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Two-body Dirac equations for nucleon-nucleon scattering

Bin Liu and Horace Crater*
The University of Tennessee Space Institute, Tullahoma, Tennessee 37388

~Received 12 September 2002; published 18 February 2003!

We investigate the nucleon-nucleon interaction by using the meson exchange model and the two-body Dirac
equations of constraint dynamics. This approach to the two-body problem has been successfully tested for
QED and QCD relativistic bound states. An important question we wish to address is whether or not the
two-body nucleon-nucleon scattering problem can be reasonably described in this approach as well. This test
involves a number of related problems. First we must reduce our two-body Dirac equations exactly to a
Schrödinger-like equation in such a way that allows us to use techniques to solve them already developed for
Schrödinger-like systems in nonrelativistic quantum mechanics. Related to this, we present a new derivation of
Calogero’s variable phase shift differential equation for coupled Schro¨dinger-like equations. Then we deter-
mine if the use of nine meson exchanges in our equations gives a reasonable fit to the experimental scattering
phase shifts forn-p scattering. The data involve seven angular momentum states including the singlet states
1S0 , 1P1 , 1D2 and the triplet states3P0 , 3P1 , 3S1 , 3D1. Two models that we have tested give us a fairly
good fit. The parameters obtained by fitting then-p experimental scattering phase shift give a fairly good
prediction for most of thep-p experimental scattering phase shifts examined~for the singlet states1S0 , 1D2

and triplet states3P0 , 3P1). Thus the two-body Dirac equations of constraint dynamics present us with a fit
that encourages the exploration of a more realistic model. We outline generalizations of the meson exchange
model for invariant potentials that may possibly improve the fit.

DOI: 10.1103/PhysRevC.67.024001 PACS number~s!: 13.75.Cs, 21.30.2x, 11.80.2m, 03.65.Pm
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I. INTRODUCTION

In this paper@1#, we obtain a semiphenomenological rel
tivistic potential model for nucleon-nucleon interactions
using two-body Dirac equations of constraint dynam
@2–7# and Yukawa’s theory of meson exchange. In previo
work Long and Crater@8# have derived the two-body Dira
equations for all nonderivative Lorentz invariant interactio
acting together or in any combination. They also reduced
two-body Dirac equations to coupled Schro¨dinger-like equa-
tions in which the potentials appear as covariant genera
tions of the standard spin dependent interactions appearin
the early phenomenological works in this area@9–15# based
on the nonrelativistic Schro¨dinger equation. This allows us t
take advantage of earlier work done by other people on
nonrelativistic Schro¨dinger equation. In particular, we us
the variable phase method developed by Calogero and
gasparis@16,17# for computation of the phase shift from th
nonrelativistic Schro¨dinger equation, presenting a new de
vation for the case of coupled equations. Our potentials
different angular momentum states are constructed f
combinations of several different meson exchanges. Furt
more, our potentials, as well as the whole equations,
local, yet at the same time covariant. This contrasts our
proach with other relativistic schemes such as those by G
and others@18–21#. It is the aim of this paper to see if th
meson exchanges we use are adequate to describe the e
nucleon-nucleon interactions from low energy to high ene
(,350 MeV) when using them together with two-bod
Dirac equations of constraint dynamics.

Although numerous relativistic approaches have b
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used in the nucleon-nucleon scattering problem, none of
other approaches have been tested nonperturbatively in
QED and QCD as they have been with the two-body Di
equations of constraint dynamics@4,6,22–24#. Unlike the
earlier local two-body approaches of Breit@25–27#, the rela-
tivistic spin corrections need not be treated only pertur
tively. This means that we can use nonperturbative meth
~numerical methods! to solve the two-body Dirac equations
This is a very important advantage of the constraint tw
body Dirac equations~CTBDE!. The successful numerica
tests in QED and QCD give us confidence that they may
appropriate relativistic equations for phase shift analysis
nucleon-nucleon scattering.

In Sec. II we introduce the two-body Dirac equations
constraint dynamics. In Sec. III we obtain the Pauli reduct
of the two-body Dirac equations to coupled Schro¨dinger-like
equations. We go a step further than that achieved in
paper of Long and Crater in that we eliminate the first d
rivative terms that appear in the Schro¨dinger-like equation.
This is relatively simple for the case of uncoupled equatio
but not so for the case of coupled Schro¨dinger-like equation.
The reason we perform this extra reduction is that the f
mulas we use for the phase shift analysis, the variable ph
method developed by Calogero, have been worked out
ready for coupled equations, but ones in which the first
rivative terms are absent. This step then becomes an im
tant part of the formalism, allowing us to take advantage
previous work. In Sec. IV, we discuss the phase shift me
ods used in our numerical calculations, which include ph
shift equations for uncoupled and coupled states and
phase shift equations with Coulomb potential. In Sec. V
present the models used in our calculations, including
expressions for the scalar, vector, and pseudoscalar inte
tions, and the way they enter into our two-body Dirac equ
©2003 The American Physical Society01-1
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tions with the mesons used in our fits. In Sec. VI we pres
the results we have acheived and in Sec. VII are the sum
ries and conclusions of our work.

II. REVIEW OF CONSTRAINT TWO-BODY
DIRAC EQUATIONS

The two-body Dirac equations that we will use for stud
ing nucleon-nucleon interaction bear a close relation to
single particle equation proposed by Dirac in 1928@28#.

@a•p1bm1V~r !#c5Ec. ~2.1!

For interactions that transforms as a time component o
four vector and world scalar we haveV(r )5A(r )1bS(r ).
Of course, the single particle Dirac equation is not suitable
describe systems such as the mesons~quarkonium!, muo-
nium, positronium, the deuteron, and nucleon-nucleon s
tering because the particles may have equal or near e
masses.

The earliest attempt at putting both particles on an eq
footing was in 1929 by Breit@25–27#. However, the Breit
equations do not retain manifest covariant form and in Q
the equations cannot be treated nonperturbatively beyond
Coulomb term@26,29#. There have been many attempts
bypass the problems of the Breit equation and also of the
four-dimensional Bethe-Salpeter equation. These are
cussed in a number of different contexts in Refs.@3–6#. The
approach of the CTBDE provides a manifestly covariant
three-dimensional detour around many of the problems
hamper the implementation and application of Breit’s tw
body Dirac equations as well as the full four-dimension
Bethe-Salpeter equation~see also Ref.@30#!. In addition, as
mentioned above, the approach can by a Pauli reduc
give us a local Schro¨dinger-like equation.

The CTBDE make use of Dirac’s relativistic Hamiltonia
formalism. In a series of papers~in addition to those cited
above see Refs.@31,32#! Crater and Van Alstine have incor
porated Todorov’s effective particle idea developed in
quasipotential approach@33# into the framework of Dirac’s
Hamiltonian constraint mechanics@34# for a description of
two-body systems. Their approach yields manifestly cov
ant coupled Dirac equations. The standard reduction of
Breit equation to a Schro¨dinger-like equation for QED yields
highly singular operators~like d functions and attractive 1/r 3

potentials! that can only be treated perturbatively. In th
treatment of the CTBDE for QED@22,32#, for example, one
finds that all the operators are quantum mechanically w
defined so that one can therefore use nonperturbative t
niques~analytic as well as numerical! to obtain solutions of
bound state problems and scattering.~A quantum mechani-
cally well defined, potential is one no more singular tha
21/4r 2. If it is not quantum mechanically well defined,
can only be treated perturbatively.! Although it is encourag-
ing that good results have been obtained for QED and Q
meson spectroscopy, that is no guarantee that the forma
so developed will lead to effective potentials in the case
nucleon-nucleon scattering that render reasonable fits to
phase shift data.
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Using techniques developed by Dirac to handle co
straints in quantum mechanics and the method develope
Crater and Van Alstine, one can derive the two-body Dir
equations for eight nonderivative Lorentz invariant intera
tions acting separately or together@35,8#. These include
world scalar, four vector, and pseudoscalar interacti
among others. We can also reduce the two-body Dirac eq
tions to coupled Schro¨dinger-like equations even with a
these interactions acting together. Before we test this met
in nuclear physics in the phase shift analysis of the nucle
nucleon scattering problems, we review highlights of t
constraint formalism and the form of the two-body Dira
equations.

A. Hamiltonian formulation of the two-body problem
from constraint dynamics

Dirac @34# extended Hamiltonian mechanics to includ
conjugate variables related by constraints of the fo
f(q,p)50. ForN constraints, we may write

fn~q,p!'0, n51,2,3, . . . ,N. ~2.2!

With these constraints the Hamiltonian of the system~with
sum over repeated indices!

H5q̇npn2L ~2.3!

is not unique. The Dirac HamiltonianH includes the con-
straints

H5H1lnfn , ~2.4!

in which H is the Legendre Hamiltonian obtained from th
Lagrangian by means of a Legendre transformation. Theln
may be functions of conjugate variablesq’s and p’s. The
equation of motion for any arbitrary functiong ~without ex-
plicit time dependence! of the conjugate variablesq’s and
p’s is then

ġ5@g,H#. ~2.5!

Dirac called the conditional equality' a ‘‘weak’’ equality
meaning the constraintsfn'0 must not be applied befor
working out the Poisson brackets. Dirac called5a noncondi-
tional equality or a ‘‘strong’’ equality. The equations of mo
tion are

ġ5@g,H#5@g,H1lnfn#

5@g,H#1ln@g,fn#1@g,ln#fn

'@g,H#1ln@g,fn# ~2.6!

for fn'0.
In the two-body system, we have two constrain

fn(q,p)'0, n51,2. For spinless particles they are taken
be the generalized mass shell constraints of the two parti
@32,37#, namely,
1-2
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TWO-BODY DIRAC EQUATIONS FOR NUCLEON- . . . PHYSICAL REVIEW C 67, 024001 ~2003!
H15p1
21m1

21F1~x,p1 ,p2!'0,

H25p2
21m2

21F2~x,p1 ,p2!'0, ~2.7!

where

x5x12x2 . ~2.8!

Dirac extended his idea of handling constraints in clas
cal mechanics to quantum mechanics by replacing the c
sical constraintsfn(q,p)'0 with quantum wave equation
fn(q,p)uc&50, whereq andp are conjugate variables. Thu
the quantum forms for each individual particle constraint
come Schro¨dinger-type equations@36#

Hi uc&50 for i 51,2. ~2.9!

The total HamiltonianH from these constraints alone is

H5l1H11l2H2 ~2.10!

~with l i as Lagrange multipliers!. In order that each of thes
constraints be conserved in time we must have

@Hi ,H#uc&5 i
dHi

dt
uc&50, ~2.11!

so that

@Hi ,l1H11l2H2#uc&

5$@Hi ,l1#H1uc&1l1@Hi ,H1#uc&

1@Hi ,l2#H2uc&1l2@Hi ,H2#%uc&50. ~2.12!

Using Eq.~2.9!, the above equation leads to this comp
ibility condition between the two constraints,

@H1 ,H2#uc&50. ~2.13!

This condition guarantees that with the Dirac Hamiltonia
the system evolves such that the ‘‘motion’’ is constrained
the surface of the mass shell described by the constrain
H1 andH2 ~Refs.@37,32,31#!. As described most recently i
Ref. @37#, this requires that

F15F25F~x'! ~2.14!

~a kind of relativistic Newton’s third law! with the transverse
coordinate defined by

xn'5x12
m ~hmn2PmPn /P2!, ~2.15!

and total momentum by

P5p11p2 . ~2.16!

To complete our review of the spinless case~Ref. @37#!
and establish notation we introduce the transverse rela
momentum

p5
«2

w
p12

«1

w
p2 , ~2.17!
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P•p50, ~2.18!

where the center of momentum~CM! energy eigenvaluew is
defined from

$P21w2%uc&50. ~2.19!

Taking the difference of the two constraints,

~p1
22p2

2!uc&52~m1
22m2

2!uc&, ~2.20!

we can show that the longitudinal or timelike components
the momenta in the CM system have the invariant forms

«15
w21m1

22m2
2

2w
,

«25
w21m2

22m1
2

2w
. ~2.21!

Thus, on these statesuc& we obtain

$p21F~x'!2b2~w2,m1
2 ,m2

2!%uc&50, ~2.22!

where

b2~w2,m1
2 ,m2

2!5«1
22m1

25«2
22m2

2

5
1

4w2
$w422w2~m1

21m2
2!1~m1

22m2
2!2%

~2.23!

and indicates the presence of exact relativistic two-body
nematics.~By this statement we mean that classicallyp2

2b250 would imply w5Ap21m1
21Ap21m2

2.) Note that
both of the constituent invariant CM energies«1 and«2 are
positive for positive total CM energyw greater than the
square root ofum1

22m2
2u. This is a direct consequence of E

~2.20!, which in turn depends on the ‘‘third law’’ condition
necessary for compatibility. In our scattering applications
low, this guarantees that nucleons cannot scatter into a
state having an overall positive energy but with constitu
positive and negative energy nucleons.

In the center-of-momentum system,p5p'5(0,p…, x'

5(0,r …, and the relative energy and time are removed fr
the problem. The equation for the relative motion is then

$p21F~r !2b2%uc&50, ~2.24!

which is in the form of a nonrelativistic Schro¨dinger equa-
tion ~with 2mV→F, 2mENR→b2). Thus the relativistic
treatment of the two-body problem for spinless partic
gives a form that has the simplicity of the ordinary nonre
tivistic two-body Schro¨dinger equation and yet maintain
relativistic covariance. Spin and different types of intera
tions can be included in a more complete framewo
@8,30,35,38,# and will be reviewed later in this section.

In addition to exact relativistic kinematical correction
Eq. ~2.24! displays through the potentialF relativistic dy-
namical corrections. These corrections include depende
of the potential on the CM energyw and on the nature of the
interaction. For spinless particles interacting by way of
world scalar interactionS, one finds@31,32,39,40#
1-3
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BIN LIU AND HORACE CRATER PHYSICAL REVIEW C67, 024001 ~2003!
F52mwS1S2, ~2.25!

where

mw5
m1m2

w
, ~2.26!

while for ~timelike! vector interactions~described byA),
one finds@31,33,39,40#

F52«wA2A 2, ~2.27!

where

«w5
w22m1

22m2
2

2w
. ~2.28!

For combined spacelike and timelike vector interactio
~which reproduce the correct energy spectrum for sc
QED @32#!

F52«wA2A 21
1

2
“

2ln~122A/w!

1
1

4
@“ ln~122A/w!#2. ~2.29!

The variablesmw and «w ~both of which approach the re
duced massm5m1m2 /(m11m2) in the nonrelativistic limit!
are called the relativistic reduced mass and energy of
fictitious particle of relative motion. These were first intr
duced by Todorov@33# in his quasipotential approach. Thu
in the nonrelativistic limit,F approaches 2m(S1A) for
combined interactions. In the relativistic case, the dynam
corrections toF referred to above include both quadra
additions toS and A as well as CM energy dependen
throughmw and«w . The two logarithm terms at the end o
Eq. ~2.29! are due to the transverse or spacelike part of
potential. Without those terms, spectral results would
agree with the standard~but more complex! spinless Breit
and Darwin approaches~see references in Ref.@32# including
Ref. @33#!.

Equation~2.24! provides a useful way to obtain the sol
tion of the relativistic two-body problem for spinless pa
ticles in scalar and vector interactions and, as reviewed
low, has been extended to include spin. In that case they h
been found to give a very good account of the bound s
spectrum of both light and heavy mesons using reason
input quark potentials.

These ways of putting the invariant potential functions
scalarSand vectorA interactions intoF will be used in this
paper for the case of two spin-one-half particles@see Eqs.
~2.67! to ~2.71! and~4.1! to ~4.3!#. These exact forms are no
unique but were motivated by work of Crater and Van A
stine in classical field theory and Sazdjian in quantum fi
theory @40,41#. Other closely related structures will also b
used. These structures play a crucial role in this paper s
they give us a nonperturbative framework in whichS andA
appear in the equations we use. This structure has been
cessfully tested~numerically! in QED ~positronium and
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muonium bound states! and is found to give excellent result
when applied to the highly relativistic circumstances of QC
~quark model for mesons!. An important question we wish to
answer in this paper is whether such structures are also v
in the two-body nucleon-nucleon problem. This is an imp
tant test since the quadratic forms@see, e.g., Eqs.~2.25! and
~2.27!# that appear could very well distort possible fits bas
on Yukawa-type potentials with strong couplings.

Before going on to describe the constraints for two sp
one-half particles we mention an important but often ov
looked aspect of the foundations of the generalized m
shell contraint equations given in Eq.~2.9!. It involves their
derivation from an alternative starting point. In addition
the connection with the Bethe-Salpeter equation describe
Ref. @36#, there exists a connection between constraint
namics and Wigner’s early formulation of relativistic qua
tum mechanics@42#. In particular, Polyzou@43# has demon-
strated that the assumption of both Poincare´ invariance and
manifest Lorentz covariance forces the scalar product
quantum mechanical state vectors to be interaction dep
dent. So, whereas for a free particle the kernal involved
the scalar product has the formd(p21m2)u(p0), in cases of
interactions the self-adjoint nature of the kernal demands
forms d(H1)d(H2) with compatible constraintsH1 andH2
~a related use of such delta functions to construct the s
vectors themselves is discussed in Ref.@37#!.

B. Two spin-one-half particles

We continue our review in this section by introducing t
two-body Dirac equations of constraint dynamics. The Dir
equations for two free spin-one-half particles are

S10c5~u1•p11m1u51!uc&50,

S20c5~u2•p21m2u52!uc&50, ~2.30!

wherec is the product of the two single-particle Dirac wav
functions ~these equations are equivalent to the free o
body Dirac equation!. The ‘‘theta’’ matrices are related to th
ordinary gamma matrices by

u i
m5 iA1

2
g5ig i

m , m50,1,2,3, i 51,2,

u5i5 iA1

2
g5i ~2.31!

and satisfy the fundamental anticommutation relations

@u i
m ,u i

n#152hmn,

@u5i ,u i
m#150,

@u5i ,u5i #1521. ~2.32!

It is much more convenient to use the ‘‘theta’’ matrices i
stead of the Dirac gamma matrices for working out the co
patibility conditions. In the reduction of complicated com
mutators to simpler form one uses reduction brackets
1-4
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involve anticommutators for odd numbers of theta matri
and commutators for even numbers of theta matrices
coordinate and momentum operators. This property follo
from the relation of the theta matrices to the Grassmann v
ables used in the pseudoclassical form of the constraints~see
Refs.@2,3,5#!. These fundamental anticommutation relatio
guarantee that the Dirac operatorsS10 andS20 are the square
root of the mass shell operators2 1

2 (p1
21m1

2) and 2 1
2 (p2

2

1m2
2). Differencing these implies that the relative mome

tum p in Eq. ~2.18! satisfiesP•puc&50.
Writing p1 and p2 in terms of the total and relative mo

menta we obtain

S10c5~u1'•p1e1u1• P̂1m1u51!uc&50,

S20c5~2u2'•p1e2u2• P̂1m2u52!uc&50. ~2.33!

The projected theta matrices then satisfy

@u i• P̂,u i• P̂#151,

@u i• P̂,u i'
m #150, ~2.34!

where

un'
m 5u in~hmn1 P̂mP̂n!. ~2.35!

Defining a i'
m 52u i P̂u i'

m and b i52u i P̂u5i , the above two-
body Dirac equations become

~a1•p1b1m1!c5e1c,

~2a2•p1b2m2!c5e2c, ~2.36!

which have the form of single free particle Dirac equatio
Recall that in the spinless case we had the compatib

condition

@H1 ,H2#uc&50. ~2.37!

It was a requirement that followed in the classical case~or
the Heisenberg picture in the quantum case! from the indi-
vidual constraintsHi being conserved in time. Similarly her
with Si designating the form of the Dirac constraint wi
intereactions present, the commutator condition guarante
that the Dirac equations for two spin12 particles form a com-
patible set is

@S1 ,S2#uc&50. ~2.38!

@It would follow from anH as in Eq.~2.10! composed of a
sum of theSi .]

We found that even for the simplest interaction, a Lore
scalar, the naive replacement such as making the min
substitutions@corresponding in the case of the single parti
Dirac equation to Eq.~2.1! with V(r )5bS(r )],

mi→Mi~r !5mi1Si i 51,2, ~2.39!

does not lead to compatible constraints. Rather than deta
here the earlier work steps that were taken to make the
02400
s
d
s
ri-

s

-

.
y

ng

z
al

ng
n-

teractions meet the compatibility condition for scalar inte
actions@2,3,35# we present here the form of the compatib
constraints for general covariant interactions,

S1uc&5@cosh~D!S11sinh~D!S2#uc&50,

S2uc&5@cosh~D!S21sinh~D!S1!uc&50, ~2.40!

where the operatorsS1 andS2 are auxiliary constraints of the
form

S1uc&5@S10cosh~D!1S20sinh~D!#uc&50,

S2uc&5@S20cosh~D!1S10sinh~D!#uc&50. ~2.41!

Both of these sets of constraints@7,30,35# are compatible

@S1 ,S2#uc&50, ~2.42!

@S1 ,S2#uc&50, ~2.43!

provided only that

D~x!5D~x'!. ~2.44!

Furthermore,

P•puc&50, ~2.45!

the same constraint equation on the relative momentump as
in the spinless case.

The covariant potentials are divided into two categori
four ‘‘polar’’ and four ‘‘axial’’ interactions. The four polar
interactions ~or tensors of rank 0,1,2! are the following:
scalar

DL52Lu51u5252
L

2
O1 ,O152g51g52, ~2.46!

timelike vector

DJ5Ju1• P̂u2• P̂[O2

J

2
5b1b2

J

2
O1 , ~2.47!

spacelike vector

DG5Gu1'•u2'[O3

G
2

5g1'•g2'

G
2
O1 , ~2.48!

and tensor~polar!

DF54Fu1'•u2'u52u51u1• P̂u2• P̂[O4

F
2

5a1•a2

F
2
O1 .

~2.49!

We may use each equation in Eqs.~2.40! and ~2.41! sepa-
rately or as a sum,

Dp5DL1DJ1DG1DF , ~2.50!

to generate the sets of two-body Dirac equations with co
sponding interactions. A particularly important combinati
occurs for electromagnetic inteactions. While timelike a
1-5
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spacelike vector interactions are characterized by the res
tive matricesb1b2 andg1'•g2' , a potential proportional to
g1g2 would correspond to an electromagneticlike interact
and would require thatJ52G,

DEM5
~O32O2!G~x'!

2
5

g1•g2G~x'!

2
O1 . ~2.51!

The four ‘‘axial’’ interactions~or pseudotensors of ran
0,1,2! are the following:

pseudoscalar

DC5
C

2
[E1

C

2
52g51g52

C

2
O1 , ~2.52!

timelike pseudovector

DH522Hu1• P̂u2• P̂u51u52[2E2

H

2
5b1g51b2g52

H

2
O1 ,

~2.53!

spacelike pseudovector

D I522Iu1'•u2'u51u52[2E3

I

2
52g51g1'•g52g2'

I

2
O1 ,

~2.54!

and tensor~axial!

DY522Yu1'•u2'u1• P̂u2• P̂[2E4

Y

2
52s1•s2

Y

2
O1 .

~2.55!

Crater and Van Alstine found@35# that these and
their sum,

Da5DC1DH1D I1DY , ~2.56!

would be used in Eqs.~2.40! and Eqs.~2.41! but with the
sinh(Da) terms in Eqs.~2.40! appearing with a negative sig
instead of the plus sign as in the case of polar interactio
There is no sign change in Eqs.~2.41! for Da .

For systems with both polar and axial interactions@35#,
one usesDp2Da to replaceD in Eqs.~2.40!, andDp1Da to
replaceD in Eqs.~2.41!. L, J, G, F, C, H, I, Y are arbitrary
invariant functions ofx' . In this paper, we include only
mesons corresponding to the interactionsL, J, G (J52G),
and C. Thus we are ignoring tensor and pseudovector m
sons, limiting ourselves to vector, scalar, and pseudosc
mesons, all having masses less than or about 1000 MeV
are also ignoring possible pseudovector couplings of
pseudoscalar mesons.

For computational convenience we have found it nec
sary to transform the Dirac equations to ‘‘external potenti
form. We obtain these forms by combining the two sets
equations

S1uc&5$cosh~D!@S10cosh~D!1S20sinh~D!#1sinh~D!

3@S20cosh~D!1S10sinh~D!#%uc&50,
02400
ec-

n
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e
e
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f

S2uc&5$cosh~D!@S20cosh~D!1S10sinh~D!#1sinh~D!

3@S10cosh~D!1S20sinh~D!#%uc&50. ~2.57!

and bringing theSi0 operators through to the right. Refe
ences@8,35# gives the ‘‘external potential’’ forms of the con
straint two-body Dirac equations for each of the eight int
action matrices,DL , DJ , DG , DF , DC , DH , D I , DY acting
alone. These forms are similar in appearance to individ
Dirac equations for each of the particles in an external
tential. In Ref.@8# appeared also the form with all eight in
teractions acting simultaneously,

S1uc&5H exp~G1FE21IO11YO2!Fu1•p2
i

2
u2•]~LO1

2JO22GO32FO42CE11HE21IE31YE4!G
1e1cosh~JO21FO41HE21YE4!u1• P̂

1e2sinh~JO21FO41HE21YE4!u2• P̂

1m1cosh~2LO11FO41HE21IE3!u51

1m2sinh~2LO11FO41HE21IE3!u52J uc&50,

~2.58!

S2uc&5H 2exp~G1FE21IO11YO2!Fu2•p2
i

2
u1]~LO1

2JO22GO32FO42CE11HE21IE31YE4!G
1e1sinh~JO21FO41HE21YE4!u1• P̂

1e2cosh~JO21FO41HE21YE4!u2• P̂

1m1sinh~2LO11FO41HE21IE3!u51

1m2cosh~2LO11FO41HE21IE3!u52J uc&50.

~2.59!

What is remarkable is that the above hyperbolic and ex
nential structures account for all of the ‘‘interference’’ term
between the various interactions. The interactions ac
separately or in subgroupings are simple reductions of
above. For example, in the case of the combined scalar, ti
like, spacelike, and pseudoscalar interactions used in this
per,

D5DJ1DL1DG1DC , ~2.60!

and the two-body Dirac equations~2.58!,~2.59! reduce to
1-6
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S1uc&5S exp~G!u1•p1E1u1• P̂1M1u51

1 i
exp~G!

2
u2]~GO31JO22LO11CE1! D uc&50,

~2.61!

S2uc&5S 2exp~G!u2•p1E2u2• P̂1M2u52

2 i
exp~G!

2
u1•]~GO31JO22LO11CE1! D uc&50,

~2.62!

where

M15m1cosh~L !1m2sinh~L !,

M25m2cosh~L !1m1sinh~L !, ~2.63!

E15e1cosh~J!1e2sinh~J!,

E25e2cosh~J!1e1sinh~J!. ~2.64!

In the limit m1→` ~or m2→`) ~when one of the particles
becomes infinitely massive!, the extra terms]G, ]J,]L, and
]C in Eqs. ~2.61! and ~2.62! vanish, and one recovers th
expected one-body Dirac equation in an external poten
The above two-body Dirac equations~without pseudoscala
interactions! have been tested successfully in quark mo
calculations of the meson spectra@4,5,23,24#.

We may rewrite the ‘‘left external potential form’’ of the
CTBDE for two relativistic spin-one-half particle interactin
through scalar and vector potentials as@see Eqs.~2.61! and
~2.62! without the pseudoscalar interaction#

S1uc&[g51@g1•~p12A1!1m11S1#uc&50, ~2.65!

S2uc&[g52@g2•~p22A2!1m21S2#uc&50. ~2.66!

Ai
m andSi introduce the interactions that thei th particle ex-

periences due to the presence of the other particle and
both spin dependent@2–6#. In order to identify these poten
tials we use Eqs.~2.61! and ~2.62!, and Eqs.~2.63! and
~2.64!. Then we find that the momentum dependent vec
potentialsAi

m are given in terms of three invariant function
@5,6# G, E1 ,E2,

A1
m5S ~e12E1!2 i

G

2
g2•

]E1

E2
g2P̂D P̂m

1~12G!pm2
i

2
]G•g2'g2'

m , ~2.67!

A2
m5S ~e22E2!2 i

G

2
g1•

]E2

E1
g1• P̂D P̂m

1~12G!pm2
i

2
]Gg1'g1'

m , ~2.68!
02400
l.

l

re

r

where

G5exp~G! ~2.69!

~with P̂2521, whereP̂[P/w) while the scalar potentials
Si are given in terms of three invariant functions@3,5,6# G,
M1 , M2,

S15M12m12
i

2
Gg2•

]M1

M2
, ~2.70!

S25M22m22
i

2
Gg1•

]M2

M1
. ~2.71!

In QCD, the scalar potentialsSi are semiphenomenologica
long range interactions. The vector potentialsAi

m are semi-
phenomenological in the long range while in the short ran
are closely related to perturbative quantum field theory@44#.
Of course, this does not change the fact thatS1 andS2 still
satisfy the compatibility condition Eq.~2.42!.

III. PAULI REDUCTION

Now one can use the complete hyperbolic constraint tw
body Dirac equations~2.58! and ~2.59! to derive the
Schrödinger-like eigenvalue equation for the combined
teractions:L(x'),J(x'),H(x'),C(x'),G(x'),F(x'),I (x'),
Y(x') @8#. In this paper, however, we include only meso
corresponding to the interactionsL, J, G(J52G), C, thus
limiting ourselves to vector, scalar, and pseudoscalar inte
tions. The basic method we use here has some similaritie
the reduction of the single particle Dirac equation to
Schrödinger-like form ~the Pauli reduction! and to related
work by Sazdjian@7,38#.

The state vectoruc& appearing in the two-body Dirac
equations~2.58! and ~2.59! is a Dirac spinor written as

uc&5F uc&1

uc&2

uc&3

uc&4

G , ~3.1!

where eachuc& i is itself a four component spinor.uc& has a
total of 16 components and the matricesOi ’s, Ei ’s are all
16316. We use the block forms of the gamma matric
given by Eq.~4.2! in Ref. @8# and

S i
m5g5ib ig' i

m , i 51,2. ~3.2!

The S i
m are four-vector generalizations of the Pauli matric

of particles one and two. In the CM frame, the time comp
nent is zero and the spatial components are the usual P
matrices for each particle. Appendix A details the proced
that leads to a second-order Schro¨dinger-like eigenvalue
equation for the four component wave functionuf1&5uc&1
1uc&4 in the general form
1-7
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@p21F~r ,p,s1 ,s2 ,w!#uf1&5b2~w!uf1&. ~3.3!

Below we display all the general spin dependent structure
F(r ,p,s1 ,s2 ,w) explicitly, ones very similar to those ap
pearing in nonrelativistic formalisms such as seen in
older Hamada-Johnson and Yale group models~as well as
the nonrelativistic limit of Gross’s equation!. By simplifica-
f.
e

-
on

i

rm

d
th
d
th
hr
m
la

-
on

g

02400
in

e

tion of the final result in Appendix A by using identitie
involving s1 and s2 and grouping by thep2 term, Darwin
term (r̂•p…, spin-orbit angular momentum termL•(s1
1s2), spin-orbit angular momentum difference ter
L•(s12s2), spin-spin term (s1•s2), tensor term (s1• r̂ )
3(s2• r̂ ), additional spin dependent termsL•(s13s2), and
(s1• r̂ )(s2•p)1(s2• r̂ )(s1•p), and spin independent term
we obtain
H p22 i F2G 82
E2M21M1E1

D ~J1L !8G r̂•p2
1

2
¹2G2

1

4
G 822

1

4
~C1J2L !8~2C1J2L !81

1

2

E2M21M1E1

D G 8~J1L !8

1
L•~s11s2!

r FG 82
1

2

E2M21M1E1

D ~J1L !8G2
L•~s12s2!

r

1

2

E2M22M1E1

D ~J1L !81~s1•s2!F1

2
¹2G1

1

2
G 82

2
1

2

E2M21M1E1

D G 8~J1L !82
1

2
G 8C82

1

2

G8

r
2

1

2

~2C1J2L !8

r G1~s1• r̂ !~s2• r̂ !F2
1

2
¹2~2C1J2L !

2
1

2
¹2G2G 8~2C1J2L !82G 821

3

2r
G 81

3

2r
~2C1J2L !81

1

2

E2M21M1E1

D ~J1L !8~G2C1J2L !8G
1

L•~s13s2!

r

i

2

M2E12M1E2

D ~J1L !82
i ~J2L !8

2
@~s1• r̂ !~s2•p!1~s2• r̂ !~s1•p!#J uf1&5exp~22G!B 2uf1&, ~3.4!
ua-
the

q.

es
out
where

D[E1M21E2M1 ,

B 25E1
22M1

25E2
22M2

25b2~w!1~e1
21e2

2!sinh2~J!

12e1e2sinh~J!cosh~J!2~m1
21m2

2!sinh2~L !

22m1m2sinh~L !cosh~L !. ~3.5!

Ei ,Mi ,C,J,L,G are all functions of the invariantr. We point
out that Eq.~3.4! differs from the forms presented in Re
@8#. Whereas the above equation involves four compon
spinor wave functions, the ones given in Ref.@8# are ob-
tained in terms of matrix wave functions involving one com
ponent scalar and three component vector wave functi
The form we choose in this paper is easier to compare w
the earlier existing nonrelativistic forms.

All of the above equations when reduced to radial fo
have first derivative terms@from the r̂•p and (s1• r̂ )(s2
•p)1(s2• r̂ )(s1•p) terms#. These can be easily eliminate
for the uncoupled equations but are problematic for
coupled equations. The variable phase method develope
Calogero@16# for computation of phases shifts starts wi
coupled and uncoupled stationary state nonrelativistic Sc¨-
dinger equations that do not include the first derivative ter
in their radial forms. An advantage of the above for the re
tivistic case is that they are Schro¨dinger-like equations. Be
fore we can apply the techniques for phase shift calculati
which have been already developed for the Schro¨dinger-like
system in nonrelativistic quantum mechanics, we must
nt

s.
th

e
by

o
s
-

s

et

rid of these first derivative terms. In terms of the above eq
tions, we seek a matrix transformation that eliminates
terms first order inp.

The general form of the eigenvalue equation given in E
~3.4! is

Fp22 ig8 r̂•p1
g8

2r
LW •~s11s2!2 ih8~s1• r̂•s2•p

1s2• r̂•s1•p!1ks1•s21ns1• r̂•s2• r̂1 lLW •~s1

2s2!1 i jLW •~s13s2!1mG uf1&5B 2e22Guf1&.

~3.6!

Them term is the spin independent part involving derivativ
of the potentials. For the equal mass case, two terms drop
@see Eq.~3.4!#, and the above equation becomes

Fp22 ig8 r̂•p1
g8

2r
LW •~s11s2!2 ih8~s1• r̂•s2•p

1s2• r̂•s1•p!1ks1•s21ns1• r̂•s2• r̂1mG uf1&

5B 2e22Guf1&. ~3.7!

We introduce the spin-dependent scale change
1-8
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uf1&[exp~F1Ks1• r̂•s2• r̂ !uc1&

[~A1Bs1• r̂•s2• r̂ !uc1&, ~3.8!

with F,K,A,B to be determined. We find that

puf1&5~A1Bs1• r̂s2• r̂ !puc1&

2 i ~A81B8s1• r̂•s2• r̂ ! r̂ uc1&

2 i
B

r
@~s12s1• r̂• r̂s2• r̂1~s22s2• r̂• r̂s1• r̂ uc1

~3.9!

and

g8

2r
L•~s11s2!uf1&

5~A1Bs1• r̂•s2• r̂ !
g8

2r
L•~s11s2!uc1&

1
g8

2r
B@2s1•s224ir s1• r̂•s2• r̂• r̂•p

12ir ~s1•r̂•s2•p1s2• r̂•s1•p!26s1• r̂•s2•r̂ #uc1&.

~3.10!

We thus find that

2 ig8 r̂•puf1&5~A1Bs1• r̂•s2• r̂ !~2 ig8 r̂•p!uc1&

1Cuc1& ~3.11!

and
02400
2 ih8~s1• r̂•s2•p1s2• r̂•s1•p!uf1&

5~A1Bs1• r̂•s2• r̂ !~2 ih8@s1• r̂•s2•p

1s2• r̂•s1•p# !uc1&1Duc1&, ~3.12!

and finally

p2uf1&5~A1Bs1• r̂•s2• r̂ !p2uc1&

22i ~A81B8s1• r̂•s2• r̂ ! r̂•puc1&

1 i
2B

r
@2s1• r̂•s2• r̂• r̂•p2~s1• r̂•s2•p

1s2• r̂•s1•p#uc1&1Euc1&, ~3.13!

whereC, D, andE do not involvep and are given by

C52g8~A81B8s1• r̂•s2• r̂ !, ~3.14!

D522h8~s1• r̂•s2• r̂A81B8!22h8
B

r
@L•~s11s2!12

2s1• r̂•s2• r̂1s1•s2#, ~3.15!

and

E52~A91B9s1• r̂•s2• r̂ !2
2

r
~A81B8s1• r̂•s2• r̂ !

22
B

r 2
~s1•s223s1• r̂•s2• r̂ !. ~3.16!

The general form of the eigenvalue equation then beco
after some detail@1#
~A1Bs1• r̂•s2• r̂ !Fp22 ig8 r̂•p1
g8

2r
L•~s11s2!2 ih8~s1• r̂•s2•p1s2• r̂•s1•p!G uc1&

1S g8

2r
B@2s1•s224ir s1• r̂•s2• r̂• r̂•p12ir ~s1• r̂•s2•p1s2• r̂•s1•p!26s1• r̂•s2• r̂ #

22i ~A81B8s1• r̂•s2• r̂ ! r̂•p1 i
2B

r
@2s1• r̂•s2• r̂• r̂•p2~s1• r̂•s2•p1s2• r̂•s1•p!#

1~ks1•s21ns1• r̂•s2• r̂ !~A1Bs1• r̂•s2• r̂ !1R1mD uc1&5B 2exp~22G!~A1Bs1• r̂•s2• r̂ !uc1&

~3.17!
s in
in which R5C1D1E.
Now, to bring this equation to the desired Schro¨dinger-

like form with no linearp term we multiply both sides by

~A1Bs1• r̂•s2• r̂ !215
~A2Bs1• r̂•s2• r̂ !

A22B2
~3.18!
and find, using the exponential form above that appear
Eq. ~3.8! ~and some detail@1#!

~A1Bs1• r̂•s2• r̂ !21@22i ~A81B8s1• r̂•s2• r̂ !# r̂•p

522i ~F81K8s1• r̂s2• r̂ ! r̂•p, ~3.19!

and
1-9
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~A1Bs1• r̂•s2• r̂ !21i
2B

r
@2s1• r̂•s2• r̂• r̂•p

2~s1• r̂•s2•p1s2• r̂•s1•p!#

5
2i sinh~K !cosh~K !

r
@2s1• r̂•s2• r̂ • r̂•p

2~s1• r̂•s2•p1s2• r̂•s1•p!#1G, ~3.20!

where~Ref. @1#!

G52
2 sinh2~K !

r 2
L•~s11s2!, ~3.21!

and

~A1Bs1• r̂•s2• r̂ !21
g8

2r
B@2s1•s224ir s1• r̂•s2• r̂• r̂•p

12ir ~s1• r̂•s2•p1s2• r̂•s1•p!26s1• r̂•s2• r̂ #

5
ig8sinh~K !cosh~K !

2r
@24r s1• r̂•s2• r̂• r̂•p

12r ~s1• r̂•s2•p1s2• r̂•s1•p!22i s1•s2

16i s1• r̂•s2• r̂ #1H, ~3.22!

where~Ref. @1#!

H5
g8sinh2~K !

2r
@2L•~s11s2!

22s1• r̂•s2• r̂12s1•s214#.

Note thatG and H do not contain linearp type of terms.
Now collect the three different linearp type of terms in Eq.
~3.17!:

~22iF 82 ig8! r̂•p, ~3.23!
02400
S 22i
sinh~K !cosh~K !

r
2 ih81 ig8sinh~K !cosh~K ! D

3~s1• r̂•s2•p1s2• r̂•s1•p!, ~3.24!

S 4i
sinh~K !cosh~K !

r
22isinh~K !cosh~K !g822iK 8D

3s1• r̂•s2• r̂• r̂•p. ~3.25!

If we set the first of the above equations to 0, we obtain
expected result~for the uncoupled portion of the equation!

F852g8/2. ~3.26!

If we seth852K8 and usep5 r̂ ( r̂ .p)2 r̂3L/r then the two
expressions~3.24! and ~3.25! combine to form

S 2
sinh~K !cosh~K !

r
1h82g8sinh~K !cosh~K ! D

3
s1• r̂•s2• r̂•LW •~s11s2!

r
, ~3.27!

which contains nor̂•p. Thus the matrix scale change

uf1&5exp~2g/2!exp~2hs1• r̂•s2• r̂ !uc1& ~3.28!

eliminates the linearp terms.
Further note that

~A1Bs1• r̂•s2• r̂ !21~ks1•s21ns1• r̂•s2• r̂ !

3~A1Bs1• r̂•s2• r̂ !

5~ks1•s21ns1• r̂•s2• r̂ !,

~A1Bs1• r̂•s2• r̂ !21Cuc1&

52g8~F81K8s1• r̂•s2• r̂ !uc1&, ~3.29!

and ~after some algebraic detail@1#!
~A1Bs1• r̂•s2• r̂ !21Duc1&522h8~K81F8s1• r̂•s2• r̂ !uc1&

22h8
cosh~K !sinh~K !

r
@L•~s11s2!122s1• r̂•s2• r̂1s1•s2#uc1&

12h8
sinh2~K !

r
@s1• r̂•s2•r L̂•~s11s2!13s1• r̂•s2• r̂2s1•s2#uc1&. ~3.30!

Also,

~A1Bs1• r̂•s2• r̂ !21Euc1&52@F91F821K821~2F8K81K9!s1• r̂s2• r̂ #2
2

r
@F81K8s1• r̂•s2• r̂ #

22
cosh~K !sinh~K !

r 2
~s1•s223s1• r̂•s2• r̂ !12

sinh2~K !

r 2
~s1• r̂s2• r̂2s1•s222!.

~3.31!
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So combining all terms and grouping byp2 term , spin independent terms, spin-orbit angular momentum termL•(s1
1s2), spin-spin term (s1•s2), tensor term (s1"r̂ )(s2• r̂ ), and additional spin independent term, we have our Schro¨dinger-
like equation

H p21
2g8sinh2~K !

r
2g8F822h8K824h8

cosh~K !sinh~K !

r
2F92F822K822

2

r
F824

sinh2~K !

r 2
1L•~s11s2!

3F g8

2r
1

g8sinh2~K !

r
2

2sinh2~K !

r 2
22h8

cosh~K !sinh~K !

r G1s1• r̂•s2• r̂•L ~s11s2!

3S 2h8
sinh2~K !

r
12

sinh~K !cosh~K !

r 2
1

h8

r
2

g8sinh~K !cosh~K !

r D
1s1•s2Fk1

g8cosh~K !sinh~K !

r
1

g8sinh2~K !

r
22h8

cosh~K !sinh~K !

r
22h8

sinh2~K !

r
22

cosh~K !sinh~K !

r 2
22

sinh2~K !

r 2 G
1s1• r̂•s2• r̂Fn2

3g8cosh~K !sinh~K !

r
2

g8sinh2K

r
2g8K822h8F81

2h8coshKsinhK

r
16h8

sinh2~K !

r
2~2F8K81K9!

2
2

r
K816

cosh~K !sinh~K !

r 2
12

sinh2~K !

r 2 G1mJ uc1&5B 2e22Guc1&. ~3.32!
is
ift
et

hi

in-

eid,

dy
ing
.

all
the
Comparing Eq.~3.7! with Eq. ~3.4!, we find

g852G 82
E2M21M1E1

D ~J1L !852G 82 ln8D522F8,

~3.33!

h85
~J2L !8

2
52K8, ~3.34!

k5
1

2
¹2G1

1

2
G 822

1

2
G 8ln8D2

1

2
G 8C82

1

2

G 8

r

2
1

2

~2C1J2L !8

r
, ~3.35!

n52
1

2
¹2~2C1J2L !2

1

2
¹2G2G 8~2C1J2L !82G 82

1
3

2r
G 81

3

2r
~2C1J2L !81

1

2
ln8D~G2C1J2L !8,

~3.36!

m52
1

2
¹2G2

1

4
G 822

1

4
~C1J2L !8~2C1J2L !8

1
1

2
G 8ln8D. ~3.37!

Equation~3.32! and its derivation is an important part of th
paper. It will provide us with a way to derive phase sh
equations using work by other authors who developed m
ods for the nonrelativistic Schro¨dinger equation. First we
need the radial form of the coordinate space form of t
equation.
02400
h-

s

The following are the radial eigenvalue equations for s
glet states1S0 , 1P1 , 1D2 and triplet states3P0 , 3P1 , 3S1 ,
3D1 corresponding to Eq.~3.32! with the above substitu-
tions. We emphasize that unlike the potentials used by R
Hamada-Johnson, and the Yale group@12,14,15#, our poten-
tials are fixed by the structures of the relativistic two-bo
Dirac equations and we do not have the freedom of choos
different potentials for different angular momentum states

1S0 , 1P1 , 1D2 ~a general singlet1Jj ): For these states
L•(s11s2)50, s1•s2523, s1• r̂•s2• r̂521. There is
no off diagonal term. We find~adding and subtracting theb2

term!

H 2
d2

dr2
1

j ~ j 11!

r 2
1F~r !J v~r !5b2v~r !,

where our effective potential for above equation is

F~r !5
@2G2 ln~D!2J1L#82

4
1

@2G2 ln~D!2J1L#9

2

1
@2G2 ln~D!2J1L#8

r
1

1

2
¹2~2C1J2L23G!

2
1

4
~C1J2L2G12lnD !8~2C1J2L23G!8

2B 2e22G1b2~w!. ~3.38!

Our radial eigenvalue equations for singlet states1S0 , 1P1 ,
1D2 have the same potential forms except for thej ( j
11)/r 2 angular momentum barrier term. Later, we sh
show that their potentials actually are different due to
inclusion of isospint1•t2 terms.
1-11
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3P1~a general triplet 3Jj ). For these, L•(s11s2)
522, s1•s251, s1• r̂•s2• r̂51. For the3P1 state the ra-
dial eigenvalue equation is

H 2
d2

dr2
1

j ~ j 11!

r 2
1F~r !J v~r !5b2v~r !

with

F~r !5
@2G2 ln~D!1J2L#82

4
1

@2G2 ln~D!1J2L#9

2

1
~G1J2L2C!8

r
2

1

2
¹2~2C1J2L1G!

1
1

4
@2 ln~D!2~C1J2L13G!#8~J2L2C1G!8
02400
2B 2exp~22G!1b2~w!. ~3.39!

The 3S1 and 3D1 are coupled states described byu2(r )
and u1(r ) and their radial eigenvalue equations are@using
L•(s11s2)52( j 21), s1•s251, s1• r̂•s2• r̂51/(2j 11)
~diagonal term!, and s1• r̂•s2• r̂52Aj ( j 11)/2j 11~off di-
agonal term!# in the form

H 2
d2

dr2
1F11~r !J u21F12~r !u15b2u2 , ~3.40!

H 2
d2

dr2
1

6

r 2
1F22~r !J u11F21~r !u25b2u1 ,

~3.41!

where
F11~r !5H 8

3

~2G 82 ln8D!sinh2~h!

r
1

8

3

~J2L !8cosh~h!sinh~h!

r
2

16

3

sinh2~h!

r 2
1

@2G 82 ln8~D!#2

4
1

~J2L !82

4

1
@2G 82 ln8~D!#~J2L !8

6
1

@2G 92 ln9~D!#

2
1

~J2L !9

6
1

@2G 82 ln8~D!#

r

1
~J2L !8

3r
1

1

3 F2
1

2
¹2~2C1J2L1G!2G8~J2L2C1G!81

1

2
ln8~D!~G1J2L2C!8G1

1

4
G 82

2
1

2
G 8C82

1

4
~C1J2L !8~2C1J2L !82B 2exp~22G!1b2~w!J , ~3.42!

F12~r !5
2A2

3 H ~2G 82 ln8D!S 3 cosh~h!sinh~h!

r
2

sinh2~h!

r D1~J2L !8S 3sinh2~h!

r
2

cosh~h!sinh~h!

r D2
6 cosh~h!sinh~h!

r 2

1
2sinh2~h!

r 2
2

1

2
¹2~2C1J2L1G!2G 8~J2L2C1G!81

3~G1J2L2C!8

2r
1

1

2
ln8~D!~G1J2L2C!8

1
@2G 82 ln8~D!#~J2L !8

2
1

~J2L !9

2
1

~J2L !8

r J , ~3.43!

F22~r !5H 2
8

3

~2G 82 ln8D!sinh2~h!

r
2

8

3

~J2L !8cosh~h!sinh~h!

r
1

16

3

sinh2~h!

r 2
1

@2G 82 ln8~D!#2

4
1

~J2L !82

4

2
@2G 82 ln8~D!#~J2L !8

6
1

@2G 92 ln9~D!#

2
2

~J2L !9

6
2

2@2G 82 ln8~D!#

r
1

2~J2L !8

3r
2

~G1J2L2C!8

r

2
1

3 F2
1

2
¹2~2C1J2L1G!2G8~J2L2C1G!81

1

2
ln8~D!~G1J2L2C!8D G1

1

4
G 82

2
1

2
G 8C82

1

4
~C1J2L !8~2C1J2L !82B 2exp~22G!1b2~w!, ~3.44!

F21~r !5F1224A2F ~J2L !8S sinh2~h!

r
1

1

2r D2
2 cosh~h!sinh~h!

r 2
1

~2G 82 ln8D!cosh~h!sinh~h!

r G ~3.45!
1-12
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TWO-BODY DIRAC EQUATIONS FOR NUCLEON- . . . PHYSICAL REVIEW C 67, 024001 ~2003!
~Note that because of the spin-orbit-tensor term, the poten
is not symmetric.! In Appendix B we give the coupled equa
tions for triplet 3 j j 21 and 3 j j 11 for generalj. The remaining
special case is for the3P0 state and has the form

H 2
d2

dr2
1

2

r 2
1F~r !J v5b2~w!v,

where

F~r !5
@2G2 ln~D!2J1L#82

4
1

@2G2 ln~D!2J1L#9

2

1
@ ln~D!2~4G1J2L22C!#8

r

1
1

2
¹2~2C1J2L1G!2

1

2
G 8C8

1
1

4
@C822~J2L !82#1G 8S 5

4
G1J2L2CD 8

2
1

2
ln8~D!~J2L2C1G!82B 2exp~22G!1b2~w!.

~3.46!

Now we can apply the techniques already developed
the radial Schro¨dinger equation

S 2
d2

dr2
1

l ~ l 11!

r 2
12mVls j~r !D v52mEv ~3.47!

in nonrelativistic quantum mechanics to the above rad
equations by the substitutions

2mVls j~r !→F ls j~r !, 2mE→b2~w!. ~3.48!

By comparingF and 2m one could determine whether ou
F is similar to standard type of phenomenological potent
such as Reid’s potentials. But first, in the following sectio
we discuss the models we used in our calculation. This
cludes how we choose theG, L, and C invariant potential
functions, the mesons we used in our calculation, and
way they enter into the two-body Dirac equations.

IV. THE INVARIANT INTERACTION FUNCTIONS

A. The G and L interaction functions

Our dynamics depends on how we parametrize the inv
ant interaction functionsG, L, andC. We first consider how
to modelG andL, corresponding to vector and scalar inte
actions. As we have seen, in order that Eq.~2.65! and Eq.
~2.66! satisfy Eq.~2.42!, it is necessary that the invarian
functions G, E1 ,E2 , M1, and M2 depend on the relative
separation,x5x12x2, only through the spacelike coordina
four vector x'

m5xm1 P̂m( P̂•x), perpendicular to the tota
four momentumP. For QCD and QED applications,G,
E1 ,E2 are functions@4#, @6# of an invariantA. The explicit
forms for functionsE1 ,E2 , G are
02400
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E15G~e12A!,

E25G~e22A!, ~4.1!

and

G25
1

S 12
2A
w D . ~4.2!

The functionA(r ) is responsible for the covariant electro
magnetic like Ai

m . Even though the dependencies
E1 ,E2 ,G on A are not unique, they are constrained by t
requirement that they yield an effective Hamiltonian with t
correct nonrelativistic and semirelativistic limits~classical
and quantum mechanical@40,41#!. For QCD and QED appli-
cation,M1 and M2 are functions of two invariant function
@3#, @6#, A(r ) andS(r ),

M1
2~A,S!5m1

21G2~2mwS1S2!,

M2
2~A,S!5m2

21G2~2mwS1S2!. ~4.3!

The invariant functionS(r ) is responsible for the scalar po
tential sinceSi50, if S(r )50, while A(r ) contributes to the
Si @if S(r )Þ0] as well as to the vector potentialAi

m . So,
finally, the five invariant functionsG, E1 , E2 , M1, andM2
~or G52J,L) depend on two independent invariant potent
functionsS andA. @Compare also the spin independent po
tions to Eqs.~2.25! and ~2.27! through calculation ofEi

2

2Mi
22b2.#

ExpressingG, E1 , E2 , M1, andM2 in terms ofS andA
is important for semiphenomenological and other appli
tions that emphasize the relationship of the interactions
effective external potentials of the two associated one-b
problems. However, the five invariantsG, E1 , E2 , M1, and
M2 can also be expressed in the hyperbolic representa
@35# in terms of the three invariantsL, J, and G @see Eqs.
~2.63!, ~2.64!, and~2.69!#. L, J, andG generate scalar, time
like vector, and spacelike vector interactions, respectiv
and enter into our Dirac equations via the sumDL1DJ
1DG where Eqs.~2.46!, ~2.47!, and ~2.48! defineDL , DJ ,
DG .

We may use Eqs.~2.41! to relate the matrix potentialsD
to a given field theoretical or semiphenomenological Fe
man amplitude. As mentioned earlier, a matrix amplitu
proportional tog1

mg2m corresponding to an electromagneti
like interaction would require@22# J52G. Matrix amplitude
proportional to eitherI 1I 2 or g1• P̂g2• P̂ would correspond
to semiphenomenological scalar or timelike vector inter
tions. The two-body Dirac equations in the hyperbolic for
of Eq. ~2.41! give a simple version@35# for the norm of the
sixteen component Dirac spinor. The two-body Dirac eq
tions in ‘‘external potential’’ form, Eq.~2.65! and Eq.~2.66!,
@or more generally Eqs.~2.61! and ~2.62!#, are simpler to
reduce to the Schro¨dinger-like form and are useful for nu
1-13
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BIN LIU AND HORACE CRATER PHYSICAL REVIEW C67, 024001 ~2003!
merical calculations~see Sazdjian@38# for a related reduc-
tion!. We describe the parametrization of the pseudosc
interactionC in Eq. ~4.5!.

B. Mesons used in the phase shift calculations

We obtain our semiphenomenological potentials for t
nucleon interactions by incorporating the meson excha
model and the two-body Dirac equations. Because the pio
the lightest meson, its exchange is associated with the lo
est range nuclear force. The shortest range behaviors o
semiphenomenological potentials are modified by the fo
factors, which are treated purely phenomenologically. We
clude heavy mesons that mediate the ranges shorter than
modified by the form factors. The intermediate range par
our semiphenomenological potentials comes from excha
of mesons that are heavier than the pion. We use a tota
nine mesons in our fits. These include scalar mesonss, a0,
and f 0 , vector mesonsr, v, andf; and pseudoscalar me
sonsp, h andh8. In this paper, we are ignoring tensor an
pseudovector interactions, limiting ourselves to vector, sc
and pseudoscalar interactions, all with masses less than a
1000 MeV. See Table I for detailed features of the mes
we used@45# .

C. Modeling the invariant interaction functions

We initially assume the following introduction of scala
interactions into two-body Dirac equations@see Eqs.~2.70!,
~2.71!, and~4.3!#:

S52gs
2 e2msr

r
2~t1•t2!ga0

2 e2ma0
r

r
2gf 0

2 e2mf 0
r

r
, ~4.4!

wheregs
2 , ga0

2 , gf 0

2 are coupling constants for thes, a0, and

f 0 mesons andms , ma0
andmf 0

the corresponding masse

(t1t2) is 1 or 23 for isospin triplet or singlet states.
Pseudoscalar interactions are assumed to enter into

body Dirac equations in the form@see Eq.~3.4!#

C5~t1•t2!
gp

2

w

e2mpr

r
1

gh
2

w

e2mhr

r
1

gh8
2

w

e2mh8r

r
, ~4.5!

TABLE I. Data on mesons (T represents isospin,G represents
parity, J represents spin, andp represents parity!.

Particles Mass~MeV! TG Jp Width ~MeV!

p6 139.570 1860.000 35 12 02

p0 134.976660.0006 12 02

h 547.360.12 01 02 (1.1860.11)31023

r 769.360.8 11 12 150.260.8
v 782.5760.12 02 12 8.4460.09
h8 957.7860.14 01 02 0.20260.016
f 1019.41760.014 02 12 4.45860.032
f 0 980610 01 01 40 to 100
a0 984.861.4 12 01 50 to 100
s 500–700 01 01 600 to 1000
02400
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wherew5e11e2 is the total energy of two nucleon system
gp

2 , gh
2 , gh8

2 are coupling constants for mesonsp, h, and
h8, respectively, andmp , mh , andmh8 the corresponding
masses. This form forC yields the correct limit at low en-
ergy.

We also initially assume that our vector interactions en
into two-body Dirac equations in the form@see Eqs.~4.1!
and ~4.2!#

A5~t1•t2!gr
2 e2mrr

r
1gw

2 e2mwr

r
1gf

2 e2mfr

r
, ~4.6!

wheregr
2 , gv

2 , gf
2 are coupling constants for mesonsr, v,

andf andmr , mv andmf are the corresponding masses
We use form factors to modify the smallr behaviors inS,

C, andA, that is, the shortest range part of nucleon-nucle
interaction. We choose our form factors by replacingr in S,
C, andA with

r→Ar 21r 0
2. ~4.7!

In our first model, we just use two differentr 0’s to fit the
experimental data, oner 0 for the pion, one for all the othe
eight mesons which are heavier than the pion. We set th
two r 0’s as two free parameters in our fit. These form facto
are different from the conventional choices, usually given
momentum space, but the effects are similar.

In the constraint equations,A andSare relativistic invari-
ant functions of the invariant separationr 5Ax'

2 ~see below
for the distinction betweenA andA). Since it is possible tha
A andS, as identified from the nonrelativistic limit, can tak
on large positive and negative values, it is necessary
modify G, E1 , E2 , M1, andM2 so that the interaction func
tions remain real whenA become large and repulsive@24#.
These modifications are not unique but must maintain cor
limits.

We have tested several models, two of which can give
fair to good fit to the experimental data.

~a! Model 1. For Ei5G(e i2A) to be real, we
only require that G be real or A ,w/2. This
restriction on A is enough to ensure thatMi

5GAmi
2(122A/w)12mwS1S2 be real as well~as long as

S>0). In order thatA be so restricted we choose to redefi
it as

A5A, A<0, ~4.8!

A5
A

A4A21w2
, A>0. ~4.9!

This parametrization gives anA that is continuous through
its second derivative.

We next consider the problems that may arise in the li
when one of the masses becomes very large@24#. Even
though both our masses used in this paper are equal
demand that our equations display correct limits. We m
modify M1 andM2 so that it has the correct static limit~say
m2→`). It does appear thatM1→m11S when m2→`.
1-14



-

ua
ia
n
fo

es

t

n
h

e

ng

an-
ule

im-
ion
e-

mal
de

-

s?

e

n

TWO-BODY DIRAC EQUATIONS FOR NUCLEON- . . . PHYSICAL REVIEW C 67, 024001 ~2003!
However, this is only true ifm11S>0. In other words, in
the limit m2→`, the two-body Dirac equations would re
duce to

~g•p11um11Su!uc&50. ~4.10!

This would deviate from the standard one-body Dirac eq
tion in the region of strong attractive scalar potent
(S,2m1). In order to correct this problem, we take adva
tage of the hyperbolic parametrization. We desire a form
Mi that has the expected behavior (Mi→mi1S in the limit
whenSbecomes large and negative and one of the mass
large!. So we modify ourL in the following way@24#

sinhL5
SG2

w S 11
G2~ew2A!S

mwAw21S2 D , S,0 ~4.11!

and for

S.0,

M1
25m1

21G2~2mwS1S2!,

M2
25m2

21G2~2mwS1S2! ~4.12!

with Eqs.~2.63!.
A crucial feature of this sinhL extrapolation is that for

fixed S, the static limit(m2@m1) form is sinhL→S/w, which
leads to M1→m11S. The above modifications are no
unique, given the correct semirelativistic limits@24#.

~b! Model 2.This model comes from the work of Sazdjia
@41#. Using a special technique of amplitude summation,
was able to sum an infinite number of Feynman diagrams~of
the ladder and cross ladder variety!. For the vector interac-
tions, he obtained results that correspond to Eqs.~2.27!–
~2.29! and Eqs.~4.1!–~4.2! @modified here in Eq.~4.9! for
A>0]. For scalar interactions@L(S,A)# he obtained two re-
sults. One again agrees with Eq.~2.25! and Eqs.~4.3!. As we
have seen above, this must be modified@see Eq.~4.11!# for
S<0. His second result is the one we use here for our s
ond model for@L(S,A)#. That replaces Eq.~4.11! and Eq.
~4.12! with the model

S1A.0,

then

S→2A1
~S1A!w

A4~S1A!21w2
, ~4.13!

while if

S1A,0

we let

S→2A1S1A. ~4.14!

In both cases we let
02400
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l
-
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sinhL5sinhF2
1

2
lnS 12

2~S1A!

w D2GG . ~4.15!

D. Nonminimal coupling of vector mesons

The coupling of the vector mesons in Eq.~4.6! corre-
sponds in quantum field theory to the minimal coupli
grVmc̄gm c analogous toeAmc̄gm c in QED. In our model,
we are not concerned about renormalization, since the qu
tum field theory is not fundamental, so that we cannot r
out the nonminimal coupling of ther, v, f analogous to

i
e

2M
c̄@gm,gn#cFmn . ~4.16!

We can convert the above expressions to something s
pler by integration by parts and using the free Dirac equat
for the spinor field. This nonrenormalizable interaction b
comes

i
e

2M
c̄@gm,gn#cFmn

→2 i
4emN

M
c̄gmcAm2 i

2e

M
@c̄]mc2~]mc̄!c#Am .

~4.17!

The first term can be absorbed into the standard mini
coupling while the second term gives rise to an amplitu
written below. Changing from photon to vector mesons (r)
and using on shell features, we find

4 f r
2S hmn1

qmqn

mr
2 D ~p1p8!m~p1p8!n

M2~q21mr
22 i«!

5
4 f r

2~p1p8!2

M2~q21mr
22 i«!

5
24 f r

2~4mN
2 1q2!

M2~q21mr
22 i«!

, ~4.18!

whereq5p2p8. The massM is a mass scale for the inter
action, mN is the fermion~nucleon! mass, andmr is the r
meson mass.

How does this interaction modify our Dirac equation
Which of the eight or so invariants are affected@see Eqs.
~2.46!–~2.56!#? In terms of its matrix structure, the abov
would appear to contribute to what we calledDL @see Eq.
~2.46!#. It is as if we include an additional scalar interactio
with an exchanged mass of ar and subtract from it the
Laplacian@the q2 terms in Eq.~4.18!#. That is,

S→S1S82¹2S8/4mN
2 , ~4.19!

where

S852
16mN

2

M2

f r
2exp~2mrr !

r
, ~4.20!
1-15
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BIN LIU AND HORACE CRATER PHYSICAL REVIEW C67, 024001 ~2003!
so that the modification is rather simple. It has the oppo
sign as the vector interaction. That is, it would produce
attractive interaction forpp scattering. But to lowest order
its attractive effects are canceled by the contribution of
first term on the right hand side of Eq.~4.17!. In our appli-
cation, this means that Eq.~4.4! and Eq.~4.6! are replaced
@including ther 0 by Eq. ~4.7!# by

S52gs
2 e2ms r̄

r̄
2t1•t2ga0

2 e2ma0
r̄

r̄
2gf 0

2 e2mf 0
r̄

r̄
2S8,

~4.21!

where

S85~t1•t2!gr8
2S 12

¹2

4mN
2 D e2mr r̄

r̄
1gw8

2S 12
¹2

4mN
2 D e2mwr̄

r̄

1gf8
2S 12

¹2

4mN
2 D e2mf r̄

r̄
~4.22!

and

A5~t1•t2!~gr
21gr8

2!
e2mr r̄

r̄
1~gw

2 1gw8
2!

e2mwr̄

r̄

1~gf
2 1gf8

2!
e2mf r̄

r̄
, ~4.23!

wheregr8
2 , gv8

2 , gf8
2 are also coupling constants we will fi

V. VARIABLE PHASE APPROACH FOR CALCULATING
PHASE SHIFTS

In this section, we discuss and review the phase s
methods that we used in our numerical calculations, wh
include phase shift equations for uncoupled and coup
states and the phase shift equations with Coulomb potent
The variable phase approach developed by Calogero has
eral advantages over the traditional approach. In the tr
tional approach, one integrates the radial Schro¨dinger equa-
tion from the origin to the asymptotic region where t
potential is negligible, and then compares the phase of
radial wave function with that of a free wave and thus obt
the phase shift. In the variable phase approach we need
integrate a first-order nonlinear differential equation from
origin to the asymptotic region, thereby obtaining direc
the value of the scattering phase shift.

This method is very convenient for us since we can
duce our two-body Dirac equations to a Schro¨dinger-like
form for which the variable phase approach was develop
Thus, we can conveniently use this variable phase metho
compute the phase shift for our relativistic two-body equ
tions.
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A. Phase shift equation for uncoupled Schro¨dinger equation

Reference@16# gives a derivation of a nonlinear equatio
for the phase shift for the scattering on a spherically sy
metrical potential with the boundary condition

ul~0!50 ~5.1!

of the radial uncoupled Schro¨dinger equation

ul9~r !1Fk22
l ~ l 11!

r 2
2V~r !Gul~r !50. ~5.2!

The radial wave function is real, and it defines the ‘‘scatt
ing phase shift’’d l through the comparison of its asymptot
behavior with that of the sine function:

ul~r ! →
r→`

const•sinS kr2
lp

2
1d l D . ~5.3!

The equation that Calogero derives is

t l8~r !52
1

k
V~r !@ ̂ l~kr !2t l~r !n̂l~kr !#2, ~5.4!

where t l(r ) has the limiting value tand l with the boundary
conditiont l(0)50. This is a first-order nonlinear differentia
equation and can be rewritten@16# in terms of another func-
tion d l(r ) defined by

t l~r !5tand l~r ! ~5.5!

with the boundary condition

d l~r ! →
r→0

0 ~5.6!

and limiting value

lim
r→`

d l~r ![d l~`!5d l . ~5.7!

The differential equation ford l(r ) is @16#

d l8~r !52k21V~r !@cosd l~r ! ̂ l~kr !2sind l~r !n̂l~kr !#2.
~5.8!

The solution of this first-order nonlinear differential equati
yields asymptotically the value of the scattering phase sh
The functiond l(r ) is named the ‘‘phase function’’ and Eq
~5.8! is called the ‘‘phase equation.’’ It is our main tool fo
studying the properties of scattering phase shifts. Equa
~5.8! becomes particularly simple in the case ofS waves,

d08~r !52k21V~r !sin2@kr1d0~r !#. ~5.9!

Now, since our Schro¨dinger-like equation in CM system
has the form

@“22b22F#uc&50, ~5.10!

we can directly follow the above steps to obtain the ph
shift by swappingk→b , andV→F. There is no change in
the phase shift equation, even though our quasipotentiaF
depends on the CM system energyw.

We have found it convenient to put all the angular m
mentum barrier terms in the potentials, and change all
phase shift equations to the form ofS-state-like phase shif
1-16
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equations@16#. This puts our phase shift equations in a mu
simpler form. For spin singlet states, our phase shift eq
tions become just

d l8~r !52b21F l~r !sin2@br1d l~r !#. ~5.11!

This equation is similar to the1S0 state phase equation@see
Eq. ~5.9!#, but it works well for all the singlet states when th
angular momentum barrier term@ l ( l 11)/r 2# is included in
F l(r ),

F l~r !5F~r !1
l ~ l 11!

r 2
. ~5.12!

Because the nucleon-nucleon interactions are short ra
we integrate our phase shift equations~for both the singlet
and triplet states! to a distance@for example, 6 fermis# where
the nucleon-nucleon potential becomes very weak. Then
angular momentum barrier termsl ( l 11)/r 2 dominate the
potentialF l(r ) and we let our potentialF l(r )5 l ( l 11)/r 2

and integrate our phase shift equations from 6 fm to infin
to get our phase shift.~This can be done analytically in th
case of the uncoupled equations@16#.!

Because of the modification of our phase shift equatio
we also need to modify our boundary conditions for pha
shift equations. For the uncoupled singlet states1P1 , 1D2
and triplet states3P0 , 3P1, the modified boundary condi
tions are@16#

d l8~0!52
l

l 11
b. ~5.13!

This is implemented numerically by an additional bounda
condition atr 5h, so our boundary conditions for uncouple
singlet states1P1 , 1D2 and triplet states3P0 , 3P1 are

d l~h!52
l

l 11
bh, ~5.14!

whereh is the step size in our calculation,b5Ab2, and, of
coursed l(0)50. So forP and D states, the new boundar
conditions ared1(h)52 1

2 bh and d2(h)52 2
3 bh, respec-

tively.

B. Phase shift equation for coupled Schro¨dinger equations

For coupled Schro¨dinger-like equations, the phase sh
equation involves coupled phase shift functions. We disc
an approach here different from that originally presented
Ref. @17#. The key idea for this new derivation is taken fro
the one presented in a well known quantum text@46#. We
present an appropriate adaptation of this idea here in
uncoupled case to demonstrate the general idea and the
tend it to the coupled case. Consider a radial equation of
form

S 2
d2

dr2
1F l~r !D u5b2u.

Following Ref.@46# we assume
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u~r !5A~r !sin@br1d l~r !#, ~5.15!

u8~r !5bA~r !cos@br1d l~r !#. ~5.16!

Taking the derivative of the first equation we find that

A852Ad l8cot~br1d! ~5.17!

and then using this and Eq.~5.16! the above radial Schro¨-
dinger equation reduces to Eq.~5.11!.

The coupled radial Schro¨dinger equation has the form

U952b2U1
1

2
~FLU1UFL!, ~5.18!

where bothU andFL are 232 matrices. The effective qua
sipotential matrix is of the form

FL5S F111
l 1~ l 111!

r 2
F12

F21 F221
l 2~ l 211!

r 2

D , ~5.19!

while the matrix wave function is assumed to be of the fo

U5
1

2
@A sin~br1D!1sin~br1D!A#, ~5.20!

U85
b

2
@Acos~br1D!1cos~br1D)A#, ~5.21!

with ~using Pauli matrices to designate the matrix structu!

D5d1D•s,

A5a1A•s. ~5.22!

~The functionsD, A are not related to earlier functions th
use the same symbols.! We further assume~for real and sym-
metric potentials! that both the phase and amplitude fun
tions are diagonalized by the same orthogonal matrix

ŨÄRUR215~a1As3!sin~br1d1Ds3!. ~5.23!

Combining Eqs.~5.20! and~5.21! together with Eq.~5.18! so
as to produce the analog of the phase shift Eq.~5.17! requires
we use the following properties of the orthogonal matrixR:

R5S cos«~r ! sin«~r !

2sin«~r ! cos«~r !
D ,

R8R215«8S 0 1

21 0D 5«8is2 . ~5.24!

In Appendix C we derive the coupled phase shift equatio
@d5(d11d2)/2, D5(d12d2)/2] below:
1-17
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d18~r !52
1

b F S F111
l 1~ l 111!

r 2 D cos2«~r !

1S F221
l 2~ l 211!

r 2 D sin2«~r !1F12sin 2«~r !G
3sin2@br1d1~r !#, ~5.25!

d28~r !52
1

b F S F221
l 2~ l 211!

r 2 D cos2«~r !

1S F111
l 1~ l 111!

r 2 D sin2«~r !2F12sin 2«~r !G
3sin2@br1d2~r !#, ~5.26!

«8~r !5
1

bsin@d1~r !2d2~r !# H 1

2 FF111
l 1~ l 111!

r 2

2F22

l 2~ l 211!

r 2 Gsin 2«~r !2F12cos 2«~r !J
3sin@br1d1~r !#sin@br1d2~r !#. ~5.27!

Similar coupled equations are derived in Ref.@17# for
coupledS-wave equations. Since our potentials include
angular momentum barrier terms we use simple trigonom
ric functions in place of spherical Bessel and Hankel fu
tions. This requires a modification of the boundary con
tions just as in the uncoupled case. To this end, we fin
most convenient to rewrite the above three equations in
matrix form

TL852
1

b
@sin2~br !FL1sin~br !cos~br !~FLTL1TLFL!

1cos2~br !TLFLTL# ~5.28!

in which the matrixTL has eigenvalues of tand1 and tand2.
The actual phase shifts are

d15d1~r→`!,

d25d2~r→`!, ~5.29!

«5«~r→`!.

The first boundary conditions on the above equations is

TL~0!50. ~5.30!

The further numerical boundary condition that we need
«(h), d1(h), andd2(h) are from~for small h)

TL~h!5hTL8~0!. ~5.31!

At small r, we can approximate ourFL for coupledSandD
states in terms of their smallr behavior. We find@47#
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FL5
1

r 2 S h2 h0

h0 61h1
D . ~5.32!

Substitute Eq.~5.31! and Eq.~5.32! into Eq. ~5.28! and we
find

TL~h!5hTL8~0!5bhS a b

b 2
2

3
1gD , ~5.33!

where

a52h2 ,

b52
1

3
h0 , ~5.34!

g52
h1

45
.

Then we can find«(h), tand2(h), and tand1(h) by
diagonalizing the matrixTL(h). The matrix diagonalizing
TL(h) is

S cos« 2sin«

sin« cos«
D .

This leads to the initial conditions

tan~2«!5

2

3
h0

h22S 2

3
1

h1

45D
tand2~h!5T115bhF2h2cos2«2

2

3
h0cos« sin«

2S 2

3
1

h1

45D sin2«G , ~5.35!

tand1~h!5T225bhF2h2sin2«1
2

3
h0cos«sin«

2S 2

3
1

h1

45D cos2«G
and from these initial conditions we can then integrate
equations~5.25!–~5.27! for the coupled system.@Note how
these reduce to the uncoupled initial condition Eq.~5.14!
with no coupling.#

VI. PHASE SHIFT CALCULATIONS

It is our aim to determine if an adequate description of
nucleon-nucleon phase shifts can be obtained by the us
the CTBDE to incorporate the meson exchange model
contrast to the relativistic equations used in other approac
@21,48–50,18,19#, the CTBDE can be exactly reduced to
1-18



l
W
t t
tt
e

t
55
a

t

ng

n-

e
th
at
n

sh
i

l
s
ri

n
by
m
a
to
b

b
w

th
ra
m
ry
e
ng

th

o
e

an-
am-

stric-
two
r 3
. At

ur

fit
ular

eri-
el 1
II.
r to

ing
hifts
m-

e

s.

a

3

a

2
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local Schro¨dinger-like form. This allows us to gain additiona
physical insight into the nucleon-nucleon interactions.
test our two models to find which one gives us the best fi
the experimental phase shift data in nucleon-nucleon sca
ing. These two models are among many that have b
tested.

The data set@20# that we used in our test consists ofpp
and np nucleon-nucleon scattering phase shift data up
TLab5350 MeV published in physics journals between 19
and 1992. In our fits, we use experimental phase shift d
for NN scattering in the singlet states1S0 , 1P1 , 1D2 and
triplet states3P0 , 3P1 , 3S1 , 3D1. We use our parameter fi
results fromnp scattering to predicate the result inpp scat-
tering. ~The variable phase method for potentials includi
the Coulomb potential is reviewed in Appendix D.! Thus we
did not put thepp scattering data of singlet states1S0 , 1D2
and triplet states3P0 , 3P1 into our fits. ~There is nopp
scattering in1P1 , 3S1, and 3D1 states because of the co
sideration of the Pauli principle!.

We use seven angular momentum states in our fit. Th
are 11 data points for every angular momentum state, in
energy range from 1 to 350 MeV, so the total number of d
points in our fits is 77. To determine the free coupling co
stant~and the sigma massms) in our potentials, we have to
perform a best fit to the experimentally measured phase
data. The coupling constants are generally searched by m
mizing the quantityx2. The definition of ourx2 is

x25(
i

H d i
th2d i

exp

Dd i
J 2

, ~6.1!

whered i
th are theoretical phase shifts,d i

exp are experimenta
phase shifts, and we letDd i51°. ~Our model at this stage i
too simplified to perform a fit that involves the actual expe
mental errors!.

We have tried several methods to minimize ourx2: the
gradient method, grid method, and Monte Carlo simulatio
Our x2 drops very quickly at the beginning if we search
the gradient method, then it always hits some local mini
and cannot jump out. Obviously, the grid method should le
us to the global minimum. The problem is that if we want
find the best fit parameters we must let the mesh size
small. But then the calculation time becomes unbeara
long. On the other hand if we choose a larger mesh, we
miss the parameters that we are looking for.

We found that the Monte Carlo method can solve
above dilemma. We set a reasonable range for all the pa
eters that we want to fit and generate all our fitting para
eters randomly. Initially, the calculation time is also ve
long for this method, but it can lead us to a rough area wh
our fitting parameters are located. Then we shrink the ra
for all our fitting parameters and do our calculation again~or
use the gradient method in tandem!, our calculation time
then being greatly reduced. By repeating several times in
same way, we can finally find the parameters.

To expedite our calculations further, we put restrictions
1S0 and 3S1 states. After every set of parameters is gen
ated randomly, we first test it on the1S0 state at 1 MeV. For
1S0 state, if
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ud i
th2d i

expu.0.2ud i
expu ~6.2!

we let the computer jump out of this loop and generate
other set of parameters and test it again until a set of par
eters passes this restriction. Then we test it on the3S1 states
at 1 MeV with the same restriction. We only calculated i

th at
higher energy if a set of parameters passes these two re
tions. Our code can run at least 50 times faster by these
restrictions. After we shrink our parameter ranges 2 o
times, all of our parameters are confined in a small region
this time, we may change our restriction to

ud i
th2d i

expu.0.15ud i
expu ~6.3!

and put restriction on1P1 states or any other states to let o
code run more efficiently.

Using this method we tried several different models to
the phase shift experimental data of seven different ang
momentum states including the singlet states1S0 , 1P1 , 1D2
and triplet states3P0 , 3P1 , 3S1 , 3D1. Two models that we
discussed above can give us a fairly good fit to the exp
mental data. The parameters which we obtained for mod
are listed in Table II, and for model 2 are listed in Table I
For the features of mesons in Tables II and III, please refe
Table I and Eqs.~4.4!–~4.6!. The sigma mass is in MeV
while the structure parameterr 0 is in inverse MeV.

A. Model 1

The theoretical phase shifts that we calculated by us
the parameters for model 1 and the experimental phase s
for all the seven states are listed in Table IV. We use para
eters given above to predict the phase shift ofpp scattering.
Our prediction for the fourpp scattering states that includ
singlet states1S0 , 1D2 and triplet states3P0 , 3P1 are listed
in Table V.

The results fornp scattering are also presented from Fig
1–7 and forpp scattering from Figs. 8–11.

TABLE II. Parameters from fitting experimental dat
~model 1!.

h h8 s r v p a0

g2 2.25 4.80 47.9 11.6 16.5 13.3 0.13
r 0(31023) 2.843 2.843 2.843 2.843 2.843 0.645 2.84

f f 0 r8 v8 f8 ms

g2 5.64 19.9 0.34 20.6 3.10 724.1
r 0(31023) 2.843 2.843 2.843 2.843 2.843

TABLE III. Parameters from fitting experimental dat
~model 2!.

h h8 s r v p a0

g2 0.88 1.70 54.7 2.58 18.3 13.6 10.5
r 0(31023) 1.336 1.264 3.180 6.640 2.627 1.717 9.28

f f 0 r8 v8 f8 ms

g2 9.12 33.5 5.11 28.6 12.1 694.3
r 0(31023) 11.45 4.447 6.640 2.627 11.45
1-19
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TABLE IV. np scattering phase shift of1S0 , 1P1 , 1D2 , 3P0 , 3P1 , 3S1, and 3D1 states~model 1!.

Energy 1S0
1P1

1D2
3P0

~MeV! Expt. Theor. Expt. Theor. Expt. Theor. Expt. Theor.

1 62.07 59.96 20.18720.359 0.00 0.00 0.18 0.00
5 63.63 63.48 21.48721.169 0.04 0.00 1.63 1.55
10 59.96 60.40 23.03922.870 0.16 0.05 3.65 3.57
25 50.90 51.95 26.31126.641 0.68 0.52 8.13 8.72
50 40.54 41.65 29.670210.23 1.73 1.13 10.70 11.62
100 26.78 26.64 214.52213.49 3.90 2.00 8.460 10.17
150 16.94 15.18 218.65215.26 5.79 2.51 3.690 5.688
200 8.940 5.615 222.18216.49 7.29 2.91 21.44 0.66
250 1.96022.719 225.13217.60 8.53 3.11 26.51 24.38
300 24.460210.16 227.58218.63 9.69 3.55 211.4729.206
350 210.59216.94 229.66219.68 10.96 3.311 216.39213.81
Energy 3P1

3S1
3D1 «

~MeV! Expt. Theor. Expt. Theor. Expt. Theor. Expt. Theor.

1 20.11 20.33 147.747 142.692 20.005 0.719 0.105 0.287
5 20.94 20.88 118.178 112.670 20.18320.176 0.672 1.224
10 22.06 22.26 102.611 98.215 20.67720.256 1.159 1.951
25 24.88 25.70 80.63 78.38 22.79922.910 1.793 2.587
50 28.25 210.18 62.77 62.00 26.43326.947 2.109 2.495
100 213.24216.66 43.23 43.18 212.23213.94 2.420 3.013
150 217.46222.12 30.72 30.64 216.48219.35 2.750 3.562
200 221.30226.98 21.22 20.95 219.71223.78 3.130 4.489
250 224.84231.46 13.39 12.95 222.21227.62 3.560 5.682
300 228.07235.67 6.600 6.127 224.14231.01 4.030 6.982
350 230.97239.58 0.502 0.171 225.57234.15 4.570 8.536
in
h
th

d

.
ver

fit.
de
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lar.
of
B. Model 2

The theoretical phase shifts that we calculated by us
the parameters for model 2 and the experimental phase s
for all the seven states are listed in Table VI. We also use
parameters for model 2 to predict the phase shift ofpp scat-
tering.

The predictions for the fourpp scattering states are liste
in Table VII. The results of model 2 fornp scattering are
02400
g
ifts
e

given in Figs. 12–18 and forpp scattering are given in Figs
19–22. Our results show for this model an improvement o
those of model 1, especially for the the singletP and D
states. However, there is still much to be desired in the
One possible cause of this problem is that we did not inclu
tensor and pseudovector interactions in our covariant po
tials, limiting ourselves to scalar, vector, and pseudosca
Another may be the ignoring of the pseudovector coupling
TABLE V. pp scattering phase shift of1S0 , 1D2 , 3P0, and 3P1 states~model 1!.

Energy 1S0
1D2

3P0
3P1

MeV Expt. Theor. Expt. Theor. Expt. Theor. Expt. Theor.

1 32.68 51.95 0.00120.091 0.134 0.381 20.08121.215
5 54.83 55.47 0.04320.183 1.582 0.954 20.90222.536
10 55.22 54.45 0.16520.270 3.729 1.773 22.06023.864
25 48.67 47.64 0.69620.441 8.575 5.422 24.93227.932
50 38.90 37.77 1.71120.504 11.47 9.766 28.317213.15
100 24.97 23.63 3.790 0.511 9.450 7.862 213.26218.45
150 14.75 12.37 5.606 1.141 4.740 3.812 217.43224.42
200 6.550 3.024 7.058 2.407 20.37021.178 221.25228.50
250 20.31 25.15 8.270 2.994 25.43026.193 224.77233.26
300 26.15 212.55 9.420 3.136 210.39210.98 227.99237.63
350 211.13219.27 10.69 2.902 215.30215.42 230.89241.13
1-20
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the pseudoscalar mesons to the nucleon. Our results inpp
scattering show that if we obtain a good fit innp scattering
our predicted results inpp scattering will also be good. Thi
means that it is unnecessary to includepp scattering in the
our fit, we may use the parameters obtained innp scattering
to predict the results inpp scattering. Overall, our results ar
promising and indicate that the two-body Dirac equations
constraint dynamics together with the meson excha
model are suitable to construct semiphenomenological
tential models for nucleon-nucleon scattering.

VII. CONCLUSION

The two-body Dirac equations of constraint dynam
constitute the first fully covariant treatment of the relativis
two-body problem that has the following properties.

~a! Includes constituent spin.

FIG. 1. np scattering phase shift for1S0 state~model 1!.

FIG. 2. np scattering phase shift for1P1 state~model 1!.
02400
f
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~b! Regulates the relative time in a covariant manner.
~c! Provides an exact reduction to four decoupled fo

component wave equations.
~d! Includes non-perturbative recoil effects in a natu

way that eliminates the need for singularity-softening para
eters or finite particle size in semiphenomenological appli
tions to QCD.

~e! Is canonically equivalent in the semirelativistic a
proximation to the Fermi-Breit approximation to the Beth
Salpeter equation.

~f! Unlike the Bethe-Salpeter equation and most ot
relativisitc approaches has a local momentum structure
simple as that of the nonrelativistic Schro¨dinger equation.

~g! Is well defined for zero-mass constituents~hence, per-
mits investigation of the chiral symmetry limit!

~h! Possesses spin structure that yields an exact solu
for singlet positronium.

FIG. 3. np scattering phase shift for1D2 state~model 1!.

FIG. 4. np scattering phase shift for3P0 state~model 1!.
1-21
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BIN LIU AND HORACE CRATER PHYSICAL REVIEW C67, 024001 ~2003!
~i! Has static limits that are relativistic, reducing to th
ordinary single-particle Dirac equation in the limit that eith
particle becomes infinitely heavy.

~j! Possesses a great variety of equivalent forms that
rearrangements of its two coupled Dirac equations~hence is
directly related to many previously-known quantum descr
tions of the relativistic two-body system!.

These structures play an essential role in the succes
this approach to both QCD and QED bound states. Wha
noteworthy in the latter application is that one need o
identify the nonrelativistic parts, i.e., the lowest order form
of A and S. The spin-dependent and covariant structure
the two-body Dirac formalism then automatically stamps
the correct semirelativistic spin dependent and spin indep
dent corrections and provides well defined higher order r
tivistic corrections as well. In addition, the constraint form
ism, although rooted in classical mechanics, has cl

FIG. 5. np scattering phase shift for3P1 state~model 1!.

FIG. 6. np scattering phase shift for3S1 state~model 1!.
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connections to the Bethe-Salpeter equation of quantum fi
theory @36# and with Wigner’s formulation of relativistic
quantum mechanics as a symmetry of quantum theory@43#.

In this paper we have shown that these two-body Di
equations may provide a reasonable account of the nucl
nucleon scattering data when combined with the meson
change model. What makes this result important is that i
accomplished with a local and covariant formulation of t
two-body problem. What makes this unique is that this a
proach has been thoroughly tested in a nonperturbative
text for both QED and QCD bound states. It is not given th
success in one or even both areas would imply that the
malism would do well in another. In particular, the fits cou
have easily been disastrous, given the minimal coupling i
we have used~based in part on the earlier work on the qu
sipotential approach of Todorov!. The reason for some doub
is that these minimal coupling forms~generalized to the sca

FIG. 7. np scattering phase shift for3D1 state~model 1!.

FIG. 8. pp scattering phase shift for1S0 state~model 1!.
1-22
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TWO-BODY DIRAC EQUATIONS FOR NUCLEON- . . . PHYSICAL REVIEW C 67, 024001 ~2003!
lar interactions as well as the vector! lead to the scalar and
vector potentials appearing squared. Because of the siz
the coupling constants, the deviation from the standard ef
tive potentials could have been considerable in all ca
There are other nonperturbative structures that appear in
Pauli reduction of our equations to Schro¨dinger-like form
~typical of what appears in the Pauli reduction of the on
body Dirac equation! that could also have prevented an
reasonable results. So the general agreement we obta
with the data is very encouraging that this approach could
extended to include more general interactions.

An important step in our reduction was that we put t
equation in a form for which we can apply the techniqu
that have been already developed for the Schro¨dinger-like
system in nonrelativistic quantum mechanics. This requi
that we get rid of first derivative terms. For the uncoupl
states, it is pretty straightforward. For the coupled states

FIG. 9. np scattering phase shift for1D2 state~model 1!.

FIG. 10. pp scattering phase shift for3P0 state~model 1!.
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used a different spin-matrix approach that works for both
uncoupled and coupled states simultaneously.

We then tested several models by using the variable ph
methods. We found it most convenient to put all the angu
momentum barrier terms in the potentials, and change all
phase shift equations to the form ofS-state-like phase shif
equations@see Eqs.~5.11!, ~5.25!, ~5.26!, and~5.27!#.

After several models and several methods to minimize
x2 were tested, we found two models that can lead us t
fairly good fit to the experimental phase shift data.

The most important equation used in our phase s
analysis for nucleon-nucleon scattering is Eq.~3.32! . It is a
coupled Schro¨dinger-like equation derived from two-bod
Dirac equations with no approximations. All of our radi
wave equations for any specific angular momentum state
obtained from this equation.

We use nine mesons in our fit. We summarize the mes
nucleon interactions we used by writing the quantum fi
theory Lagrange function for their effective interactions,

LI5gsc̄cs1gf 0
c̄c f 01ga0

c̄tc•a01grc̄gmtc•rm

1gvc̄gmcvm1gfc̄gmcfm2 igpc̄g5tc•p

2 ighc̄g5ch2 igh8c̄g5ch8, ~7.1!

wherec represent the nucleon field,s, f 0 , . . . represent
the meson fields.

Several models have been tested by using the vari
phase methods, two models can lead us to a fairly good fi
the experimental phase shift data. We use the parameters
give good fits to thenp scattering data to predict the pha
shifts for thepp scattering. These lead to a good predicti
for the pp scattering based on the parameters we obtai
~with noted exceptions!. This means that our work has show
a promising result. The following are some suggestions
improve our work in the future.

FIG. 11. pp scattering phase shift for3P1 state~model 1!.
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TABLE VI. np scattering phase shift of1S0 , 1P1 , 1D2 , 3P0 , 3P1 , 3S1, and 3D1 states~model 2!.

Energy 1S0
1P1

1D2
3P0

~MeV! Expt. Theor. Expt. Theor. Expt. Theor. Expt. Theor.

1 62.07 60.60 20.18720.358 0.00 0.02 0.18 0.00
5 63.63 63.50 21.48721.163 0.04 0.15 1.63 1.61
10 59.96 60.20 23.03922.857 0.16 0.39 3.65 3.74
25 50.90 51.44 26.31126.629 0.68 0.40 8.13 9.28
50 40.54 40.91 29.670210.36 1.73 1.37 10.70 12.69
100 26.78 25.86 214.52214.44 3.90 2.42 8.460 11.74
150 16.94 14.62 218.65217.55 5.79 3.62 3.690 7.399
200 8.940 5.435 222.18220.37 7.29 4.55 21.44 2.36
250 1.96022.428 225.13223.15 8.53 5.24 26.51 22.78
300 24.46029.330 227.58225.87 9.69 5.34 211.4727.746
350 210.59215.52 229.66228.54 10.96 5.30 216.39212.52
Energy 3P1

3S1
3D1 «

~MeV! Expt. Theor. Expt. Theor. Expt. Theor. Expt. Theor.

1 20.11 20.32 147.747 144.797 20.005 0.719 0.105 0.264
5 20.94 20.81 118.178 115.232 20.18320.172 0.672 1.106
10 22.06 22.08 102.611 100.668 20.67720.239 1.159 1.723
25 24.88 25.07 80.63 80.66 22.79922.834 1.793 2.099
50 28.25 28.68 62.77 64.30 26.43326.798 2.109 1.708
100 213.24213.55 43.23 45.68 212.23213.77 2.420 1.663
150 217.46217.74 30.72 33.35 216.48219.34 2.750 1.541
200 221.30221.67 21.22 23.80 219.71224.11 3.130 1.648
250 224.84225.47 13.39 15.90 222.21228.38 3.560 1.834
300 228.07229.14 6.600 9.099 224.14232.29 4.030 1.965
350 230.97232.67 0.502 3.095 225.57236.01 4.570 2.147
re
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VIII. SUGGESTIONS FOR FUTURE WORK

A. Other Model Tests

More model testing is absolutely necessary in the futu
By model we mean the way we place the perturbative in
actions that arise from Eq.~7.1! into the nonperturbative
forms we need forL, C, andG. During our fits, we found tha
our final results are sensitive to the model we chose rang
from very bad fits to the fits presented here. Changing
02400
.
r-

g
e

way to modify the interactions and the way mesons en
into the two-body Dirac equations may provide a new opp
tunity to improve our fit.

B. Including World Tensor Interactions

We have included just scalar, pseudoscalar, and ve
interactions in our potentials through the invariant forms li
L, C, andG. Treating two-body Dirac equations with tens
TABLE VII. pp scattering phase shift of1S0 , 1D2 , 3P0, and 3P1 states~model 2!.

Energy 1S0
1D2

3P0
3P1

MeV Expt. Theor. Expt. Theor. Expt. Theor. Expt. Theor.

1 32.68 52.40 0.00120.116 0.134 0.417 20.08121.172
5 54.83 55.48 0.04320.232 1.582 1.042 20.90222.434
10 55.22 54.24 0.16520.327 3.729 1.934 22.06023.682
25 48.67 47.13 0.69620.524 8.575 5.943 24.93227.355
50 38.90 37.04 1.71120.505 11.47 10.88 28.317211.57
100 24.97 22.85 3.790 0.994 9.450 9.417 213.26215.41
150 14.75 11.82 5.606 2.036 4.740 5.543 217.43219.97
200 6.550 2.845 7.058 3.211 -20.370 0.495 221.25223.23
250 20.31 24.86 8.270 3.648 25.43024.589 224.77227.28
300 26.15 211.72 9.420 3.956 210.3929.516 227.99231.05
350 211.13217.85 10.69 4.014 215.30214.13 230.89234.22
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TWO-BODY DIRAC EQUATIONS FOR NUCLEON- . . . PHYSICAL REVIEW C 67, 024001 ~2003!
interactions of the vector meson may improve our fit. The
tensor interactions were discussed earlier@see Eq.~4.16!# and
correspond to nonminimal coupling of spin one-half parti
not present in QED but which cannot be ruled out in mass
vector meson-nucleon interactions. The corresponding fi
theory interaction is

DLI5gr8c̄smntc•rmn1gv8 c̄smncvmn1gf8 c̄smncfmn

~8.1!

and would correspond to relaxing the free field equation
sumption made in Eq.~4.17!.

C. Include pseudovector interactions

Another option is to allow the pseudoscalar mesonsp,
h, and h8) to interact with the nucleon not only by th

FIG. 12. np scattering phase shift of1S0 state~model 2!.

FIG. 13. np scattering phase shift of1P1 state~model 2!.
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pseudoscalar interaction@as in Eq.~7.1!# but also by the way
of the pseudovector interactions as below,

DLI5gp8 c̄gmg5tc•]mp1gh8 c̄gmg5c]mh

1gh8
8 c̄gmg5c]mh8. ~8.2!

D. Include full massive spin-one propagator

We have ignored a portion of the massive spin-one pro
gator in our fit that is zero for particles on the mass shell.
include this portion of massive spin-one propagator
would have to change the vector propagator as below,

hmn

q21mr
22 i«

→
hmn1

qmqn

mr
2

q21mr
22 i«

. ~8.3!

FIG. 14. np scattering phase shift of1D2 state~model 2!.

FIG. 15. np scattering phase shift of3P0 state~model 2!.
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BIN LIU AND HORACE CRATER PHYSICAL REVIEW C67, 024001 ~2003!
Among all the four suggestions, the first one would
technically easiest once we find models more general t
the two we have presented here. The last three sugges
would involve corresponding additions to the interaction t
appear in the two-body Dirac equations. Because the ab
interactions all involve derivative couplings we will have
examine the CTBDE for the corresponding invariantD ’s.
These would include not only the eight invariants listed e
lier @see Eqs.~2.46!–~2.56!# but also four additional one

corresponding to D5Ru1x̂'u2x̂' , 2Su51u52u1x̂'u2x̂' ,

2Tu1P̂u1P̂u1x̂'u2x̂' , and 4Uu51u52u1P̂u1P̂u1x̂'u2x̂' .
The four functionsR,S,T,U are each functions ofx' and
they represent spacelike interactions paralleling those co
sponding toG,I ,Y, and F, respectively, given earlier. To
include all 12 covariant matrix interactions will involve

FIG. 16. np scattering phase shift of3P1 state~model 2!.

FIG. 17. np scattering phase shift of3S1 state~model 2!.
02400
n
ns
t
ve

r-

e-

significant modification of our basic equation, Eq.~3.32!, as
well as the two-body Dirac equations given in Eqs.~2.58!
and ~2.59!.

E. Extentions to theN body problem

Can the constraint formalism be extended toN bodies?
There is no solution to the compatibility condition

@Hi ,Hj #uc&50; i , j 51,..,N ~8.4!

of generalized mass-shell constraints~or their Dirac counter-
parts! that has the simplicity of the ‘‘third law’’ and tranver
sality conditions given in Eqs.~2.14! and ~2.15!. The diffi-
culty involves satisfying Eq.~8.4! and cluster separability
~needed to describe scattering states! at the same time. Ro
hrlich has shown that this necessarily involves the introd
tion of N-body forces@51#. If one is willing to limit N-body

FIG. 18. np scattering phase shift of3D1 state~model 2!.

FIG. 19. pp scattering phase shift of1S0 state~model 2!.
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TWO-BODY DIRAC EQUATIONS FOR NUCLEON- . . . PHYSICAL REVIEW C 67, 024001 ~2003!
considerations to bound states~so that cluster consideration
are not important! then Ref.@52# provides a constraint for
malism in which a single dynamical wave equation~as in the
two-body case! determines the bound state energies. Re
ence @53# ~and references contained therein! provides an
N-body constraint formalism that involves particles a
fields leading in the end to directly inteacting particles
elimination of the field degrees of freedom by second cl
contraints.
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FIG. 20. pp scattering phase shift of1D2 state~model 2!.

FIG. 21. pp scattering phase shift of3P0 state~model 2!.
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APPENDIX A: PAULI FORM OF TWO-BODY
DIRAC EQUATIONS

We rewrite Eqs.~2.61! and~2.62! by multiplying the first
by A2ib1 and the second byA2ib2, yielding @8#

@T1~b1b2!1U1~b1b2!g51g52#uc&5~E11M1b1!g51uc&,

2@T2~b1b2!1U2~b1b2!g51g52#uc&5~E21M2b2!g52uc&,
~A1!

in which the kinetic and recoil terms are

T1~b1b2!5exp~G!FS1•p2
i

2
b1

3b2@S2•“(2C1Gb1b2S1•S2!G ,
T2~b1b2!5exp~G!FS2•p2

i

2
b1

3b2@S1•“~2C1Gb1b2S1•S2!#G , ~A2!

U1~b1b2!5exp~G!F2
i

2
b1b2S2•“~Jb1b22L !G ,

U2~b1b2!5exp~G!F2
i

2
b1b2S1•“~Jb1b22L !G , ~A3!

while the timelike and scalar potentialsEi ,Mi are given
above in Eqs.~2.63! and ~2.64!.

The final result of the matrix multiplication in Eqs.~A1!
is a set of eight simultaneous equations for the Dirac spin
uc&1 ,uc&2 ,uc&3 ,uc&4. In an arbitrary frame, the result of th
matrix calculation produces the eight simultaneous equat
(s i

muc&→S i
muc&1,2,3,4) @8#. One then reduces the eight equ

FIG. 22. pp scattering phase shift of3P1 state~model 2!.
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tions to a second-order Schro¨dinger-like equation by a pro
cess of substitution and elimination using the combinati
of the four Dirac spinors given below@8#:

uf6&[uc&16uc&4 ,

ux6&[uc&26uc&3 . ~A4!

We display all the general spin dependent structures
F(r ,p,s1 ,s2 ,w) explicitly, very similar to what appears in
nonrelativistic formalisms such as seen in the Hama
Johnson and Yale group models~as well as the nonrelativis
tic limit of Gross’s equation!. We do this by expressing i
explicitly in terms of its matrix (s1 ,s2), and operatorp
structure in the CM system@ P̂5(1,0)#. We are working in
the CM frame@i.e., x'5(r ,0)], so all the interaction func
tions @L(x'),J(x'),C(x'),G(x')# are functions ofr 5Ax'

2

5ur u, F5F(r ).
Reference@8# finds the reduction

hE1@s1•p2 i s2•~d1ks1•s2!#hF1

3@s1•p2 i s2•~z1ks1•s2!#uf1&

1hM1@s1•p2 i s2•~o1ks1•s2!#hF3

3@s1•p2 i s2•~z1ks1•s2!#uf1&

2hE1@s1•p2 i s2•~d1ks1•s2!#hF2

3@s2•p2 i s1•~z1ks1•s2!#uf1&

1hM1@s1•p2 i s2•~o1ks1•s2!#hF4

3@s2•p2 i s1•~z1ks1•s2!#uf1&5B 2uf1&.

~A5!

in which

B 25E1
22M1

25E2
22M2

2

5b2~w!1~e1
21e2

2!sinh2~J!12e1e2sinh~J!cosh~J!2~m1
2

1m2
2!sinh2~L !22m1m2sinh~L !cosh~L ! ~A6!

and

h[exp~G!,

k[
1

2
“ ln~h!,

z[
1

2
“~2C1J2L !

d[
1

2
“~C1J1L !

o[
1

2
“~C2J2L !, ~A7!
02400
s
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with

F1[
M2

D ,

F2[
M1

D ,

F3[
E2

D ,

F4[
E1

D , ~A8!

D[E1M21E2M1 . ~A9!

Equation~A5! is a second-order Schro¨dinger-like eigenvalue
equation for the newly defined wavefunctionuf1& in the
form

@p'
2 1F~r ,p,s1 ,s2 ,w!#uf1&5b2~w!uf1&. ~A10!

Equation~3.5! for B 2 provides us with the primary spin in
dependent part ofF, the quasipotential. Note that in the CM
systemp'

2 5p2, s5(0,s). For future reference we will refe
to the four sets of terms on the left-hand side of Eq.~A5! as
~a!, the ~b!, ~c!, ~d! terms.

Now we proceed with a different derivation than Lon
and Crater’s derivation@8#. The aim is to produce a
Schrödinger-like form like in Eq.~A10! involving the Pauli
matrices for both particles.

Substitutingd, h, F1 , z, k’s expressions to~a! term of Eq.
~A5!, we obtain

~a! term5exp~G!E1H Fs1•p2
i

2
s2•“~C1J1L !

2
i

2
“G•~s11 i s13s2!G

3exp~G!
M2

D Fs1•p2
i

2
s2•“~2C1J2L !

2
i

2
“G•~s11 i s13s2!G J . ~A11!

Working out the commutation relation ofs1•p in the above
expression, we can find the~a! term is
1-28
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~a! term5exp~G!E1H exp~G!
M2

D Fp22
i

2
s2•“~2C1J2L !~s1•p!

2
i

2
“G$@p1 i ~s13p!2~s1•s2!p1s1~s2•p!2 i ~s23p!#%

1
1

i
s1•“H exp~G!

M2

D Fs1•p2
i

2
s2•“~2C1J2L !2

i

2
“G~s11 i s13s2!G J

2
i

2
@s2•“~C1J1L !1“G~s11 i s13s2!#

3exp~G!
M2

D Fs1•p2
i

2
s2•“~2C1J2L !2

i

2
“G•~s11 i s13s2!G G J .

Likewise, we can the find~b!, ~c!, ~d! terms,

~b! term5exp~G!M1H exp~G!
E2

D Fp22
i

2
s2•“~2C1J2L !~s1•p!

2
i

2
“G$@p1 i ~s13p!2~s1•s2!p1s1~s2•p!2 i ~s23p!#%

1
1

i
s1•“H exp~G!

E2

D Fs1•p2
i

2
s2•“~2C1J2L !2

i

2
“G~s11 i s13s2!G J

2
i

2
@s2•“~C2J2L !1“G•~s11 i s13s2!#

3exp~G!
E2

D Fs1•p2
i

2
s2•“~2C1J2L !2

i

2
“G~s11 i s13s2!G G J ;

~c! term52exp~G!E1H exp~G!
M1

D F ~s2•p!~s1•p!2
i

2
s1•“~2C1J2L !~s1•p!

2
i

2
“G$@s2~s1•p!2~s1•s2!p1s1~s2•p!1 i ~s23p!#%

1
1

i
s1•“H exp~G!

M1

D Fs2•p2
i

2
s1•“~2C1J2L !2

i

2
“G~s21 i s23s1!G J

2
i

2
@s2•“~C1J1L !1“G•~s11 i s13s2!#

3exp~G!
M1

D Fs2•p2
i

2
s1•“~2C1J2L !2

i

2
“G~s21 i s23s1!G G J ;

~d! term5exp~G!M1H exp~G!
E1

D F ~s2•p!~s1•p!2
i

2
s1•“~2C1J2L !~s1•p!

2
i

2
“G$@s2~s1•p!2~s1•s2!p1s1~s2•p!1 i ~s23p!#%

1
1

i
s1•“H exp~G!

E1

D Fs2•p2
i

2
s1•“~2C1J2L !2

i

2
“G~s21 i s23s1!G J

2
i

2
@s2•“~C2J2L !1“G•~s11 i s13s2!#

3exp~G!
E1

D Fs2•p2
i

2
s1•“~2C1J2L !2

i

2
“G~s21 i s23s1!G G J .
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We simplify the above expressions by using identities
volving s1 and s2 and group above equations by thep2

term, Darwin term (r̂•p…, spin-orbit angular momentum term
L•(s11s2), spin-orbit angular momentum difference ter
L•(s12s2), spin-spin term (s1•s2), tensor term (s1• r̂ )
3(s2• r̂ ), additional spin dependent termsL•(s13s2) and
(s1• r̂ )(s2•p)1(s2• r̂ )(s1•p), and spin independent term
Collecting all terms for the~a! 1 ~b! 1 ~c! 1 ~d! terms our
Eq. ~A5! becomes Eq.~3.4!.

APPENDIX B: RADIAL EQUATIONS

The following are radial eigenvalue equations correspo
ing to Eq.~3.4! after getting rid of the first derivative term
for singlet states1S0 , 1P1 , 1D2 ~a general singlet1Jj ),
triplet states3P1 ~a general let3Jj ), a generals51, j 5 l
11 (3P0 , 3S1 states!, and a generals51, j 5 l 11 (3D1
state!.

1S0 , 1P1 , 1D2 ~a general singlet1Jj ) L•(s11s2)50,
s1•s2523, s1• r̂•s2• r̂521,
02400
-

-

H 2
d2

dr2
1

j ~ j 11!

r 2
1

g82

4
1h821

g9

2
1

g8

r
À3k2 j 2g8h8

2h92
2h8

r
1mJ v5B 2exp~22G!v. ~B1!

3P1 ~a general triplet3Jj ) L•(s11s2)522, s1•s251,
s1• r̂•s2• r̂51,

H 2
d2

dr2
1

j ~ j 11!

r 2
1

g82

4
1h821

g9

2
1k1n1g8h81h9

1mJ v5B 2exp~22G!v. ~B2!

s51, j 5 l 11 (3S1 states!, L•(s11s2)52( j 21), s1•s2
51, s1• r̂•s2• r̂51/(2j 11) ~diagonal term!, and
s1• r̂•s2• r̂52Aj ( j 11)/(2j 11)~off diagonal term!,
H 2
d2

dr2
1

j ~ j 21!

r 2
1

3g8sinh2h

r
16h8

coshh sinhh

r
2

6 sinh2h

r 2
2

g8coshh sinhh

r
22h8

sinh2h

r
12

coshh sinhh

r 2

1
g82

4
1h821

g9

2
1

g8

r
1k12~ j 21!F g8

2r
1

g8sinh2h

r
22

sinh2h

r 2
12h8

coshh sinhh

r G
1

2~ j 21!

2 j 11 F2h8
sinh2h

r
22

coshh sinhh

r 2
1

h8

r
1

g8coshh sinhh

r G1
1

2 j 11 F3g8coshh sinhh

r
2

g8sinh2h

r

22h8
coshh sinhh

r
16h8

sinh2h

r
26

coshh sinhh

r 2
12

sinh2h

r 2
1n1g8h81h91

2h8

r G1mJ u1

1
2Aj ~ j 11!

2 j 11 H 3g8coshh sinhh

r
2

g8sinh2h

r
22h8

coshh sinhh

r
16h8

sinh2h

r
26

coshh sinhh

r 2
12

sinh2h

r 2
1n1g8h81h9

1
2h8

r
12~ j 21!F2h8sinh2~h!

r
2

2 cosh~h!sinh~h!

r 2
1

h8

r
1

g8cosh~h!sinh~h!

r G J u25B 2exp~22G!u1 , ~B3!

s51, j 5 l 21 (3P0 , 3D1 states!, L•(s11s2)522( j 12), s1•s251, s1• r̂•s2• r̂521/(2j 11) ~diagonal term!, and
s1• r̂•s2• r̂52Aj ( j 11)/(2j 11) ~off diagonal term!,

H 2
d2

dr2
1

~ j 11!~ j 12!

r 2
1

3g8sinh2h

r
16h8

coshh sinhh

r
2

6sinh2h

r 2
2

g8coshh sinhh

r
22h8

sinh2h

r
12

coshh sinhh

r 2

1
g82

4
1h821

g9

2
1

g8

r
1k12~ j 12!F g8

2r
1

g8sinh2h

r
22

sinh2h

r 2
12h8

coshh sinhh

r G
1

2~ j 21!

2 j 11 F2h8
sinh2h

r
22

coshh sinhh

r 2
1

h8

r
1

g8coshh sinhh

r G2
1

2 j 11 F3g8coshh sinhh

r
2

g8sinh2h

r

22h8
coshh sinhh

r
16h8

sinh2h

r
26

coshh sinhh

r 2
12

sinh2h

r 2
1n1g8h81h91

2h8

r G1mJ u2
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1
2Aj ~ j 11!

2 j 11 H 3g8coshh sinhh

r
2

g8sinh2h

r
22h8

coshh sinhh

r
16h8

sinh2h

r
26

coshh sinhh

r 2
12

sinh2h

r 2
1n1g8h81h9

1
2h8

r
22~ j 12!F2h8sinh2~h!

r
2

2 cosh~h!sinh~h!

r 2
1

h8

r
1

g8cosh~h!sinh~h!

r G J u15B 2exp~22G!u2 . ~B4!
-

o

s

n

tri
Substituting forg8,h8,m,n,k, we obtain the radial equa
tions and potentialsF given in the text.

APPENDIX C: DERIVATION OF COUPLED
PHASE SHIFT EQUATIONS

We have found that we can use the Messiah ansatz@46#,

u5A sin~br1d!,

u85bA cos~br1d! ~C1!

for the solution of

S 2
d2

dr2
1FL~r !D u5b2u~r ! ~C2!

to yield

d852
FL

b
sin2~br1d!. ~C3!

Next we see how this can be worked out in the case
coupled radial equations of the form

2S u2

u1
D 9

1FLS u2

u1
D 5b2S u2

u1
D , ~C4!

whereFL is a 232 matrix. This equation will have solution
that areS-wave dominant andD-wave dominant. Form them
together into a 232 matrix U so that the above equatio
becomes

2U91FLU5b2U. ~C5!

Then take its transpose and add the two. One obtains

2~U91U88T!1~FLU1UTFL
T!5b2~U1UT!. ~C6!

In analogy to the uncoupled case we assume

U5A~r !sin@br1D~r !#, ~C7!

where

D5d~r !1D„r …•s,

A5a~r !1A„r …•s. ~C8!

Let R be a matrix that diagonalizes the phase shift ma
function D(r ) to the formd(r )1D(r )s3 ,
02400
f

x

Ũ5RUR215Ã sin~br1d1Ds3!, ~C9!

where

Ã5RAR21. ~C10!

Continuing the analogy we let

U85bA cos~br1D!. ~C11!

Then

RU8R215bÃ cos~br1d1Ds3!5R~R21ŨR!8R21

5RR218Ãsin~br1d1Ds3!1Ã8sin~br1d

1Ds3!1Ã~b1d81D8s3!cos~br1d1Ds3!

1Ãsin~br1d1Ds3!R8R21. ~C12!

But RR21852R8R21 so that we obtain the condition

Ã8sin~br1d1Ds3!1Ã~d81D8s3!cos~br1d1Ds3!

1@Ãsin~br1d1Ds3!,R8R21#250. ~C13!

In general, we would take

Ã[a1Ã3s31Ã'•s[Ãi1Ã'•s ~C14!

and decompose Eq.~C13! and Eq.~C6! into two sets of four
coupled equations.

Give R the following general form:

R5exp@ i«~r !s2#exp@h~r !s1#,

R215exp~2hs1!exp~2 i«s2!,

R85 i«8s2exp~ i«s2!exp~hs1!

1exp~ i«s2!exp~hs1!h8s1 ,

R8R215 i«8s21exp~ i«s2!h8s1exp~2 i«s2!

5 i«8s21h8cos~2«!s11h8sin~2«!s3 .

~C15!

We consider the case in whichFL is a symmtric matrix and
furthermore that as a resultD5D T. In that case our matrix is
R is orthogonal (h50).

Next we examine the three terms of Eq.~C6!. We assume
that Ã' is symmetric so thatÃ250 and
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b2R~U1UT!R215b2@~Ãuu1Ã'•s!sin~br1d1Ds3!1sin~br1d1Ds3!~Ãuu1Ã'•s!#

5b2$2Ãisin~br1d1Ds3!12@Ã1sin~br1d!cosD#s1% ~C16!

and

R~FU1UTFT!R215~F̃ uu1F̃'•s!~Ãuu1Ã'•s!sin~br1d1Ds3!1~ transpose!5~F̃ iÃi1F̃'•Ã'…sin~br1d1Ds3!

1~F̃ iÃ'•s1F̃'•sÃi1 i F̃'3Ã'•s!sin~br1d1Ds3!1sin~br1d1Ds3!~F̃ iÃi1F̃'•Ã'!

1sin~br1d1Ds3!~Ã'•sF̃ i1ÃiF̃'•s1 i F̃'3Ã'•s! ~C17!

The termF̃'3Ã'•s is zero sinceÃ2505F̃2. The second derivative term is

R~U91U9T!RT5R~RTŨ8R!8R211~ transpose!5bR~RTÃ cos~br1d1Ds3!R!8RT1~ transpose!

5b$@Ã cos~br1d1Ds3!,R8RT#21Ã8cos~br1d1Ds3!

2Ã~b1d81D8s3!sin~br1d1Ds3!%1~ transpose!

5b$ i«8@~Ãi1Ã'•s!cos~br1d1Ds3!,s2#21~Ãi81Ã'8 •s!cos~br1d1Ds3!

2~Ãi1Ã'•s!~b1d81D8s3!sin~br1d1Ds3!%1~ transpose!. ~C18!
q
e

Using properties of the Pauli matrices and dividing E
~C13! and Eq.~C6! into i and' components we obtain th
following four equations:

2Ãi~d81D8s3!sin~br1d1Ds3!1Ãi8cos~br1d1Ds3!

22b«8s3Ã1cos~br1d!cosD

5
1

b
~F̃ iÃi1F̃1Ã1!sin~br1d1Ds3!, ~C19!

Ãi8sin~br1d1Ds3!1Ãi~d81D8s3!cos~br1d1Ds3!

22«8s3Ã1sin~br1d!cosD50, ~C20!

cos~br1d!cosDÃ182@d8sin~br1d!cosD

1D8cos~br1d!sinD#Ã1

12«8@Ã3cos~br1d!cosD2a sin~br1d!sinD#

5
1

b
@f sin~br1d!cosDÃ12F̃3cos~br1d!sinDÃ1#

1$a sin~br1d!cosD1Ã3@cos~br1d!sinD#F̃1%,

~C21!

Ã18sin~br1d!cosD1Ã1@d8cos~br1d!cosD

2D8sin~br1d!sinD#12«8@a cos~br1d!sinD

1Ã3sin~br1d!cosD#50. ~C22!

Combining Eq.~C19! and Eq.~C20! we obtain
02400
. 2Ãi~d81D8s3!22«8Ã1sinD cosD

5
1

b
~F̃ iÃi1F̃1Ã1!sin2~br1d1Ds3!.

~C23!

Combining Eqs.~C21! and ~C22! gives

Ã1d8csc~br1d!cosD22«8csc~br1d!sinD

5
1

b
$@f sin~br1d!cosD2F̃3cos~br1d!sinD#Ã1

1a sin~br1d!cosD1Ã3@cos~br1d!sinD#F̃1%.

~C24!

Rewrite the above two equations as

ÃiF ~d81D8s3!1
1

b
F̃ isin2~br1d1Ds3!G

1Ã1S 2«8sinD cosD1
1

b
F̃1sin2~br1d1Ds3! D50,

~C25!

1

b
@a sin~br1d!cosD1Ã3cos~br1d!sinD#F̃1

12«8a csc~br1d!sinD1Ã1F1

b
@f sin~br1d!cosD

2F̃3cos~br1d!sinD#2d8csc~br1d!cosDG50.

~C26!
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The first of these two equations is actually two equatio

aFd81
1

2b
f@12cos2~br1d!cos~2D !#1

1

2b
F̃3sin 2

3~br1d!sin~2D !G1Ã3FD81
1

2b
F̃3@12cos2~br1d!

3cos~2D !#1
1

2b
f sin 2~br1d!sin~2D !G

1Ã1S «8sin 2D1
1

2b
F̃1@12cos2~br1d!cos 2D# D50

~C27!
and

aFD81
1

2b
F̃3@12cos 2~br1d!cos~2D !#

1
1

2b
f sin 2~br1d!sin~2D !G

1Ã3Fd81
1

2b
f@12cos 2~br1d!cos~2D !#

1
1

2b
F̃3sin 2~br1d!sin~2D !G

1Ã1

1

2b
F̃1sin 2~br1d!sin 2D50. ~C28!

So now together with Eq.~C26!,

aF1

b
sin~br1d!cos~D !F̃112«8csc~br1d!sinDG
1Ã3F1

b
cos~br1d!sin~D !F̃1G

1Ã1F1

b
@f sin~br1d!cosD

2F̃3cos~br1d!sinD#2d8csc~br1d!cosDG50,

~C29!

we have three homogeneous equations ina,Ã3 ,Ã1. We sim-
plify these equations further by assuming thatÃ150,

5aFd81
1

2b
f@12cos2~br1d!cos~2D !#

1
1

2b
F̃3sin 2~br1d!sin~2D !G

1Ã3FD81
1

2b
F̃3@12cos 2~br1d!cos~2D !#

1
1

2b
f sin 2~br1d!sin~2D !G50, ~C30!
02400
s
5aFD81

1

2b
F̃3@12cos2~br1d!cos~2D !#

1
1

2b
fsin 2~br1d!sin~2D !G

1Ã3Fd81
1

2b
f@12cos 2~br1d!cos~2D !#

1
1

2b
F̃3sin 2~br1d!sin~2D !G50, ~C31!

aF1

b
sin~br1d!cos~D !F̃112«8csc~br1d!sinDG
1Ã3F1

b
cos~br1d!sin~D !F̃1G50. ~C32!

The solution we seek is

d81
1

2b
f@12cos 2~br1d!cos~2D !#

1
1

2b
F̃3sin2~br1d!sin~2D !50, ~C33!

D81
1

2b
F̃3@12cos 2~br1d!cos~2D !#

1
1

2b
f sin 2~br1d!sin~2D !50. ~C34!

Let

d5
1

2
~d11d2!,

D5
1

2
~d12d2!, ~C35!

and that leads to

d1852
1

b
~f1F̃3!sin2~br1d1!, ~C36!

d2852
1

b
~f2F̃3!sin2~br1d2!. ~C37!

Returning to Eq.~C22! we find it reduces to

Ã352a cot~br1d!tanD, ~C38!

and combining that with Eq.~C32! yields

F1

b
sin~br1d!cos~D !F̃112«8csc~br1d!sinDG

2cot~br1d!tanDF1

b
cos~br1d!sin~D !F̃1G50,
1-33
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so that

«85
1

2b
F̃1@ tanD cos2~br1d!2sin2~br1d!cot~D !#

5
1

2sinD cos~D !b
F̃1@sin2D cos2~br1d!

2sin2~br1d!cos2~D !#

5
1

b sin 2D
F̃1sin~br1d1D !sin~br1d2D !. ~C39!

From the definintion ofF̃ we see that

S cos« sin«

2sin« cos«
D S F3 F1

F1 2F3
D S cos« 2sin«

sin« cos«
D

5S F3cos 2«1F1sin 2« 2F3sin 2«1F1cos 2«

2F3sin 2«1F1cos 2« 2F3cos 2«2F1sin 2«
D

5S F̃3 F̃1

F̃1 2F̃3
D . ~C40!

So from this and Eqs.~C36! and ~C37! we obtain the phase
shift equations Eqs.~5.25! and~5.26! given in the text while
Eq. ~C39! gives us Eq.~5.27!.

APPENDIX D: PHASE SHIFT EQUATION
WITH THE COULOMB POTENTIAL

We review here the necessary modification of our ph
equations when we considerpp scattering@16,22#. When we
study pp scattering, we must consider the influence of t
Coulomb potential. The general form of the uncoupl
Schrödinger-like equation with Coulomb potential is@22#

F2
d2

dr2
1

l ~ l 11!

r 2
2

2ewa

r
1DFGu~r !5b2u~r !,

~D1!

whereDF consists of the short range parts of the effect
potential,a is the fine structure constant.@Compare the Cou-
lomb term with the first term on the right-hand sides of E
~2.27! and ~2.29!.# Due to the long range behavior of th
potential in above equation, the asymptotic behavior of
wave function is

u~r ! →
r→`

const• sin~br2h ln 2br1D!, ~D2!

in which

D5d l1s l2
lp

2
, ~D3!

wheres l5argG( l 111 ih) is the Coulomb phase shift, her
h52ewa/b.
02400
e

e

.

e

We describe here the variable phase method to calcu
the phase shift with the Coulomb potential. Consider the t
differential equations

u91~b22W2W̄!u50, ~D4!

and

ū91~b22W̄!ū50, i 51,2, ~D5!

in which u(0)5ū1(0)50. Let

W̄~r !52
2ewa

r
,

W~r !5
l ~ l 11!

r 2
1DF, ~D6!

so that

ū1~r ! →
r→`

const•sin~br2h ln 2br1D̄ !,

ū2~r ! →
r→`

const•cos~br2h ln 2br1D̄ !, ~D7!

whereD̄5 s0.
Just as in the variable phase method, we obtain a non

ear first-order differential equation for the phase shift fun
tion d l(r ) such thatd l(`)5d l , andd l(0)50. This is done
by rewriting u(r ) as

u~r !5a~r !@cosg~r !ū1~r !1sing~r !ū2~r !#, ~D8!

so that

D5D̄1g~`!. ~D9!

Since we have rewrittenu(r ) in two arbitrary functions, we
are free to impose a condition onu(r ),

u8~r !5a8~r !@cosg~r !ū18~r !1sing~r !ū28~r !#.
~D10!

Combiningu(r ) andu8(r ) leads to

g~r !52tan21Fu~r !ū18~r !2u8~r !ū1~r !

u~r !ū28~r !2u8~r !ū2~r !
G , ~D11!

where g(0)50, and ū1(r )5F0(h,br) and ū2(r )
5G0(h,br) are the two Coulomb wave functions. With th
WronskianF0G082 F08G05b, we obtain, by differentiating,
the differential equation

g8~r !52W~r !@cosg~r !F0~h,br !1sing~r !G0~h,br !#2/b.
~D12!

Note that for

W~r ! →
r→0l~l11!

r 2
,

l~l11!

r 2
5

l ~ l 11!

r 2
2

a2

r 2
,
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F0~h,br ! →
r→0

C0br,

G0~h,br ! →
r→0 1

C0
, ~D13!

we obtain the relation

g8~0!52
C0

2bl

l~l11!
. ~D14!

Letting

g~r !5b~r !1h~r !, ~D15!

whereb(r ) is defined as

b8~r !52
l ~ l 11!

r 2
@cosg~r !F0~h,br !

1sing~r !G0~h,br !#2/b, ~D16!

b(r ) has the exact solution

g~r !52tan21F Fl~h,br !F08~h,br !2Fl8~h,br !F0~h,br !

Fl~h,br !G08~h,br !2Fl8~h,br !G0~h,br !
G ,

~D17!
ta
du

ias

,

g

02400
with b(0)50 and b8(0)52C0
2bl/ l ( l 11) and b(`)5s l

2 lp/22s0 lead to

d l5h~`!. ~D18!

Thus , if we solve

h8~r !5F2
l ~ l 11!

r 2
1DFG $cos@b~r !1h~r !#F0~h,br !

1sin@b~r !1h~r !#G0~h,br !%2/b1
l ~ l 11!

r 2

3@cosb~r !F0~h,br !1sinb~r !G0~h,br !#2/b

~D19!

with the conditionh(0)50, we obtain the additional phas
shift ~above the Coulomb phase shift! by integration to
h(`).

There is no Coulomb scattering for the coupled triplet3S1
and 3D1 states as a consideration of Pauli principle wou
show.
e,
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for
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