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For excited nucleon statéd* of arbitrary spin coupling to nucleofN) and meson 1), we propose a
Lorentz covariant orbital-spinL-S) scheme for the effectivl* NM couplings. To be used for the partial
wave analysis of variousd* production and decay processes, it combines merits of two conventional schemes,
i.e., covariant effective Lagrangian approach and multipole analysis with amplitudes expanded according to

angular momentuni. As examples, explicit formulas are given fof* —N#, N* =Nw, and ¢y—N*N
processes which are under current experimental studies.
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[. INTRODUCTION angular momentaL. Hence the usual centrifugal barrier
(Blatt-Weisskopf factor [12,19, commonly used in multi-
The study of the nucleon and its excited stas can  Pole analysis and mesonic decays, cannot be used here since
provide us with critical insights into the nature of QCD in the the barrier factor i4. dependent. Instead vertex form factors

confinement domairil]. They are the simplest system in with an exponential form or other forms are used in the ef-

which the three colors of QCD neutralize into colorless ob-€CtiVeé Lagrangian approach. This makes a comparison to
results from usual multipole approach very difficult.

jects and the essential non-abelian character of QCD is mani-"| - ihis paper we propose a covaridntS scheme for the
fest. However, our present knowledgeNdt Spectroscopy iS  efective N*NM couplings to be used for the partial wave
still very poor, with information coming almost entirely from anaiysis ofN* data. In this scheme, the amplitudes are ex-
the old generation ofrN experiments of more than 20 years panded according to the orbital angular momentuof two
ago[2] and with many fundamental issues not well under-decay products, that are meanwhile Lorentz invariant. Hence
stood[3]. Considering its importance for the understandingit combines the merits of multipole analysis and the usual
of the nonperturbative QCD, much effort has been devoted teffective Lagrangian approach.
the study of theN* spectrum. A series of experiments N In nature, our formalism is equivalent to the standard ap-
physics with electromagnetic probes have been started @roach of effective Lagrangians, but it has the advantage that
modern facilities such as TINARB], ELSA[5], GRAAL [6], terms with a definite angular momentum in the decay state
SPRINGS8[7], and BEPC8]. are constructed on the Lagrangian level, which makes it
Abundant data have been accumulated for varibifis €asier to usd -dependent form factors and simplifies the
production and decay channels at these facilities in the ladfterpretation of partial wave analyses. It should be used as
few years. Now an important task facing us is to a performan effective Lagrangian in the future.
partial wave amplitude analysi®WA) of these data to ex-
tract properties oN* resonances, such as their spin parity, Il. GENERAL FORMALISM

mass, width, decay branching ratios, and so on. #Hror In our construction of the covariaht-S scheme for the
yN to meson-nucleon final states, the most commonly usegffective N*NM couplings, we need to combine some
PWA formalism is the multipole analysis with amplitudes knowledge from the covariant tensor formalism for meson
expanded according to angular momentunof a meson-  gecayq19] and covariant wave functions for hadrons of ar-
nucleon systenmi9—13]. This formalism is usually written in bitrary spin [20]. For a given hadronic decay proceAs
the meson-nucleon c.m. system, not in a covariant form, and, g, in the L-S scheme on hadronic level, the initial state
hence is not very convenient to be used for multistep chaify described by its four-momentum, and its spin stat&, ;
processes, such d$y—N*N with N* further decaying to the final state is described by the relative orbital angular
meson-nucleon. For a multistep chain process, the covariamiomentum state of BC systelng: and their spin states
effective Lagrangian approacil4—17,8 is more conve- (S3,S).

nient. In this approach, the effectild* NM couplings are The spin statesS,,Sz,S:) can be well represented by
constructed by Rarita-Schwinger wave functions for particleshe relativistic Rarita-Schwinger spin wave functions for par-
of arbitrary spin[18], four-momenta of involved particles, ticles of arbitrary spirf18,19,21,17. The spins wave func-
Dirac y matrices, etc., with constraint of general symmetriestion is the standard Dirac spinar(p,s) or v(p,s) and the
required by the strong interaction. A problem is this approachspin-1 wave function is the standard spin-1 polarization four-
is that the amplitude is usually a mixture of various orbitalvectors#(p,s) for particle with momentunp and spin pro-

jections:
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Spin wave functions for particles of higher spins are con-

structed from these two basic spin wave functions W@t
coefficients (1,j1z:j2,)2:]:j,) as follows:

iy py(P,S)

-3

Sn—1:Sn

x(p!n_lvsnfl)s,u,n(pisn)

(N=1sh-1;180NS)ep s,

2
for a particle with integer spim=2, and

1
Uiy (PsNF3,9)

-3

SnSn+1

.1 1
(N,Sn32:Sn+1IN+2,9)8 0 )

)

X (pyn_ 1ysn)u(pisn+1)
for a particle with half integer spin+3 of n=1.
The orbital angular momenturhg state can be repre-
sented by covariant tensor wave functiéﬁ,%l)._, p, @S the
same as for meson decfifQ]. We definer =pg—pc, then

10=1, 4

=9, (pa)r =7, (5)
TO=F,F,— 371G, (6)

T =TI =t D@ +TaT,+00,T), (D
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r

Y
e (PeSo)- (12

‘I’E})=U(p3 Se)| Y~
Herer, term is necessary to cancel out tpedependent
component in the simplay,v expression. In theé\ at-rest
system, we have

YO=Cy(— Vo5 sy, (13

VH=Cy(- 1" Sexd oix—s, (14)

with two-component Pauli spinorgl,=(1,0) and x,,
=(0,1), and

(Eg+mg)(Ec+me)+pa
V2mg2me(Eg+mg)(Ec+mc)
o _ JEstme)(Ectmo) P2
v 2mg2mc \ (Eg+mg)(Ec+me)/”
(16)

In the nonrelativistic limit, bottC, and Cy, are equal to 1.
Generally both of them have some smooth dependence on
the magnitude of momentum. But boti®) and ¥{? have
no dependence on the direction of the momenfynience
correspond to pure spin states with the total spin of 0 and 1,
respectively.

For the case of asN* with spinn+ 3, B asN, andC as
a meson, one needs to coupteS, and Sg first to getSag
=—S,+ S states, which are

17

¢, =U(Ps,Se)Up,. s (PasSA),

In theL-S scheme, we need to use the conservation rela-

tion of total angular momentum:
Sp=Sg+Sctlac —Sat+Sg+Sct+Lgc=0. (8)

Comparing with the pure meson cdd®)], here forN*NM

or

couplings we need to introduce the concept of relativistic

total spin of two fermions.

For the case of A as a meson, BN& with spinn+ 3 and
C asN with spin-, the total spin oBC (Sgc) can be either
norn+1. The twoSgc states can be represented as

©)

lﬁgl)...ﬂn=ﬁﬂl__,ﬂn(p8 ,Sg) Y5 (PcSc)»

(n+1)
q’#

1'''Mn+1:ul“‘l"'l“‘n(pB 'SB)

;
Mnt+1
X s —
Yirnsq MA+ Mg+ Me v(Pc,Sc)
(1 pnp) + - H(pe= pner) (10

for Sgc of nandn+1, respectively. As a special case rof
=0, we have

PO =U(pg,se) ¥sv(Pc,Sc), (11

(n+1)
q)M

1"'Mn+1:u(pB ’SB)’)/S?)’/,U,n+1uM1--~/.Ln(pA'SA)

F(propne) T (ae pnrn) (18)
for Spg of nandn+1, respectively.

#O=U(pg,Ss)U(Pa.Sa), (19

®M=u(pg,Ss) ¥57,U(Pa.Sa), (20)

with 7,=0,.(pa) ¥”. In the A (N*) at-rest system, we have

(0)_ (EA+mA)(EB+mB) 21

¢ - ZmAZmB SASg! ( )
(Eat+ma)(Eg+mg)

(I)|(1)= - \/ ZmAZmB XlBO'iXsA- (22)

Both have no dependence on the direction of the momen-
tum p.

In effective Lagrangian approaches, the effectVeNM
couplings are constructed by, r, g*”, v*, uor v, and
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may be mixture of various orbital angular momentum states.

In our proposed covariart-S scheme, the effectiv* NM
couplings should be composed pf, T, g*”, €,4,s (the
full antisymmetric tensor (W) or ¢ (P), corresponding
to a pure orbital angular momentumstate. Then the proce-
dure for constructing the effectivd* NM couplings is very
similar to the case for pure mesof%9|. First the parity
should be conserved, which means
1A= 7 7c(— 1)L, (23

wheren,, 7g, andzc are the intrinsic parities of particles
A, B, and C, respectively. From this relation, one knows
whetherL should be even or odd. Then from H§) one can
figure out how many different-S combinations, which de-

termine the number of independent couplings. For a final N*(17) N

state with orbital angular momentum loft () should appear

once in the effective coupling without any otfeor r. This
will guarantee a pure final state. Then one can easily apply
Blatt-Weisskopf centrifugal barrier factor for each effective
coupling with anL final state if one wishes. We shall show
the concrete procedure by examples in Sec. lll.

IIl. EXAMPLES

We shall start with the simplest case fdi* —Na pro-

cess, then foN* —Nw and ¢— N*N where s can bed/y
or ¢' or any other heavy vector mesons.

A. N*—>Nm

For N* — N, it is well known that only one possible
L-S coupling for theN 7 final state of eaciN* decay. Since
the nucleon has spin-parify” and pion has spin-parity Q
N*(3") can only decay tiN+ in P-wave with Syg=1 to
make — S+ Sg+Sc+Lge=Spg+Lec=0, meanwhile sat-
isfying the parity conservation relatidiEq. (23)]. Similarly
we have N*(37)—N= in the S wave, with Syg=0;
N*(37)— N in the P wave, withSyg=1; N*(37)—=Nmx
in the D wave;N*(37)— N in the F wave, withSyg=3;
N*(37)— N in the D wave, withSag=2; N* (4 ") —=Nmx
in the F wave with Syg=3; N*(3)—N in the G wave

with Syg=4; and so on. Then the effecti&* N7 couplings
in the covariant_-S scheme are

N*(35)—Nm QT e, (24)
N*(3)—=Nm: ¢t (25)
N*(3")—Nm Pt (26)
N*(37)—Nm:  dZi@wr, 27)
N*(57)—=Nm  dE) T, (28)
N*(37)—=Nm  gCJt@m, (29)
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N*(3) =N g T@mn (30)

N*(37) =N &) jf@mns (31)
Here, for simplicity, we omit the vertex form factors. With
properties of Rarita-Schwinger wave functions

....... and p“iu.._#i...(p,s)zo, (32

one can easily obtain the relation between the covatiaSt
couplings and the usual effective Lagrangian ones,

N*(37)—Nm  dUTWe=T ysy,u,p-Cq, (33
Ot O=1u, -1, (34)
N*(3T)—=Nm ¢t De=tu, p~ 2, (35)
N*(37) =N dCT@m =T ysy,u, p4pL-4C,,
(36)
N* %Jr)—)N’]T: @LS]B)\"{@);LV)\
=UnNYsY,Us nPAPLPY- 12C (37)
N*(37)—=Nm  pCt@wr=tgu, , ppL-4, (39)
N*(3F)—=Nm: ¢@ T =Tu, ,,\ppLp-8,
(39
N*(37)—=Nm: ) F@mme
=UNY5YuUs noipLpipS-48C,, (40
with
Com| 14 ™ My 41
e m, m2+m,my)’ 4D

Uy, andu, are the Rarita-Schwinger wave functions Nof

and N*, respectively;my, andm, are the mass oN and

N*, respectively; ang . is the 4-momentum of the pion. We
see the two approaches are equivalent here up to some con-
stants or a smooti, -dependent factdC . This is because,

for any N* — N process, there is only one possitileS
coupling and hence only one independent coupling.

B.N*—>Nw

Unlike a pion with spin 0, her@ has a spin 1. FON*
with a spini there are two independehtS couplings con-
serving parity[Eq. (23)] and total angular momentufteq.
(8)]; for N* with spin larger tharg, there are three indepen-
dentL-S couplings. Here we list them fod* with spin up to
7/2.

(Sc.SagsLec): SagtSct+Llec=0
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N*(3")—Nw(1,0,1):
(1,1,:
N*(37)—Nw(1,1,0):
(1,1,2:
N*(3")—=Nw(1,1,1):
(1,2,9):
(1,2,3:
N*(37)—=Nw(1,1,0):
(1,1,2:
(1,2,2:
N*(3")—=Nw(1,2,D):
(1,2,3:

(1,3,3:

N*(27)—=Nw(1,2,2):
(1,3,2):
(1,3,9):

N* ()= Nw(1,3,3):

(1,4,3):
(1,4,5):
N*(27)—Nw(1,3,2):
(1,3,4):

(1,4,9):

where P, ,=Pso/M,
=(1,0,0,0); €*"*’S,L,J)\Ps,=(SXL)-J is the standard
form for forming a total angular momentufd=1 from two
other angular momentaS(L) of absolute value 1. In the
covariantL-S tensor formalism, forS-L-J coupling, if S

HOg*t(Mn

/.L L
. 1 T (1) A
DT,
@5})8* 3
q)ELl)S:"f(Z)MV’
_— ~(1)a
T,
D@ gr gy

uv d
@(2)8;'{(3)#%

uv '
Bpe*
d,(l)s:'f(Z),uV

M 1
. 2 ~(2)aa
DD e TP,
¢£L2V)8* ,uft'(l)v,
¢(238;‘f(3)#w\

/’l’ ’

i q),ELngBGMV)\UStTg\S)aBp* -

2 e T,

(I),(fg)\(?* ;[f(Z)v)\'
(I)Sg)\sz'fﬂ)uv)\lf'

i) et e XT3 Pp,

‘I)Efv)mS* HY@)o
@) 5O
¢533x8*“7(2)m,
AL

i CI)’EL462376MV)\0'8:T§\4)aﬂyp* .-

In the N*

(42
(43
(44)
(49)
(46)
(47)
(48)
(49
(50
(51)
(52

(53

(54)
(59
(56)

(57)

(58)
(59
(60)
(61)

(62

(63

at-rest system,p,
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=0. The corresponding couplings from the simple effective
Lagrangian approach are give in REL7]. They have the
same number of independent couplings as here and are linear
combinations of couplings here. For example, fot 3~
—Now, the full amplitude in the covariart-S scheme is

A=g;6Pel+g,0De 111+ 93i<1>§336‘”””8ﬁ§2)“p€a)
64

with vertex form factorgy,, g,, andgs, while in the simple
effective Lagrangian approa¢t7] is

A=fiugu, ,e”+fouyy,u, ,pRe”+ faunu, ,phe, Py
(65

with vertex form factorsf,, f,, andf;. These vertex form
factors are smooth functions of, with practically constant
my andm,, ; they have no dependence on angular variable.
With some simple algebra and the iden{ig2]

i €uabc™ s( YuYaYoYe™ YuYaObcT Yu¥Yb9ac™ YuYcYab
—Ya¥p9uct Ya¥c9ub™ Yo ¥c9puat uadbe

_gp,bgac"' gp,cgab)i (66)
we have
d)’(ul)e”ZUNu*ﬂs“, (67)
2 2
~ my—m;\_
d’,sil)svt(z)'m): 2\ -1+ Nm—z) UnUy ,upgsvpll(l
*
1 2
+ §r UNUy 8%, (68)

i e 1P D, ,

m3—m?

N
—3+ 42
m2

*

=2

— —
) UNUy ,u,pgsvpﬁl—i_r UNUy MSM

(m*+mN)2_m2
N R

e’ (69

which give the relations betweeg, and f; vertex form
factors:

1, 2
fi=01+ 3" g2+r°gs, (70
(m*"’_mN)Z_mi
—g N ey 71)
2 m, O3 (
fa=2| —1 M, 2l -3 MM, 72
=2 —1+ ——5|g,+2| -3+ ——2]gs.
3 mi Jd2 mi gs. (72

g; andf; are related by some smoath, dependence factors.

+L+J is an odd number, thee*"“p,, is needed. These For an N* with very broad width, this may cause some
are the only possible independent couplings because the fagtodel dependence on the determination of their mass and
that D, Ut(n)a'p, R O, [ o_qs(n)a,u, =0 and D, Uq)(n)tr,u Ce

width.
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C. p—N*N
Here we give an example of a vector meson decaying int

Corresponding couplings in the effective Lagrangian ap-
(ngoach are give in Retl?] In the multipole approach, the

the N*N final state.

amplitude foryg— N* N generally takes the form

(SasSge.lec):  —Sat+Sgetlpe=0 A= > (L,m_;S,mg/1m,)
L,m_,S,mg
—N*(3F)N(1,1,0: wher, 73 .
v 2 IN(LLO e 73 X(Sg Mg ;Sc,Mc|S,Ms) YL (Brn)GLglPul“fL(|PnD),
(1,1,2: ¥ Pe t@wr, (74) (95
CONF (I ) (0).. T(L)u where G s is the coupling constant for the final state with
YN (z IN(LOD: e U, (75) orbital angular momenturh and total spinS, py is the mo-
(1,1,0):  iw®ernog 75\1)[5(@ ' (76) mentum ofN in the rest frame ofy a_ndf,_(|pbe|) is the
o ! 7 vertex form factor. Taking/— N* (1 *)N as an example, the
1//—>N*(§*)W(1,1,0): %1)8#, 77) amplitude is
(1’1’2): lﬂE})SVT(Z)ﬂV' (78) A:(%imB;%mC|1!mz//)YOO(f)N)G01fO(|pN|)
+(2,m_;1,mg/1,m
(1,2’2): I\P(Z)€,uv)\o-8 t(2)ap(¢)a-' (l L 1 S| l/’) 2
(79 X(3,Mg;3Mc|1Mg) Yo (Pn) Ga1l Pal “F2([Pl),
“\NI/ : vho, T(1)n 96
PoNFGONLLD: ipDe e T0p,,,  (80) 8
o~ with mg=mg+mc and m =m,—mg. With some simple
(1,2, w@ert®r, (81)  algebra, the corresponding amplitude in the covarlar$
scheme can be reduced to the similar form:
(1,23 Qe T@mn (82 -
B A:90‘1’21)8“f0(|pN|)+92\I’£Ll)8ut(2)wf2(|pN|)
p—N*(3HN(L2,2: i 2e" e 1 PDyyo X
’ v (83) =(2,Mg;2Mc|1,m,) Yoo Pn) 9o V87 Coyfo Pl
. 1 .1
(1,372): \I,'(fg}\s;ﬁ['(Z)v)\, (84) +(21mL 111mS|1va;)(§lmB ) fmC|1!mS)
@) T()um X Y om, (Bn) 925 V47 Coy | Pl 2( [P 97)
(1,34 W& e t@uno (85)
. 5 Comparing Eqs(96) and (97), we have
p—N*(3IN(L2,D:  yl2ert®r, (86)
G01=090V87Cy, (98)
(1,23 e t®mm (87
G 8\/4 C (99
. ~(3)aBa 215923 VATly .
(1,33: 1W®) ermoe 1B, 8 3
In nonrelativistic limit, C4y=1, and the covariant-S
N* (2F)N(1,3,2): (3) gHF@m\ 89 scheme give§,;, andG,; as constants; but generally speak-
Y= NG ON ) Yune 9 ing, the covariantL-S scheme results iGy; and G,
_ 3) . T)uone smoothly dependent dipy|.
(1,34 ¢uvx80t( e, (90 As a concrete example, here we study the angular distri-
N ~4 . bution and the relative ratio dd and S waves in the final
(1,44 i), e 1P, states ofe*e”—J/y—pp. For this process of positron-
(91 electron collision,J/ spin projection is limited to bet1
_ 3 along the beam direction. The differential decay rate of the
p—N*(FIN(L3,3: iy e e 1D, JI is related to the amplituda as
(92
- dr -
(14,3: W&, @O, (93) qa 32772| IZN|2 : (100
(1,45: WO, e tGmn, (949 with A given by Eq.(97), we have
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2 . 3+ . i . .
— m;/1 20 2 couplings forN* (57 )Nw couplings; the gauge invariance
|A2= —| 5 C&+ = C3— = CsCpcosp | (1+ a o), ping (27) ping gaug

5 9 3 requirement for the\* (3=)Ny couplings reduces the num-

(109 ber of independent couplings to two for tN& (2 ~)Ny cou-

where plings. - _ »
In this paper we have given explicit formulas for*
2CsCpcosB— gc% —Nm, N* -Nw, and—N*N as examples, since the rel-
=T (102 evant processes are understudy by experimental groups. For
2Cst 5 Cp— 5 CsCpcosp any baryon resonance decaying tg & baryon plus a pseu-
, _ _ 2 doscalar meson through strong interaction, eNf..—AK,
with Cs=Igolfo(lpnl), Co=|02lPNf2(Ipnl) and B the rela- N* -3K, A*—NK, A*—=3m, etc., the coupling has the
tive phase betwee@s and Cp. If Cp=0, thena=0 as  sme form as foN* — N, the only difference is the cou-
expected for a pur&wave decay; iiCs=0, thena=—5for  ,jing constants. For any baryon resonance strong decaying to
the pureD-wave decay. _ ai* baryon plus a vector meson, the coupling has the same
The relative raticRps of D andSwave decay rates is  ¢5rm as forN* — Nw. For any vector meson strong decaying

T 32(3% to a baryon resonance plus an ariti"jbaryon, the coupling
Rp/s= T~ cZ- (103 has the same form as fgr—N*N. Extension to other pro-
s cesses are straightforward by following the basic rules out-
The experimental value of for the ete” —J/y—pp lined in this work. .
process is about 0.§23]. This gives the ratidRp,s to be in In our present.-S scheme foN* decays, we have added
the range of 0.091.9. The large uncertainty is due to the the spin of the incoming nucleon resonance and the final
unknown relative phasg@ betweenS and D-wave ampli- nucleon. This is different with the usulat S scheme where it
tudes. For a full determination of the ratRy,s, the polar- is always the spin of the final state particles which are added
ization information of final state particles is needed. to make the total spis. The two schemes are simply related

by recoupling various angular momenta involved. With re-

IV. DISCUSSION qoupllng technique in Ref26], vye have the following rela-

tion between the two schemes:
Comparing with the simple effective Lagrangian ap-

proach, each coupling in the covariantS scheme corre-  [[SaXSgls, ;X Sclim

sponds to a singlé. final states while a coupling in the

simple effective Lagrangian approach may be a mixture of :2 J(2S,5+1)(2Sac+ 1)W(SaSsL Sc : SaSsc)
two L final states. The number of independent couplings is Sac ’

the same in the two approaches, as it should be. In the simple

effective Lagrangian approach, it is not necessary that the X[SAX[SBXSC]SBC]LM’ (104

independent couplings be orthogonal to each other while in ) o

the covariant.-S scheme, they are orthogonal and make theVNereW(SaSsL Sc; SasSgc) is the usual Racah coefficients
partial wave analysis easier. The construction of the full am[26]- From this relation, after we obtain the coupling con-
plitude in the covariant -S scheme for a multistep process, Stants in our scheme(Syp,L), we can easily obtain the
e.g. J/y—N*N—wNN, is similar to the simple effective corresponding coupling constants in the usuab scheme,

Lagrangian approacfl7]. The coupling constants for each G(Sgc L), as

couplings are fitted to the data in the procedure of partial

wave analysi$g]. G(Ssc /L) =2 9(Sa,L)V(2Sxp+1)(2Ssc+ W
For a partial wave analysis, we only demand very basic Sag

requirements, i.e., Lorentz, CPT, a@land P invariances, % .

for the amplitude and we make formalism more general. (SaSel-Sc i SapSec): (105

Various theories or models or assumptions can bring Mor&ince the covariant -S scheme combines the merits of two
constraints to the relations of various couplings, and hencgq,nyentional schemes, i.e., covariant effective Lagrangian
reduce the number of independent couplings. For example’ébproach and the multipole analysis with amplitudes ex-
chiral quark model calculatiof24] results in a single cou- panded according to the angular momentumwe recom-
pling form for theN* (1675) ~)Nw coupling, which cor- mend it to be used in future partial wave analyses.
responds to ouk1,2,2 coupling of Eq.(55), while other

quark model[25] gives different prediction. This can be ACKNOWLEDGMENTS
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