dirac equations of constraint dynamicss'mple as that of the nonrelativistic Scdioger equation.

constitute the first fully covariant treatment of the relativistic (9 IS well defined for zero-mass constituefitence, per-

two-body problem that has the following properties. mits investigation of the chiral symmetry limit _
(a) Includes constituent spin. (h) Possesses spin structure that yields an exact solution

for singlet positronium.

tential models for nucleon-nucleon scattering.

VIl. CONCLUSION
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FIG. 2. np scattering phase shift forP, state(model 1.

024001-21

FIG. 4. np scattering phase shift fotP, state(model .



BIN LIU AND HORACE CRATER PHYSICAL REVIEW C67, 024001 (2003

[0 r
B O
-5 :_ A Experimental ; A E{(perimentgl
5 N Dirac Equation 5 Dirac Equation
o | -10fF
D15 g B
[ B [ B
e R ;'15 -
E -20 :— U-E) E
@ [ % 20
3-25 - @ N
sF gt
a [ a 51
30 -
35 :_ 30F
4= 100 200 300 35 100 200 300
Energy (MeV) Energy (MeV)
FIG. 5. np scattering phase shift fotP, state(model 1. FIG. 7. np scattering phase shift fotD, state(model 3.

(i) Has static limits that are relativistic, reducing to the connections to the Bethe-Salpeter equation of quantum field
ordinary single-particle Dirac equation in the limit that either theory [36] and with Wigner’s formulation of relativistic
particle becomes infinitely heavy. guantum mechanics as a symmetry of quantum thg&sy

(j) Possesses a great variety of equivalent forms that are In this paper we have shown that these two-body Dirac
rearrangements of its two coupled Dirac equatifitence is equations may provide a reasonable account of the nucleon-
directly related to many previously-known quantum descrip-nucleon scattering data when combined with the meson ex-
tions of the relativistic two-body system change model. What makes this result important is that it is

These structures play an essential role in the success atcomplished with a local and covariant formulation of the
this approach to both QCD and QED bound states. What igwo-body problem. What makes this unique is that this ap-
noteworthy in the latter application is that one need onlyproach has been thoroughly tested in a nonperturbative con-
identify the nonrelativistic parts, i.e., the lowest order formstext for both QED and QCD bound states. It is not given that
of A andS The spin-dependent and covariant structure ofsuccess in one or even both areas would imply that the for-
the two-body Dirac formalism then automatically stamps outmalism would do well in another. In particular, the fits could
the correct semirelativistic spin dependent and spin indeperitave easily been disastrous, given the minimal coupling idea
dent corrections and provides well defined higher order relawe have usedbased in part on the earlier work on the qua-
tivistic corrections as well. In addition, the constraint formal- sipotential approach of TodorovThe reason for some doubt
ism, although rooted in classical mechanics, has closés that these minimal coupling fornfgeneralized to the sca-
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FIG. 9. np scattering phase shift fofD, state(model .

sed a different spin-matrix approach that works for both the

pcoupled and coupled states simultaneously.

We then tested several models by using the variable phase

ethods. We found it most convenient to put all the angular

omentum barrier terms in the potentials, and change all the
phase shift equations to the form 8fstate-like phase shift

equationg see Eqgs(5.11), (5.25), (5.26, and(5.27].

After several models and several methods to minimize our
g were tested, we found two models that can lead us to a

gawly good fit to the experimental phase shift data.

lar interactions as well as the vectdead to the scalar and u
vector potentials appearing squared. Because of the size Y
the coupling constants, the deviation from the standard effec-
tive potentials could have been considerable in all cased!
There are other nonperturbative structures that appear in t
Pauli reduction of our equations to ScHinger-like form

(typical of what appears in the Pauli reduction of the one
body Dirac equationthat could also have prevented any ,
reasonable results. So the general agreement we obtain

with the data is very encouraging that this approach could b The most important equation used in our phase shif

extended to include more general interactions. . - ;
An important step in our reduction was that we put theanaIySIS for ngleon-nucleon scattering Is 332 . Itis a
equation in a form for which we can apply the techniquescc,wpled Scr_lrdlnge_r-hke equaﬂop dgnved from two-body
Dirac equations with no approximations. All of our radial

that have been already developed for the Sdimger-like i f i | N tat
system in nonrelativistic quantum mechanics. This requirem’.{""’“’(.a equations for any Specific angular momentum state are
obtained from this equation.

that we get rid of first derivative terms. For the uncoupled Wi . . fit. W e th
states, it is pretty straightforward. For the coupled states we € US€ NiN€ MEsons In our fit. Yve summarize the meson-
nucleon interactions we used by writing the quantum field

theory Lagrange function for their effective interactions,

e Eouation L= ppo+ 0 i o+ Ga Y7 80+ 9, 0y T p,,
+ ng’)’#l/’w,u"' gégfyﬂdj(ﬁ,u_ igwasTlp' ko
_Ig nE’y5¢'7]_lgr}’$’ys¢7’,v (71)

where s represent the nucleon field;, fy, ... represent
the meson fields.

Several models have been tested by using the variable
phase methods, two models can lead us to a fairly good fit to
the experimental phase shift data. We use the parameters that
give good fits to thenp scattering data to predict the phase
shifts for thepp scattering. These lead to a good prediction
for the pp scattering based on the parameters we obtained
(with noted exceptions This means that our work has shown
a promising result. The following are some suggestions to
FIG. 10. pp scattering phase shift foiP, state(model 1. improve our work in the future.

Phase Shift (Degree)

100 200 300
Energy (MeV)
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TABLE VI. np scattering phase shift dfSy, P;, D,, 3Py, °P;, S;, and 3D, states(model 2.

Energy 1s, p, D, P,
(MeV) Expt. Theor. Expt. Theor. Expt. Theor. Expt. Theor.
1 62.07 60.60 —0.187—-0.358 0.00 0.02 0.18 0.00
5 63.63 63.50 —1.487—-1.163 0.04 0.15 1.631.61
10 59.96 60.20 —3.039—-2.857 0.16 0.39 3.65 3.74
25 50.90 51.44 —6.311-6.629 0.68 0.40 8.139.28
50 40.54 40.91 —9.670—10.36 1.73 1.37 10.70 12.69
100 26.78 25.86 —14.52-14.44 3.90 2.42 8.460 11.74
150 16.94 14.62 —18.65—-17.55 5.79 3.62 3.690 7.399
200 8.940 5.435 —22.18—-20.37 7.29 4.55 —1.44 2.36
250 1.960—2.428 —25.13—-23.15 8.535.24 —6.51-2.78
300 —4.460—9.330 —27.58—25.87 9.69 5.34 —11.47—-7.746
350 —10.59—-15.52 —29.66—28.54 10.96 5.30 —16.39—-12.52
Energy 3P, s, D, P
(MeV) Expt. Theor. Expt. Theor. Expt. Theor. Expt. Theor.
1 —0.11-0.32 147.747 144.797 —0.005 0.719 0.105 0.264
5 —0.94-0.81 118.178 115.232 —0.183-0.172 0.672 1.106
10 —2.06—-2.08 102.611 100.668 —0.677-0.239 1.159 1.723
25 —4.88-5.07 80.63 80.66 —2.799-2.834 1.793 2.099
50 —8.25—-8.68 62.77 64.30 —6.433—-6.798 2.109 1.708
100 —13.24—-13.55 43.23 45.68 —12.23-13.77 2.420 1.663
150 —17.46—17.74 30.72 33.35 —16.48—-19.34 2.750 1.541
200 —21.30—21.67 21.22 23.80 —19.71-24.11 3.130 1.648
250 —24.84—-25.47 13.39 15.90 —22.21-28.38 3.560 1.834
300 —28.07—-29.14 6.600 9.099 —24.14—-32.29 4.030 1.965
350 —30.97—-32.67 0.502 3.095 —25.57—-36.01 4570 2.147
VIIl. SUGGESTIONS FOR FUTURE WORK way to modify the interactions and the way mesons enter
A Other Model Tests into the two-body Dirac equations may provide a new oppor-

tunity to improve our fit.
More model testing is absolutely necessary in the future.

By model we mean the way we place the perturbative inter-
actions that arise from Eq.7.1) into the nonperturbative
forms we need fok, C, andG. During our fits, we found that We have included just scalar, pseudoscalar, and vector
our final results are sensitive to the model we chose rangingnteractions in our potentials through the invariant forms like
from very bad fits to the fits presented here. Changing th&, C, andg. Treating two-body Dirac equations with tensor

B. Including World Tensor Interactions

TABLE VII. pp scattering phase shift dfSy, 1D,, 3Py, and 3P, states(model 2.

Energy s, D, 3P, °p,

MeV Expt. Theor. Expt. Theor. Expt. Theor. Expt. Theor.
1 32.68 52.40 0.00%-0.116 0.134 0.417 —-0.081-1.172

5 54.83 55.48 0.043-0.232 1.582 1.042 —0.902-2.434
10 55.22 54.24 0.165-0.327 3.729 1.934 —2.060—-3.682
25 48.67 47.13 0.696-0.524 8.575 5.943 —4.932-7.355
50 38.90 37.04 1.71%+0.505 11.47 10.88 —8.317-11.57
100 24.97 22.85 3.790 0.994 9.450 9.417 —13.26-15.41
150 14.75 11.82 5.606 2.036 4.740 5.543 —17.43-19.97
200 6.550 2.845 7.058 3.211 —0.370 0.495 —21.25-23.23
250 —0.31-4.86 8.270 3.648 —5.430—-4.589 —24.77-27.28
300 -6.15-11.72 9.420 3.956 —10.39-9.516 —27.99-31.05
350 —-11.13-17.85 10.69 4.014 —15.30—-14.13 —30.89-34.22
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FIG. 12. np scattering phase shift dfS, state(model 2.

interactions of the vector meson may improve our fit. Thes
tensor interactions were discussed eaflbee Eq(4.16] and
correspond to nonminimal coupling of spin one-half particle
not present in QED but which cannot be ruled out in massive
vector meson-nucleon interactions. The corresponding field
theory interaction is

ALi=Q po" T p,,+ QLYo Yo, + giﬁ%’”waﬁ;(w )
8.1

PHSICAL REVIEW C 67, 024001 (2003
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FIG. 14. np scattering phase shift diD, state(model 2.

Ei)seudoscalar interactigas in Eq.(7.1)] but also by the way
of the pseudovector interactions as below,

ALy =gLyy Yo mp 9, QLY Yo d,
+ 9 by Y P (8.2

D. Include full massive spin-one propagator

We have ignored a portion of the massive spin-one propa-

and would correspond to relaxing the free field equation as: |
sumption made in Eq4.17). Inc

C. Include pseudovector interactions

Another option is to allow the pseudoscalar mesofis (
7, and n') to interact with the nucleon not only by the

r'y
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FIG. 13. np scattering phase shift dfP; state(model 2.
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gator in our fit that is zero for particles on the mass shell. To

ude this portion of massive spin-one propagator we

would have to change the vector propagator as below,
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FIG. 16. np scattering phase shift 6fP; state(model 2. FIG. 18. np scattering phase shift ofD; state(model 2.
significant modification of our basic equation, £§.32, as

Ampng all the four suggegtions, the first one would beWeII as the two-body Dirac equations given in E¢3.58
technically easiest once we find models more general thagnd (2.59.

the two we have presented here. The last three suggestions
would involve corresponding additions to the interaction that
appear in the two-body Dirac equations. Because the above
interactions all involve derivative couplings we will have to ~ Can the constraint formalism be extendedNdodies?
examine the CTBDE for the corresponding invariaxis.  There is no solution to the compatibility condition
These would include not only the eight invariants listed ear- oL

lier [see Eqs(2.46—(2.56] but also four additional ones [H Hill$)=0; T,j=1,.N

corresponding to A=RO;X, 0,X, , 2S0s105,01X, 0o, ,

E. Extentions to theN body problem

(8.9

SEYTMTY 751V52Y17 of generalized mass-shell constraifis their Dirac counter-
2T6.P0O,POX, 0,x,, and 4J05,05,0:P6,POx, 05X, . part9 that has the simplicity of the “third law” and tranver-
The four functionsR,S,T,U are each functions of, and  sality conditions given in Eq92.14 and (2.15. The diffi-
they represent spacelike interactions paralleling those corresulty involves satisfying Eq(8.4) and cluster separability
sponding togG,l,Y, and F, respectively, given earlier. To (needed to describe scattering statsthe same time. Ro-
include all 12 covariant matrix interactions will involve a hrlich has shown that this necessarily involves the introduc-
tion of N-body forceq51]. If one is willing to limit N-body
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APPENDIX A: PAULI FORM OF TWO-BODY
considerations to bound state® that cluster considerations DIRAC EQUATIONS

are not importantthen Ref.[52] provides a constraint for- We rewrite Eqs(2.61) and(2.62 by multiplying the first
malism in which a single dynamical wave equatias in the  py \/2i 3, and the second by?2i 8., yielding [8]

two-body casgdetermines the bound state energies. Refer-

ence [53] (and references contained thepeiprovides an _

N-body constraint formalism that involves particles and [T1(B182) +Us(B1B2) Ysrvsal| ) = (Bat Mafy) ysil o),
fields leading in the end to directly inteacting particles by

elimination of the field degrees of freedom by second class™[T2(B182)+Ua(B1B2) vs1¥sall ) = (Ea+M2f2) vsdl ),
contraints. (A1)

in which the kinetic and recoil terms are
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To(B1B2) = exqg)[iz- p— 5131
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8 A Experimental
. Dirac Equation
= 4 XBa[21-V(—C+ 9313221'22)]}, (A2)
g 2
a o i
z . Ul(ﬁllgz):eXFxg){_EBlBZEZ'V(‘]181B2_L)}1
2 I
8 6 Ua(B1B2) =exp(g)| — 5,31,3221' V(IB1B2—L)|, (A3)
a 8
-10 while the timelike and scalar potentials ,M; are given
-12 above in Eqs(2.63 and(2.64).
-14 The final result of the matrix multiplication in EqéA1)
16 - - 4 is a set of eight simultaneous equations for the Dirac spinors
00 Energy (M?.SV) 300 | )1 :| ¢)2,|zp>3_,|¢>4. In an arbitrary frame, the result of the
matrix calculation produces the eight simultaneous equations
FIG. 21. pp scattering phase shift 6P, state(model 2. (o) —2F Y1234 [8]. One then reduces the eight equa-
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tions to a second-order Scliinger-like equation by a pro- with
cess of substitution and elimination using the combinations
of the four Dirac spinors given beloj8]:

_ M
|y =)= ])a, Fi=—F
Ix=)=[W)2x )3 (A4)
Fy= o
We display all the general spin dependent structures in > D
O (r,p,o1,05,W) explicitly, very similar to what appears in
nonrelativistic formalisms such as seen in the Hamada-
Johnson and Yale group modéks well as the nonrelativis- Foo E>
tic limit of Gross’s equation We do this by expressing it 3T pe
explicitly in terms of its matrix ¢;,0%), and operatop
structure in the CM systerfP=(1,0)]. We are working in
the CM framefi.e., x, =(r,0)], so all the interaction func- =
tions [L(x,),J(x,),C(x,),G(x,)] are functions off = \x? Fa=7 (A8)
=[r|, F=F(r).
Referencd 8] finds the reduction
D= E1M2+ E2M1. (Ag)

hEl[O'lp_|0'2(d+ kO'j_' 0'2):|h|:1

X[ovprioy (ztkoy o))l Equation(A5) is a second-order Schiimger-like eigenvalue
+hM[oq-p—io,- (0t ko o) ]hF; equation for the newly defined wavefunctige,) in the
X[oy-p—ioy- (z+koy o3)][¢) form
—hEj[o1-p—io,-(d+koy- 0y)]hF,
X[op-p—ioy-(z+koy 02)][d)

+hMy[oy-p—ioy-(0+key- ay)]nF, Equation(3.5) for B2 provides us with the primary spin in-
X[05-p—ioy-(z+koy-0,)]| . )=Bb.). dependeznt pgrt ob, the quasipotential. Note that in 'the CM
systemp? =p~, o=(0,0). For future reference we will refer
(A5) {0 the four sets of terms on the left-hand side of &p) as
(a), the(b), (c), (d) terms.

[pi+q)(rip!01!021W)]|¢+>:bz(W)|¢+>' (AlO)

in which Now we proceed with a different derivation than Long
B?=E,;>~M2=E,2~ M,? and Crater's derivation[8]. The aim is to produce a
Schralinger-like form like in Eg.(A10) involving the Pauli
= Db2(W) + (€24 €2)sint(J) + 2 €+ e-sinh( J) cosi J) — (m? matrices for both particles.
W)+ (eit€) (D) +2€,€;sinf(I)cosi ) = (my Substitutingd, h, F1, z, k’s expressions t@a) term of Eq.
+m3)sink?(L) — 2m;m,sinh(L)cosK L) (A6)  (A5), we obtain
and
i
h=exp G), (a) term=exqg)E1H01~p— 502~V(C+J+L)
1 i .
kEEVIn(h), —EVQ~(0'1+|0'1><0'2)
1 M2 |
ZEEV(—C-FJ—L) ><exp(g)3 a'l-p—50'2~V(—C+J—L)
i
1 —=VG-(o,+io X . All
d=2V(C+I+L) g Vo levtion ”Z)H (ALD
o= EV(C—J— L) (A7) Working out the commutation relation @f; - p in the above
2 ' expression, we can find tHa) term is
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My[ i
(a) term=expG)E, exp(g)3 p?— Eo-z-V(—C+J—L)(al~p)
[ . .
—EVQ{[P""(O'lXP)—(G'l'0'2)p+0'1(0'2'p)—|(0'2><p)]}
1 M, i i _
+ |—0'1V exqg)g o P— 50'2' V(_C+\]_ L)_ EVQ((rl-Ha'lX 0'2)

—%[oz-V(C+J+L)+VQ(0'1+ia'1>< o) ]

" . .
><exp(g)32 oy p— IEO-Z-V(—CJrJ—L)— IEVQ-(O'l—l—ia'lXO'Z)H}.

Likewise, we can the findb), (c), (d) terms,

(b) term=exp(g)Ml(exp(g)%{p2— I50-2~V(—C+J—L)((r1-p)

i
—EVQ{[p-H(a'lXp)—(O'l-0'2)p+0'1(0'2-p)—i(0'2><p)]}

1 E, i i ]
+|—0'1V eX[Z(g)E o p— 50'2V(—C+J—L)—§Vg(0'1+lal><0'2)
—Iz[crz'V(C—J—L)+Vg'(a-l+io-1><0'2)]

E, i [ .
Xexqg)ﬁ[(rrp—Eaz-V(—C-I—J—L)—EVQ(0'1+|0'1><0'2)H];
M .
(c) term=—exqg)El(exqg)%[(oyp)((rl-p)—Izol-V(—C+J—L)(¢rl~p)

i
_Evg{[O'Z(Ul'p)_(a'l'0'2)p+0'1(0'2'p)+i(0'2xp)]}

1 M, i i .
+I—O'1V exp(g)? oy P— 50'1V(_C+\]_L)_§Vg((fz+|0'2x0'1)
—%[02-V(C+J+L)+Vg-(al+io-l><0'2)]

e .
(d term=exp<g>M1[exqg>51[<oz'p)(wp)—'Eal-w—CH—L)(ol-p)

i
—EVQ{[(TZ(O'yp)—(a'l-02)p+0'1(0'2~p)+i(0'2><p)]}

1 E, i i .
+i—0'l-V exp(g)ﬁ oy p— EO’]_'V(—C'FJ_L)_Evg(0'2+|0'2><0'1)
—%[02-V(C—J—L)+VQ-(al+io-1><o'2)]

. . .
Xexp(g)fl[az.p— 'Eal.V(—CJrJ—L)—'Evg(aeriazxal)H].
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We simplify the above expressions by using identities in- 2 j(j+1) g2 9 g
volving o, and o, and group above equations by tpé [— — T+ T+h’2+ ?+ ——=3k—j—g'h’
term, Darwin term - p), spin-orbit angular momentum term dr r r

L - (o + 0y), spin-orbit angular momentum difference term oh

L-(oy— 0y), spin-spin term &4 - 0,), tensor term & - 1) —h— —+m}v=62exq—zg)v. (B1)
X (0o,- 1), additional spin dependent teras(o; X 0,) and r

(o-F)(05-p)+(0,-F) (0o p), and spin independent terms.

Collecting all terms for théa) + (b) + (c) + (d) terms our  3P; (a general tripletst) L-(oyt+05)=—-2, 01-0,=1,

Eqg. (A5) becomes Eq(3.4). o-foyT=1,
APPENDIX B: RADIAL EQUATION d2  j(j+1 2 ”
QUATIONS [ +J(J2 )+gT+h'2+%+k+n+g’h’+h”
The following are radial eigenvalue equations correspond- dr? r

ing to Eq.(3.4) after getting rid of the first derivative terms

for singlet states'Sy, 'P;, 'D, (a general singlet'J;), +m|v=B2exp —26)v. (B2)
triplet states®P, (a general let’J;), a generals=1, j—|

+1 3Py, 3S,; statey, and a generaj; 1, j=1+1 D,

state. s=1, j=1+1 (3S, state$, L-(o,+0,)=2(j—1), 07- 0,
'Sy, Py, 'D; (a general singletd;) L-(oy+02)=0, =1, oy-f-0,-f=1/(2j+1) (diagonal termy and
o, 0,=—3, 010, FT=—1, ooy T=24j(j +1)/(2j +1)(off diagonal term,

d> j(j—1) 3g’'sinfth coshhsinhh 6 sintth g’ coshh sinhh sinfth _coshh sinhh
—+ + +6h’ - - —2h’ +2

dr? r2 r r r2 r r r2
2 "og ‘sinkh _sintfh coshh sinhh
+% ih 8,8 T k(-1 5 g + 9 -2 +2h’
4 2 r r2
2(j—1) sinffh _coshhsinhh  h’ g’coshh sinhh 1 |3g’coshhsinhh g’sintth
. / -2 +—+ : -
2j+1 r r2 r r 2j+1 r r
coshh sinhh sinfth _coshhsinhh _sinfth 2h’
—2h!———+6h’ -6 +2 +n+g’h’'+h"+ —|+mu,
r r rz r2 r
2j(j+1) | 3g’coshhsinhh  g’sintth coshh sinhh sinffth _coshhsinhh _sintth
. - —-2n’ +6h’ - + +n+g’h’+h"
2j+1 r r r r r2 r2
! 2h’sinté(h) 2 cosftih)sinh(h)  h’ "coshth)sinhth
+ +2(j—1) ; _ i ; i )+T+g Kr) il )Hu_:Bzexp(—zg)u+, (B3)
r

s=1, j=1-1 Py, 3D, state$, L- (o, +0,)=—2(j+2), 01-0,=1, o;-7-0,-F=—1/(2j + 1) (diagonal term and
oy-f-0p-T=2Vj(j+1)/(2] + 1) (off diagonal term,

(j+1)(j+2) 3g’sink?h coshhsinhh  6sinffh  g’coshh sinhh sintth _coshh sinhh
e + +6h’ - - —2h’ +2
r

r2 r r r2 r r r2
2 "o ‘sintth _sintth coshh sinhh
+ 2 2 +g—+k+2(1+2) g . -2 +2h’
4 2 r r2
2(j—1) sinffth _coshhsinhh  h’ g’coshhsinhh 1 |3g’coshhsinhh g’sintth
. ' -2 +—+ - = -
2j+1 r r2 r r 2j+1 r r
coshh sinhh sintfth _coshhsinhh _sint?h 2h’
—2h,f+6h' r -6 P +2 > +n+g’h’+h”+T +mpu_
r r

024001-30



TWO-BODY DIRAC EQUATIONS FOR NUCLEON-. ..

PHSICAL REVIEW C 67, 024001 (2003

24i(j+1) | 3g'coshh sinhh  g’sinth coshh sinhh sinfth  coshhsinhh  sint?h
J(J ){ g _g —2h' +6h’ —6 +2

2j+1 r r

!

+——-2(+2) ; 2

Substituting forg’,h’,m,n,k, we obtain the radial equa-

tions and potential® given in the text.

APPENDIX C: DERIVATION OF COUPLED
PHASE SHIFT EQUATIONS

We have found that we can use the Messiah ar{gdl;

2h’sintf(h) B 2 coshth)sinh(h) N EJF g'coshh)sinh(h)
r

= = +n+g’h’+h"
. “u;B?exp(—zg)u_. (B4)
[
U=RUR '=Asin(br+6+Day), (C9
where
A=RAR L (C10

Continuing the analogy we let

u=Asin(br+9), U’'=DbAcogbr+D). (C1y
u’=bAcogbr+ &) (cy  Then
for the solution of RU'R '=bAcogbr+é+Dos)=R(R*UR)'R?
42 =RR YAsin(br+ 8+ Do) +A’sin(br+ 8
— — +®(r) Ju=b?u(r) (C2 -
dr +Dog)+A(b+ 6 +D’'oz)codbr+ 5+ Daoy)
to yield +Asin(br+8+Dos)R'R™L. (C12
(I) _1/:_ ro—1 . s
5 =— FLsinZ(err 5). (C3) But RR R'R™* so that we obtain the condition

A’sin(br+ 8+ Do) +A(S' +D’ oz)cogbr+ 8+ Do)
Next we see how this can be worked out in the case of

coupled radial equations of the form +[Asin(br+ 8+ Dos),R’"R™1]_=0. (C13
u_\” u_ u_ In general, we would take
- +d =b? : (C4
e U+ U+ A=a+Ago3tA, - 0=A+A, 0o (C14

whered, is a 2X 2 matrix. This equation will have solutions
that areS'wave dominant an®-wave dominant. Form them
together into a X2 matrix U so that the above equation
becomes

and decompose EQC13 and Eq.(C6) into two sets of four
coupled equations.
Give R the following general form:

—U”-l—(DLU:sz. (CS) R=exp[is(r)02]ean(r)ol],

—1_ _ .
Then take its transpose and add the two. One obtains R =exp—noy)exp—ieoy),

_(U//+U//T)+((I)LU+UT(D'I|:):b2(U+UT). (C6) R,:i8,028Xqi802)qu7]Ul)

+explieo,)exp( noq)n' o4,
In analogy to the uncoupled case we assume Hieos)expnas)n' oy

U=A(r)sinfbr+D(r)], ) R'R l=ie'o,+expico,) n' oexp—ieo,)

=ig'oy+ ' coq2¢e) o+ n'sIiN(2¢)03.
(C15

We consider the case in whieh, is a symmtric matrix and
(C9 furthermore that as a resdit="D". In that case our matrix is
R is orthogonal §y=0).
Let R be a matrix that diagonalizes the phase shift matrix Nextwe examine the three terms of EG6). We assume
function D(r) to the formé(r) +D(r) o3, thatA, is symmetric so thaf,=0 and

where
D=46(r)+D(r)- o,

A=a(r)+A(r)-o.
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b?R(U+UTR *=b?[(A+A, - g)sin(br+ 8+ Do) +sin(br+ 5+ Das) (A +A, - 0)]

=b2{2Asin(br+ 6+ Da3) + 2[Assin(br+ §)cosD]a}

and

(C16

ROU+UTOHR I=(D+D, - o) (A +A, - o)sin(br+ 5+ Do) + (transposg= (DA + @, - A )sin(br+ 5+ Do)

+(DA - o+ D, oA +iD, XA, - g)sin(br+ 5+ Do) +sin(br+ 5+ Dag) (P A+ D, -A))

+sin(br+ 8+ Do3) (A, - 0P|+ AD, - o+i®, XA, - 0)

(C17

The term®, XA, - o is zero sincéA,=0=®,. The second derivative term is

R(U”+U"JRT=R(RTU'R)’'R™ 1+ (transposg=bR(RTA cogbr+ 6+ Do3)R)’RT + (transposg

=b{[Acogbr+6+Do3),R'"RT]_+A’cogbr+ 6+Doy)

—A(b+ 8 +D'o3)sin(br+ 5+ Do)} + (transposg

=b{ie'[(Aj+A, - o)cogbr+8+Day), ;] +(A{ +A! - o)cogbr+ 5+ Day)

—(Aj+A, - 0)(b+ 8 +D’'o3)sin(br+ 5+ Dos)} + (transposg

Using properties of the Pauli matrices and dividing Eq.
(C13 and Eq.(C6) into | and L components we obtain the

following four equations:
_Z”(é\' + D’a’g)Sin(bI'"‘ o+ D0'3)+AA‘1COE(bI'+ S+ DO’g)

—2be’ o3A,coq br+ 8)cosD

1 ... . -

A[sin(br+8+Dag)+A| (8" +D’ o3)cogbr+ 5+ Day)

—2¢' o3Assin(br+ 8)coD =0, (C20

cogbr+ 8)cosDA; —[ &'sin(br+ 8)cosD
+D’cogbr+ 8)sinD]A,;
+2¢'[Ascogbr+ 8)cosD —asin(br+ 8)sinD]
1 ~ o~ ~
= 5[¢ sin(br + 6)cosDA;— d;cogbr + §)sinDA ]
+{asin(br+ 8)cosD +Ag[ cogbr+ 8)sinD]®,},
(C21
A;sin(br+ 8)cosD +A,[ 8’ cogbr+ 8)cosD
—D'sin(br+ 8)sinD]+2&'[a cogbr+ §)sinD
+Assin(br+ 8)cosD]=0. (C22

Combining Eq.(C19 and Eq.(C20 we obtain

(C19

—A|(8'+D’03)—2¢"A;sinD cosD
1 F R e ~ .
= B(CI>HAH+<I>1A1)S|n2(br+ 5+Day).

(C23
Combining Eqs(C21) and(C22 gives

A, 8’ csdbr+ 8)cosD —2¢’ csabr+ 8)sinD
1 ~ -
= B{[qb sin(br+ 8)codD — d5cog br+ §)sinD]A;

+asin(br+ 8)cosD +Ag[cogbr+ 8)sinD]d,}.
(C29

Rewrite the above two equations as

~ 1.
A (8" +D"o3)+ E(I)”sinz(br—ir 5+Dos)

+A;

1.
2¢'sinD coD + B®1sin2(br+ 5+ DO’3)) =0,

(C29

1 ~ ~
B[a sin(br + 6)cosD + Azcogbr+ §)sinD |d 4

~ |1
+2&'acsdbr+ 8)sinD+A; B[q&sin(br+ S)cosD

—®zcogbr+ 8)sinD]— 8’ csbr+ 8)cosD | =0.

(C26)
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The first of these two equations is actually two equatlons

al o'+ —d)[l cosA br+ 5)cos(2D)]+ <I>3sm 2

X (br+ 8)sin(2D) | +As| D +—q>3[1 cosAbr+ &)

xXcog2D)]+ %d) sin2(br+ 5)sin(2D)}

+A;

1.
€ S|n2D+ ®,[1—cosAbr+ 5)c0523])=

(C27

and

1.
a|D’'+ %<D3[1—cos 2Abr+ 6)cog2D)]

+ %dasin 2(br+ 5)Sin(2D)}

~ 1
+A; 5’+%¢[1—cos2(br+ s)cog2D)]
2b<1>3sm 2(br+6)sin(2D)
~ 1. .
+A1%®1sm 2(br+ 6)sin2D =0. (C28
So now together with Eq.C26),
1 ~ .
a Bsm(br+ s)cogD)d+2¢&'cscbr+ d)sinD
~ 1 _ ~
+A, Bcos(br+ 5)5|n(D)<I>4
~ |1 )
+A; B[¢sm(br+5)cosD
—®5cogbr+ 8)sinD]— 8’ cscbr+ 8)cosD | =0,
(C29

we have three homogeneous equationa,i;,A;. We sim-
plify these equations further by assuming tAat=0,

al o'+ ic;b[l cosq br+ §)cog2D)]

1.
2b<I>33|n 2(br+8)sin(2D)

~ 1.
+As D’ +—CI>3[1 cos Abr+ 8)cog2D)]

+2ib¢sin 2(br+ 5)sin(2D)}= (C30

PHSICAL REVIEW C 67, 024001 (2003

aD’+ —CI>3[1 cos2br+ §)cog2D)]

+ %qbsin 2(br+ 5)sin(2D)}

o'+ 21—b¢[1—cos Abr+ 8)cog2D)]

+A;

<D3S|n 2(br+6)sin(2D) |=0, (C3)

2b

1 ~
a Bsin(br+ 8)cogD)d 4+ 2¢’'csdbr+ §)sinD

~ |1 ~
+ Az Bcos{br+5)sin(D)<I>1 =0. (C32

The solution we seek is

o+ —¢>[1 cos Abr+ 8)cog2D)]

2bd>3sm2(br+ 8)sin(2D)=0, (C33
1.
'+ —(I>3[1 cos Abr+ 8)cog2D)]
1 .
+2—b¢>sm2(br+ 8)sin(2D)=0. (C349
Let
1
o= 5(514' 32),
1
= 5(51_52), (C3a
and that leads to
1 ~
- B(¢>+c1>3)s,m2(br+ 1), (C36)
1 -
- B(¢—(I>3)sm2(br+ 5,). (C37
Returning to Eq(C22 we find it reduces to
As=—acot(br+ )tanD, (C38

and combining that with Eq.C32) yields

1 ~
Bsin(br+ s)cogD)D,+2¢"csdbr+ §)sinD

1 ~
—cof(br+ é)tanD Bcos{br+ 5)sin(D)<Dl} =0,
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so that
1. .
e'= —2b<I>1[tanD cog(br+ &) —sir?(br+ 8)cot(D)]

= 5sinD cog Db P SifD cos(br+5)

—sir?(br+ 8)cog(D)]

qu)lsm(br'i‘ 5+D)sin(br+6—D). (C39

From the definintion ofb we see that

Sine  cose

cose  Sine
—sSine coSe

®; &, \[cose —sine

S oy
dzcosz+Pisin2e —Pgsin2e+Dcos %

:(—d>3sin28+¢>1c0528 —d>3c0529—<blsin28)

®;

d;, -4

. (C40

So from this and Eq9.C36) and (C37) we obtain the phase
shift equations Eqg5.25 and(5.26 given in the text while
Eqg. (C39 gives us Eq(5.27).

APPENDIX D: PHASE SHIFT EQUATION
WITH THE COULOMB POTENTIAL

We review here the necessary modification of our phase

equations when we considpp scatterind 16,22. When we

study pp scattering, we must consider the influence of the
Coulomb potential. The general form of the uncoupled

Schralinger-like equation with Coulomb potential [i22]

d? 1(1+1) 2e
B +( ) wd

dr? r2 r

+A® |u(r)=b?u(r),
(D1)

whereAd consists of the short range parts of the effective

potential,« is the fine structure constaf€ompare the Cou-

lomb term with the first term on the right-hand sides of Egs. y(r)=—tan
(2.27 and (2.29.] Due to the long range behavior of the
potential in above equation, the asymptotic behavior of the

wave function is

r—oo

u(r) — const sin(lbr—zIn2br+A), (D2

in which

| 7
A:5|+0'|_

X (D3)

whereo,=ardl’(I + 1+i ) is the Coulomb phase shift, here
n=—¢e,alb.

PHYSICAL REVIEW C67, 024001 (2003

We describe here the variable phase method to calculate
the phase shift with the Coulomb potential. Consider the two
differential equations

u”+ (b2 W—W)u=0, (D4)
and
u'+(b?=W)u=0, i=1,2, (D5)
in which u(0)=u,(0)=0. Let

2e,a

V_V(r)=—

11+

r=——+A0, (D6)
r

so that

r—oo

uy(r) — constsin(br—zIn2br+A),

r—oe

Us(r) — constcogbr—»In2br+A), (D7)

whereA= oy,.

Just as in the variable phase method, we obtain a nonlin-
ear first-order differential equation for the phase shift func-
tion §;(r) such thats ()= 6,, and §,(0)=0. This is done
by rewritingu(r) as

u(r)=a(r)[cosy(r)uy(r)+siny(rjuy(r)], (D8

So that
A=A+ y(»). (D9)

Since we have rewrittea(r) in two arbitrary functions, we
are free to impose a condition ar{r),

u'(r)=a’(r)[cosy(r)ui(r)+siny(rjuy(r)].
(D10)

Combiningu(r) andu’(r) leads to

Jumuin) —u(nuy(r)
u(rug(r)—u’(Nuy(r) |’

(D11)

where +y(0)=0, and u4(r)=Fy(»n,br) and uy(r)
=Gy(n,br) are the two Coulomb wave functions. With the
WronskianF,Go— F(Go=b, we obtain, by differentiating,
the differential equation

y'(r)=—=W(r)[cosy(r)Fo(7,br)+siny(r)Go( 7,br)]?/b.
(D12

Note that for

OMAFD) AA+D) I(+1) o?

W(r) — : —
[2 (2 2 2
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r—0

Fo(n,br) — Cqbr,

r—01
Go(n,br) — Ty’ (D13)
we obtain the relation
. Cibx
Y (0)——m- (D14)
Letting
y(r)=p(r)+n(r), (D15
where3(r) is defined as
[(1+1)
B'(r)= = ——5—[cosy(r)Fo(7.br)
+siny(r)Go(7,br)]?/b, (D16)

B(r) has the exact solution

J| Filn.br)Fo(n,br)—F/(7,br)Fo(7,br)

Fi(7,6r)G{(n,br)—F{(7,br)Gy(7,br) |’
(D17)

y(r)y=—tan

PHSICAL REVIEW C 67, 024001 (2003

with B(0)=0 and B'(0)=—Czbl/I(I+1) and B(*)=o
—|7/2— o lead to

0= n(). (D18)
Thus , if we solve
[(1+1)
n'(r)=|— ® +A® ({cog B(r)+ n(r)]Fo(7,br)

_ L l1+1)
+sin B(r)+ n(r)1Go(n,br)}/b+ 2

X[cosB(r)Fo( 7,br)+sinB(r)Gy(7,br)1?/b
(D19

with the condition»(0)=0, we obtain the additional phase
shift (above the Coulomb phase shifby integration to
7().

There is no Coulomb scattering for the coupled tripist
and 3D, states as a consideration of Pauli principle would
show.
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