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Fusion rate enhancement due to energy spread of colliding nuclei
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Experimental results for sub-barrier nuclear fusion reactions show cross section enhancements with respect
to bare nuclei which are generally larger than those expected according to electron screening calculations. We
point out that energy spread of target or projectile nuclei is a mechanism that generally provides fusion
enhancement. We present a general formula for calculating the enhancement factor and provide quantitative
estimate for effects due to thermal motion, vibrations inside atomic, molecular, or crystal system, and due to
finite beam energy width. All these effects are marginal at the energies that are presently measurable; however,
they have to be considered in future experiments at still lower energies. This study allows us to exclude several
effects as a possible explanation of the observed anomalous fusion enhancements, which remain a mystery.
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I. INTRODUCTION

The chemical elements were created by nuclear fus
reactions in the hot interiors of remote and long-vanish
stars over many billions of years@1#. Thus, nuclear reaction
rates are at the heart of nuclear astrophysics: they influe
sensitively the nucleosynthesis of the elements in the ear
stages of the universe and in all the objects formed therea
and they control the associated energy generation, neu
luminosity, and evolution of stars. A good knowledge of th
rates is essential for understanding this broad picture.

Nuclear reactions in static stellar burning phases occu
energies far below the Coulomb barrier. Due to the st
drop of the cross sections(E) at sub-barrier energies,
becomes increasingly difficult to measure it as the energE
is lowered. Generally, stellar fusion rates are obtained
extrapolating laboratory data taken at energies significa
larger than those relevant to stellar interiors. Obviously, s
an ‘‘extrapolation into the unknown’’ can lead to conside
able uncertainty. In the last twenty years a significant eff
has been devoted to the experimental exploration of the l
est energies and new approaches have been developed
to reduce the uncertainties in the extrapolations. In particu
the installation of an accelerator facility in the undergrou
laboratory at LNGS@2# has allowed thes(E) measuremen
of 3He(3He,2p)4He down to its solar Gamow peak,E0
6D/25(2165) keV @3# so that for this reaction no extrapo
lation is needed anymore.

As experiments have moved well down into the su
barrier region, the screening effect of atomic electrons
become relevant@4–7#. With respect to the bare nuclei cas
the Coulomb repulsion is diminished, the tunneling distan
Rt is reduced, and the fusion probability, which depends
ponentially onRt , is enhanced. The electron effect on t
reaction can be seen as a transfer of energyU ~the screening
potential energy! from the electronic to the translational d
grees of freedom. For each collision energyE, one has an
effective energyEeff5E1U and a cross section enhanc
ment,
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The screening potential energyU is easily estimated in
two limiting cases@5#. In the sudden limit, when the relativ
velocity v rel of the nuclei is larger than the typical electro
velocity v05e2/\: the electron wave function during th
nuclear collision is frozen at the initial valueC in and the
energy transferred from electrons to the nuclei is thus

Usu5^C inuZ1e2/r 1euC in&, ~2!

where here and in the following the index 1~2! denotes the
projectile ~target! nucleus and a sum over the electrons
understood. In the adiabatic limit, i.e., whenv rel!v0: elec-
trons follow adiabatically the nuclear motion and at any
ternuclear distance the electron wave functionCad corre-
sponds to an energy eigenstate calculated for fixed nuclei
the nuclei approach distances smaller than each atomic
dius,Cad tends to the united atom~i.e., with nuclear charge
Z5Z11Z2) limit, Cun. The kinetic energy gained by th
colliding nuclei is thus

Uad5e in2eun, ~3!

wheree in (eun) is the electron energy of the isolated~united!
atom in the corresponding states.

We like to stress a few important features.
~1! Screening potential energies, which are in the ran

10–100 eV, are definitely smaller than the practical collisi
energies~1–100 keV!, nevertheless, they can produce app
ciable fusion enhancements due to the exponential de
dence of the cross section.

~2! In the adiabatic limit the electron energy assumes
lowest value consistent with quantum mechanics. Due to
ergy conservation, the energy transfer to the nuclear mo
is thus maximal in this case (U,Uad) and the observed
cross section enhancement should not exceed that calcu
by using the adiabatic potential,

f < f ad5s~E1Uad!/s~E!. ~4!

~3! The enhancement factors that have been measure
generally larger than expected. A summary of the availa
results is presented in Table I. The general trend is that
©2003 The American Physical Society03-1
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enhancement factors exceed the adiabatic limit. Recent m
surements ofd(d,p)3H with deuterium implanted in metal
@16# have shown enhancements of the cross sections
respect to the bare nuclei case by factors of order un
whereas one expects a few percent effect. In other word
one derives an ‘‘experimental’’ potential energyUex from a
fit of experimental data according to Eq.~1!, the resulting
values significantly exceed the adiabatic limitUad. In the
case of deuterium implanted in metals, values as high
Uex.700 eV have been found@16#, at least an order of mag
nitude larger than the expected atomic valueUad . Several
theoretical investigations have resulted in a better und
standing of small effects in low energy nuclear reactions,
have not provided an explanation of this puzzling picture

~4! Dynamical calculations of electron screening for fin
values of the relative velocity show a smooth interpolat
between the extreme adiabatic and sudden limits@17,18#. In
fact, one cannot exceed the value obtained in the adiab
approximation because the dynamical calculation inclu
atomic excitations that reduce the energy transferred f
the electronic binding to the relative motion.

~5! The effects of vacuum polarization@19,20#, relativity,
bremsstrahlung, and atomic polarization@21# have been stud
ied. Vacuum polarization becomes relevant when the m
mal approach distance is close to the electron Comp
wavelength but it has an antiscreening effect, correspond
to the fact that in QED the effective charge increases at s
distances. All these effects cannot account for the anoma
enhancements.

Although one cannot exclude some experimental effe
e.g., a~systematic! overestimate of the stopping power, th
general trend is that most reactions exhibit an anoma
high enhanchement. Phenomenologically, this correspond
an unexplained collision energy increase in the range of
eV.

Actually, the anomalous experimental valuesUex look too
large to be related with atomic, molecular, or crystal en
gies. Some other processes, involving the much smaller

TABLE I. Summary of results for electron screening effects.

Reaction Uex ~eV! Uad
a ~eV! Ref.

d(d,p)t 2565b 28.5 @8#
3He(d,p)4He 21967 114 @9#

d(3He,p)4He 10969 102 @9#
3He(3He,2p)4He 294647 240 @3#
3He(3He,2p)4He 432629 240 @10#
6Li( p,a)3He 4706150 184 @11#
6Li( d,a)4He 320650 184 @12#
7Li( p,a)4He 330640 184 @13#
9Be(p,d)8Be 900650 262 @14#
11B(p,a)8Be 430680 346 @15#

aValues calculated for atomic target, following Ref.@5#. It is as-
sumed that at fusion hydrogen projectiles are charged or ne
with equal probability. Helium projectiles are assumed to
He1(He) with 20%~80%! probability.
bThis value results from gaseous target. Much larger values h
been found when deuterium is implanted in metals@16#.
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ergies available in the target, should mimic the large exp
mental values ofU. As an example, if the projectile
approaches a target nucleus that is moving against it w
energy E2!E, the collision energy is increased by a
amount

U5S 4m1

m11m2
EE2D 1/2

. ~5!

For d1d reactions at ~nominal! collision energy E
510 keV, a target energyE250.5 eV is sufficient for pro-
ducingU5100 eV.

Generally, one expects that opposite motions of the ta
nuclei are equally possible. Even in this case, however,
effect is not washed out: due to the strong nonlinearity of
fusion cross section the reaction probability is much lar
for those nuclei that are moving against the projectile.

In this spirit, we shall consider processes associated w
the energy spread of the colliding nuclei. These proces
generally lead to an enhancement of the fusion rate, for
reasons just outlined.

In the following section we shall first consider the therm
motion of the target nuclei. For this example, we shall der
an expression for the enhancement factor on phys
grounds and then we shall outline the effects of an ene
spread for the extraction of the astrophysicalS factor from
experimental data.

The treatment is generalized in Sec. III and in Sec. IV it
applied to study energy spreads due to motion of the nu
inside atoms, molecules, and crystals. Beam energy w
and straggling are also considered.

In summary, all the effects turn out to be too tiny to e
plain the observed anomalous enhancements. Neverthe
they have to be considered in analyzing the data, particul
in future experiments at still lower energies.

II. THE EFFECT OF THERMAL MOTION OF TARGET
NUCLEI

In this section we consider the effects of thermal moti
of the target nuclei. We shall make several simplifications
order to elucidate the main physical ingredients. In this w
we shall derive a simple expression for the enhancement
tor on physical grounds.

Essentially, we shall concentrate on the exponential fac
of the fusion cross section, neglecting the energy depende
of the preexponential factors, and we shall only consider
effect of the target motion in the direction of the incomin
particle, neglecting the transverse motion. When these s
plifications are removed the result is essentially confirm
see the more general treatment of Sec. III.

The fusion cross section at energies well below the C
lomb barrier is generally written as

s5
S~E!

E
expS 2

V0

A2E/m
D , ~6!
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where E5 1
2 mv rel

2 is the collision energy,m5m1m2 /(m1

1m2) is the reduced mass,V05Z1Z2e2/\, andS(E) is the
astrophysicalS factor.1 The cross section is more conv
niently expressed in terms of the relative velocity of the c
liding nuclei v rel ,

s~v rel!5
2S~v rel!

mv rel
2

expS 2
V0

v rel
D . ~7!

At energies well below the Coulomb barrier,v rel!V0, the
main dependence is through the exponential factor, so
shall treat the preexponential term as a constant,

s~v rel!.B expS 2
V0

v rel
D . ~8!

We consider a projectile nucleus with fixed velocityV
impinging against a target where the nuclei have a ther
distribution of velocity. Since the target nucleus velocityv is
generally much smaller thanV5uVu, one can expand 1/v rel
51/uV2vu and retain the first nonvanishing term,

s.B expS 2
V0

V
2

V0v i

V2 D , ~9!

wherev i is the target velocity projection over theV direc-
tion.

The enhancement factor with respect to the fixed tar
case, f 5^s&/s(V), is thus calculated by averaging ex
(2V0vi /V

2) over thev i distribution,

r~v i!5
1

A2p^v i
2&

expS 2
1

2

v i
2

^v i
2&
D , ~10!

where^v i
2&5kT/m2. The integral

f 5
1

A2p^v i
2&
E

2`

1`

dv i expS 2
V0v i

V2
2

v i
2

2^v i
2&
D ~11!

is easily evaluated by using a~saddle point! trick similar to
that used by Gamow for evaluating stellar burning rates. T
product of the Gaussian and the exponential functions~Fig.
1! results in a ~approximately! Gaussian with the sam
width, centered atvG52^v i

2&V0 /V2, its height giving the
enhancement factor

f 5expS V0
2^v i

2&

2V4 D . ~12!

Concerning this equation, which is the main result of t
paper, several comments are needed.

~1! Since the term in parentheses in Eq.~12! is positive,
one hasf >1, i.e., the energy spread always results in a cr

1For convenience of the reader, we recall thatv05e2/\ and thus
V05Z1Z2v0.
01460
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section enhancement. One cannot ignore the target velo
distribution for the calculation of the reaction yield sinc
nuclei moving towards the projectile have a larger weight
the cross section.

~2! The main contribution to the cross section comes fr
target nuclei with velocity close tovG . When V
<A^v i

2&1/2V0, this velocity is larger than the typical therma
velocity ^v i

2&1/2. This result is equivalent to the Gamow pea
energy in stars, which is significantly higher than the therm
energykT. In terms of the energy, by puttingE25 1

2 m2vG
2 in

Eq. ~5!, we see that the ‘‘most probable’’ collision energy i2

Emp5E12S m1

m11m2
DV0

V
Et , ~13!

whereEt5
1
2 m2^v i

2&5 1
2 kT is the average thermal energy a

sociated with the motion in the collisional direction.
~3! The energy dependence of Eq.~12!,

f 5expF1

2 S m1

m11m2
DEtE0

E2 G , ~14!

whereE05 1
2 mV0

2, is different from that resulting from elec
tron screeningf 5exp(D/E3/2).

~4! The resulting effects are anyhow extremely tiny. F
example, ford1d collisions (V05e2/\) at E51 keV (V
51/5V0) and room temperature (^v i

2&1/25531024V0) one
has f 21.1024. A 10% enhancement would correspond
kT.30 eV.

2The most probable energyEmp is not to be confused with the
effective energyEe f f .

FIG. 1. A sketch of the contribution to the averaged cross s
tion. r(v i) is defined in Eq.~10! andV5exp(2v0^vi&/V

2).
3-3
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~5! The same method can be extended to other motion
the target nuclei, provided that the velocity distribution
approximately Gaussian and if other interactions of the
clei during the collision are neglected~sudden approxima
tion!. One has to replacêv i

2& in Eq. ~12! with the appropri-
ate average velocity associated with the motion un
investigation. Vibrations of the target nucleus inside a m
ecule or a crystal lattice can be treated in this way, since
vibrational times are much longer than the collision tim
These and other similar effects will be discussed in Sec.

~6! From the discussion presented above one gets an
procedure to correct the experimental results for taking i
account the effect of an energy spread. If the astrophysicS
factor has been measured at a nominal collision energE
5 1

2 mV2, from Sexp5sexpE exp(V0 /V), then the ‘‘true’’ S
factor is obtained asS5Sexp/f, wheref is given by Eq.~12!
and the ‘‘true’’ energy is changed fromE to Emp given in Eq.
~13! ~Fig. 2!. In summary, the effect of the energy spre
translates into both a cross section enhancement and a
ergy enhancement.

III. GENERAL TREATMENT

In this section we shall provide a more general discuss
of the energy spread effects, which will substantially confi
Eq. ~12! and which can be applied to a rather large class
processes. The main assumption is that the projectile mo
is fast in comparison with the other motions, so that
sudden approximation can be used.

Let us consider a projectile with velocityV impinging
onto a thin target~densityn and thicknessL), where energy
loss can be neglected. The interaction probabilityP is the
product of the interaction probability per unit timeṗ
5n^sv rel& with the time spent in the target,L/V. The mea-
sured counting rateL5eI ṗ, whereI is the beam current an
e is the detector efficiency, is thus

L5
I enL

V
^sv rel&. ~15!

As in stars, the quantity that is physically relevant is th
^sv rel&, where the average has to be taken over the ta
nuclei velocity distribution.

This distribution is due to the coupling with other degre
of freedom. Inside an atom~or a molecule, or a crystal! the
nucleus is vibrating, its motion is altered by the arrival of t

FIG. 2. Extraction of theS factor from experimental data.
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projectile nucleus and the calculation of the average is co
plicated in the general case. However, if the velocityV of the
impinging particle is large in comparison with the velocityv
of the target nucleus, the problem is simplified. The tar
wave function does not have time for significant evoluti
during the collision and it can be taken as that of the init
~unperturbed! state. This is the main content of the sudd
approximation: the velocity distribution of the target nuc
r(v) can be taken as the initial oner in(v) and one has to
compute

L5
I enL

V E d3vr in~v !s~v rel!v rel . ~16!

By using Eq.~7!, one has thus to compute:

L5
I enL

V E d3vr in~v !F2S~v rel!

mv rel
expS 2

V0

v rel
D G . ~17!

We recall thatS is a weakly varying function of energy, s
that it can be taken out of the integral.

Since we are assumingV2@^v2&, we expand the inte-
grandg5(1/v rel)exp(2V0 /vrel) in powers ofv and keep the
lowest-order terms,

L5
2SIenL

mV E d3vr in~v !Fgv501v i~] ig!v50

1
1

2
v iv j~] i] jg!v50G . ~18!

We shall consider distributions that are symmetrical for
versions and rotations around the collision axisV. In this
case the term linear inv vanishes and the result is

L5
2SIenL

mV2
expS 2

V0

V D H 11
^v i

2&V0
2

2V4 S 124
V

V0
12S V

V0
D 2D

1
^v'

2 &V0
2

2V4 F V

V0
2S V

V0
D 2G J , ~19!

where the indexi(') denotes the component of the veloci
along ~transverse to! the collision axis.

The term in front of the curly bracket is the counting ra
calculated neglecting the target energy spread. So, if we
fine the enhancement factorf as the ratio of the measured
counting rateL to the rate calculated for fixed velocityLV,

f [
L

LV
5V expS V0

V D E d3vr in~v !F 1

v rel
expS 2

V0

v rel
D G ,

~20!

we have now
3-4



th
B

n
e

is
ll
a

tin

-
-
un
on
re
e
r

in
q.

ia

ch
e

w

-

ma-

lli-
alue
er-
fect

by
tom

em.

the

.

his

ding

FUSION RATE ENHANCEMENT DUE TO ENERGY . . . PHYSICAL REVIEW C67, 014603 ~2003!
f .11
^v i

2&V0
2

2V4 F124
V

V0
12S V

V0
D 2G

1
^v'

2 &V0
2

2V4 F V

V0
2S V

V0
D 2G . ~21!

For a one-dimensional motion (v'50) it simplifies to

f 511
^v i

2&V0
2

2V4 F124
V

V0
12S V

V0
D 2G . ~22!

For the case of a spherically symmetrical distribution,^v i
2&

51/2̂ v'
2 &, one gets

f 511
^v i

2& V0
2

2 V4 S 122
V

V0
D . ~23!

This equation can be easily compared with the result of
preceding section concerning the thermal energy effect.
expanding Eq.~12!, one gets

f 511
1

2

^v i
2&V0

2

V4
. ~24!

This is the same as Eq.~23! apart for the last term which is
negligible at small velocities, since it is a higher-order co
tribution in V/V0. Note that this last term arises from th
variation of the preexponential factor 1/v rel , which was ne-
glected in the simplified treatment of Sec. II. Clearly th
term, once averaged over the target distribution, is sma
than 1/V and therefore it provides a reduction of the rate,
implied by the negative coefficient in Eq.~23!.

The previous results have been obtained by neglec
higher-order terms in the expansion ofg. Their contribution
is suppressed by a factor^v i

2&V0
2/V4. Thus the previous re

sults are not valid forV!A^v2&1/2V0, as can be simply un
derstood. In this case, one cannot expand the integrand f
tion g(v), since it changes faster than the distributi
function r(v) over a large range of target velocities. Mo
precisely, the decrease ofr(v) is counterbalanced by th
increase ofg(v) in a velocity range that is typically large
than the average target velocity dispersion^v2&1/2. As a con-
sequence, the tails of the distribution functionr(v) give a
relevant contribution to the counting rate, leading to an
crease of the factorf with respect to the simple estimate E
~23!.

It is difficult to obtain a general expression forf in this
low-velocity regime. The factorf depends, in fact, on the
shape of the distribution function. In the case of a Gauss
distribution function,r(v)}exp(2v2/2^v2&), one can use
the Gamow ‘‘trick’’ described in the preceding section whi
leads to Eq.~12!. For distribution functions that decreas
more slowly withv one expects larger effects.

In order to have, however, a general result for the lo
velocity (^v2&,V2,^v2&1/2V0) behavior off, we note that,
being the counting rateL an increasing function of the pro
jectile velocityV, one has
01460
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L>L~0![
I enL

V

2S

m E d3vr in~v !F1

v
expS 2

V0

v D G .
~25!

This means that the enhancement factorf should be larger
than

f 05V expS V0

V D E d3vr in~v !F1

v
expS 2

V0

v D G . ~26!

IV. APPLICATIONS

The method developed in the previous sections, sum
rized in Eq. ~12! or in the more accurate Eq.~21!, can be
applied to several motions of the target nuclei~vibrations
inside an atomic, molecular, or crystal system!, provided that
interactions with other degrees of freedom during the co
sion can be neglected. Simply, one has to compute the v
of ^v2& which is appropriate to the system under consid
ation. Also, the treatment can be easily extended to the ef
of beam energy width and straggling.

A. Nuclear motion inside the atom

Very much as the motion of a star in the sky is affected
the presence of planets around it, the nucleus inside an a
is vibrating around the center of mass of the atomic syst
The nuclear momentum distributionP(p) is immediately de-
termined from that of the atomic electronsPe(pe) by requir-
ing that the total momentum of the atom vanishes in
center of mass (p52pe), wherepe is the~total! momentum
carried by the electron~s!, i.e., P(p)5Pe(2pe) and the ini-
tial nuclear velocity distributionr in(v) is immediately deter-
mined fromv5p/m2, wherem2 is the target nucleus mass

For the case of hydrogen~isotope! in the ground state, the
atomic electron momentum distribution is

Pe~pe!5
8

p2

~mev0!5

~pe
21me

2v0
2!4

, ~27!

so that the nucleus velocity distribution is

r in~v !5
8

p2

u0
5

~v21u0
2!4

, ~28!

whereu05(me /m2)v05(me /m2)e2/\ is the typical veloc-
ity associated with the target nuclear motion. In practice, t
is definitely smaller than the collision velocityV, so that the
sudden approximation holds and the results of the prece
section can be applied.

One can easily evaluate that

^v i
2&5

1

3
u0

25
1

3 S me

m2
D 2

v0
2 , ~29!

so that for hydrogen-hydrogen~or deuterium-deuterium! col-
lisions, for which V05Z1Z2e2/\5v0, by using Eq.~23!,
one obtains for the enhancement factor,
3-5
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f at511
1

6 S me

m2
D 2S V0

V D 4S 122
V

V0
D . ~30!

This is an extremely tiny correction, since one hasf at21
.2•1025 for a d-d collision atE51 keV energy.

In the low-energy regime, i.e., whenV<Au0V0
5(me /m2)1/2v0, the previous estimate has to be corrected
take into account the contribution of the tails of the distrib
tion function. By using Eq.~26! we can easily estimate

~ f at!0.
3235!

p

V

V0
S u0

V0
D 5

expS V0

V D . ~31!

In Fig. 3 we compare the approximate expressions with
numerical evaluation of Eq.~21!. In the whole range a good
approximation to the full numerical calculation is provide
by f 5 f at1( f at)0.

B. Molecular vibrations

Let us consider, as an example, reactions involving a d
terium nucleus bound in aD2 molecule. The target nucleus
vibrating, the vibration energy in the ground state be
Evib50.19 eV. This energy is shared between the two nu
and between potential and kinetic energy, so that the ave
kinetic energy of each nucleus is1

2 md^v2&vib51/4Evib . The
target nucleus velocity,̂v2&vib.1026v0

2, is much smaller
than the projectile velocity so that the sudden approxima
applies again. By using Eq.~12! and assuming a random
orientation of the molecular axis,^v i

2&51/3̂ v2&vib , we get

f mol5expF ^v2&vibV0
2

6V4 G . ~32!

FIG. 3. Fusion enhancement due to nuclear motion inside
atom. We present the numerical evaluation of Eq.~21! ~full line!,
the approximations of Eq.~12! ~dot-dashed line! and of Eq.~23!
~dotted line!, and the low velocity limit of Eq.~31! ~dashed line!.
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This corresponds to a 1024 correction atE51 keV. Con-
versely, an enhancement correction of 10% would cor
spond toEv ib.200 eV.

C. Local vibrations in a crystal lattice

When a deuterium nucleus is implanted in a crystal
generally occupies an interstitial site where it performs lo
vibrations. The vibration energyEcr depends on the host lat
tice, being typically in the range of 0.1 eV, very similar to th
molecular vibration scale. Effects associated with vibratio
in the crystal are thus similar to those calculated for theD2
molecule,

f cr. f mol . ~33!

D. Finite beam width and straggling

In an ideal accelerator all projectiles have the same ene
Elab. Actually, due to several physical processes~voltage
fluctuations, different orbits, etc.! the beam will have a finite
energy widthD. As an example, in the LUNA accelerato
one hasD.10 eV. Furthermore, when the beam pass
through the target, fluctuations in the energy loss will p
duce an enlargement of the energy width~straggling!. Thus,
even neglecting the target motion, there is a collision ene
spread. The beam energy distribution,

P~E8!.expF2
~E82Elab!

2

2D2 G ~34!

gives a velocity ditribution with

^v i&
25

D2

mdElab
. ~35!

By using Eq.~21! the enhancement factor is thus3

f 5expF V0
2D2

m1
2V6G . ~36!

Effects are very small in the case of LUNA: ford1d at
E51 keV andD510 eV one hasf 21.231025. The ef-
fect behaves quadratically withD and it can be significant if
momentum resolution is worse. Conversely, an enhancem
correction of 10% corresponds toD.250 eV.

E. Polynomial velocity distributions

One could suspect that velocity distributions of differe
shape can provide enhancements significantly larger than
tiny effects which we have found so far.

3For the sake of precision, the counting rate is nowL
5eInL^s&beam. This is different from Eq.~15!. A calculation of
the average, similar to that presented in Sec. III, yields the sa
expression as in Eq.~19! for the leading term inV/V0 and different
numerical coefficients for the higher-order~negligible! terms.
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In this spirit, let us consider the case of a polynom
velocity distribution,

r~v !5
A

~v21B2!n
, ~37!

where the slowly decreasing tail should provide a signific
enhancement. Clearly the more favorable cases correspo
small values ofn. The requirement that̂v2& is finite implies
n>3, so we considern53 in order to maximize the tai
effect. The normalized distribution is, in this case,

r~v !5
4

p2
•33/2

^v2&3/2

@v21~1/3!^v2&#3
. ~38!

The low-energy enhancement factorf 0 of Eq. ~26! becomes
now,

f 0.
16•3!

p•33/2
@^v2&/V0

2#3/2expS V0

V D V

V0
. ~39!

In order to have f 0.1.1 for d1d collisions at E
51 keV one needŝv2&.331022V0

2, which corresponds to
an average energy in the range of 1 keV, well above
physical scale of the process.
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V. CONCLUDING REMARKS

We summarize the main points of this paper.
~1! Energy spread is a mechanism that generally provi

fusion enhancement.
~2! We have found a general expression for calculating

enhancement factorf,

f 5expF S Z1Z2e2

\ D 2^v i&
2

2V4 G . ~40!

~3! We have provided quantitative estimates for the e
hancement effects. For ad1d collision one has

thermal motion, f 21.1024~E/1 keV!22,

vibrational motion, f 21.~1025–1024!~E/1 keV!22,

beam width, f 21.1025~E/1 keV!23.

~4! All these effects are marginal at the energies that
presently measurable, however, they have to be considere
future experiments at still lower energies.

~5! This study allows to exclude several effects as a p
sible explanation of the observed anomalous fusion enha
ments, which remain a mystery.
of
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