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Lorentz covariant orbital-spin scheme for the effectiveN* NM couplings
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For excited nucleon statesN* of arbitrary spin coupling to nucleon~N! and meson (M ), we propose a
Lorentz covariant orbital-spin (L-S) scheme for the effectiveN* NM couplings. To be used for the partial
wave analysis of variousN* production and decay processes, it combines merits of two conventional schemes,
i.e., covariant effective Lagrangian approach and multipole analysis with amplitudes expanded according to

angular momentumL. As examples, explicit formulas are given forN* →Np, N* →Nv, and c→N* N̄
processes which are under current experimental studies.
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I. INTRODUCTION

The study of the nucleon and its excited statesN* can
provide us with critical insights into the nature of QCD in th
confinement domain@1#. They are the simplest system
which the three colors of QCD neutralize into colorless o
jects and the essential non-abelian character of QCD is m
fest. However, our present knowledge ofN* spectroscopy is
still very poor, with information coming almost entirely from
the old generation ofpN experiments of more than 20 yea
ago @2# and with many fundamental issues not well und
stood@3#. Considering its importance for the understandi
of the nonperturbative QCD, much effort has been devote
the study of theN* spectrum. A series of experiments onN*
physics with electromagnetic probes have been starte
modern facilities such as TJNAF@4#, ELSA @5#, GRAAL @6#,
SPRING8@7#, and BEPC@8#.

Abundant data have been accumulated for variousN*
production and decay channels at these facilities in the
few years. Now an important task facing us is to a perfo
partial wave amplitude analysis~PWA! of these data to ex
tract properties ofN* resonances, such as their spin par
mass, width, decay branching ratios, and so on. ForpN or
gN to meson-nucleon final states, the most commonly u
PWA formalism is the multipole analysis with amplitude
expanded according to angular momentumL of a meson-
nucleon system@9–13#. This formalism is usually written in
the meson-nucleon c.m. system, not in a covariant form,
hence is not very convenient to be used for multistep ch
processes, such asJ/c→N* N̄ with N* further decaying to
meson-nucleon. For a multistep chain process, the cova
effective Lagrangian approach@14–17,8# is more conve-
nient. In this approach, the effectiveN* NM couplings are
constructed by Rarita-Schwinger wave functions for partic
of arbitrary spin@18#, four-momenta of involved particles
Dirac g matrices, etc., with constraint of general symmetr
required by the strong interaction. A problem is this approa
is that the amplitude is usually a mixture of various orbi
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angular momentaL. Hence the usual centrifugal barrie
~Blatt-Weisskopf! factor @12,19#, commonly used in multi-
pole analysis and mesonic decays, cannot be used here
the barrier factor isL dependent. Instead vertex form facto
with an exponential form or other forms are used in the
fective Lagrangian approach. This makes a comparison
results from usual multipole approach very difficult.

In this paper we propose a covariantL-S scheme for the
effective N* NM couplings to be used for the partial wav
analysis ofN* data. In this scheme, the amplitudes are e
panded according to the orbital angular momentumL of two
decay products, that are meanwhile Lorentz invariant. He
it combines the merits of multipole analysis and the us
effective Lagrangian approach.

In nature, our formalism is equivalent to the standard
proach of effective Lagrangians, but it has the advantage
terms with a definite angular momentum in the decay s
are constructed on the Lagrangian level, which make
easier to useL-dependent form factors and simplifies th
interpretation of partial wave analyses. It should be used
an effective Lagrangian in the future.

II. GENERAL FORMALISM

In our construction of the covariantL-S scheme for the
effective N* NM couplings, we need to combine som
knowledge from the covariant tensor formalism for mes
decays@19# and covariant wave functions for hadrons of a
bitrary spin @20#. For a given hadronic decay processA
→BC, in theL-S scheme on hadronic level, the initial sta
is described by its four-momentumPm and its spin stateSA ;
the final state is described by the relative orbital angu
momentum state of BC systemLBC and their spin states
(SB ,SC).

The spin states (SA ,SB ,SC) can be well represented b
the relativistic Rarita-Schwinger spin wave functions for p
ticles of arbitrary spin@18,19,21,17#. The spin-12 wave func-
tion is the standard Dirac spinoru(p,s) or v(p,s) and the
spin-1 wave function is the standard spin-1 polarization fo
vector«m(p,s) for particle with momentump and spin pro-
jection s:

(
s50,61

«m~p,s!«n* ~p,s!52gmn1
pmpn

p2 [2g̃mn~p!. ~1!
©2003 The American Physical Society04-1
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Spin wave functions for particles of higher spins are co
structed from these two basic spin wave functions withC-G
coefficients (j 1 , j 1z ; j 2 , j 2zu j , j z) as follows:

«m1m2•••mn
~p,n,s!

5 (
sn21 ,sn

~n21,sn21 ;1,snun,s!«m1m2•••mn21

3~p,n21,sn21!«mn
~p,sn! ~2!

for a particle with integer spinn>2, and

um1m2•••mn
~p,n1 1

2 ,s!

5 (
sn ,sn11

~n,sn ; 1
2 ,sn11un1 1

2 ,s!«m1m2•••mn

3~p,n21,sn!u~p,sn11! ~3!

for a particle with half integer spinn1 1
2 of n>1.

The orbital angular momentumLBC state can be repre
sented by covariant tensor wave functionst̃ m1•••mL

(L) as the

same as for meson decay@19#. We definer 5pB2pC , then

t̃ (0)51, ~4!

t̃ m
(1)5g̃mn~pA!r n[ r̃ m , ~5!

t̃ mn
(2)5 r̃ m r̃ n2 1

3 ~ r̃ • r̃ !g̃mn , ~6!

t̃ mnl
(3) 5 r̃ m r̃ n r̃ l2 1

5 ~ r̃ • r̃ !~ g̃mn r̃ l1g̃nl r̃ m1g̃lm r̃ n!, ~7!

••• .

In the L-S scheme, we need to use the conservation r
tion of total angular momentum:

SA5SB1SC1LBC or 2SA1SB1SC1LBC50. ~8!

Comparing with the pure meson case@19#, here forN* NM
couplings we need to introduce the concept of relativis
total spin of two fermions.

For the case of A as a meson, B asN* with spinn1 1
2 and

C asN̄ with spin-12, the total spin ofBC (SBC) can be either
n or n11. The twoSBC states can be represented as

cm1•••mn

(n) 5ūm1•••mn
~pB ,sB!g5v~pC ,sC!, ~9!

Cm1•••mn11

(n11) 5ūm1•••mn
~pB ,sB!

3S gmn11
2

r mn11

mA1mB1mC
D v~pC ,sC!

1~m1↔mn11!1•••1~mn↔mn11! ~10!

for SBC of n andn11, respectively. As a special case ofn
50, we have

c (0)5ū~pB ,sB!g5v~pC ,sC!, ~11!
01520
-

a-

c

Cm
(1)5ū~pB ,sB!S gm2

r m

mA1mB1mC
D v~pC ,sC!. ~12!

Here r m term is necessary to cancel out thep̂-dependent
component in the simpleūgmv expression. In theA at-rest
system, we have

c (0)5Cc~21!1/22sCdsB(2sC) , ~13!

C i
(1)5CC~21!1/22sCxsB

† six2sC
~14!

with two-component Pauli spinorsx1/2
† 5(1,0) and x21/2

†

5(0,1), and

Cc5
~EB1mB!~EC1mC!1pC

2

A2mB2mC~EB1mB!~EC1mC!
, ~15!

CC5A~EB1mB!~EC1mC!

2mB2mC
S 11

pC
2

~EB1mB!~EC1mC!
D .

~16!

In the nonrelativistic limit, bothCc andCC are equal to 1.
Generally both of them have some smooth dependence
the magnitude of momentum. But bothc (0) and Cm

(1) have
no dependence on the direction of the momentump̂, hence
correspond to pure spin states with the total spin of 0 an
respectively.

For the case ofA asN* with spinn1 1
2 , B asN, andC as

a meson, one needs to couple2SA and SB first to getSAB
[2SA1SB states, which are

fm1•••mn

(n) 5ū~pB ,sB!um1•••mn
~pA ,sA!, ~17!

Fm1•••mn11

(n11) 5ū~pB ,sB!g5g̃mn11
um1•••mn

~pA ,sA!

1~m1↔mn11!1•••1~mn↔mn11! ~18!

for SAB of n andn11, respectively.

f (0)5ū~pB ,sB!u~pA ,sA!, ~19!

Fm
(1)5ū~pB ,sB!g5g̃mu~pA ,sA!, ~20!

with g̃m5g̃mn(pA)gn. In theA (N* ) at-rest system, we hav

f (0)5A~EA1mA!~EB1mB!

2mA2mB
dsAsB

, ~21!

F i
(1)52A~EA1mA!~EB1mB!

2mA2mB
xsB

† sixsA
. ~22!

Both have no dependence on the direction of the mom
tum p̂.

In effective Lagrangian approaches, the effectiveN* NM
couplings are constructed bypA , r, gmn, gm, u or v, and
4-2
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may be mixture of various orbital angular momentum sta
In our proposed covariantL-S scheme, the effectiveN* NM

couplings should be composed ofpA , t̃ (L), gmn, eabgd ~the
full antisymmetric tensor!, c (C) or f (F), corresponding
to a pure orbital angular momentumL state. Then the proce
dure for constructing the effectiveN* NM couplings is very
similar to the case for pure mesons@19#. First the parity
should be conserved, which means

hA5hBhC~21!L, ~23!

wherehA , hB , andhC are the intrinsic parities of particle
A, B, and C, respectively. From this relation, one know
whetherL should be even or odd. Then from Eq.~8! one can
figure out how many differentL-S combinations, which de-
termine the number of independent couplings. For a fi
state with orbital angular momentum ofL, t̃ (L) should appear
once in the effective coupling without any othert̃ or r. This
will guarantee a pureL final state. Then one can easily app
Blatt-Weisskopf centrifugal barrier factor for each effecti
coupling with anL final state if one wishes. We shall sho
the concrete procedure by examples in Sec. III.

III. EXAMPLES

We shall start with the simplest case forN* →Np pro-
cess, then forN* →Nv andc→N* N̄ wherec can beJ/c
or c8 or any other heavy vector mesons.

A. N*\Np

For N* →Np, it is well known that only one possible
L-S coupling for theNp final state of eachN* decay. Since
the nucleon has spin-parity12

1 and pion has spin-parity 02,

N* ( 1
2

1) can only decay toNp in P-wave with SAB51 to
make 2SA1SB1SC1LBC5SAB1LBC50, meanwhile sat-
isfying the parity conservation relation@Eq. ~23!#. Similarly

we have N* ( 1
2

2)→Np in the S wave, with SAB50;

N* ( 3
2

1)→Np in the P wave, withSAB51; N* ( 3
2

2)→Np

in the D wave;N* ( 5
2

1)→Np in the F wave, withSAB53;

N* ( 5
2

2)→Np in the D wave, withSAB52; N* ( 7
2

1)→Np

in the F wave with SAB53; N* ( 7
2

2)→Np in the G wave
with SAB54; and so on. Then the effectiveN* Np couplings
in the covariantL-S scheme are

N* ~ 1
2

1!→Np: Fm
(1) t̃ (1)m, ~24!

N* ~ 1
2

2!→Np: f (0) t̃ (0), ~25!

N* ~ 3
2

1!→Np: fm
(1) t̃ (1)m, ~26!

N* ~ 3
2

2!→Np: Fmn
(2) t̃ (2)mn, ~27!

N* ~ 5
2

1!→Np: Fmnl
(3) t̃ (3)mnl, ~28!

N* ~ 5
2

2!→Np: fmn
(2) t̃ (2)mn, ~29!
01520
s.

l

N* ~ 7
2

1!→Np: fmnl
(3) t̃ (3)mnl, ~30!

N* ~ 7
2

2!→Np: Fmnld
(4) t̃ (4)mnld. ~31!

Here, for simplicity, we omit the vertex form factors. Wit
properties of Rarita-Schwinger wave functions

gm iu
•••m i•••

50 and pm iu
•••m i•••

~p,s!50, ~32!

one can easily obtain the relation between the covariantL-S
couplings and the usual effective Lagrangian ones,

N* ~ 1
2

1!→Np: Fm
(1) t̃ (1)m5ūNg5gmu* pp

m
•CF , ~33!

N* ~ 1
2

2!→Np: f (0) t̃ (0)5ūNu* •1, ~34!

N* ~ 3
2

1!→Np: fm
(1) t̃ (1)m5ūNu* mpp

m
•2, ~35!

N* ~ 3
2

2!→Np: Fmn
(2) t̃ (2)mn5ūNg5gmu* npp

mpp
n
•4CF ,

~36!

N* ~ 5
2

1!→Np: Fmnl
(3) t̃ (3)mnl

5ūNg5gmu* nlpp
mpp

n pp
l
•12CF , ~37!

N* ~ 5
2

2!→Np: fmn
(2) t̃ (2)mn5ūNu* mnpp

mpp
n
•4, ~38!

N* ~ 7
2

1!→Np: fmnl
(3) t̃ (3)mnl5ūNu* mnlpp

mpp
n pp

l
•8,

~39!

N* ~ 7
2

2!→Np: Fmnld
(4) t̃ (4)mnld

5ūNg5gmu* nldpp
mpp

n pp
l pp

d
•48CF , ~40!

with

CF5S 11
mN

m*
2

mp
2

m
*
2 1m* mN

D , ~41!

uN , and u* are the Rarita-Schwinger wave functions ofN
and N* , respectively;mN , and m* are the mass ofN and
N* , respectively; andpp is the 4-momentum of the pion. W
see the two approaches are equivalent here up to some
stants or a smoothm* -dependent factorCF . This is because
for any N* →Np process, there is only one possibleL-S
coupling and hence only one independent coupling.

B. N*\Nv

Unlike a pion with spin 0, herev has a spin 1. ForN*
with a spin 1

2 there are two independentL-S couplings con-
serving parity@Eq. ~23!# and total angular momentum@Eq.
~8!#; for N* with spin larger than1

2, there are three indepen
dentL-S couplings. Here we list them forN* with spin up to
7/2.

~SC ,SAB ,LBC!: SAB1SC1LBC50
4-3
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N* ~ 1
2

1!→Nv~1,0,1!: f (0)«m* t̃ (1)m, ~42!

~1,1,1!: iFm
(1)emnls«n* t̃ l

(1)p̂* s , ~43!

N* ~ 1
2

2!→Nv~1,1,0!: Fm
(1)«* m, ~44!

~1,1,2!: Fm
(1)«n* t̃ (2)mn, ~45!

N* ~ 3
2

1!→Nv~1,1,1!: ifm
(1)emnls«n* t̃ l

(1)p̂* s , ~46!

~1,2,1!: Fmn
(2)«* m t̃ (1)n, ~47!

~1,2,3!: Fmn
(2)«l* t̃ (3)mnl, ~48!

N* ~ 3
2

2!→Nv~1,1,0!: fm
(1)«* m, ~49!

~1,1,2!: fm
(1)«n* t̃ (2)mn, ~50!

~1,2,2!: iFma
(2)emnls«n* t̃ l

(2)ap̂* s , ~51!

N* ~ 5
2

1!→Nv~1,2,1!: fmn
(2)«* m t̃ (1)n, ~52!

~1,2,3!: fmn
(2)«l* t̃ (3)mnl, ~53!

~1,3,3!: iFmab
(3) emnls«n* t̃ l

(3)abp̂* s ,
~54!

N* ~ 5
2

2!→Nv~1,2,2!: ifma
(2)emnls«n* t̃ l

(2)ap̂* s , ~55!

~1,3,2!: Fmnl
(3) «* m t̃ (2)nl, ~56!

~1,3,4!: Fmnl
(3) «s* t̃ (4)mnls, ~57!

N* ~ 7
2

1!→Nv~1,3,3!: ifmab
(3) emnls«n* t̃ l

(3)abp̂* s ,
~58!

~1,4,3!: Fmnls
(4) «* m t̃ (3)nls, ~59!

~1,4,5!: Fmnls
(4) «d* t̃ (5)mnlsd, ~60!

N* ~ 7
2

2!→Nv~1,3,2!: fmnl
(3) «* m t̃ (2)nl, ~61!

~1,3,4!: fmnl
(3) «s* t̃ (4)mnls, ~62!

~1,4,4!: iFmabg
(4) emnls«n* t̃ l

(4)abgp̂* s .
~63!

where p̂* s5p* s /m* . In the N* at-rest system,p̂*
5(1,0,0,0); emnlsSmLnJlp̂* s5(S3L )•J is the standard
form for forming a total angular momentumuJu51 from two
other angular momenta (S,L) of absolute value 1. In the
covariantL-S tensor formalism, forS-L-J coupling, if S
1L1J is an odd number, thenemnlsp̂As is needed. These
are the only possible independent couplings because the
that p* st (n)sm . . . 50, p* sf (n)sm . . . 50 and p* sF (n)sm . . .
01520
act

50. The corresponding couplings from the simple effect
Lagrangian approach are give in Ref.@17#. They have the
same number of independent couplings as here and are l

combinations of couplings here. For example, forN* 3
2

2

→Nv, the full amplitude in the covariantL-S scheme is

A5g1fm
(1)«m1g2fm

(1)«n t̃ (2)mn1g3iFma
(2)emnls«n t̃ l

(2)ap* s

~64!

with vertex form factorsg1 , g2 , andg3 , while in the simple
effective Lagrangian approach@17# is

A5 f 1ūNu* m«m1 f 2ūNgnu* mpN
m«n1 f 3ūNu* mpv

m«npN
n

~65!

with vertex form factorsf 1 , f 2, and f 3. These vertex form
factors are smooth functions ofm* with practically constant
mN andmv ; they have no dependence on angular variab
With some simple algebra and the identity@22#

i emabc5g5~gmgagbgc2gmgagbc1gmgbgac2gmgcgab

2gagbgmc1gagcgmb2gbgcgma1gmagbc

2gmbgac1gmcgab!, ~66!

we have

fm
(1)«m5ūNu* m«m, ~67!

fm
(1)«n t̃ (2)mn52S 211

mN
2 2mv

2

m
*
2 D ūNu* mpv

m«npN
n

1
1

3
r2ūNu* m«m, ~68!

iFma
(2)emnls«n t̃ l

(2)ap̂* s

52S 231
mN

2 2mv
2

m
*
2 D ūNu* mpv

m«npN
n 1r2ūNu* m«m

14
~m* 1mN!22mv

2

m*
ūNgnu* mpN

m«n, ~69!

which give the relations betweengi and f i vertex form
factors:

f 15g11
1

3
r2g21r2g3 , ~70!

f 254
~m* 1mN!22mv

2

m*
g3 , ~71!

f 352S 211
mN

2 2mv
2

m
*
2 D g212S 231

mN
2 2mv

2

m
*
2 D g3 . ~72!

gi and f i are related by some smoothm* dependence factors
For an N* with very broad width, this may cause som
model dependence on the determination of their mass
width.
4-4
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C. c\N* N̄

Here we give an example of a vector meson decaying
the N* N̄ final state.

~SA ,SBC ,LBC!: 2SA1SBC1LBC50

c→N* ~ 1
2

1!N̄~1,1,0!: Cm
(1)«m, ~73!

~1,1,2!: Cm
(1)«n t̃ (2)mn, ~74!

c→N* ~ 1
2

2!N̄~1,0,1!: c (0)«m t̃ (1)m, ~75!

~1,1,1!: iCm
(1)emnls«n t̃ l

(1)p̂(c)s , ~76!

c→N* ~ 3
2

1!N̄~1,1,0!: cm
(1)«m, ~77!

~1,1,2!: cm
(1)«n t̃ (2)mn, ~78!

~1,2,2!: iCma
(2)emnls«n t̃ l

(2)ap̂(c)s ,
~79!

c→N* ~ 3
2

2!N̄~1,1,1!: icm
(1)emnls«n t̃ l

(1)p̂(c)s , ~80!

~1,2,1!: Cmn
(2)«m t̃ (1)n, ~81!

~1,2,3!: Cmn
(2)«l t̃ (3)mnl, ~82!

c→N* ~ 5
2

1!N̄~1,2,2!: icma
(2)emnls«n t̃ l

(2)ap̂(c)s ,
~83!

~1,3,2!: Cmnl
(3) «m t̃ (2)nl, ~84!

~1,3,4!: Cmnl
(3) «s t̃ (4)mnls, ~85!

c→N* ~ 5
2

2!N̄~1,2,1!: cmn
(2)«m t̃ (1)n, ~86!

~1,2,3!: cmn
(2)«l t̃ (3)mnl, ~87!

~1,3,3!: iCmab
(3) emnls«n t̃ l

(3)abp̂(c)s ,
~88!

c→N* ~ 7
2

1!N̄~1,3,2!: cmnl
(3) «m t̃ (2)nl, ~89!

~1,3,4!: cmnl
(3) «s t̃ (4)mnls, ~90!

~1,4,4!: iCmabg
(4) emnls«n t̃ l

(4)abgp̂(c)s ,
~91!

c→N* ~ 7
2

2!N̄~1,3,3!: icmab
(3) emnls«n t̃ l

(3)abp̂(c)s ,
~92!

~1,4,3!: Cmnls
(4) «m t̃ (3)nls, ~93!

~1,4,5!: Cmnls
(4) «d t̃ (5)mnlsd. ~94!
01520
to

Corresponding couplings in the effective Lagrangian a
proach are give in Ref.@17#. In the multipole approach, the
amplitude forc→N* N̄ generally takes the form

A5 (
L,mL ,S,mS

~L,mL ;S,mSu1,mc!

3~SB ,mB ;SC ,mCuS,mS!YLmL
~ p̂N!GLSupNuL f L~ upNu!,

~95!

whereGLS is the coupling constant for the final state wi
orbital angular momentumL and total spinS, pN is the mo-
mentum ofN̄ in the rest frame ofc and f L(upb f Nu) is the

vertex form factor. Takingc→N* ( 1
2

1)N̄ as an example, the
amplitude is

A5~ 1
2 ,mB ; 1

2 mCu1,mc!Y00~ p̂N!G01f 0~ upNu!

1~2,mL ;1,mSu1,mc!

3~ 1
2 ,mB ; 1

2 mCu1,mS!Y2mL
~ p̂N!G21upNu2f 2~ upNu!,

~96!

with mS5mB1mC and mL5mc2mS . With some simple
algebra, the corresponding amplitude in the covariantL-S
scheme can be reduced to the similar form:

A5g0Cm
(1)«m f 0~ upNu!1g2Cm

(1)«n t̃ (2)mn f 2~ upNu!

5~ 1
2 ,mB ; 1

2 mCu1,mc!Y00~ p̂N!g0A8pCC f 0~ upNu!

1~2,mL ;1,mSu1,mc!~ 1
2 ,mB ; 1

2 mCu1,mS!

3Y2mL
~ p̂N!g2

8
3 A4pCCupNu2f 2~ upNu!. ~97!

Comparing Eqs.~96! and ~97!, we have

G015g0A8pCC , ~98!

G215g2

8

3
A4pCC . ~99!

In nonrelativistic limit, CC51, and the covariantL-S
scheme givesG01 andG21 as constants; but generally spea
ing, the covariantL-S scheme results inG01 and G21
smoothly dependent onupNu.

As a concrete example, here we study the angular dis
bution and the relative ratio ofD and S waves in the final
states ofe1e2→J/c→pp̄. For this process of positron
electron collision,J/c spin projection is limited to be61
along the beam direction. The differential decay rate of
J/c is related to the amplitudeA as

dG

dV
5

1

32p2uAu2
upNu

Mc
2

. ~100!

With A given by Eq.~97!, we have
4-5
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uAu25
mc

2

mp
2 S 1

2
CS

21
20

9
CD

2 2
2

3
CSCDcosb D ~11a cos2u!,

~101!

where

a5
2CSCDcosb2 4

3 CD
2

1
2 CS

21 20
9 CD

2 2 2
3 CSCDcosb

~102!

with CS[ug0u f 0(upNu), CD[ug2upN
2 f 2(upNu) andb the rela-

tive phase betweenCS and CD . If CD50, then a50 as
expected for a pureS-wave decay; ifCS50, thena523

5 for
the pureD-wave decay.

The relative ratioRD/S of D andS-wave decay rates is

RD/S[
GD

GS
5

32CD
2

CS
2 . ~103!

The experimental value ofa for the e1e2→J/c→pp̄
process is about 0.62@23#. This gives the ratioRD/S to be in
the range of 0.09;1.9. The large uncertainty is due to th
unknown relative phaseb betweenS and D-wave ampli-
tudes. For a full determination of the ratioRD/S , the polar-
ization information of final state particles is needed.

IV. DISCUSSION

Comparing with the simple effective Lagrangian a
proach, each coupling in the covariantL-S scheme corre-
sponds to a singleL final states while a coupling in th
simple effective Lagrangian approach may be a mixture
two L final states. The number of independent couplings
the same in the two approaches, as it should be. In the sim
effective Lagrangian approach, it is not necessary that
independent couplings be orthogonal to each other while
the covariantL-S scheme, they are orthogonal and make
partial wave analysis easier. The construction of the full a
plitude in the covariantL-S scheme for a multistep proces
e.g., J/c→N* N̄→vNN̄, is similar to the simple effective
Lagrangian approach@17#. The coupling constants for eac
couplings are fitted to the data in the procedure of par
wave analysis@8#.

For a partial wave analysis, we only demand very ba
requirements, i.e., Lorentz, CPT, andC and P invariances,
for the amplitude and we make formalism more gene
Various theories or models or assumptions can bring m
constraints to the relations of various couplings, and he
reduce the number of independent couplings. For examp
chiral quark model calculation@24# results in a single cou

pling form for theN* (1675)(5
2

2)Nv coupling, which cor-
responds to our~1,2,2! coupling of Eq. ~55!, while other
quark model@25# gives different prediction. This can b
checked in the future by partial wave analysis of proces

involving N* (1675)(5
2

2)→Nv. Some authors@16# assumed

N* ( 3
2

6)Nv couplings to have the same structure

N* ( 3
2

6)Ng couplings; hence only two independent co
plings. In our general scheme, we have three indepen
01520
f
is
le
e

in
e
-

l

ic

l.
re
e

, a

s

s

nt

couplings forN* ( 3
2

6)Nv couplings; the gauge invarianc

requirement for theN* ( 3
2

6)Ng couplings reduces the num

ber of independent couplings to two for theN* ( 3
2

6)Ng cou-
plings.

In this paper we have given explicit formulas forN*
→Np, N* →Nv, andc→N* N̄ as examples, since the re
evant processes are understudy by experimental groups
any baryon resonance decaying to a1

2
1 baryon plus a pseu

doscalar meson through strong interaction, e.g.,N* →LK,
N* →SK, L* →NK, L*→Sp, etc., the coupling has the
same form as forN* →Np, the only difference is the cou
pling constants. For any baryon resonance strong decayin
a 1

2
1 baryon plus a vector meson, the coupling has the sa

form as forN* →Nv. For any vector meson strong decayin

to a baryon resonance plus an anti (1
2

1)baryon, the coupling

has the same form as forc→N* N̄. Extension to other pro-
cesses are straightforward by following the basic rules o
lined in this work.

In our presentL-S scheme forN* decays, we have adde
the spin of the incoming nucleon resonance and the fi
nucleon. This is different with the usualL-S scheme where it
is always the spin of the final state particles which are ad
to make the total spinS. The two schemes are simply relate
by recoupling various angular momenta involved. With r
coupling technique in Ref.@26#, we have the following rela-
tion between the two schemes:

@@SA3SB#SAB
3SC#LM

5(
SBC

A~2SAB11!~2SBC11!W~SASBLSC ;SABSBC!

3@SA3@SB3SC#SBC
#LM , ~104!

whereW(SASBLSC ;SABSBC) is the usual Racah coefficient
@26#. From this relation, after we obtain the coupling co
stants in our scheme,g(SAB ,L), we can easily obtain the
corresponding coupling constants in the usualL-S scheme,
G(SBC ,L), as

G~SBC ,L !5(
SAB

g~SAB ,L !A~2SAB11!~2SBC11!W

3~SASBLSC ;SABSBC!. ~105!

Since the covariantL-S scheme combines the merits of tw
conventional schemes, i.e., covariant effective Lagrang
approach and the multipole analysis with amplitudes
panded according to the angular momentumL, we recom-
mend it to be used in future partial wave analyses.
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