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Final-state interactions in the response of nuclear matter
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Final-state interactions in the response of a many-body system to an external probe delivering large mo-
mentum are normally described using the eikonal approximation, for the trajectory of the struck particle, and
the frozen approximation, for the positions of the spectators. We propose a generalization of this scheme, in
which the initial momentum of the struck particle is explicitly taken into account. Numerical calculations of the
nuclear matter response at]g|<2 GeV/c show that the inclusion of this momentum dependence leads to a
sizable effect in the low-energy tail. Possible implications for the analysis of existing electron-nucleus scatter-
ing data are discussed.
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[. INTRODUCTION set of approximations as the Glauber theory of high-energy
proton scattering off nucldi6], which has been successfully
Final-state interaction§=SlI's) of fast nucleons produced applied for over 40 years. The eikonal and frozen approxi-
in electron-nucleus scattering at large momentum transfemations have also been used, in a somewhat different con-
have long been known to exert a significant effect on theext, to analyze semi-inclusive and exclusive electron-
coincidence ¢,e’'p) cross section; moreover, they provide nucleus processé¢g,8]
most of the strength observed in the low-energy loss tail of The results of | show that FSI's produce a huge enhance-
the inclusive €,e’) cross sectior(see, e.g., Refl1]). The ment of the inclusive cross section in the region of
main effect of FSI's is a damping of the motion of the struck <wgg, Wherewqe is the energy transfer corresponding to
particle, which can be qualitatively described in terms of theelastic scattering off an isolated stationary nucleon. While
imaginary part of the nuclear optical potential. However,this enhancement brings theory and experiment into agree-
since nucleons in nuclei are strongly correlated, one musment over a broad range ia, the calculated cross section
improve upon the optical potential approach rooted in asubstantially overestimates the data in the extremedotai
simple mean-field description of nuclear dynamics, if one[roughly corresponding to values of the Bjorken scaling vari-
hopes to develop a fully quantitative treatment of FSI’s. It isablex=(Q?%2mw)>2, whereQ?=|q|?>— w?, andm denotes
very important to realize that nucleon-nucle@®N) correla-  the nucleon magsin order to reproduce the tail of the mea-
tions, leading to large density fluctuations and to the appeaisured cross sections, the imaginary part of the free-s&te
ance of high momentum components in the nuclear wavecattering amplitude, which determines the shape of the CGA
function, strongly affect both initial and final states in folding function, must be modified in such a way as to re-
electron-nucleus scattering, and must be consistently takesuce the effect of FSI's.
into account. As pointed out in NN scattering in the nuclear medium
A theoretical description of€e’') processes including may in principle differ markedly from scattering in free
correlation effects was developed in RE2] (hereafter re- space. For example, Pauli blocking and dispersive correc-
ferred to as ) and successfully employed to analyzed’) tions are known to be important at moderate enerfds
data for momentum transfer in the range 1 Ge¥|q| However, their effects on the calculated cross sections have
<2 GeV/c [2-4]. A similar approach, formulated in analogy been found to be small in the kinematical region spanned by
with the theoretical treatment of FSI's in neutron scatteringthe data analyzed in Refi2—4]. Corrections to thé&dN am-

from quantum liquids, was proposed in RE3]. plitude associated with the extrapolation to off-shell energies
The treatment of FSI's discussed in I, commonly referredare also expected to be smgli0].
to as correlated glauber approximati@@GA), rests on the A different type of modification of thé&N cross section,

assumptions thati) the struck nucleon moves along a originating from the internal structure of the nucleon, may
straight line with a constant velocitieikonal approxima- play a more significant role. It was sugges{dd,12 that
tion), and (ii) the spectator nucleons are seen by the faselastic scattering on a nucleon at high momentum transfer
struck particle as a collection of fixed scattering cenférs ~ can only occur if the nucleon is found in the Fock state
zen approximation The resulting inclusive cross section can having the lowest number of constituents, so that the mo-
be written as a convolution integral, involving the cross secimentum transfer can be most effectively shared among them.
tion evaluated within the plane-wave impulse approximationWithin this picture, a nucleon is in a very compact configu-
(PWIA), i.e., evaluated in the absence of FSI's, and a foldingation after absorbing a large momentum It then travels
function embodying FSI effects. The CGA entails the samdhrough nuclear matter experiencing very few FSI's, until its
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standard size is recovered on a characteristic time scale that , , , _
increases wittg|. In the limit of infinite momentum trans- Pq(t):e'Hthe_'Ht:e'Ht; al+qake_'Ht, (2
fer, FSI's are totally suppressed, and the nuclear medium is
said to exhibitcolor transparency + ) o
The results of the calculations of Ref2—4] show that wherea, and a are nucleon creatlon'a.n'd anmhﬂqnon op-
inclusion of the effects of color transparency according to theérators, respectively. Note that the definition given in €9).
model of Ref.[13], with no adjustable parametergreatly ~can be readily generalized to describe the electromag-
improves the agreement between theory and data, yielding 2€tic response by replacing, with the appropriate current
satisfactory description of the low-energy loss tail of theoperator.. _ o
nuclear inclusive cross sections 1Q>1.5 (GeVk)2. Retalnlng or_1|y the incoherent .contrlbutlon to the re-
To firmly establish the occurrence of color transparency insPonse, which is known to be dominant at lafgk Eq. (1)
(e,e’) processes, the accuracy of the approximations undefan be rewritten in the form
lying the CGA must be carefully investigated and either vali-
dated or transcended. In this paper, we introduce a treatment dt ot Egte
of FSI's which improves upon the CGA, in that it allows one S(q,w)= f - s, ©)
to take account of the initial momentum of the struck
nucleon. Within this approach, the response can no longer %i
written as a simple convolution integral. However, it can still
be expressed in terms of the spectral function and a general-

ized folding function, in a form displaying explicit depen- é(q,t)=j deR\IfZ;(R’)e‘iq'ri
dence on both the initial and final momenta of the struck
particle. X (R'|eH{|R)ei 1P (R), (4)

The theoretical description of nuclear-matter response is
discussed in Section II, where we outline the development of - . .
a systematic scheme that improves upon the PWIA and inhere{R={ri,ro, ... ra} specifies the spatial configura-
cludes FSI effects. The details of the many-body calculatiorion of the A-nucleon systemo(R)=(R|0) is its groml,md-
of the generalized folding function within the Fermi hyper- Staté wave function, and the propagat@fa(R,R’;t)
netted chain(FHNC) approach are traced in Sec. Ill. The =(R'[e"™[R) represents the amplitude for t,he system to
ensuing numerical results are presented and analyzed in S&0lve from configuratiorR to configurationR" during a
IV, with particular attention to the generalized folding func- ime t. The wave function¥’o(R) can in principle be evalu-
tions and the nuclear mattgrscaling functions at different ated within nonrelativistic nuclear many-body theory. On the

values of|g|. Section V summarizes our findings and statesCther hand, the nonrelativistic approach cannot be used to
our conclusions. obtain theA-particle propagatot ,(R,R’;t), since—in the

kinematical regime under consideration—the struck nucleon
typically carries a momentum larger than the nucleon mass.
Il. NUCLEAR-MATTER RESPONSE In view of the fact that a fully realistic and consistent calcu-
lation of Ux(R,R’;t) remains intractable, one must resort to
simplifying assumptions.
The analysis carried out in Reff2—4] required a full A systematic approximation scheme can be developed by
calculation of the nuclear cross section, including the elecfirst decomposing the Hamiltonian according to
tromagnetic vertex, as well as the use of spectral functions
adapted to finite targetésuch as those obtained within a H=Hx +T,+H,, (5)
local-density approximatiofd]). In addition, since the typi-

cal momentum transfers lie in the 1-2-Ge\fange, consis- . R —
AR . . whereH,_; is the nonrelativistic Hamiltonian of thiully
tent use of relativistic kinematics was essential.

In this paper, we will avoid these complications and focus'meraCt'ng(A_ 1)-particle spectator system aiid denotes

L oo the Hamiltonian describing fiee nucleon. The term
on the nonrelativistic response of infinite nuclear matter to a

scalar probe, defined by

A. Plane-wave impulse approximation

A
s(@.0)= 5 | 5-€*0lo}0pg0)|0) = v

1 dt (ot Eot — wherevj; is the NN pote_ntial, accounts for the interactions

= Kf 5.0 (O[pge™""'pgl0). (1) between the struck particle and the spectators.
The PWIA amounts to setting, =0 in Eq. (5), thus dis-
regarding FSI's altogether, and neglecting Pauli blocking of

HereH and|0) denote the nuclear Hamiltonian and the cor-the states available to the high-energy struck nucleon. The
responding ground state satisfying the Sclimger equation  resultingA-particle propagator factorizes into the product of
H|0)=E,|0). The time-dependent density fluctuation opera-the interacting A— 1)-particle propagator and the free-space
tor py(t) is constructed as one-body propagator describing the struck nucleon,
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UPWlA(R,R’;t):(~R'|e“HA*1‘|ﬁ><ri|e‘iTl‘|r1> An evaluation ofUl(rlfz,rfR;t) in general requires a func-
o tional integration over the set of trajectorieg 7) satisfying
=Ua_1(R,R";1)Uq(rq,r1;1), (7)  the boundary conditions,(0)=r, andr,(t)=r} (see, e.g.,
_ Ref. [15]). However, for large momenta of the struck
where{R}={r,, ... ra} specifies the configuration of the nucleon, the evaluation can be drastically simplified by in-

spectator system. Equati@i) clearly shows that within the voking theeikonal approximationi.e., by assuming that the

PWIA, nuclear dynamics only appears through_,, while  particle moves along a straight trajectory with constant ve-

the treatment of the relativistic motion of the struck nucleonjocity v=(ri—rq)/t, so thatr,(7)=r,+vz. Within this ap-

reduces to a trivial kinematic problem. At =AY .
We next express the PWIS(q,t) (and thereby the re- Efglg?;?géj[he propagatdy (riR,rR;t) takes the factor

sponsg in terms of the nucleon spectral functid¥(k,E),

which by definition gives the probability of removing a Us(rR R =Ug(ry,r ;U1 Ri), (12)

nucleon with momentunk from the nuclear ground state,

ducing spectral representations for bath_; and U, (see,

e.g., Ref[14]), we obtain A

Up(rl,NR;t)zex;{—ifotdrjz2 v(rytvr—ry |, (13

s d°p —i(E—Eg+Ept
Sewia(eht) f (277)3f dEP(p-a.Ee o v being theNN potential andUy(rq,r;;t) the free-space
(8) nucleon propagator.
. N Expanding the exponential appearing in the right-hand
which leads to the familiar resujli.4] side of Eq.(13), one obtains a series whose terms are asso-
&p ciated with processes involving an increasing number of in-
- _ _E_ teractions between the struck nucleon and the spectators. The
SPW'A(q’w)_f (277)3f dEP(p—a.B)d(w—E~Ep), terms corresponding to repeated interactions with the same

9 spectator can be summed up to all orders by replacing the
bare NN interactionv with the coordinate spacematrix
whereE,=|p|?/2m denotes the kinetic energy of a nucleon T'4(r), which is related to th&lN scattering amplitudé,(k)
carrying momentunp. at incident momentung and momentum transfés through

B. Inclusion of final-state effects I 2w d3k et (k) (14
rN=—-— e .
K mJ @@

In order to improve upon the PWIA, one needs to devise
a set of sensible approximations to treat the contributions to ) )
the A-particle propagator coming from the FSI Hamiltonian Using the above results togeth(ir !wth spectral representations
H,. As a first step, we make the replacement of both Ugy(rq,r1;t) and U, 1(R,R’;t), the response can

) . ) finally be expressed as
ef|(HA_1+T1+H,)t_>ef|HA_1tefl(Tl+H|)t, y P

. _ _ _ dt d’p
which essentially amounts to assuming that the internal dy- S(q,w):j 2—e'(‘°+E0)tj ——e &
namics of the spectator system and its FSI with the struck ™ (2m)
particle do not affect one another, and can therefore be com-
pletely decoupled. Within this picture, the spectator system XE e_'E“tMSn(P—Q)MOn(P,q;t), (15)

evolves during the time as if there were no struck particle n

moving around, while the fast struck particle * " th : .
oving around, e e fast SHUCK particie "Sees™ e here the sum extends over the-( 1)-particle states satis-

spectator system as if it wefezenat timet=0. ! . ; =
Under this assumption, which implies that the configurajylng the Schrdinger equationsi,_4|n)=Es[n). We have

tion of the spectator system does not change due to interatl,[]trOduced the definitions

tions with the fast struck nucleon, we can use completeness _ _

of the (A—1)-particle position eigenstates to rewrite the MOn(k):J dREXWE (R)D,(R), (16)

propagator in the simple factorized form

with @ ,(R)=(R|n), and

UA(R,R’;t)zf dR/(R'|e Ha-1YR")
Von(p.ai) = [ dRe 1090 (RpW o RU(r1 R,

X(ry R/ (Tt Hfry R) (17)
=Ua1(RR(ry Rle7 T R) In the limit U(r;,Rit)—1, we haveM g,(p,d;t)—Mon(p
=~ ~ =~ —q), and the respons®(q,w) given by Eq.(15) reduces to
=Ua-1(RREDUL(NRIR). (1) the PWIA result.
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It is to be emphasized that the calculation of the response _
according to Eq(15) involves only two approximationsi) Vq(T):Pf d*rg(r)y(r+v7), (24)
the frozen approximation for the configuration of the specta-
tor system, andii) the eikonal approximation for the trajec- where the radial distribution functiog(r) measures the
tory of the struck particle. An explicit calculation of the rel- probability of finding two nucleons separated by a distance
evantM on(P,0;t) integrals within nonrelativistic many-body r=|r|. Keeping only the contributions associated with the
theory appears to be feasible, at least for few-nucleon sydmaginary part of theNN amplitude, which is known to be
tems and infinite nuclear matter. However, to establish alominant at large incident momentum, we can finally write
clear connection with the PWIA picture, it is useful to devisethe eikonal propagator as
approximations that permi®(q,w) of Eq. (15 to be ex-
pressed in terms of either the spectral functi{k,E) or the Uq(t)zexpj drlqu(r). (25)
PWIA responseSpyya(g, ).

The definition of the spectral function, ) ) )
: The approach developed in | and employed in Rgfs.4] is

based on the assumptions underlying E@6)—(25). In Ref.
P(K,E)=2 [Mgn(K)|28(E+Eo—Ep), (18  [17] the Euclidean response of a nonrelativistic model of the
. “He nucleus obtained within this approach was compared to
the results of an exact Green’s-function Monte Carlo calcu-

can be recovered in E15) under the assumption that the lation. The close agreement between the two responses sug-

integralsM, of Eq. (17) take the form gests that the approximations employed in | are indeed quite
~ reasonable.
Mon(P,g;t) =Mon(P—a)U(p,q;t), (19 A different approximation scheme leading to the factor-
ization of Mo, can be obtained by inserting into Ed.7) the

where the functiord/ is to be independent of the state of the
spectator system, labeled by the indexn even more dras-
tic simplification is achieved upon requiring that the time

dependence dfl,(p,q;t) be factorizable according to

identity
fdTQ'dSr;a(rl—rg)a\?(A—l)("F‘z—"F‘e’)
Mon(P,0;t) =Mon(p—q)U4(1), (20 => de’\I",t,(R’)\IfN(R), (26)
N

i.e., upon assuming that the functibhdefined by Eq(19)
does not depend upgm which in turn corresponds to mak- Where the sum includes a complete set of eigenstates of the

ing the approximatiop=q in U. A-particle HamiltoniarH. This procedure is not unique, be-
Substitution of Eq.(20) into Eq. (15) allows one to re- cause thes-function insertion allows for different assign-
write the response as a convolution integraL ments of the arguments of the functions entering the right-

hand side of Eq(17), leading to different but ultimately

) ) ) equivalent representations. By equating two such representa-
S(q,w)=f do’Spwia(d,@")Fg(w—0"),  (21)  tions, exploiting translation invariance of infinite nuclear
matter and retaining only the term corresponding|&
the folding functionF4(w) being given by =|0) we obtain
L RN L (0
Fo(w)= | 3¢ U0 22 Von(P.G0) = Mon(K) i @7)

Heren(k) is the nucleon momentum distribution, defined in

To obtain the functionjq(t) embodying all FSI effectgN.B. terms of the spectral function as

the PWIA can be regained by settitg(t)=1, i.e., F(w)

= kes th I
S(w)], one makes the replacement n(k)zf dEP(K.E), (29)
A
A JdR|\I'0(R)|ZZZ Py(rytvr—rj) while
Z Fy(rytvr—rj)— :
- de|‘l'o(R)|2 leo(k,p;t):f a3y €T P(p,r g st), (29)
:vq(’T), (23) W|th r11r=l’1—r1/ and

which amounts to averaging FSI's with ground-state configu- N ~ e, ~ ~
ration weights. In infinite nuclear matter at uniform density P(pru )= | dR¥g(r,R)Wo(ry, R)Up(ry,Rit).
p, the average involved in E@23) takes the simple form (30
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It can be readily seen that,(R,r,;t)=1, i.e., if FSI's are PR I SO ST O SO |
absent, the functiorP(p,rqy ;t) reduces top(rq;rq/)/A,
where 1

Tlpa(reir ]2

shows that the hole approximation represents the multi-
: . . : . nucleon spatial correlations involved in the definitionpgf
is the one-body density matr|x,~whose Fourier transform IS)c 3 superposition of two-nucleon correlations.
n(k). As a consequence, we haMey,(p,q;t) =Mon(k) and Among other expressions that can be constructed from the
the PWIA is recovered. _ same building blocks, E¢36) was chosen primarily because
Relation(27) can be shown to hold as an equality at thej; yfills some basic properties of the exact density matrices.
lowest order of the cluster expansion, that is known to proy, particular,p"A | which is obviously real, satisfies exactly
vide accurate estimates of a number of nuclear matter prog,q asymptotig factorization requirement

erties at equilibrium densitisee, e.g., Ref.18)).
Substitution of Eq(27) into the definition of the response [T P N SURNN S S U
leads to [

iHZ po(rq,ri;r1,r), (36)
purr)=A [ RV RVGLR) @)

, d3k , :ppnfl(rl!rZ! ---,rnfl;rjll_!rZ! ...,rn,]_), (37)
S(q,w)=f dw fwlzk'q(w —w)f dEP(k,E)

while violating, although not severely, the sequential relation

X 3w —E—Ejkiq). (32
where the generalized folding functiéf 4(w) is defined as f ropn(Marz, - Fnifirz o)
1 dt . =[A—(n—=1)]pn_1(ri,ro, . Fne1ili, oy - oo Fn1).
Fk’q(w)=mf > €Uk k+a.  (33) 38

Within the hole approximation, E¢38) translates into
I1l. MANY-BODY CALCULATION OF THE

GENERALIZED FOLDING FUNCTION
_ _ f d3rphA(r i ro, T, )
Equations(29) and(30) show that calculation of the gen-
eralized folding function of Eq.33) requires a knowledge of —(A—1)p ™ (r,.r frlr f1)
the partially diagonah-body density matrices s L
(39
[N ST SN A SO DU |
=[A—(n—1)]pA,+0O(n-2). (40)

— Al 3 3 * (! D B
(A—n)! f Aroea. Ao (1. RWo(ra.R) In addition top,, calculation of the generalized folding
(34) function in the hole approximation calls for a knowledge of
the imaginary part of the quantity, of Eq. (14), i.e., of the
of the target nucleus, for ati<A. The numerical calculation imaginary part of theNN scattering amplitudé . In this
of p,, within anab initio microscopic approach involves pro- work, we have employed the simple parametrization origi-
hibitive difficulties, even for the case of infinite nuclear mat- nally proposed in Ref.19], namely,
ter considered here. In view of this problem, we need to q
modelp, in terms of quantities that consistently incorporate _ar 2L12
the relevant physics and can still be reliably calculated. The Im fo(k)= 4 o exi— B[, (41)
results presented in this paper have been obtained using an
approximation scheméhereafter referred to as thmle ap-  Numerical values of the totdlN cross sectionryy and the
proximation, in which p,, is written in terms of the one-body slope parameteB resulting from fits toNN scattering data
density matrix: of Eq(31) and the half-diagonal two-body are given in Refs[20] and[21].

density matrix Using the hole approximatidrEq. (36)] and together with
parametrization43) of ImI',, we can finally assemble the
P2(r1,r2:r1,15) working expression
= = 1 1(-dz z
=A(A—1)fd3r BB aTE(r R W,(r,R). — ke P
3 AYoll ol Frg(®) n(k)ZRe; 0271_ex va
(35
ik rqq
The explicit formula for the resulting-body density matrix, X j dryp e Eq(Z Ny) (42)
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for the generalized folding function, with

E(zr)=exd — —N_ 3 (zr1p) 43)
oz Tomg P 1

and
o0 1
Jo(Z,r) = f r2drf dcosfpy(rqyy ,r,r')
p1(rip)Jo -1
" r?sirfe . z+r cosa)
expg — er
482 2B
r cosé

e

In the above equationg,(r11/) and p(rqy,r,r'), with r
=|r|=|ry—r, and r’'=|r'|=|r{—r,|, are the nuclear-

25 | (44)

matter one-body and half-diagonal two-body density matri-

ces, respectively, is the speed of the struck particle, the
axis is chosen along the direction qf and 6 is the angle
betweenr and g. It can be shown that thk-independent
CGA folding function of Ref.[2] can be recaptured from
Egs. (43)—(45) by replacingp,(ry,ra;ry,rp) with its fully
diagonal parp,(rqi,r,;rq,rp). The numerical calculation of
Fi.q(®@) has been performed by applyifig the scheme pro-
posed in Ref[22] to obtainn(k) and p;(r41/) and (ii) the
formalism developed in Ref.23] to evaluate the nuclear-
matter half-diagonal two-body density matrix. Both ap-

PHYSICAL REVIEW C 67, 014605 (2003

4 xdzﬁ(
Fkyq(w)—m‘fo?co

Xpl(rll’)Eq(Z-rll’)a

Z 5 .
(l); 0 rllldrllrjo(krllr)
(1)

wherejy(x) is the zeroth-order spherical Bessel function and

Eq(zarll’):exl{_ %3_‘1(2'“1’)1 (48

with

Jq(Z,r11/)=27Tp

[

1 _
r2dr£ld C0S09qdd(r)9odd(r")

" r?sirfe . z+r cosa)
exp — er
432 2B
: r cosé 49
er 25 . (49

IV. NUMERICAL RESULTS

We have carried out the calculation of the nonrelativistic
response of a realistic model of nuclear matter, based on the
Hamiltonian

A A
+ > vij+ Eilvijk-

j>i=1 k>j>i=

p2
H=2 S— (50

=1

proaches use correlated many-body wave functions anyherev;; andVj;, are potentials describing two- and three-
FHNC integral equations to sum up selected cluster Contrinucleon interactions, and on a variational ground-state wave

butions to all orders in the relevant expansions.

In particular,p,(rq,r,;r;,r,) has been approximated by
its leadingdd part in the FHNC formalism according [&3];
thus we set

p2(r1,72:71.12)=p1(r11)90ddr)doddr’), (45
wheregqqq(r) consists of theld nodal and non-nodal com-

ponents of the FHNC expression fpi(ry;r;). (The nota-
tion dd refers to the topological classification of the dia-

function

\Ifo<R>=sm Fij}m). (51)

In this trial form, S is a symmetrization operator acting on
the product of two-nucleon correlation operatdfs;,, and

Xo IS the Slater determinant describing a noninteracting
Fermi gas of nucleons with momerkdilling the Fermi sea,
i.e., with [k|<kg=(3m?p/2)"3 The operatorF;;, which
should reflect the correlation structure induced by the nuclear

grams associated with the corresponding terms in the clustefamiltonian, has been chosen[&6]

expansion. See Ref23] for details)

Due to its weak dependence upon gesr-ryy, the
quantity goqq(r’) is approximated by its angular average,
according to

9odd(r1)—9oadr’)
111 5. 2
Ezf_ld(COSqS)ded[(r +r11,

—2rr 13 cos¢) 2. (46)

Fij=fe(rip +f,(rijp(oi- o) +f.(rij) (7 7) +f,.(r;;)

X(oi-ap) (7 7) + (i) S+ i) Sj(7- 7). (52
HereS;;=3(o;-1ij)(oy-1i))/|rij]>— (o7~ 0y) is the usual ten-
sor operator, while f.(r),f (r),f(r),f, (r),f«(r), and
fi,(r) are correlation functions whose radial shapes are de-
termined by minimizing the expectation value of the Hamil-
tonian[Eq. (50)] in the ground state described by E§1)
[26].

The PWIA response has been calculated using the nucleon
spectral function of Ref[24], obtained from a nuclear

The resulting expression for the generalized folding functiorHamiltonian including the Urbana;, NN potential supple-

IS

mented by the TNI model of the three-body interactigh.
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FIG. 3. Dependence of the nuclear-matter scaling function
F(qg,y) defined by Eqs(53)-(54) on the scaling variablg, at q

Clambnc show he resus of the approacn of Gl uhich he =101 194 GeVE. The dash-doted Ine shows the PWIA resu
PP ) while the solid and dashed lines correspond respectively to calcu-

nden f the folding function n the initial nucleon momen- .. - . . . )
depe ple ce of the folding function upon the initial nucleon mome lations carried out using the generalized folding function of Egs.
tum k is neglected.

(47—(49 and the |k|-independent CGA folding function of

FIG. 1. Dependence of the generalized folding functin,(w)

The same ingredients entering the calculation of the spectr:ﬁef' (2]
function have been employed in the calculation of the den
sity matrices needed to obtain the generalized folding func
tion defined by Eqs(47)—(49).

haive expectation that while the averaging procedure in-
volved in the approach of Reff2] is quite reasonable in the
. . region of |k|<kg, where the nucleon momentum distribu-
The dependence of the folding functidf o(w) on K yion s nearly constant, the momentum dependence of the

=|k| andw is illustrated in Figs. 1 and 2 44|=1.31 and  ¢54ing function associated with fast nucleons, carrying mo-
1.94 GeVt, two values representative of the range covereg, ania larger thake , must be treated explicitly.

by the data analyzed in Ref2—4]. For comparison, we also  Fiq;res 3 and 4 show the dependence of the nuclear mat-

show thek-independent folding functions obtained using the;q, y-scaling function

approach developed in I. We note that in symmetric nuclear

matter at its equilibrium density=p,=0.16 fm 3, the I

Fermi momentum i&-=1.33 fm *. It is apparent that in the Fla.y)="-S(ay) (53

regionk<kg, the folding functionF () is very close to

its CGA counterpart, whereas a strokgiependence is ob- on the scaling variable

served ak>kg . At |k|=kg the generalized folding function

shrinks, and its tail begins to oscillate, implying that thiese m lal?

values correspond to weaker FSI. On the other hand, for y= H " 5m

larger momenta, well above the Fermi level, (o) be-

comes broader again. The results of Figs. 1 and 2 confirm thevaluated for the respective choicég/=1.94 and 1.31
GeV/c of the momentum transfer. Using tlyescaling func-

: (54)

I I N I
i Tttt Tt T
T q=1.31 GeV/c .
— L . ] — 1073
T 10} ---k=2.5 fm~ o CGA — T
S R k=1.5 fm~ ] >
L o k=1.3 fm~ 2 I
=, —k=0.1 fm : 10—4 s
~_~ L =N r
3 5L - g
g 7| 5 I
[ = -5
™ E 10 E
c ER:
M e T E 10-6 Lol
—-600 —-400 -200 0 200 400 600 —-600 —-500 -400 -300 —-200 -100 0
w [MeV] y [MeV/c]
FIG. 2. Same as in Fig. 1, but for momentum transfer|q| FIG. 4. Same as in Fig. 3, but for momentum transfer|q|
=1.31 GeVE. =1.31 GeVE.
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tion rather than the response makes it easier to directly conmany-body treatment of FSI's is based on much the same
pare FSI effects at different values|af, as measured by the scheme as applied in | and is therefore predicated on the
deviation from the PWIA results at fixegd eikonal and frozen approximations. However, the new treat-
Comparison of the PWIA scaling functioridash-dotted ment allows us to go beyond the simple convolution expres-
lines) to the results obtained from the CG@ashed lines  sion for the response and explicitly take into account the
and the approach described in the previous sectieobd  dependence on the initial momentum of the struck nucleon,
lines clearly demonstrates that use of tkelependent gen- which is averaged over in the CGA.
eralized folding function leads to a suppression of FSI effects Numerical results show that the momentum dependence
in the region of large negativg corresponding to the low- of the generalized folding function produces a sizable effect
energy tail of the respondesee Eq.(54)]. For example, at in the low-energy tail of the--scaling function in the range
y=600 MeV/c the differences between the dashed and solicbf momentum transfer £ |q|<2 GeV/c covered by the in-
lines are=70% and=20% at|g|=1.31 and 1.94 Ge\¥, clusive electron-nucleus scattering data analyzed in Refs.
respectively. [2—4]. While repeating the analysis of Ref2—4] within the
The fact that the suppression of FSI's appears to be morapproach proposed here would certainly be of great interest,
pronounced at the lower values|af indicates that a broader it must be pointed out that using a momentum-dependent
CGA folding function is associated with a smaller effect of generalized folding function would in no way help to im-
the k dependence. In fact, the larger value of Bl cross prove the agreement between the CGA and the data. As
section afg|=1.94 GeVEt, namelyoyy=43 mb compared shown in |, the discrepancy between the CGA results and the
to oyn=35 mb atg|=1.31 GeVE, makes the CGA folding measured cross sections increasegjpmcreases, while the
function broader at the higher momentum trangéere Figs. suppression of FSI's due to the momentum dependence of
1 and 2. the folding function appears to be larger at lower momentum
transfer. A different mechanism, leading to a quenching of
V. SUMMARY AND CONCLUSIONS FSI's and exhibiting th@ppositemomentum-transfer depen-
dence, such as the one associated with the color-transparency

We have carried out a calculation of the nuclear matteinodel employed in Ref§2—4], still seems to be needed to
response in whiciNN correlations, which are known to play reconcile theory and data.

an important role in the low-energy tail of the response, have
been taken into account both in the initial and final states.
The effects of dynamical correlations in the initial state have
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