
PHYSICAL REVIEW C 67, 014605 ~2003!
Final-state interactions in the response of nuclear matter
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Final-state interactions in the response of a many-body system to an external probe delivering large mo-
mentum are normally described using the eikonal approximation, for the trajectory of the struck particle, and
the frozen approximation, for the positions of the spectators. We propose a generalization of this scheme, in
which the initial momentum of the struck particle is explicitly taken into account. Numerical calculations of the
nuclear matter response at 1,uqu,2 GeV/c show that the inclusion of this momentum dependence leads to a
sizable effect in the low-energy tail. Possible implications for the analysis of existing electron-nucleus scatter-
ing data are discussed.
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I. INTRODUCTION

Final-state interactions~FSI’s! of fast nucleons produce
in electron-nucleus scattering at large momentum tran
have long been known to exert a significant effect on
coincidence (e,e8p) cross section; moreover, they provid
most of the strength observed in the low-energy loss tai
the inclusive (e,e8) cross section~see, e.g., Ref.@1#!. The
main effect of FSI’s is a damping of the motion of the stru
particle, which can be qualitatively described in terms of
imaginary part of the nuclear optical potential. Howev
since nucleons in nuclei are strongly correlated, one m
improve upon the optical potential approach rooted in
simple mean-field description of nuclear dynamics, if o
hopes to develop a fully quantitative treatment of FSI’s. It
very important to realize that nucleon-nucleon~NN! correla-
tions, leading to large density fluctuations and to the app
ance of high momentum components in the nuclear w
function, strongly affect both initial and final states
electron-nucleus scattering, and must be consistently ta
into account.

A theoretical description of (e,e8) processes including
correlation effects was developed in Ref.@2# ~hereafter re-
ferred to as I! and successfully employed to analyze (e,e8)
data for momentum transfer in the range 1 GeV/c,uqu
,2 GeV/c @2–4#. A similar approach, formulated in analog
with the theoretical treatment of FSI’s in neutron scatter
from quantum liquids, was proposed in Ref.@5#.

The treatment of FSI’s discussed in I, commonly referr
to as correlated glauber approximation~CGA!, rests on the
assumptions that~i! the struck nucleon moves along
straight line with a constant velocity~eikonal approxima-
tion!, and ~ii ! the spectator nucleons are seen by the
struck particle as a collection of fixed scattering centers~fro-
zen approximation!. The resulting inclusive cross section ca
be written as a convolution integral, involving the cross s
tion evaluated within the plane-wave impulse approximat
~PWIA!, i.e., evaluated in the absence of FSI’s, and a fold
function embodying FSI effects. The CGA entails the sa
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set of approximations as the Glauber theory of high-ene
proton scattering off nuclei@6#, which has been successfull
applied for over 40 years. The eikonal and frozen appro
mations have also been used, in a somewhat different c
text, to analyze semi-inclusive and exclusive electro
nucleus processes@7,8#

The results of I show that FSI’s produce a huge enhan
ment of the inclusive cross section in the region ofv
!vQE , wherevQE is the energy transfer corresponding
elastic scattering off an isolated stationary nucleon. Wh
this enhancement brings theory and experiment into ag
ment over a broad range inv, the calculated cross sectio
substantially overestimates the data in the extreme low-v tail
@roughly corresponding to values of the Bjorken scaling va
ablex5(Q2/2mv).2, whereQ25uqu22v2, andm denotes
the nucleon mass#. In order to reproduce the tail of the mea
sured cross sections, the imaginary part of the free-spaceNN
scattering amplitude, which determines the shape of the C
folding function, must be modified in such a way as to r
duce the effect of FSI’s.

As pointed out in I,NN scattering in the nuclear medium
may in principle differ markedly from scattering in fre
space. For example, Pauli blocking and dispersive cor
tions are known to be important at moderate energies@9#.
However, their effects on the calculated cross sections h
been found to be small in the kinematical region spanned
the data analyzed in Refs.@2–4#. Corrections to theNN am-
plitude associated with the extrapolation to off-shell energ
are also expected to be small@10#.

A different type of modification of theNN cross section,
originating from the internal structure of the nucleon, m
play a more significant role. It was suggested@11,12# that
elastic scattering on a nucleon at high momentum tran
can only occur if the nucleon is found in the Fock sta
having the lowest number of constituents, so that the m
mentum transfer can be most effectively shared among th
Within this picture, a nucleon is in a very compact config
ration after absorbing a large momentumq. It then travels
through nuclear matter experiencing very few FSI’s, until
©2003 The American Physical Society05-1
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standard size is recovered on a characteristic time scale
increases withuqu. In the limit of infinite momentum trans
fer, FSI’s are totally suppressed, and the nuclear medium
said to exhibitcolor transparency.

The results of the calculations of Refs.@2–4# show that
inclusion of the effects of color transparency according to
model of Ref.@13#, with no adjustable parameters, greatly
improves the agreement between theory and data, yieldi
satisfactory description of the low-energy loss tail of t
nuclear inclusive cross sections forQ2.1.5 (GeV/c)2.

To firmly establish the occurrence of color transparency
(e,e8) processes, the accuracy of the approximations un
lying the CGA must be carefully investigated and either va
dated or transcended. In this paper, we introduce a treatm
of FSI’s which improves upon the CGA, in that it allows on
to take account of the initial momentum of the stru
nucleon. Within this approach, the response can no longe
written as a simple convolution integral. However, it can s
be expressed in terms of the spectral function and a gen
ized folding function, in a form displaying explicit depen
dence on both the initial and final momenta of the stru
particle.

The theoretical description of nuclear-matter respons
discussed in Section II, where we outline the developmen
a systematic scheme that improves upon the PWIA and
cludes FSI effects. The details of the many-body calculat
of the generalized folding function within the Fermi hype
netted chain~FHNC! approach are traced in Sec. III. Th
ensuing numerical results are presented and analyzed in
IV, with particular attention to the generalized folding fun
tions and the nuclear mattery-scaling functions at differen
values ofuqu. Section V summarizes our findings and sta
our conclusions.

II. NUCLEAR-MATTER RESPONSE

A. Plane-wave impulse approximation

The analysis carried out in Refs.@2–4# required a full
calculation of the nuclear cross section, including the el
tromagnetic vertex, as well as the use of spectral functi
adapted to finite targets~such as those obtained within
local-density approximation@4#!. In addition, since the typi-
cal momentum transfers lie in the 1–2-GeV/c range, consis-
tent use of relativistic kinematics was essential.

In this paper, we will avoid these complications and foc
on the nonrelativistic response of infinite nuclear matter t
scalar probe, defined by

S~q,v!5
1

AE dt

2p
eivt^0urq

†~ t !rq~0!u0&

5
1

AE dt

2p
ei (v1E0)t^0urq

†e2 iHtrqu0&. ~1!

HereH and u0& denote the nuclear Hamiltonian and the co
responding ground state satisfying the Schro¨dinger equation
Hu0&5E0u0&. The time-dependent density fluctuation ope
tor rq(t) is constructed as
01460
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rq~ t !5eiHtrqe
2 iHt5eiHt(

k
ak1q

† ake
2 iHt , ~2!

whereak
† and ak are nucleon creation and annihilation o

erators, respectively. Note that the definition given in Eq.~1!
can be readily generalized to describe the electrom
netic response by replacingrq with the appropriate curren
operator.

Retaining only the incoherent contribution to the r
sponse, which is known to be dominant at largeuqu, Eq. ~1!
can be rewritten in the form

S~q,v!5E dt

2p
ei (v1E0)tŜ~q,t !, ~3!

with

Ŝ~q,t !5E dRdR8C0* ~R8!e2 iq•r18

3^R8ue2 iHt uR&eiq•r1C0~R!, ~4!

where$R%5$r1 ,r2 , . . . ,rA% specifies the spatial configura
tion of the A-nucleon system,C0(R)5^Ru0& is its ground-
state wave function, and the propagatorUA(R,R8;t)
5^R8ue2 iHt uR& represents the amplitude for the system
evolve from configurationR to configurationR8 during a
time t. The wave functionC0(R) can in principle be evalu-
ated within nonrelativistic nuclear many-body theory. On t
other hand, the nonrelativistic approach cannot be use
obtain theA-particle propagatorUA(R,R8;t), since—in the
kinematical regime under consideration—the struck nucle
typically carries a momentum larger than the nucleon ma
In view of the fact that a fully realistic and consistent calc
lation of UA(R,R8;t) remains intractable, one must resort
simplifying assumptions.

A systematic approximation scheme can be developed
first decomposing the Hamiltonian according to

H5HA211T11HI , ~5!

where HA21 is the nonrelativistic Hamiltonian of thefully
interacting(A21)-particle spectator system andT1 denotes
the Hamiltonian describing afree nucleon. The term

HI5(
j 52

A

v1 j , ~6!

wherev i j is the NN potential, accounts for the interaction
between the struck particle and the spectators.

The PWIA amounts to settingHI50 in Eq. ~5!, thus dis-
regarding FSI’s altogether, and neglecting Pauli blocking
the states available to the high-energy struck nucleon.
resultingA-particle propagator factorizes into the product
the interacting (A21)-particle propagator and the free-spa
one-body propagator describing the struck nucleon,
5-2
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FINAL-STATE INTERACTIONS IN THE RESPONSE OF . . . PHYSICAL REVIEW C 67, 014605 ~2003!
UPWIA~R,R8;t !5^R̃8ue2 iH A21tuR̃&^r18ue
2 iT1tur1&

5UA21~R̃,R̃8;t !U0~r1 ,r18 ;t !, ~7!

where $R̃%5$r2 , . . . ,rA% specifies the configuration of th
spectator system. Equation~7! clearly shows that within the
PWIA, nuclear dynamics only appears throughUA21, while
the treatment of the relativistic motion of the struck nucle
reduces to a trivial kinematic problem.

We next express the PWIAS(q,t) ~and thereby the re
sponse! in terms of the nucleon spectral functionP(k,E),
which by definition gives the probability of removing
nucleon with momentumk from the nuclear ground state
leaving the residual system with excitation energyE. Intro-
ducing spectral representations for bothUA21 and U0 ~see,
e.g., Ref.@14#!, we obtain

ŜPWIA~q,t !5E d3p

~2p!3E dEP~p2q,E!e2 i (E2E01Ep)t,

~8!

which leads to the familiar result@14#

SPWIA~q,v!5E d3p

~2p!3E dEP~p2q,E!d~v2E2Ep!,

~9!

whereEp5upu2/2m denotes the kinetic energy of a nucleo
carrying momentump.

B. Inclusion of final-state effects

In order to improve upon the PWIA, one needs to dev
a set of sensible approximations to treat the contribution
the A-particle propagator coming from the FSI Hamiltonia
HI . As a first step, we make the replacement

e2 i (HA211T11HI )t→e2 iH A21te2 i (T11HI )t, ~10!

which essentially amounts to assuming that the internal
namics of the spectator system and its FSI with the str
particle do not affect one another, and can therefore be c
pletely decoupled. Within this picture, the spectator syst
evolves during the timet as if there were no struck particl
moving around, while the fast struck particle ‘‘sees’’ th
spectator system as if it werefrozenat time t50.

Under this assumption, which implies that the configu
tion of the spectator system does not change due to inte
tions with the fast struck nucleon, we can use completen
of the (A21)-particle position eigenstates to rewrite t
propagator in the simple factorized form

UA~R,R8;t !5E dR̃9^R̃8ue2 iH A21tuR̃9&

3^r18 ,R̃8ue2 i (T11HI )tur1 ,R̃&

5UA21~R̃,R̃8;t !^r18 ,R̃ue2 i (T11HI )tur1 ,R̃&

5UA21~R̃,R̃8;t !U1~r1R̃,r18R̃;t !. ~11!
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An evaluation ofU1(r1R̃,r18R̃;t) in general requires a func
tional integration over the set of trajectoriesr1(t) satisfying
the boundary conditionsr1(0)5r1 and r1(t)5r18 ~see, e.g.,
Ref. @15#!. However, for large momenta of the struc
nucleon, the evaluation can be drastically simplified by
voking theeikonal approximation, i.e., by assuming that the
particle moves along a straight trajectory with constant
locity v5(r182r1)/t, so thatr1(t)5r11vt. Within this ap-

proximation, the propagatorU1(r1R̃,r18R̃;t) takes the factor-
ized form @16#

U1~r1R̃,r18R̃;t !5U0~r1 ,r18 ;t !Up~r1 ,R̃;t !, ~12!

where the eikonal propagatorUp(r1 ,R̃;t) is given by

Up~r1 ,R̃;t !5expF2 i E
0

t

dt(
j 52

A

v~r11vt2r j !G , ~13!

v being theNN potential andU0(r1 ,r18 ;t) the free-space
nucleon propagator.

Expanding the exponential appearing in the right-ha
side of Eq.~13!, one obtains a series whose terms are as
ciated with processes involving an increasing number of
teractions between the struck nucleon and the spectators
terms corresponding to repeated interactions with the s
spectator can be summed up to all orders by replacing
bare NN interaction v with the coordinate spacet-matrix
Gq(r ), which is related to theNN scattering amplitudef q(k)
at incident momentumq and momentum transferk through

Gq~r !52
2p

m E d3k

~2p!3
eik•r f q~k!. ~14!

Using the above results together with spectral representat
of both U0(r1 ,r18 ;t) and UA21(R̃,R̃8;t), the response can
finally be expressed as

S~q,v!5E dt

2p
ei (v1E0)tE d3p

~2p!3
e2 iEpt

3(
n

e2 iEntM0n* ~p2q!M̃0n~p,q;t !, ~15!

where the sum extends over the (A21)-particle states satis
fying the Schro¨dinger equationsHA21un&5Enun&. We have
introduced the definitions

M0n~k!5E dReik•r1C0* ~R!Fn~R̃!, ~16!

with Fn(R̃)5^R̃un&, and

M̃0n~p,q;t !5E dRe2 i (p2q)•r1Fn* ~R̃!C0~R!Up~r1 ,R̃;t !.

~17!

In the limit Up(r1 ,R̃;t)→1, we haveM̃0n(p,q;t)→M0n(p
2q), and the responseS(q,v) given by Eq.~15! reduces to
the PWIA result.
5-3
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It is to be emphasized that the calculation of the respo
according to Eq.~15! involves only two approximations:~i!
the frozen approximation for the configuration of the spec
tor system, and~ii ! the eikonal approximation for the trajec
tory of the struck particle. An explicit calculation of the re
evantM̃0n(p,q;t) integrals within nonrelativistic many-bod
theory appears to be feasible, at least for few-nucleon
tems and infinite nuclear matter. However, to establish
clear connection with the PWIA picture, it is useful to devi
approximations that permitS(q,v) of Eq. ~15! to be ex-
pressed in terms of either the spectral functionP(k,E) or the
PWIA responseSPWIA(q,v).

The definition of the spectral function,

P~k,E!5(
n

uM0n~k!u2d~E1E02En!, ~18!

can be recovered in Eq.~15! under the assumption that th
integralsM̃0n of Eq. ~17! take the form

M̃0n~p,q;t !5M0n~p2q!U~p,q;t !, ~19!

where the functionU is to be independent of the state of th
spectator system, labeled by the indexn. An even more dras-
tic simplification is achieved upon requiring that the tim
dependence ofM̃0n(p,q;t) be factorizable according to

M̃0n~p,q;t !5M0n~p2q!Ūq~ t !, ~20!

i.e., upon assuming that the functionU defined by Eq.~19!
does not depend uponp, which in turn corresponds to mak
ing the approximationp.q in U.

Substitution of Eq.~20! into Eq. ~15! allows one to re-
write the response as a convolution integral,

S~q,v!5E dv8SPWIA~q,v8!Fq~v2v8!, ~21!

the folding functionFq(v) being given by

Fq~v!5E dt

2p
eivtŪq~ t !. ~22!

To obtain the functionŪq(t) embodying all FSI effects@N.B.

the PWIA can be regained by settingŪq(t)[1, i.e., F(v)
5d(v)], one makes the replacement

(
j 52

A

Gq~r11vt2r j !→
E dRuC0~R!u2(

j 52

A

Gq~r11vt2r j !

E dRuC0~R!u2

5V̄q~t!, ~23!

which amounts to averaging FSI’s with ground-state confi
ration weights. In infinite nuclear matter at uniform dens
r, the average involved in Eq.~23! takes the simple form
01460
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V̄q~t!5rE d3rg~r !Gq~r1vt!, ~24!

where the radial distribution functiong(r ) measures the
probability of finding two nucleons separated by a distan
r 5ur u. Keeping only the contributions associated with t
imaginary part of theNN amplitude, which is known to be
dominant at large incident momentum, we can finally wr
the eikonal propagator as

Ūq~ t !5expE dt Im V̄q~t!. ~25!

The approach developed in I and employed in Refs.@2–4# is
based on the assumptions underlying Eqs.~20!–~25!. In Ref.
@17# the Euclidean response of a nonrelativistic model of
4He nucleus obtained within this approach was compare
the results of an exact Green’s-function Monte Carlo cal
lation. The close agreement between the two responses
gests that the approximations employed in I are indeed q
reasonable.

A different approximation scheme leading to the facto
ization of M̃0n can be obtained by inserting into Eq.~17! the
identity

E dR̃8d3r 18d~r12r18!d3(A21)~R̃2R̃8!

5(
N

E dR8CN* ~R8!CN~R!, ~26!

where the sum includes a complete set of eigenstates o
A-particle HamiltonianH. This procedure is not unique, be
cause thed-function insertion allows for different assign
ments of the arguments of the functions entering the rig
hand side of Eq.~17!, leading to different but ultimately
equivalent representations. By equating two such represe
tions, exploiting translation invariance of infinite nucle
matter and retaining only the term corresponding touN&
5u0& we obtain

M̃0n~p,q;t !5M0n~k!
U0~k,p;t !

n~k!
. ~27!

Heren(k) is the nucleon momentum distribution, defined
terms of the spectral function as

n~k!5E dEP~k,E!, ~28!

while

U0~k,p;t !5E d3r 118e
ik•r118P~p,r118 ;t !, ~29!

with r1185r12r18 and

P~p,r118 ;t !5E dR̃C0* ~r18 ,R̃!C0~r1 ,R̃!Up~r1 ,R̃;t !.

~30!
5-4
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It can be readily seen that ifUp(R̃,r1 ;t)[1, i.e., if FSI’s are
absent, the functionP(p,r118 ;t) reduces tor(r1 ;r18)/A,
where

r1~r1 ;r18!5AE dR̃C0* ~r18 ,R̃!C0~r1 ,R̃! ~31!

is the one-body density matrix, whose Fourier transform
n(k). As a consequence, we haveM̃0n(p,q;t)5M0n(k) and
the PWIA is recovered.

Relation~27! can be shown to hold as an equality at t
lowest order of the cluster expansion, that is known to p
vide accurate estimates of a number of nuclear matter p
erties at equilibrium density~see, e.g., Ref.@18#!.

Substitution of Eq.~27! into the definition of the respons
leads to

S~q,v!5E dv8E d3k

~2p!3
Fk,q~v82v!E dEP~k,E!

3d~v82E2Euk1qu!, ~32!

where the generalized folding functionFk,q(v) is defined as

Fk,q~v!5
1

n~k!
E dt

2p
eivtU0~k,k1q;t !. ~33!

III. MANY-BODY CALCULATION OF THE
GENERALIZED FOLDING FUNCTION

Equations~29! and~30! show that calculation of the gen
eralized folding function of Eq.~33! requires a knowledge o
the partially diagonaln-body density matrices

rn~r1 ,r2 , . . . ,rn ;r18 ,r2 , . . . ,rn!

5
A!

~A2n!! E d3r n11 . . . d3r AC0* ~r18 ,R̃!C0~r1 ,R̃!

~34!

of the target nucleus, for alln<A. The numerical calculation
of rn within anab initio microscopic approach involves pro
hibitive difficulties, even for the case of infinite nuclear ma
ter considered here. In view of this problem, we need
modelrn in terms of quantities that consistently incorpora
the relevant physics and can still be reliably calculated. T
results presented in this paper have been obtained usin
approximation scheme~hereafter referred to as thehole ap-
proximation!, in whichrn is written in terms of the one-bod
density matrix: of Eq.~31! and the half-diagonal two-bod
density matrix

r2~r1 ,r2 ;r18 ,r2!

5A~A21!E d3r 3 . . . d3r AC0* ~r18 ,R̃!C0~r1 ,R̃!.

~35!

The explicit formula for the resultingn-body density matrix,
01460
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HA~r1 ,r2 , . . . ,rn ;r18 ,r2 , . . . ,rn!

5
1

@r1~r1 ;r18!#n22 )
i 52

n

r2~r1 ,r i ;r18 ,r i !, ~36!

shows that the hole approximation represents the mu
nucleon spatial correlations involved in the definition ofrn
as a superposition of two-nucleon correlations.

Among other expressions that can be constructed from
same building blocks, Eq.~36! was chosen primarily becaus
it fulfills some basic properties of the exact density matric
In particular,rn

HA , which is obviously real, satisfies exact
the asymptotic factorization requirement

lim
urnu→`

rn~r1 ,r2 , . . . ,rn ;r18 ,r2 , . . . ,rn!

5rrn21~r1 ,r2 , . . . ,rn21 ;r18 ,r2 , . . . ,rn21!, ~37!

while violating, although not severely, the sequential relat

E d3r nrn~r1 ,r2 , . . . ,rn ;r18 ,r2 , . . . ,rn!

5@A2~n21!#rn21~r1 ,r2 , . . . ,rn21 ;r18 ,r2 , . . . ,rn21!.

~38!

Within the hole approximation, Eq.~38! translates into

E d3r nrn
HA~r1 ,r2 , . . . ,rn ;r18 ,r2 , . . . ,rn!

5~A21!rn21
HA ~r1 ,r2 , . . . ,rn21 ;r18 ,r2 , . . . ,rn21!

~39!

5@A2~n21!#rn21
HA 1O~n22!. ~40!

In addition tor2, calculation of the generalized foldin
function in the hole approximation calls for a knowledge
the imaginary part of the quantityGq of Eq. ~14!, i.e., of the
imaginary part of theNN scattering amplitudef q . In this
work, we have employed the simple parametrization ori
nally proposed in Ref.@19#, namely,

Im f q~k!5
uqu
4p

sNN exp~2b2uku2!. ~41!

Numerical values of the totalNN cross sectionsNN and the
slope parameterb resulting from fits toNN scattering data
are given in Refs.@20# and @21#.

Using the hole approximation@Eq. ~36!# and together with
parametrization~43! of Im Gq , we can finally assemble th
working expression

Fk,q~v!5
1

n~k!
2 Re

1

vE0

` dz

2p
expS iv

z

v D
3E dr118e

ik•r118Eq~z,r118! ~42!
5-5
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for the generalized folding function, with

Eq~z,r118!5expF2
sNN

16pb2
Jq~z,r118!G ~43!

and

Jq~z,r118!5
1

r1~r 118!
E

0

`

r 2drE
21

1

d cosur2~r 118 ,r ,r 8!

3expF2
r 2 sin2u

4b2 G FerfS z1r cosu

2b D
2erfS r cosu

2b D G . ~44!

In the above equations,r1(r 118) and r2(r 118 ,r ,r 8), with r
5ur u5ur12r2u and r 85ur 8u5ur182r2u, are the nuclear-
matter one-body and half-diagonal two-body density ma
ces, respectively,v is the speed of the struck particle, thez
axis is chosen along the direction ofq, and u is the angle
betweenr and q. It can be shown that thek-independent
CGA folding function of Ref.@2# can be recaptured from
Eqs. ~43!–~45! by replacingr2(r1 ,r2 ;r18 ,r2) with its fully
diagonal partr2(r1 ,r2 ;r1 ,r2). The numerical calculation o
Fk,q(v) has been performed by applying~i! the scheme pro-
posed in Ref.@22# to obtainn(k) and r1(r 118) and ~ii ! the
formalism developed in Ref.@23# to evaluate the nuclear
matter half-diagonal two-body density matrix. Both a
proaches use correlated many-body wave functions
FHNC integral equations to sum up selected cluster con
butions to all orders in the relevant expansions.

In particular,r2(r1 ,r2 ;r18 ,r2) has been approximated b
its leadingdd part in the FHNC formalism according to@23#;
thus we set

r2~r1 ,r2 ;r18 ,r2!5r1~r 118!gQdd~r !gQdd~r 8!, ~45!

wheregQdd(r ) consists of thedd nodal and non-nodal com
ponents of the FHNC expression forr1(r1 ;r18). ~The nota-
tion dd refers to the topological classification of the di
grams associated with the corresponding terms in the clu
expansion. See Ref.@23# for details.!

Due to its weak dependence upon cosf5r̂• r̂118 , the
quantity gQdd(r 8) is approximated by its angular averag
according to

gQdd~r 18!→ḡQdd~r 8!

[
1

2E21

1

d~cosf!gQdd@~r 21r 118
2

22rr 118 cosf!1/2#. ~46!

The resulting expression for the generalized folding funct
is
01460
i-

d
i-

ter

,

n

Fk,q~v!5
4

n~k!
E

0

`dz

v
cosS v

z

v D E
0

`

r 118
2 dr118 j 0~kr118!

3r1~r 118!Ēq~z,r 118!, ~47!

wherej 0(x) is the zeroth-order spherical Bessel function a

Ēq~z,r118!5expF2
sNN

16pb2
J̄q~z,r118!G ~48!

with

J̄q~z,r118!52prE
0

`

r 2drE
21

1

d cosugQdd~r !ḡQdd~r 8!

3expF2
r 2 sin2u

4b2 G FerfS z1r cosu

2b D
2erfS r cosu

2b D G . ~49!

IV. NUMERICAL RESULTS

We have carried out the calculation of the nonrelativis
response of a realistic model of nuclear matter, based on
Hamiltonian

H5(
i 51

A p2

2m
1 (

j . i 51

A

v i j 1 (
k. j . i 51

A

Vi jk , ~50!

wherev i j andVi jk are potentials describing two- and thre
nucleon interactions, and on a variational ground-state w
function

C0~R!5SF)
i , j

Fi j Gx0~R!. ~51!

In this trial form, S is a symmetrization operator acting o
the product of two-nucleon correlation operators,Fi j , and
x0 is the Slater determinant describing a noninteract
Fermi gas of nucleons with momentak filling the Fermi sea,
i.e., with uku<kF5(3p2r/2)1/3. The operatorFi j , which
should reflect the correlation structure induced by the nuc
Hamiltonian, has been chosen as@26#

Fi j 5 f c~r i j !1 f s~r i j !~si•sj !1 f t~r i j !~ti•tj !1 f st~r i j !

3~si•sj !~ti•tj !1 f t~r i j !Si j 1 f tt~r i j !Si j ~ti•tj !. ~52!

HereSi j 53(si•r i j )(sj•r i j )/ur i j u22(si•sj ) is the usual ten-
sor operator, while f c(r ), f s(r ), f t(r ), f st(r ), f t(r ), and
f tt(r ) are correlation functions whose radial shapes are
termined by minimizing the expectation value of the Ham
tonian @Eq. ~50!# in the ground state described by Eq.~51!
@26#.

The PWIA response has been calculated using the nuc
spectral function of Ref.@24#, obtained from a nuclea
Hamiltonian including the Urbanav14 NN potential supple-
mented by the TNI model of the three-body interaction@25#.
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The same ingredients entering the calculation of the spe
function have been employed in the calculation of the d
sity matrices needed to obtain the generalized folding fu
tion defined by Eqs.~47!–~49!.

The dependence of the folding functionFk,q(v) on k
[uku and v is illustrated in Figs. 1 and 2 atuqu51.31 and
1.94 GeV/c, two values representative of the range cove
by the data analyzed in Refs.@2–4#. For comparison, we also
show thek-independent folding functions obtained using t
approach developed in I. We note that in symmetric nucl
matter at its equilibrium densityr5r050.16 fm23, the
Fermi momentum iskF51.33 fm21. It is apparent that in the
regionk,kF , the folding functionFk,q(v) is very close to
its CGA counterpart, whereas a strongk dependence is ob
served atk.kF . At uku*kF the generalized folding function
shrinks, and its tail begins to oscillate, implying that thesk
values correspond to weaker FSI. On the other hand,
larger momenta, well above the Fermi level,Fk,q(v) be-
comes broader again. The results of Figs. 1 and 2 confirm

FIG. 1. Dependence of the generalized folding functionFk,q(v)
of Eqs. ~47!–~49! on k5uku and v, at q5uqu51.94 GeV/c. The
diamonds show the results of the approach of Ref.@2#, in which the
dependence of the folding function upon the initial nucleon mom
tum k is neglected.

FIG. 2. Same as in Fig. 1, but for momentum transferq5uqu
51.31 GeV/c.
01460
al
-

c-

d

r
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he

naive expectation that while the averaging procedure
volved in the approach of Ref.@2# is quite reasonable in the
region of uku,kF , where the nucleon momentum distribu
tion is nearly constant, the momentum dependence of
folding function associated with fast nucleons, carrying m
menta larger thankF , must be treated explicitly.

Figures 3 and 4 show the dependence of the nuclear m
ter y-scaling function

F~q,y!5
uqu
m

S~q,y! ~53!

on the scaling variable

y5
m

uqu S v2
uqu2

2m D , ~54!

evaluated for the respective choicesuqu51.94 and 1.31
GeV/c of the momentum transfer. Using they-scaling func-

-

FIG. 3. Dependence of the nuclear-matter scaling funct
F(q,y) defined by Eqs.~53!–~54! on the scaling variabley, at q
5uqu51.94 GeV/c. The dash-dotted line shows the PWIA resu
while the solid and dashed lines correspond respectively to ca
lations carried out using the generalized folding function of E
~47!–~49! and the uku-independent CGA folding function o
Ref. @2#.

FIG. 4. Same as in Fig. 3, but for momentum transferq5uqu
51.31 GeV/c.
5-7
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tion rather than the response makes it easier to directly c
pare FSI effects at different values ofuqu, as measured by th
deviation from the PWIA results at fixedy.

Comparison of the PWIA scaling functions~dash-dotted
lines! to the results obtained from the CGA~dashed lines!
and the approach described in the previous sections~solid
lines! clearly demonstrates that use of thek-dependent gen
eralized folding function leads to a suppression of FSI effe
in the region of large negativey, corresponding to the low
energy tail of the response@see Eq.~54!#. For example, at
y5600 MeV/c the differences between the dashed and s
lines are.70% and.20% at uqu51.31 and 1.94 GeV/c,
respectively.

The fact that the suppression of FSI’s appears to be m
pronounced at the lower values ofuqu indicates that a broade
CGA folding function is associated with a smaller effect
the k dependence. In fact, the larger value of theNN cross
section atuqu51.94 GeV/c, namelysNN.43 mb compared
to sNN.35 mb atuqu51.31 GeV/c, makes the CGA folding
function broader at the higher momentum transfer~see Figs.
1 and 2!.

V. SUMMARY AND CONCLUSIONS

We have carried out a calculation of the nuclear ma
response in whichNN correlations, which are known to pla
an important role in the low-energy tail of the response, h
been taken into account both in the initial and final stat
The effects of dynamical correlations in the initial state ha
been consistently incorporated into the PWIA calculatio
based on a realistic spectral function obtained from anab
initio microscopic many-body approach@24#.

The same ingredients entering the calculations of
spectral function of Ref.@24# have been employed in th
calculation of corrections to the PWIA arising from FSI
between the struck nucleon and the spectator system.
n-
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G
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many-body treatment of FSI’s is based on much the sa
scheme as applied in I and is therefore predicated on
eikonal and frozen approximations. However, the new tre
ment allows us to go beyond the simple convolution expr
sion for the response and explicitly take into account
dependence on the initial momentum of the struck nucle
which is averaged over in the CGA.

Numerical results show that the momentum depende
of the generalized folding function produces a sizable eff
in the low-energy tail of they-scaling function in the range
of momentum transfer 1,uqu,2 GeV/c covered by the in-
clusive electron-nucleus scattering data analyzed in R
@2–4#. While repeating the analysis of Refs.@2–4# within the
approach proposed here would certainly be of great inter
it must be pointed out that using a momentum-depend
generalized folding function would in no way help to im
prove the agreement between the CGA and the data.
shown in I, the discrepancy between the CGA results and
measured cross sections increases asuqu increases, while the
suppression of FSI’s due to the momentum dependenc
the folding function appears to be larger at lower moment
transfer. A different mechanism, leading to a quenching
FSI’s and exhibiting theoppositemomentum-transfer depen
dence, such as the one associated with the color-transpar
model employed in Refs.@2–4#, still seems to be needed t
reconcile theory and data.

ACKNOWLEDGMENTS

This research was supported in part by the U.S. Natio
Science Foundation under Grant No. PHY-9900713~J.W.C.!,
by the Italian MIUR through theProgetto di Ricerca di In-
teresse Nazionale: Fisica Teorica del Nucleo Atomico e
Sistemi a Molti Corpiand by the University of Athens unde
Grant No. 70/3/3309.
l

ri-

s.

s

illa,
@1# Modern Topics in Electron Scattering, edited by B. Frois and I.
Sick ~World Scientific, Singapore, 1991!.

@2# O. Benhar, A. Fabrocini, S. Fantoni, G. A. Miller, V. R. Pa
dharipande, and I. Sick, Phys. Rev. C44, 2328~1991!.

@3# O. Benhar and V. R. Pandharipande, Phys. Rev. C47, 2218
~1993!.

@4# O. Benhar, A. Fabrocini, S. Fantoni, and I. Sick, Nucl. Ph
A579, 493 ~1994!.

@5# J. W. Clark and R. N. Silver, inProceedings of the Fifth Inter-
national Conference on Nuclear Reaction Mechanisms, edited
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