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We present a simple quantum mechanical model exploiting the optical potential approach for the description
of collision damping in the reactiom®He—d’'N near the threshold, which recently has been measured at
TRIUMF. The influence of the oped’ N— NNN channel is taken into account. It leads to a suppression factor
of about 10 in thed’ survival probability. Applications of the method to other reactions are outlined.
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I. INTRODUCTION in the nuclear medium. Although singularities near produc-
tion threshold always attracted much attention and are de-
In this paper we consider the inelastic final state interacscribed in many textbook&see, e.g., Ref413,14), and ref-
tion (FSI) between the neutron and the hypothetitakeso-  erences therejnwe are not aware of similar approaches to
nance with the quantum numbeTs=0,J°=0" produced the final state interaction suggested before.
near threshold in the reactiom®He—d’N. This resonance The paper is organized as follows. In the second section
has been suggested to explain the observed peculiar resonave present a simple quantum mechanical model exploiting
celike behavior[6] of the pionic double charge exchange the optical potential approach to account for the effect of
(DCX) on nuclei, 7"+ A—A’+ ", ranging from 'Li to collision damping. In the third section we estimate the
%Nb at T,~50 MeV (see Refs.[1-3], and references spreading width of the’ in the nuclear medium, namely, the
therein. Such aNN-decoupled dibaryon had been predictedVvirtual pion exchange contribution to the spreading is calcu-
by QCD-inspired model§4,5]. In a sequence of recent pa- lated in detail. In the next, fourth, section we give our nu-
pers this behavior for the DCX reaction, on Ca isotopegnerical estimates of collision damping and of thiesurvival
42444843, was qualitatively reproduced by Nuseiedial.[7]  probability in the nuclear medium, and compare the latter to
and, for the medium and heavy nuclei, in the generalizedhe experimental data. The fifth section contains our conclu-
seniority model, by Wu and Gibd$]. Still there is no con-  sions and outlook.
ventional model, which could reproduce these low-energy

phenomena consistently for all nuclei. An independent test of ||, A SIMPLE QUANTUM MECHANICAL MODEL
the idea would be investigation of thpgp7r~ invariant mass ) . . ,
spectrum in the double pion productiopp—ppm 7", In this section we present a simple quantum mechanical

since the quantum numbers of the resonance forbid strongodel to describe the propagation of a resonance in the
coupling tonp. Recent measurements at CELSI[S do nuclear medl_um. As an exampleZ we con5|der_the behavior of
not show evidence of the resonance at the predicted level i€ hypothencag! resonanat’ which can contribute to the
contrast to data from ITEP taken at a higher proton energfionic DCX on~He. o S

[10]. Thus the situation appears not yet fully settled. Another Due to the very short interaction time of the pion with the
way of searching for thel’ resonance is DCX on helium hghum nucleug it is the sut_jden influence that is the.appro—
isotopes, wherel’ should manifest itself as a threshold phe- Priate mechanism for considering th€'He—d’N reaction
nomenon. At energies around 100 MeV the total cross sed-5]- Thus thed’N system is created at the initial moment,
tion of the reactiorfHe(*,7~) shows an excess over con- =0, with the wave function of heliung,, and then sepa-
ventional calculations which could be ascribed to therates with time as

contribution of thed’ resonancgl11]. At the same time, the

contribution of this resonance for botAHe(w*,7~) [11] Parn(r, ) = g(r =vt,0) = er—vt), @

and 3He(s~, ") [12], occurred almost an order of magni- . .
tude smaller than expected. The reason for the suppression ggh the velocityv defined by the energy excess over the
the production cross sections near threshold can be due to thg€Sholde,

collision dampingd’N—NNN, and in the present paper we

study this hypothesis using a simple quantum mechanical b= \E

model to describe the propagation of an unstable resonance w'

0556-2813/2003/61)/0152017)/$20.00 67 015201-1 ©2003 The American Physical Society



A. V. NEFEDIEV, M. G. SCHEPKIN, AND H. A. CLEMENT PHYSICAL REVIEW (57, 015201 (2003

where u~2my is the reduced mass of tliEN system. where
If the potential in the effective Schdinger equation for X
the wave function(1) contains an imaginary part, p(r,t)=|gharn(r,0)]%,

U(r)=Uo(r)+iUy(r), Uy(r)<0, 2 _ i
J(r,t)=2—wd,N(r,t)V¢§,N(r,t)+c.c. 9)
then the probability to find the system in its initial state, M
d’N, decreases with time approaching a finite limit with the

survival probability being simply are the probability density and the probability flux through

the corresponding surfa® respectively.
The term on the right hand side of E@) describes ab-

2
sun = [Yarn(t—ce)] ) (3) sorption of particles. In the absence of this term the density
|¢d,N(tHoo)|ﬁl:0 of particles would evolve in space and time, according to Eq.
(1), as
Let us, for simplicity, consider the steplike form of the po- 5 5
tential Ul(r), po(r,t) = | wd’N(r_Vtio)l = | l;bHe(r_Vt)l :Po(r_VtaO):

(10)

U;=const, |r|sR; ) ) L .
(4) if quantum spreading of the initial wave packet is neglected.

0, Ir[>Ry, Equation(8) becomes especially simple if the size of the
wave packet, hereafter calld®},, is small compared to the
radius of the optical potentiaR;. Indeed, one can split the
entire evolution time into two periods,<0t<T andt>T,
whereT=R; /v is the moment of time whed’ andN leave
the region of interaction. Then the solution to E8) reads

Ul(r)=|

where the potential strengtly,; can be related to the
elastic swave d'N zero-angle amplitude using the Born
approximation:

2
IMF(0)~ — %f U,(ndr=—-uR3U,;, (5

3 ) {po(r,t)e“, t<T )
rt)= ~
whereas, according to the optical theorem, P po(r,e IT, t>T,
MU MU with
ImF(0)= 7 — 0ot~ 7~ Tin- (6)
'=2|U,|. (12
The problem of separation of the elastic and inelastic parts of h val bability i
the cross section in such kinds of reactions is a very suthE|ence the survival probability Is
one. One of the relevant worries concerns the possible broad-
ening of the ground state, so that a slight change in the reso- W =exp<2UlR1 —exd — 30in (13
nance position could have been erroneously ascribed to the surw 47R2)’

inelastic part. Bearing in mind that, in general, such an effect

could lead to an overestimate of the damping in &), we  where we also used the relati¢n).

still do not expect it to change our estimates dramatically. The opposite limitR,<R;, leads to the expression simi-

Indeed, froma posteriori estimate{see Eq.(44) below] we |ar to Eq.(13) with R; interchanged wittR,:

find the elastic part of the cross section to be an order of

magnitude smaller than the corresponding inelastic part, and 30,
Wsur, = €Xp —

thus it appears beyond the accuracy of the present paper. . (14)

From Egs.(5) and (6) one finds

47RS

To see this let us consider the following anzatz for the
(7) probability density:

3 ginv

U,= 87 RS .
. . p(rit)po(rit)W(t)! (15)

Notice that we do not meet any constraints on the wave-

length of the resonance since, in the Born approximaso that the survival probability defined above is jusf,,

tion, the zero-angle amplitudé) does not depend on the =w(x). After integration over an infinitely large volumé

energy ofd’. ) (bounded by an infinitely remote surfa& in Eqg. (8) one
As a direct consequence of the Saltirmer equation one finds the following equation for the functiom(t):

has the probability conservation law at any moment in time

in the form

dt
%J p(r,t)d3r+JSj(r,t)dS=2J U,(r)p(r,t)dr, (16)
\Y \Y

(8) which can be easily solved with the result

d
—w(t>=—w(t)fV2IU1<r>|po(r—vt,0>d3r, w(0)=1,
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t N u ph N
w<t>=exp[—j dt'f 2|U4(n)|po(r—vt’ 0)d%r | —
0 v
\
17 \
T\ ph N
L . . \
We further simplify our estimates and consider the step-
like form for both functionsU(r) andpy(r,t):
Q" vy
& ! N
=~ S0 OR—r]
Ua(r)= 2V4 (Ry=rD), FIG. 1. The diagram for the virtual pion exchange contribution

to the spreading width of thé’ resonance in the nuclear medium.

1 4
po(r )= O(Re=[r=vtl), Vip=zaRi, (18 f
? MduNNw:ﬁulc%('TzﬂUzm (23)

For the two limiting caseR;>R, andR;<R,, the inte-
gral [2|U 4| pod®r entering Eq(16) is where u, , are bispinors an€C=y,7y,. The coupling con-
stantf can be expressed through thNeN7 decay widthI”

g;inU = _
in f@(R1—|r|)®(R2—|r—vt’|)d3r Fpp,., +an,,++rnp7,o as
ViVz
2
— T (R —vt’) (19) f~ \/ 126" /2MT \/%, (24)
Vg eV, 3no(M—2my—m,)? Y m,
where wheremy, m_, andM are the nucleon, pion, ard masses,

respectively,zo being the enhancement factor due to i
Rpig=Max Ry, Ry,  Vpig=maxVy,Voh, (200 FSIin this decayyo~4—5. For'~0.5 MeV (as deduced
from the data on the DCX reactions to discrete leyélp

and we have neglected the edge phenomena. f~14.
Now the integral ovet’ in Eq. (17) can be done trivially, The invariant matrix element of the process N
which gives for the survival probability: —NNN, when all initial and outgoing particles are on mass
shell, can be written in the form
TinRpig
Wsury =€XPB — —— |+ (2D
Vhig

M(O):; SijkMi(jOk)
which coincides with Eqs(13) and (14). !

In the general cas€&};~R,, the survival probability can fg Eiik
be presented as =— > UCys(1pH Ui ——— Uy ys7U,
amy ¥ iCys(727) ](P—pk)z—mi kY5
Uinﬁ —
Weur,=€Xg — —F(R;/R,) |, R= \/R21+ Rzz, 3
v S pi=PH+QY, (25
=1
— 4
V=3 7R, @2 where g is the pseudoscalaNNm coupling, g%/4m
~14.3, & is the totally antisymmetrical tensor, and indices
with F being a smooth function oR;/R,, F(0)=F (=) i,j, andk=1, 2, and 3 numerate the outgoing nucleons. As
=1. a result, the amplitudev (9) is totally antisymmetric under
permutation of the final nucleons. See also Fig. 1 where the
lll. VIRTUAL PION EXCHANGE CONTRIBUTION notations are explained.

TO THE SPREADING WIDTH OF THE d’ RESONANCE '!'he matrix elemeni\t (©) contgins three diﬁerent_contri- _
IN THE NUCLEAR MEDIUM butions, hence, when squared, it produce§ three _dlfferent di-
agonal terms and three cross terms. After integration over the
In this section we estimate the spreading width ofdhe three-particle phase space all diagonal terms equally contrib-
resonance in the nuclear medium. Let us start from the virute to the cross section. The same holds true for the cross
tual pion contribution described by the diagram in Fig. 1. terms. Hence, it is sufficient to consider only one diagonal
As shown in Ref[16], at low energies there is only one term squarede.qg.,{ijk}={123}) and one of the cross terms
Lorenz invariant structure describing tHeNN vertex and,  (e.g.,{ijk}x{i'j'k’}={123 x{321}).
therefore, the amplitude of the decad{— NN can be writ- The diagonal terr{123 squared and averaged/summed
ten as over spins and isospins of the initial/final nucleons is
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(fg)? (Pp3—m3) whereR~0.8 fm[16], a; is the 'S scattering length, angj;
(IM{Y?H=12—=—(psp,+my) > > is the three-momentum of either nuclednor j, in their
My [(P=p3)*—m7] 26 center-of-mass frame,

Integration over the phase space is essentially simplified if

1
Y 2, 2 2
the initial particles are at rest, i.e?*=(mj,0,0,0) andQ* i \/4[(M +my)*+my—2E(M+my)]—mg.

=(M,0,0,0), which means the limit— 0. In this limit o, (30
=0y n_NNNE 1, so that the product;,v remains con-
stant. Thus, in this limit, The Coulomb effects, which are important for very small

invariant masses in thpp subsystem, can be neglected in
© the integrated cross section.
(IM324?) With the FSI taken into account, the diagonal term has to
be replaced by

£9)2 M + my) 24+ mZ—2(M + my)E
2419 g T 2B :
my (qu—Zr‘ﬂ[\ri"zn"'NEs)2 (0))2 2 (0))2 -
(IM %)= (M 12d%) = (IM A | 1+ ———
(27) s

i.e., (|M{P?) depends only on the energy of one of the

nucleonsE,, which ranges betweemy and Finally, the summary contribution of all diagonal terms to

the differential cross section is
c (M+my)?—3m3
M 2(M+my)

(28) 3

o= — 2
dﬂ'd|ag (271_)5 31 4mNMv<|M123| >

Let us consider now the FSI between the nucleons in the
relatives state. Since there are three identical nucleons in the d®p; d°p, d° 9Ps 404 p
exit channel, only two of them can be in the relatsrwave 2E, 2E, 2E, (@ P1=P2=P3),
with the third one being in the relatiye wave. It is easy to
see that the matrix elemen! () (nucleon numbek being
in the NN vertex is proportional to the three-momentum
Ipk|, therefore, this nucleon is ipwave in the rest frame of where 3! accounts for the three identical particles in the final
the initial d’ and N and, hence, ip wave relative to the state.
nucleonsi andj in the d’NN7 vertex (see Fig. 1 At the As already mentioned, in the limit—0 the integration
same time nucleons from tliE NN vertex are in relatives  over the phase space is simplified since there is no angular
wave[16]. It means that only the FSI between the nucleonsdependence, and
in the NN vertex is important. It can be taken into account
by multiplying M by #4(0), where yq(r) is the con-
tinuum NN wave function[ g~ (p;—p;)/2] containing the J (|IM 14%) ==
swave NN scattering amplitude, if thel’NN# vertex is
assumed to be pointlike:

(32

dp; d3p, d3p;
2E, 2E, 2E, (Q+P—p1—p2—p3)

= sz (| M 1,4*)dE,dEs;. (33
-1
Mijk%/\/li(ﬁ) 1+ —) (29 Now let us consider contributions of the cross terfeg.,
- 1q;; {123 x{321):

~(MQMEE + MGMEs

)z(pzps)(Ppl—mﬁ)+(p1pz)(Pp3—mﬁ)+m§ PZi pi) —(p1P3)(Ppy+mi) —

ig
m? [(P—pa)2—m2][(P—py)2—mZ]

(34
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As v—0 this expression depends only on energies of the L=paloin/ n)v. (40)
outgoing nucleons,
—(M DM + M QMmO With the help of the resul(36) one can estimate the
) spreading width to be about 7 MeV. Notice, however, that
(fg) 5 the pion exchangéthe diagram in Fig. )l contributes only
= =3 | (Bs=my)[Eg(M +my) —my] 30-40% of the observed spreading width in nuclei, i.e.,
) there must be an additional mechanism for the reaction
+(Ez—my)[EL(M+my) —my] d’N—NNN, the total spreading width being
1
—M[E(M2—4mﬁ)—(M—El—Es)(M+mN) ] I'¢~10-20 MeV. (41)

% 1 (35) Such a mechanism could becaexchange as discussed in
[(P—pg)*~mZ][(P—py)*~m7]’ Ref. [2]

Now we can check how well the approximation of the
and the FSI can be taken into account in the way describemhfinite nuclear medium works. To this end we have to ensure
above, so that each [ has to be replaced byt; , asin  that the typical free-path length of tt# due to collision
Eq. (29). damping, Ly ~v/T"g, does not exceed the radius of the

The integration over the three-particle phase space ifucleusR, (4 7R3pa=N,). For DCX to discrete levels this
similar to the integration performed in E(3), so that for  congition is fulfilled since fol given by Eq.(41) andv
the total inelastic cross section one finds ~1/10, which corresponds to the energy3 MeV above
45 the threshold, both lengths appear to be of the same order of
oin=— mb, (36)  magnitude, and.y <Rx.
v Besides we can perforia posterioricheck of the validity
where the contribution of the cross terms is positive and doemc the approximations made in Sec. Il. Namely, we can jus-

. . . _2
not exceed 15% when—0. The producis;,v is a smooth ﬁfy the Born approximation used in E¢):
function of the energy over the threshoid, so that, e.g., for

£=20 MeV (which corresponds to the kinetic energy of the R2IU 7 mNFSN 1 42
nucleon of about 30 MeV in thé’ rest framg the contribu- KRi|Uo,l~ 47 ppR, 3’ (42)
tion of the diagonal terms is only 10% larger than for

—0.

To proceed further we consider tkié propagation in the and the one used in E(6) when the elastic part of the total
nuclear medium, which we assume to be infinite, for simplic-'953 section was neglected. Indeed, for the scattering off the
ity. Then, similarly to Eq.(12), one has for the spreading StePlike potential2) one has
width,

16 2p6 2 2 8 3 1
Fs=2|ImU,|. (37 Tei="g TH Ry(Ug+U?), O'in:§7TR1U1;, (43
HereU , is the summary effective potential created by nucle-
ons in the nuclear matter, with the ratio

Ny

UA: 21 Ui%pAVl(UO_FiUl)’ (38) a-el 2 U(2)+ Ui 77 mﬁl—‘s 1

Tel _ 4 5n3-0" Y1 =
on 3¥ U Y ' 10’

“9r pa (44

where pAz%mf, is the density of the nuclear matteM;

=paV; being the number of nucleons in the interaction re-,nere we put|Uo|~|U,| and substituted the velocity
gion of the volumeV;. Using Eqgs.(7) and (37) one easily _q1/10.

finds

I's=2paV1|Ui|=pacinv, (39) IV. NUMERICAL ESTIMATES
or, if the Pauli blocking factor,y~2.2, is taken into In this section we present the results of numerical calcu-
account then lations using Eqs(22) and (40), and the estimate Edq41).

Thus for the survival probability one, finally, has
To estimate Pauli blocking in the reactioiN—NNN we sim-
ply limit the phase space for the final nucleons by the constraint 2Let us remind the reader that the Born approximation is valid for

pn>Pe, wherePg is the Fermi momentum. |Uga <1/(uR3).
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FIG. 2. Survival probabilityws,, versus the excess of the pion  F|G. 3. The cross section for tié production in the reaction
kinetic energy over the thresholdn MeV) for I's=20 MeV, R m3He—d’N (in ubarn versus the kinetic energy of the pidr, (in
=1.6 fm (curve 3, andR=1.4 fm (curve 2. MeV). Curve 1 gives the “bare” result, without the damping effect

taken into accountRef. [17]); curves 2 and 3 represent the same
nﬁFs cross section multiplied by the survival probability, EGL5),
Woup =X — ——
surv F{ paVu

, (45 for =20 MeV andR taking the values 1.6 fnfcurve 2 and
1.4 fm (curve 3. Experimental datdRef. [12]) are shown by the

. . dots with error bars.
where we put the functiofr (R;/R,) equal to unity every-

where for the sake of simplicity.

In Fig. 2 we depict the survival probabilit#5) as a func- would allow us to find the correction to tha¥ production
tion of the excess energy of the initial pion over the threshold®@mplitude by summing up all possible contributions to the
for d’ production using for the spreading width,  amplitude 7*He—d’N including the routem®He—NNN

=20 MeV and for the radiusR the values 1.4 fm and —d'N. .
1.6 fm, respectively. For the excess energy of 3 MeV above Let us note that such effects should equally renormalize
the threshold we find that only about 10% of all the amplitude of thed’ formation in heavier nuclei. How-
created resonances survive, so that the suppression factoré¥er, it is just this amplitudédeduced from DCX transitions
of order ten. Finally, in Fig. 3, we give the “bare” total to discrete levelfl]) that was taken as an input to predict the
cross section of thel’ production in the reactionr®He  d’ production off 3He [17]. The difference between these
—d’N as well as the same cross section multiplied by thephenomena is, therefore, due to different details of dhe
factor of the survival probability. We find our theoretical pre- propagation following its initial production by the incoming
dictions to comply reasonably well with the experimentalpion. In this respect it appears noteworthy to compare with
data given in Ref[12] (dots with error bars in Fig.)3where  the situation of A and 3 production in the reactiorpp
already the effects of collision damping had been discussee:KNY near threshold, where the obseryé8] surprisingly
briefly. smallY production cross section is interpreted as being due
to pp— K p2®—=K*pA, i.e., a strong FSI betweemand

>0 which transfers®,® immediately into the energetically

much more likely A—a situation very similar to that of

Using an optical potential approach we have shown thalj'n_, NNN discussed above for the DCX on helium iso-
collision damping strongly decreases the survival probabilityopes.

of d’ in presence of a nuclear medium. Even ftie it
reduces thel’ production cross section near threshold by an
order of magnitude, thereby leading to a reasonable agree-
ment with the data. Another way to approach the problem of
collision damping of thed’ resonance near its production  One of the author§A.V.N.) would like to thank the staff
threshold would be a full coupled-channel treatment. Thisof the Centro de Bica das Intera@es Fundamentai€FIF-
requires the consideration ofat least three channels: IST) for cordial hospitality during his stay in Lisbon. This
m3He, d’N, andNNN (one could even neglect the vacuum work was supported by RFFI Grant Nos. 00-02-17836, 00-
width of thed' considering it as a stable particlélowever, 15-96786, 02-02-06477, and 00-15-96562, INTAS Grant
solving the coupled-channel problem requires a rather acciNos. OPEN 2000-110 and YSF 2002-49, BMBF Grant Nos.
rate knowledge of many reaction amplitudésith JP (06 TU 987, DAAD (Leonhard-Euler Programand DFG
=1/27) involved in this problem. In principle, this (Graduiertenkolleg
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