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Multipole amplitudes of pion photoproduction on nucleons up to 2 GeV using dispersion relations
and the unitary isobar model
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Two approaches for the analysis of pion photoproduction and electroproduction on nucleons in the resonance
energy region are checked@®=0 using the results of the GWWMPI) partial-wave analysis of photoproduc-
tion data. The approaches are based on dispersion relations and the unitary isobar model. Within dispersion
relations a good description of photoproduction multipoles is obtained Mp-td.8 GeV. Within the unitary
isobar model, modified with increasing energy by the incorporation of Regge poles and with a unified Breit-
Wigner parametrization of resonance contributions, a good description of photoproduction multipoles is ob-
tained up toW=2 GeV.
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. INTRODUCTION regime which starts practically av=2.5 GeV. We will
demonstrate that incorporation of Regge poles into the back-
Itis known that dispersion relatiori®R), and the unitary  ground with increasing energy results in a good description
isobar model[UIM), constructed on the basis of an effective of the GWUVPI) photoproduction multipole amplitudes in
Lagrangian approach in Refl], are widely used for the the resonance energy region upwb=2 GeV. This descrip-
analysis of pion photoproduction and electroproduction datgion will be obtained using a standard Breit-Wigner param-
and for the extraction from these data of information onetrization for the resonance contributions, as suggested in
¥y*N—N* vertices. In this paper our goal is to check theseRef.[7]. Only for the multipolesvi¥’? andE3'?, correspond-
approaches aR?=0 using the results of a GWUPI)  ing to thePs3(1232) resonance, will a slight modification be
partial-wave analysis of pion photoproduction made frommade in order to satisfy the Watson theorggh Let us note
threshold towW=2 GeV (Refs.[2,3], and thesAID progran).  that in order to reproduce photoproduction multipole ampli-
In the case of dispersion relations the main goal is to find théudes in the UIM of Ref[1], a complicated parametrization
energy region of applicability of DR, since with increasing of resonance contributions has been used. Such a complica-
energy the utilization of DR is connected with the following tion is caused by the fact that above the first resonance re-
problems:(a) at large angles the importaft;y(1232) reso- gion ba}ckground contributions into some mu!tipole ampli-
nance contribution requires, in the integrands of DR extrapotudes in Ref.[1] become too large, and in order to
lation to very largex=coss, and becomes arbitraryb) the ~ COmpensate them resonance contributions have been strongly
unknown contribution of resonances with large masdds ( deformed. _ _ o
>2 GeV) can become important; afg the contribution of In_ Sec. Il we will _pres_ent our results ob_talned within dis-
the Regge regionW/>2.5 GeV) can also become important, PErsion relations. First, in sec. Il A we ‘g'z” present the re-
From the results of this paper it follows that the role of theseSults for multipole amplitudes/; - and Ey which corre-
effects is insignificant up t&®W=1.8 GeV, and DR can be spond3/t20 theP3%$21232) resonance. It will be shown, that DR
reliably used in this energy region. for M7t andE7; can be transformed into singular integral
In the case of the UIM our goal is to find an adequate€duations. These multipoles will be found via solutions of
description of the resonance and background contributions if€se equations. Further, in Sec. Il B, imaginary parts of the
order to extend this model /=2 GeV. It is known that the contributions corresponding to other resonances will be
background of the UIM which consists of the minimal num- found using the results of the GWWPI) analysis and as-
ber of diagramsthe nucleon exchanges in ts@ndu chan- ~ Suming a Breit-Wigner parametrization for resonance contri-
nels and the channelr, p, andw exchangesis motivated ~ butions. We will also find nonresonance contributions to
) ; : : (0,1/2,3/2) (3/2) (0,1/2) (0,1/2)
only at thresholdRefs.[4,5]) and in the first resonance re- imaginary parts ofEg; , M7, M and By
gion (Refs.[1,6], and references therdims will be argued ~ Which are not small at small energies due to langé phases
in Sec. Ill, the extension of this background above the firsts5 =22, 632, and 672. These contributions will be found
resonance region cannot be satisfactory. Moreover, continuagsing DR and the Watson theorem. Finally, in Sec. Il C,
to 2 GeV and higher, the background of REf] strongly using DR, real parts of the multipole amplitudes will be
contradicts experimental data. We will modify the UIM in found. In this section the contribution of the multipole
such a way that with increasing energy the amplitudes of th1{¥?, coresponding to th@®33(1232) resonance into DR
model will transform into the amplitudes in the Regge polefor other multipoles, will be investigated, and it will be
shown that aW>1.8 GeV there is significant arbitrariness
in the real parts of some multipole amplitudes connected
*Email addresses: aznaury@jlab.org, with this contribution. The dispersion integrals over the high
aznaur@jerewanl.yerphi.am energy region will be also estimated in Sec. Il C, and it will
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be shown that the role of these integrals in the resonance

energy region is insignificant. ReB; )(s,1,Q%)= Rg”)(Q2)<
In Sec. Il we will discuss and present the modified UIM

and will present the results obtained within this model. Con-

1
+
s—mi u-mj

2
clusions will be made in Sec. IV. €9 FA(QY)
AT t—m?
Il. DISPERSION RELATIONS P 1
We use fixed- dispersion relations for invariant ampli- + ;j Im B(g_)(S’,t,Qz)(,—
tudes. We derive real parts of multipole amplitudes via an Sthr -S
expansion of results obtained over multipoles. The invariant 1 4
amplitudes are chosen following R¢€] in accordance with + — )ds’, (4)
the definition of the hadron electromagnetic current, s'"—u s'—u’
— B, - ~ - where the Born term, in addition to the nucleon poles, also
1#=u(p2) ys) o [y*(vK) = (vK) y*]+2P*B,+20"Bs includes pion exchange in thechannel.
AmplitudesB(*) and B(*) correspond to isovector pho-
+2k“B,— y*Bs+ (yK) P*Bg+ (yK)k“B- tons and are related to amplitudes with a definite total isospin
in the s channel by
+ (VR)a”Bs] u(py), 1 1 1
B(+)=§(B(1/Z)+ 28(3/2)), B(_)=§(B(1’2)— B(3/2))_
wherek, q, p;, andp, are four-momenta of the virtual pho- 5
ton, pion, initial and final nucleons, respectiveR= 3(p; . ) )
+p,), andBy,B,, ... Bg are invariant amplitudes which Amplitude B'*’ corresponds to the isoscalar photon.

Amplitudes corresponding to reactions with a definite

are functions of the invariant variables= (k+p4)~, t=(k charge states are

—q)%, andQ?=—k2.
The conservation of the hadron electromagnetic current B(y+p—p+a%)=BH)+BO),
leads to the relations
B(y+n—n+7%=B(H-BO), 6
4Q%B,=(s—)B,—2(t+Q?*~m2)B;, (r ) ®)
B(y+p—n+7")=2Y(BO+B()),
2Q°B;=—2B¢—(t+Q*~m?)Bg, )
B(y+n—p+m )=2Y(BO-B()),
whereBLi=Bs— z(s—Uu)Bg. So only six of the eight invari-
ant amplitudes are independent. As independent amplitudege will use also the notations
let us chooseB,,B,,B3,Bs5,Bg, andBg. The relations be-

tween these amplitudes and the multipoles are given in 1 1

. . + T >=R(0) 4+ ZR(112) >=R(0)_ ZR(172)
Appendix A. For all amplitudesB{*?,B{=? B9, pB2=B+ 3BYT, B2=BT—-3BYS, (7))
B'&0 B9, andBS™ ¥, exceptBS ), unsubtracted dis-
persion relations at fixetican be written where the subscrigt(n) denotes a protofneutron target.

- p(+.7.0)
Regi,o)(st Q2)=R-(”’S)(Q2) 1 + Vi A. P33(1232 resonance

' S— mﬁ, u—mﬁI Let us write dispersion relations for the multipole ampli-
tudesM¥?/kq andE¥?/kq in the form

P (=
+—| Im B%s'1,Q%)

Sthr B 1 (Wmax lmM(W,) '

M(W)=MB(W)+ = ———dW
‘o TIWgy, W' —W—ig
1 gyt 0
X + dS/, (3) 1 W,
’ r_ max
s'—s s'—u + = K(W,W)ImM(W")dW',  (8)
m Wthr

whereR{"**(Q?) are residues in the nucleon polgkey are
given in Appendix B, #ni=n=7ns=1, n3=7ni=7g where M(W) denotes any of multipoles
=—1, ' DV=9O0=1, y=-1 and sp,=(My+m,)%  M?/kq, E¥?/kq, k, and g, are the photon and pion
For the ampIitudeB(s’) we take the subtraction point at in- 3-momenta in the c.m.sM&(W), is the contribution of the
finity. In this case, using current conservation conditi®s  Born term into these multipole& (W,W') is a nonsingular
we have kernel arising from thei-channel contribution to the disper-
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FIG. 1. (a) Multipole amplitudeM i’f within the DR. The results are obtained via a solution of the integral equéjosolid and dashed
curves correspond to the real and imaginary parts of the amplitude; dotted and dashed-dotted curves correspond to the contributions of
homogeneous and particular solutions intdvlrj‘f; and the thin dashed curve is the contribution of other multipoles into(&g.(b)
Multipole amplitudeEfQ2 within the DR and UIM. Dash-dotted and dashed curves are the real and imaginary parts of the amplitude obtained
by the DR via solution of the integral equati@8); the thin dashed curve is the contribution of other multipoles into(8q.and the solid
and dotted curves are the real and imaginary parts of the amplitude obtained within the UIM with modified bacKgoddsy. (c) ImM i’f
in the UIM: the solid curve is the full result obtained with the modified backgrd&ud(16)]; the dash-dotted and dashed curves correspond
to the resonance and unitarized background contributions, respectively; and the dotted curve corresponds to the unitarized nonmodified
background(d) ReM f’f in the UIM: the legend is as fdic). In (a)—(d), the GWUVPI) results from thesaiD program are presented by open
circles for the imaginary parts of the amplitudes, and by open triangles for those real parts. All amplitudes are in millifermi units.

sion integral and the nonsingular part of thehannel con- .0, whenW — W,,,,. From the results of the GWVPI)

tribution, W, ,x=1.8 GeV. In relation8) the following as-  partial-wave analysis, presented in Figéa)land ib), it is

sumptions are made. seen that this is a reasonable assumption, taking into account
(a) For each of the amplitudel ¥?/kq andE3?/kq we  that the #N amplitude h¥?(W) is elastic up toW

neglect the contributions of other multipoles into dispersion=1.45 GeV, and aWW=1.45 GeV, é\f’f: 157° [11]. So, in

integrals. By our estimations they are small and do not affecéll integration regions we will take IM(W)

our final results. These contributions are shown by thin=h*(W)M(W).

dashed curves in Figs.(d and Xb). It is seen that up to With these assumptions the dispersion relationsl\zlléff

1.8 GeV they are practically equal to zero Ml’f and are and Ef’f turn into singular integral equatior(8), which at

very small forEf’f. K(W,W’)=0 have solutions in an analytical forfi2,13,
(b) We neglect the integrals ovel(,,,=1.8 GeV,x). My _o(W)= Mgan,K:o(W)JFCMMEO:%(W), (9)

In Figs. Xa and Xb) we present the results of the
GWU(VPI) partial-wave analysis foM3? and E3? up to  where My, «_o(W) is the particular solutions of Eq8)
W=2GeV. It is seen that at 1.8Gew generated bjv?,
<2 GeV, ImM3’? and InE3’? are practically equal to 0. The 5 1 1
. . . _ B
integrals over (2 GeVi) were estimated using the results ~ Mpartk=o(W)=M=(W)+ — DW)
of the Regge-pole analysis of high energy data made in Ref.
[10]. These integrals turned out to be negligibly small. Wmax D(W")h(W')MB(W")
Let us make one more assumption. XJ p :
(c) We will use the Watson theorem from threshold to Wine W —W-ie
W=1.8 GeV, assuming that3?(W) — r, i.e., ImM (W) (10)

daw’,
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and enters solution(9) with an arbitrary weight, i.e., multiplied
by an arbitrary constart,, .

Mhom(W): _ Winax At K(W,W')# 0 one can transform singular integral
K=0 D(W)  [Whax—W]| equation(8) into a nonsingular integral equatigi4]. The
solution of this equation turned out to be very close to Eq.
W [Wmax 5(W,) , (9)
X ex . Wy W’(W’—W—is)dw From Egs. (99—(11) it is seen that with a given

MB(W),the particular and homogeneous solutions of integral
(1)  equation(8) are determined only by the phas&?(W). In
our calculations, atW<1.35 GeV, this phase was taken in
is the solution of homogeneous equati@ with ME=0. It the form

4.279°%)?
SirP 572 L N — , 12
(4.279°)%+ (97— g>) Y 1+ 400%(q*— of) + 21.49%]?
|
which is a slightly modified version of the corresponding C. Real parts of multipole amplitudes

formula from Ref.[15], g, is the pion c.m.s. momentum at  paa parts of multipole amplitudes were found using dis-
W=M. At 1.35 Ge\<W<1.8 GeV, the phase was taken in persion relationg3) and (4). Let us present dispersion inte-

the form grals in these relations in the form
9-q 2 foc 2 GeV j2.5 GeVv fw
o=m—[m—6(W=1.35 Ge\J]( ql_qz) ) (13 Wiy J Wy, 2 GeVv 25 GeVv 19

whereq; andq, are the pion c.m.s. momenta, respectively, |maginary parts of the amplitudes in the integrals over the
atW=1.35 andW=1.8 GeV. Equation§l2) and(13) repro-  resonance energy region from threshold to 2 GeV were
duce with good accuracy the results of the GWBI) analy-  found via expansion of invariant amplitudes in the integrands
sis for 632(W) from threshold toNV=1.5 GeV. over multipole amplitudes using relations inverse to Eq.
Our final results foer’f and Ei/f , Obtained by formulas (A1), relations(A3) and the imaginary parts of the multipole
(9)—(13) via adjusting the only unknown parametegs and  amplitudes obtained in Secs. Il Aand Il B. As we use DR at
ce, are presented in Figs(d) and ib). It is seen that there a fixedt, the argument in the Legendre polynomials in these

is good agreement with the GWWUPI) results. In Fig. 1a)

we also separately _presgnted co_ntrlbgtlons of parycular and TABLE I. parameters in the Breit-Wigner formula from Appen-
homogeneous solutions into the imaginary parivgf? . dix C, found via a description of imaginary parts of the multipole
amplitudes. In the parentheses the parameters found within the UIM
are presented in the cases when they differ from the parameters

B. Imaginary parts of multipole amplitudes up to 2 GeV found in this section.

In the energy region belowN=2 GeV the imaginary
parts of multipole amplitudes are determined mainly by resoResonance M, GeV I, Gev X
nance contributions. These contributions for resonance
which are seen in the GWWVPI) analysis atW<2 GeV[ex- 511(1440) 1.4%1.49 03 0.3

cept P33(1232)] were parametrized using the Breit-Wigner s,,(1535) 1.52 0.1(0.12 0.5

form given in Appendix C. A good description of the imagi-

nary parts of multipole amplitudes was obtained with theP13(1520) 151 0.10.1) 0.10.3

Breit-Wigner parameters presented in Table I. S,4(1650) 1.65 0.08.11 05
At small energies imaginary parts of the amplitudes

EQ232) M3 M ©@12) andE(%Y?) also contain notice-  F15(1680) 1.68 0.13 0@.5

able nonresonance contributions due to largd phases

55232 and 632 512 . Up toW=1.3 GeV these contributions P1(1720) L8 03839 0504

were found using DR and the Watson theorem. At higheiS;,(1620) 1.611.62 0.14 0.5

energies they were reduced to 0. Our final results for th
imaginary parts of the multipole amplitudes obtained in the%33(1700) 1.65 025 0.32.2
way described in this section are presented by dashed curvesg,(1950) 1.921.93 0.3 0.5
in Fig. 2.
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FIG. 2. Multipole amplitudes within the DR and UIM. Dash-dotted and dashed curves are the real and imaginary parts of amplitudes
obtained by the DR. Solid and dotted curves are the real and imaginary parts of amplitudes obtained within a UIM with a modified
background Eq. (16)]. Plotted are the multipole amplitudes in millifermi units. In parentheses the notations of multipole amplitudes in the
SAID program are given. The GWWMPI) results from thesaib program are presented by open circles for the real parts of the amplitudes, and
by open triangles for those imaginary parts.
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FIG. 2. (Continued.
expansions is equal to Cﬁ?(HQz—”fﬁZké%)/ﬂk'||Q’|, amplitudes in the integrals over the intermediate energy re-

wherek’ andq’ are the four-momenta of the virtual photon gion were calculated via an interpolation of the imaginary
and pion corresponding t8'. Whens'<s, we have co§ parts of the amplitudes between the regionss<2 GeV and
>cog, and in the dispersion integrals a problem can arisV>2.5 GeV.

due to the possible divergence of the partial-wave expansion. Our final results for real parts of the multipole amplitudes
This problem has been discussed in a number of papees are presented in Fig. 2 by dash-dotted curves. Let us note
for example, Ref[16] and references therginHowever it  that in Fig. (2) all amplitudes for which the GW(YPI)
remains unclear up to which c@s>1 the partial-wave ex- analysis gives definite results are presented. It is seen that the
pansion Eq. (A3)] can be used in the dispersion integrals. Inagreement with the GWWPI) results is satisfactory up to
Ref. [16] a good description of photoproduction data wasw=1.8 GeV. At higher energies in some multipoles, notice-
obtained using fixed- dispersion relations at[t|  aple deviations from the GWWYPI) analysis arise. Most
<16 GeV, ie, for the full angular range up t&  probably they are connected with the above discussed diver-
=1.78 GeV. This permits an empirical conclusion that thegence of the partial-wave expansions in the dispersion inte-
partial-wave expansiofEd. (A3)] can be used in the disper- grais. The main uncertainty which can arise due to this di-

sion integrals up t9t|=1.6 Ge\~. In this paper this conclu- vergence is connected with the contribution of the multipole
sion is confirmed by the results of the comparison of the reit/‘ 32

. \ ) . 1+ corresponding to th€,3(1232) resonance. The contri-
parts of _the phqtoproqlucnon mult|po[e amplitudes obtaine ution of this multipole, which is large by itself, sharply
by the fixedt dispersion relations with the results of the o . I o

VS grows with increasing energy. This is demonstrated in Figs.
GWUVPL) analysis. - - : (b) and 3 for the amplitude&$?, EY23?2, andM{2%2. At

Imaginary parts of the amplitudes in the integrals over thet P 1+ =0+ - -

high energy region from 2.5 GeV t® can be found using W>1.7-1.8 GeV these ampllt_ude_s are much smaller than
the results of Regge-pole analysis made in R&@]. The the P33(1232) resonance contributigsee Figs. @)-2(f)];
method used to construct the amplitudes in R&€] is de- therefore, they should be obtained as differences of two large
scribed in Appendix D. This analysis is made in gauge-contributions, one of which, thé>;3(1232) contribution,
invariant form and using invariant amplitudes. For this rea-contains arbitrariness. In addition, when we appro&¢h
son its results can be easily used for the calculation of high=2 GeV, the uncertainty connected with the unknown con-
energy integrals in dispersion relatio(® and(4). The role tributions of the resonances willhi>2 GeV can become sig-
of these integrals turned out to be negligible in the real partsificant. For these reasons multipole amplitudes obtained by
of multipoles in the | and Il resonance regions and very smalDR at W>1.8 GeV are not reliable, and we do not present
in the Il and IV resonance regions. Imaginary parts of thethem in Fig. 2.
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multipole amplitudesEy? (dashed curve E3?
(dashed-dotted cur\)/;eMi’,2 (solid curve, and

Mf’f (dotted curve within dispersion relations.

Ill. UNITARY ISOBAR MODEL

The unitary isobar model is based on the effective La-

grangian approach which was introduced in Réfs5] to
reproduce low energy results of current algebra and PCA

Within the approach of Ref$4,5] the pion photoproduction =SNG exp(i 577

amplitudes consist of nucleon exchanges inghadu chan-
nels, and thet channel= exchange with a pseudovector
7NN coupling. These contributions describe well pion pho-
toproduction at threshol(Ref.[5]).

Later the approach of Ref$4,5] was extended to the
P35(1232) resonance region in a number of wo(kee, for
example, references in Refd.,6]), and to the first, second,
and third resonance regions in the U[]. The background
in the UIM is constructed from the contributions of nucleon
exchange in thes and u channels and thé channelr ex-
change with arNN coupling which is pure pseudovector at

2

1.9

W(GeV)

ties connected with the cutoff in corresponding integrals and
with the method of taking into account off-shell effects. It is
not included into the unitarization proceduigg. (15)]. Be-

dow the two-pion production threshold, wheré™

N), unitarization according to Eq15) sat-

isfies the Watson theorem for the background contributions
into multipole amplitudes.

With increasing energy the contribution of the back-
ground of the UIM[1] becomes too large. This is demon-
strated in the case df13? in Fig. 1(d) (dotted curvg In
order to compensate these large background contributions,
resonance contributions in the UIM of Réfl] have been
strongly deformed. Continued to the energlés>2 GeV,
the background of Refl] strongly contradicts experimental
data.

Extension of the effective Lagrangian approach above the

threshold, transforming with increasing energy into the pseusist resonance region with the minimal set of diagrathe

doscalar coupling via formuléB2). In addition to these con-
tributions, the background of the UIM1] contains the
t-channelp and w exchanges, which are given in Appendix

E. The background, constructed in this way, is unitarized for

each multipole amplitude according to Rdfl7] in the
K-matrix approximation:

Unitarizec{M|i, Elia SIi)background
:(Mlt: Eliv Slt)backgroun(i1+ihriN)-

This form of the unitarization of the background is equiva-
lent to taking into account on-she#tN rescattering in the

(19

nucleon exchanges in theand u channels, and channel
a, p, and w exchangescannot be satisfactory by the fol-
lowing reasons.
(i) Restriction to mesons with lowest masses in the
t-channel exchanges is justified only at small energies, where
|t| is small and, therefore, the propagatorst /nZ,.) are
determined by the meson masses. However, with increasing
energy the range dfis increasing, and addition&ichannel
contributions corresponding to mesons with higher masses
should be taken into account.

(i) With increasing energy, starting with/=1.3 GeV,
the contributions of inelastic channels intdN scattering be-

diagrams contributing to the background. Off-shell rescattercome important(see, for example, Refl18]). This means
ing can be found only using models and contains uncertainthat diagrams corresponding to the production of other par-
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ticles with subsequent rescattering, i.eN—inel.— N, describe the ratio of the imaginary and real parts of the reso-

should be taken into account. Therefore in order to extentgiance contributions intv3? , E3? | andS??2 in accordance

consistently the effective Lagrangian approach above theith the Watson theorem. Let us remind, that the background

first resonance region, it is necessary to take into account @ntributions into these multipoles, unitarized via Etj5),

large number of new diagrams. satisfy the Watson theorem. In the case of the amplitude
On the other hand, it is known that with increasing energym f/f which is known with great accuracy, the following

Regge-ization of different contributions occurs via multiple modifications are also made.

gluon exchanges betweémrthannel quarks, and all contribu- (a) At W<1.3 GeV the right part of the EGC1) is mul-

tions are reduced to a restricted number of Regge-izegplied by the factor (V/M)®.

t-channel exchanges. This picture, which is known as the (p) At W>1.3 GeV the imaginary and real parts of the

Regge-pole model, gives a good description of exclusive reresonance contribution are multiplied by the factrs and
actions abovaV=2.5 GeV E,=3 GeV) at|t|<3GeV~. In |

a number of cases the Regge-pole approach gives a googe’
description at smaller energies as well.

For this reason we have modified the unitary isobar model (W/1.3)251.3M)8 (W/1.3)351.3M)8
so that it incorporates the results of the effective Lagrangian |,,= 550 IRe™ 5"
approach in the first resonance region and the Regge-pole 1+2.4(s-1.69% 1+14(s—1.69%
behavior of the amplitudes at high energies. With this aim, (17)

the background of the UIM of Ref.l], which consists of
N, 7, p, andw contributions and is real, has been modified

by including the real parts of the Regge-pole contributions: WhereW andM are in units of GeV. These are sI_ightzmodi-
fications. The obtained resonance contribution iMg? is

Back=[N+ 7+ p+w]lyy at S<so, presented in Figs.(&) and Xd), by dash-dotted curves. It is
seen that the sum of this contribution and the unitarized
background withs,=1.16 Ge\? (dashed curvésdescribes

+Re [7+p+w well the GWUVPI) data. With the nonmodified bakground-
1+ (s—8p)? (dotted curves resonance contribution should be strongly
deformed in order to describe the GVMWPI) data.
In order to demonstrate tf@? evolution of theP55(1232)
resonance contribution obtained with the above described
modifications, we present in Fig. 4 the imaginary parts of

In the resonance energy region, we unitarize @6) in the M7 atQ?=0.9, 1.8, 2.8, and 4 GéMsolid curves. In this
K-matrix approximation[Eg. (15)]. From the sum rules figure, Im M"f/f, obtained within DR via a solution of inte-
which follow from dispersion relationgl9—21, it is known  gral equation(8), are also presentéthshed curves The
that there is an integral duality between imaginary parts ofmagnitudes of Irr1\/lf’+2 at the resonance position are ob-
the amplitudes in the resonance energy region and the imagiained from the analysis of JLab ddi22,23. It is seen that
nary parts of the Regge-pole amplitudes, continued into thishe amplitudes obtained within the two approaches are in
region. For this reason we do not continue the imaginarygood agreement with each other. In order to compare the
parts of the Regge-pole amplitudes belix2 GeV. Above  shape of the amplituddl f’f at Q2#0 with its shape aQ?
W=2 GeV the imaginary parts of the amplitudes, which in=0, in Fig. 4, we present the GWWUPI) data with normal-
the resonance energy region are determined by the resonanigations corresponding tQ?=0.9, 1.8, 2.8, and 4 GéV It
contributions, will turn into the imaginary parts of the s seen that the shape BF'? practically is not changed with

Regge-pole amplitudes. increasingQ?.
With the background of the unitary isobar model modified

according to Eqs(16), a good description of all multipole

BaCk:[N+ 7T+p+ w]u|M

(5—50)?
+bl+a2]Regge at s=s;. (16)

1+ (S—5p)?

amplitudes withl<3 has been obtained up W=2 GeV, IV. CONCLUSION
taking resonance contributions in the standard Breit-Wigner
form presented in Appendix C. The paramedgin Eqs.(16) We have obtained a good description of the real parts of

was found from the requirement of the best description ofall multipole amplitudes with<3 up toW=1.8 GeV using
multipole amplitudes and is equal &=1.16 Ge\f. The fixedt dispersion relations. In Sec. Il A it was shown, that
Regge-pole amplitudes in Ed16) were taken from the dispersion relations for multipole amplitudss’? , andE>?
analysis of high energy photoproduction data made in Refwhich correspond to thB;5(1232) resonance, can be trans-
[10]. They are presented in Appendix D. Th&l amplitudes  formed into singular integral equations. The real and imagi-
in the unitarization procedui€q. (15)] were taken from the nary parts of these multipoles were obtained via solution of
GWU(VPI) analysis(the SAID program. The results are pre- these equations and are in good agreement with the
sented in Figs. (b)-1(d) and 2 by solid curves. GWU(VPI) results.

Let us note that for thé?;3(1232) resonance we have  We have modified the unitary isobar model of Réf] via
modified the Breit-Wigner parametrization given in EGl),  the incorporation of Regge poles with increasing energy and
taking I"yo1a in the form o =T -(M?/s). This allows to  using the unified Breit-Wigner parametrization of the reso-

015209-8
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nance contributions in the form proposed in H&f. Within
this approach we have obtained a good description of all
photoproduction multipoles with<3 up toW=2 GeV.

Both approaches can be continued@6+ 0, and all for-
mulas of this paper are presented in a form which permits

this continuation. Therefore, both approaches can be used for f,=[ —(W+mjy)B;—B:]

an analysis of data on pion electroproduction on nucleons
and for extraction from these data information on Q&
evolution of y* N— N* form factors. Such data are currently
being obtained at the high duty-factor electron accelerator at
Jefferson Lab.
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APPENDIX A: RELATIONS BETWEEN INVARIANT AND

MULTIPOLE AMPLITUDES X

In order to connect invariant and multipole amplitudes it
is convenient to introduce the intermediate amplitudes
f(s,co,Q?):

015209-9
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FIG. 4. The imaginary part of13'? obtained
within the DR (dashed curvgsand UIM (solid
curves at Q°=0,0.9,1.8,2.8, and 4Gé&Vv
Data atQ?=0 are from GWUWVPI) analysis, and
data at othe? are the same data with changed
normalizations.
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Bs
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87W '

Bs
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8mW ’

f5=HQZBl+(W— my)Bs+ 2W(E;—my)

W+ my
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(Ex—mp)(Ex+my)
8TWQ?
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fo= —[stl—(w+mN)Bs+2W(El+mN)
W_mN
X | By+ 5 BSH(El—mN)+X(283—BZ)
Bs (E1+my)(Ex—my)
_(W_mN)(7_BSH 8rWQ@P
(A1)
where
ko
X=—-(t—m2+Q?)—Q7qy, (A2)

2

6 is the polar angle of the pion in the c.m.s., dadqo.E;,
and E, are the energies of the virtual photon, pion, initial,
and final nucleons in this system.

The expansions of the intermediate amplitudes over mul-

tipole amplitudesM |- (s,Q?), E;~(s,Q?), S .(s,Q?) have
the forms

fi=> {(IM . +E,)P/,,(cosd)

+[(I +1)M|_+E|_]P|’_1(cosﬂ)},

fo=2 [(I1+1)M;; +IM,_]P/(coss),
f3:2 [(E+—M1) i,+1(0059)
+(E-+M|_)P/_;(cos)],

fa=> (M, —E . —M,_—E_)P(cos),
fo=>, [(1+1)S P/, (cosd)—IS,_P/_,(cosd)],

fo=2 [1S-—(1+1)S,]P| (cosh). (A3)

The formulas which relate the amplitudégs,coss,Q%) to

the helicity amplitudes and cross section can be found in Ref.

[14].

APPENDIX B: BORN CONTRIBUTION

The residues in the nucleon poles of the invariant ampli-

tudes in Eqgs(3) and(4) are equal to
092y~ I€ E(0.9, 2 (0,9 A2
RI(Q%) = S [FT(QY)+2mE"(Q)],

ge

5 F9(Q),

RY(Q%) =

PHYSICAL REVIEW C 67, 015209 (2003
ge
RE(Q) = - F9(QP),

e
R 9(Q2)= - (m 2= Q= DFE9(Q?),

RY9(Q?) =geF9(Q?),

e
REI(Q%)= L FEI(QD), ®1)
where g¥4m=14.2,e’/47=1/137, and F{9(Q?),
F(z"'s)(Qz) are the nucleon Pauli form factors. Following
Ref.[1], in the UIM the Lagrangian for therNN vertex is
taken in the form of mixed pseudovect@dV) and pseudo-

scalar(PS couplings,

2 2

PV
SLannt

A PS
A%+q L

q
2 =mNN»

— B2
A%+q (2

Lann=
where we take\?=0.12 Ge\f. This leads to the following
additional contributions in the amplitud& ™ %(s,t,Q?):

B %(s,t,0%)=B{"%(s,t,Q*) +AFYI(Q%), (B3)
where

ge A?

" amy ATrq? 9

The nucleon Pauli form factos{”'¥(Q?) andF%9(Q?) in
the above equations we have defined according to the de-
scription of the existing data in Ref®4-26, in the follow-
ing way:
F9(Q%)=F1,(Q%) —F1n(Q),
F&9(Q%) =F55(Q%) ~F2n(Q?),
F1p(Q%)=Gp(Q)/(1+2myz), F;(Q%)=2F,(Q%),

1793 1.2Q2

2 8
z= 2 1+ 1+1.1Q+0'0159 +0.001Q° ),

Gp(Q?)=2.793(1+0.35Q+2.44Q°+ 0.5Q°%+ 1.04Q*

+0.3405),
GR(Q?)+1GR(Q?)
Fun(QF) =
Gr(Q%)—Gn(Q?)
F2n(Q2): 2mn(1+ 7) )
0.5Q°
7=Q2/4m?, Gﬁ:—1+25Q4’

Gr(Q?)=—1.91F4(Q?),

015209-10
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Fa(Q?)=1/(1+0.71Q%). (BS) u(p,) ys{2P#BS ) +2g#BS u(py), (D1)

Here Q? is in units of Ge\f. For the pion form factor we

] where, in addition to ther contribution, the nucleon pole
take as in Ref{1] the form

contribution generated by the form faciﬁﬁ”)(QZ) is taken
F.(Q)=F{"(Q2). (B6) into account. The nucleon and pion contributions B’
" andBY ) are written in the forms

APPENDIX C: BREIT-WIGNER PARAMETRIZATION FOR

RESONANCE CONTRIBUTIONS (st a2 0oy L2Metomz) 1
BY (s.t,q >=— PrpQr| - —— =
We use the Breit-Wigner parametrization for the reso- (WDZ)
nance contributions into multipole amplitudes in the form
7,9].
[7.9] - ) g€ _ (1), o2 t—-m>  t—-m?
=\ 12 By (4,99 =| = FI(Q)| ——+ >
Resy_w(W.0%) =c| q_k_ - sS—m° u—m
MT —eng(QZ)L_ (D3)
X . (@D
M*-W _lMFtotaI .
and are Regge-ized by the replacement
wheren=0 for M., E;., n=1 for S . and
1 .
Tiotar=Ln+ Cinel (C2) i PRegge iN BYY +F>Regge in BY). (D4)
20+1/ y24 42\ !
.= F( q) Xrar (c3  HerePgeggeare Regge propagators,
\a, X2+ q2 )
pTbL _ s | @D Tal 1 r+e imealt)
_ k2 Xk Regoe |so|  siMma,()] [[1ta ()] 2 '
o and it is supposed that andb; trajectories are degenerate:
Qom |24 X2+ 05,,, a (t)=a.(t—m2), anda,=0.7 GeV 2.
Liner=(1= 7T Qo r X2+ g2 (€5 The contributions of thep and w exchanges in the
’ 2m t-channel are gauge invariant and are Regge-ized simply by
For M. ,E;,,S., 1’=I: for E,_,S_,1'=1—2 if I=2; the following replacements in Eq&E1):
for S;_, I'=1; M andI" are the masses and widths of the
resonancesy,. are the branching ratios into theN channel, - pr in B+ P2 in BC)
gz, is the three-momentum of then2system in the decay t—m2 Regge Regge b
Res—27+N in the c.m.s.,q,,, is the magnitude of this
momentum atWW=M, andX are phenomenological param- i=1,2,3,6, (D6)
eters.
For the resonanc8&;,(1535) which has large branching 1
ratio into the N channel,l'y.4, is taken in the form e PRegge in B{, i=1,236, (D7)
INota=0.6I" ,+ 0.1+ 0.3 — q,, (C6)  where it is assumed that theanda, trajectories are degen-
77 erate, and
tBe|z<low the trl-reslholds (())f&J:jN angl n+N productions we by g\ a1 Tra; 1 r+ e ima,)
ake, respective =0 andq,=0. 2 = — - ,
PeCivEllzn qy PRegod | 5, sifma,(0] T[a,(0] 2
APPENDIX D: INVARIANT AMPLITUDES IN THE REGGE o (-1 / Cira
s | %® Ta 1 e im®
REGIME pe |2 . ©
. : : o Regge | s sima, ()] Ila,(t)] 2 ’
In Ref.[10] the introduction of Regge-trajectories is made (D8)
in gauge-invariant form for invariant amplitudes in the fol-
lowing way. Instead of-channelr exchange, which is non-  «,(t)=0. 55+a t, ap—o 8 GeV 2, a,(t)=0.44+alt, a/,
gauge-invariant and contributes inﬁg‘)(s,t,QZ), the fol- —0 9 GeV 2. In Egs.(D5) and (D8), T is the signature of
lowing combination is used: the trajectory:

015209-11
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Tp= Tazzl, TP:Tw:Tblz_l' (D9) BH = €Ny Ju2 (u—s) (+)_2 1
3 m 8mN t— mi, gwl m2
APPENDIX E: p AND @ CONTRIBUTIONS (E]_)

Thep andw exchanges in the- channel contribute to the

following amplitudes: These amplitudes are obtained using vertices

vpm, yom, pNN, andwNN defined in the form presented

B(O)Z& 2y g 1+t ng} 1 in Ref. [1]. In the UIM, the off-shell behavior ofy; is de-
Lom, [N T 2my t-m?’ scribed bygyi=gyiAZ/(AZ—t). The coupling constants are
taken from Ref[1], and are equal to
e\
B="2 P2 (Qrim—t) —,
m TN -m, \,=0.314, 9,,=21, g,,=—12, A,=1.2,
J,2 en
BO-""r =P _ BO o P , -
m, 8mN( S 2 6 m, g”lt_mg \,=0.103, g,,=2, 0,,=13, A,=15. (E2
B(1+):e>‘_‘" 2mNgw1+t% , In the Regge-pole analysis of high energy photoproduction
m; 2myjt—m? data in Ref[10] the coupling constants are
BY) = o 9oz 22 (Q%+m? -0 099139, gis99%=0, gy99%3.47, gu99%=13.
m 4mN mw P2 (E3)
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