
PHYSICAL REVIEW C 67, 014326 ~2003!
Deuteron distribution in nuclei and the Levinger’s factor
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We compute the distribution of quasideuterons in doubly closed shell nuclei. The ground states of16O and
40Ca are described inls coupling using a realistic Hamiltonian including the Argonnev88 and the Urbana IX
models of two- and three-nucleon potentials, respectively. The nuclear wave function contains central and
tensor correlations, and correlated basis functions theory is used to evaluate the distribution of neutron-proton
pairs, having the deuteron quantum numbers, as a function of their total momentum. By computing the number
of deuteronlike pairs we are able to extract Levinger’s factor and compare to both the available experimental
data and the predictions of the local density approximation, based on nuclear matter estimates. The agreement
with the experiments is excellent, whereas the local density approximation is shown to sizably overestimate
Levinger’s factor in the region of the medium nuclei.
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I. INTRODUCTION

Within Levinger’s quasideuteron~QD! model @1–3# the
nuclear photoabsorption cross sectionsA(Eg), above the gi-
ant dipole resonance and below the pion threshold, is
sumed to be proportional to the break-up cross section
deuteron in hadronic matter,sQD(Eg):

sA~Eg!5PDsQD~Eg!, ~1!

whereEg is the photon energy andPD is interpreted as the
effective number of the nucleon-nucleon~NN! pairs of the
QD type ~see Ref.@4# and references therein!. PD is written
in the form

PD5LFZ~A2Z!

A G , ~2!

where A and Z are the mass and atomic numbers of t
nucleus andL is the so called Levinger’s factor.PD can be
calculated for a given nuclear ground state wave functi
thus allowing for amicroscopicinterpretation of thephenom-
enologicalLevinger’s factor.

The value ofL has been extracted from experiments a
cording to the following two models:~i! Levinger’s model
@5#, in which sQD(Eg) is taken as the deuteron cross sect
damped by an exponential function, taking care of Pa
blocking of the final states available to the nucleon ejec
from the QD and~ii ! Laget’s model@6#, which associates
sQD(Eg) with the transition amplitudes of virtua
(p1r)-meson exchanges between the two nucleons of
QD pair.

Both models provide satisfactory fits of photoreacti
data in heavy nuclei, but yield different values of Levinge
factor,LLev(A) andLLaget(A), LLaget(A) being;20% larger
thanLLev(A).
0556-2813/2003/67~1!/014326~9!/$20.00 67 0143
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The effective number of deuteronlike pairs, as well as
three- and four-body structures, in spherical nuclei has b
investigated within the shell model approach in Refs.@7,8#.
In a recent paper@9# ~referred to as I hereafter!, we have
analyzed the properties of deuteronlike structures in infin
symmetric nuclear matter~NM!, described by a Hamiltonian
containing the realistic Urbanav14 NN potential and the Ur-
bana TNI many-body potential@10#. A correlated wave func-
tion having spin-isospin dependent, central, and tensor
relations has been used within the correlated basis funct
~CBF! theory to compute the QD distribution function i
matter, and extract the NM Levinger’s factor at equilibriu
density,LNM511.63, to be compared to the empirical es
mateLexpt(A5`)59.26.

The CBF theory has established itself as one of the m
effective tools to realistically study, from a microscop
viewpoint, properties of infinite matter of nucleons rangi
from the equation of state@11,12# to the momentum distri-
bution @13# and the one- and two-body Green’s functio
@14–17#. In the last decade these studies have been succ
fully extended to deal with finite nuclei@18–22#.

In this paper we extend the CBF many-body approa
used in I for NM, to evaluateab initio the momentum distri-
bution PD(kD) and the total number per particlePD /A of
QD pairs in the doubly closed shell nuclei16O and 40Ca,
described in thels coupling scheme. FromPD /A we then
extract the corresponding Levinger’s factors.

In Sec. II we review and generalize the CBF approach
the QD distribution in terms of the overlap between t
nuclear and deuteron ground state wave functions. In Sec
we compute the QD distribution andPD in nuclei described
by a realistic Hamiltonian including the modern Argonnev88
@23# and the Urbana IX@24# models of two- and three
nucleon potentials, respectively. The correlated nuclear w
function contains central and tensor correlations, as in R
@21#. The results are compared with the analogous NM qu
tities, obtained in I. We also evaluate Levinger’s factors, a
©2003 The American Physical Society26-1
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compare them to the experimental values, as well as to th
derived using the local density approximation~LDA !
and the NM results of I. Summary and conclusions are gi
in Sec. IV.

II. QUASIDEUTERON DISTRIBUTION

Following the approach developed in I, in aA-nucleon
system the distribution of QD pairs whose center of mas
in the orbital state specified by the quantum numberX can be
written

PD~X!5
1

2JD11
^Au~aD

a !†~X!aD
a ~X!uA&, ~3!

whereuA& denotes theA-body ground state andJD51 is the
spin of the deuteron. The operatora(a†)D

a (X) annihililates
~creates! a deuteron with the quantum numberX in the a
51,2,3 Cartesian state. By introducing a complete set
intermediate (A22)- particle states and exploiting the com
pleteness relation(nun(A22)&^n(A22)u51, we can recas
Eq. ~3! in the form

PD~X!5
1

2JD11 (
n

^Au~aD
a !†~X!un~A22!&

3^n~A22!uaD
a ~X!uA&. ~4!

In configuration space the above expression takes the fo

PD~X!5
1

2JD11

A~A21!

2 E dR̃d3r 1d3r 2d3r 18d
3r 28

3CA* ~r1 ,r2 ,R̃!CD
a ~X;r1 ,r2!~CD

a ~X;r18 ,r28!!*

3CA~r18 ,r28 ,R̃!, ~5!

where R̃[(r3 , . . . ,rA), CA is the normalized nuclea
ground state wave function andCD

a is the deuteron wave
function ~DWF!.

The DWF can be split into its center of mass and relat
motion parts according to

CD
a ~X;r i ,r j !5CD,cm~X;Ri j !cD,rel

a ~ i j !u00&, ~6!

whereRi j 5(r i1r j )/2, r i j 5r i2r j , u00& is the spin-isospin
singletNN state and

cD,rel
a ~ i j !5FuD~r i j !s i

a2
wD~r i j !

A2
Tab~ r̂ i j !s i

bG , ~7!

uD(r ) andwD(r ) being thel 50 andl 52 components of the
deuteron wave function, whose normalization is given by

E
0

`

r 2dr@uD
2 ~r !1wD

2 ~r !#51. ~8!

In Eq. ~7! s i
a are the spin Pauli matrices, while the tens

operator reads
01432
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Tab~ r̂ i j !53r̂ i j
a r̂ i j

b 2dab. ~9!

Using the above definitions,PD(X) can finally be rewrit-
ten as

PD~X!5
1

2JD11

1

2E d3r 1d3r 2d3r 18d
3r 28CD,cm~X;R12!

3rD
(2)~r1 ,r2 ;r18 ,r28!CD,cm* ~X;R1828!, ~10!

whererD
(2)(r1 ,r2 ;r18 ,r28) is a generalized two-body densit

matrix defined by

rD
(2)~r1 ,r2 ;r18 ,r28!

5A~A21!E dR̃CA* ~r1 ,r2 ,R̃!cD,rel
a ~12!

3u00&^00u@cD,rel
a ~1828!#* CA~r18 ,r28 ,R̃!,

~11!

where summation over the repeated indices is understoo
The sum overX yields the total number of QD pairs in th

nucleusPD thus allowing for a direct estimate of Levinger
factor L to be compared to the empirical values resulti
from phenomenological analyses@25,26# of photoreaction
data@27,28#.

A realistic A-body wave function, accounting for bot
short- and intermediate-range correlations induced by
strong nuclear interaction, is given in the CBF theory by

CA~R!5SF)
i , j

F~ i j !GF0~R!, ~12!

whereR[(r1 , . . . ,rA), S is a symmetrization operator, an
F0 is the Slater determinant of single particle orbitalsfa( i ),
which are eigenfunctions of a suitable single particle Ham
tonian. For nuclear matter, the orbitalsfa( i ) are plane
waves corresponding to a noninteracting Fermi gas of nu
ons with momentauku<kF5(6p2rNM /n)1/3, n54 andrNM
are the NM spin-isospin degeneracy and density, resp
tively.

The two-body correlation operatorF( i j ) is given by the
sum of six central and noncentral spin-isospin depend
components,

F~ i j !5 f c~r i j !1 f s~r i j !~si•sj !1 f t~r i j !~ti•tj !

1 f st~r i j !~si•sj !~ti•tj !1 f t~r i j !Tab~ r̂ i j !s i
as j

b

1 f tt~r i j !Tab~ r̂ i j !s i
as j

b~ti•tj !, ~13!

where thef p(r ) correlation functions are variationally fixe
by minimizing the ground state energy@21,29,30#. All the
correlation functions heal to zero, exceptf c(r→`)→1.

The generalized two-body density matrixrD
(2) can be ex-

panded in a series of terms involving an increasing num
of nucleons by means of cluster expansion techniques@31#.
In I, the dressed leading order approximation~corresponding
to the cluster diagram shown in Fig. 1 of I! was used to
6-2
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evaluate the momentum distribution of QD pairs in nucle
matter. The validity of this approximation has been satisf
torily checked in CBF calculations of the NM respons
@32,33# and Green’s functions@14,15#. In Ref. @22# the one-
body density matrix of theN5Z doubly closed shell nucle
16O and 40Ca has been computed using the correlation
erator of Eq.~13!, the realistic Argonnev881Urbana IX in-
teraction and the Fermi hypernetted chain/single oper
chain ~FHNC/SOC! diagrams resummation method@29,30#.
Here we extend the approximation employed to calcu
rD

(2) in I to these two nuclei.
In the dressed leading order approximatio

rD
(2)(r1 ,r2 ;r18 ,r28) is given by

rD
(2)~r1 ,r2 ;r18 ,r28!

'
2JD11

4p
r (1)~r1 ,r18!S~r12,r1828!r

(1)~r2 ,r28!,

~14!

wherer (1)(r1 ,r18) is the one-body density matrix@22# and

S~r12,r1828!5
1

3
Tr@F†~1828!cD,rel

a† ~1828!P00cD,rel
a ~12!

3F~12!~12PsPt!#. ~15!

P00 and PsPt are the projector onto the (ST)5(00) two-
nucleon state and the spin-isospin exchange operator, res
tively ~see I for details!.

By explicitly evaluating the trace in Eq.~15! in spin-
isospin saturated systems, one gets

S~r ,r 8!5
1

16
@U~r !U~r 8!1W~r !W~r 8!Q~ r̂• r̂ 8!#,

~16!

with Q(x)5(3x221)/2, U(r )5uD(r )2Du(r ), and W(r )
5wD(r )2Dw(r ). TheDu(r ) andDw(r ) functions account
for the medium correlations effect on the bare component
the DWF. Their explicit expressions, in terms of the corre
tion functions, are given in I.

Similarly to what is done to obtain the one-body mome
tum distribution in a nucleus, we consider the c.m. orbita
be a plane wave with momentumkD in a periodical box of
volumeV,

CD,c.m.~kD ;Ri j !5
eikD•Ri j

AV
. ~17!

As a consequence, for the QD momentum distribution~MD!
we get

PD~kD!5V PD~kD!5
1

2

1

4pE d3r 1d3r 2d3r 18d
3r 28

3eikD•(R122R1828)r (1)~r1 ,r18!S~r12,r1828!

3r (1)~r2 ,r28!. ~18!
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This expression reduces to Eq.~13! of I in nuclear matter.
Note that, in principle, different basis functions for the c.
orbitals, describing the spatial distribution of deuteronli
clusters inside the nucleus, can be used.

In order to evaluatePD(kD), we define the function
N(r1 ,r18) through the relation@22#

r (1)~r1 ,r18!5N~r1 ,r18!(
st

xst
† ~1!xst~18!, ~19!

wherexst(1) is the spin-isospin single particle wave fun
tion. PD(kD) can be written in terms of the Fourier tran
forms of N, U, andW as

PD~kD!5
n2

16

~2p!3

4p E d3kd3k8NS kD

2
2k,

kD

2
1k8D

3@U~k!U~k8!1W~k!W~k8!Q~ k̂• k̂8!#

3NS kD

2
1k,

kD

2
2k8D . ~20!

N(k,k8) is related toN(r ,r 8) through

N~r ,r 8!5
1

~2p!3E d3kd3k8e2 i (k•r2k8•r8)N~k,k8!,

~21!

andU(k) andW(k) are given in I.
In spherically symmetric nuclei spin and isospin indic

are saturated andN(k,k8) can be expressed in terms o
Fourier-like transforms of thenatural orbits ~NO!, fnl

NO(k)
@22#,

N~k,k8!5(
n,l

2l 11

4p
Pl~ k̂• k̂8!nnlfnl

NO~k!fnl
NO~k8!,

~22!

where Pl(x) denotes thel th Legendre polynomial and
fnl

NO(k) is related to the configuration space NO,fnl
NO(r ),

through

fnl
NO~k!5~2p!23/2E d3r j l~kr !fnl

NO~r !, ~23!

j l(kr) being the spherical Bessel functions of orderl.
The NO and their occupation numbers,nnl , are obtained

by first expanding the one-body density matrix in multipole

r (1)~r1 ,r18!5(
l

2l 11

4p
Pl~ r̂• r̂ 8!r l

(1)~r 1 ,r 18!, ~24!

and then diagonalizingr l
(1)(r 1 ,r 18),

r l
(1)~r 1 ,r 18!5n(

n
nnlfnl

NO~r 1!fnl
NO~r 18!. ~25!

The NO normalization is
6-3
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15E r 2drufnl
NO~r !u25E k2dkufnl

NO~k!u2. ~26!

In the independent particle model~IPM!, CA(R)[F0(R),
and nnl

IPM51, fnl
NO[fnl for occupied states, whereasnnl

IPM

50 for unoccupied states. Deviations from IPM provide
measure of correlation effects, as they allow higher NO
become populated withnnlÞ0.

Using Eq.~22! we obtain

PD~kD!5 (
a,a8

nana8PD
a,a8~kD!, ~27!

with

PD
a,a8~kD!5

n2

16

~2p!3

4p F uCS
a,a8~kD!u2

1 (
s522

2

uCD
a,a8;s~kD!u2G , ~28!

wherea5(nlm),

CS
a,a8~kD!5E d3k fa

NO†S kD

2
1kDU~k!fa8

NOS kD

2
2kD ,

~29!

CD
a,a8;s~kD!5A4p

5 E d3k fa
NO†S kD

2
1kD

3W~k!fa8
NOS kD

2
2kDY2s~ k̂!, ~30!

and

fnlm
NO ~q!5fnl

NO~q!Ylm~ q̂!, ~31!

Ylm(q̂) being the spherical harmonics.

III. RESULTS

Last generationNN potentials are able to fit deutero
properties and the Nijmegen 93 nucleon-nucleon scatte
phase shifts @36# up to the pion-production threshol
(;4000 data points! with a x2;1. The Argonnev18, be-
longing to this generation, is given by the sum of 14 isos
lar and four isovector terms, including charge-symmetry a
charge-invariance breaking components@23#. In this work
we have used a simplerNN potential, referred to as Argonn
v88 , obtained from the the full Argonnev18 retaining only the
first eight operatorial terms, corresponding to those show
Eq. ~13! plus spin orbit and spin-orbit/isospin. The Argonn
v88 is constructed in such a way to reproduce the isosc
part of the full v18 in the S, P, and 3D1 waves and the
3D1-3S1 coupling. Thev88 parametrization, while allowing
for a fully realisticNN interaction, makes the use of mode
many-body methods, such as CBF@21,34# or the quantum
Monte Carlo simulations@24,35# much more practical. It has
been found that the differences between Argonnev88 and the
01432
o

g

-
d
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full v18 contribute very little to the binding energy of ligh
nuclei and nuclear matter, and can be safely estimated e
by perturbation theory or from FHNC/SOC calculations.

It is well known that, to quantitatively describe the pro
erties of nuclei withA.2, modernNN interactions need to
be supplemented with three-body forces. The Urbana
~UIX ! model provides a very good description of the en
gies of both the ground and the low-lying excited states
light nuclei (A<8). In the present calculations we use A
gonnev881UIX interaction, which will be referred to as a
the AU88 model. This interaction has already been used
the variational FHNC/SOC calculations of Ref.@22# as well
as in the quantum Monte Carlo simulations of Ref.@24#.

For the single particle wave functionsfa( i ) entering the
shell model wave functionF0, we have solved the single
particle Schro¨dinger equation with a Woods-Saxon potenti

VWS~r !5
V0

11exp@~r 2R0!/a0#
. ~32!

In principle, the parameters of the correlation functionsf p(r )
and of the Woods-Saxon potential may be both fixed
minimizing the ground state energy. This complete minim
zation was performed for the AU88 model in Ref.@21#, and
provided a binding energy per nucleon ofB/A55.48 MeV in
16O andB/A56.97 MeV in 40Ca ~the experimental values
are 7.97 MeV in16O and 8.55 MeV in40Ca). These differ-
ences are compatible with the results of nuclear matter
culations at saturation density,rNM50.16 fm23, carried out
with the same Hamiltonian. In fact, the FHNC/SOC nucle
matter energy per nucleon isENM /A5210.9 MeV @21#, to
be compared to the empirical value of216 MeV.

However, the calculated root mean square radii of the t
nuclei turned out to beR52.83 fm in 16O andR53.66 fm
in 40Ca, showing a difference of;5% with the experimen-
tal values,Rexpt52.73 fm andRexpt53.48 fm, respectively.
Moreover, the one-body densities were not in close agr
ment with the experimental ones. In order to take care of
feature of the variational approach, a set of single part
wave functions providing an accurate description of the e
pirical densities was chosen, and the energy was then m
mized with respect to the correlation functions only. T
resulting radii wereR52.67 fm (16O) and R53.39 fm
(40Ca), with a density description very much improved. T
energies obtained by this partial minimization procedu
wereB/A55.41 MeV in 16O andB/A56.64 MeV in 40Ca,
largely within the accuracy of the FHNC/SOC scheme. He
we adopt this same wave function, whose parameters
given in Table V of Ref.@21#.

The structure of the NO in16O and 40Ca is discussed a
length Ref.@22#. Here we limit ourselves to recall some o
their main characteristics. The effect of correlations is mos
visible in the 1s orbital, where the NO are larger than th
shell model ones at short distances, resulting in stronger
calization. The influence on the shape of the other occup
shell model orbitals is negligible. The occupation of the N
corresponding to the fully occupied shell model states is
pleted by 9.6% in16O and by 10.5% in40Ca, with a maxi-
mum depletion of;22% for the 2s state in 40Ca. As a
6-4
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consequence, the lowest mean field unoccupied states
come sizably populated (n2s'n2p'n1d'0.02 in 16O and
n3s'0.05,n2p'0.02,n2d'0.03 in 40Ca). These two effects
are largely due to the presence of the tensor correlation.

Figure 1 shows the behavior ofU(r ) and W(r ) in 16O,
40Ca, and nuclear matter, evaluated using the Hamilton

FIG. 1. Radial componentsU(r ) and W(r ) of the AU88 QD
wave functions in16O, 40Ca, and nuclear matter. Upper panel, t
solid and dashed lines show the radial dependence ofUA(r ) for 16O
and 40Ca, respectively. The dot-dashed and dotted lines corresp
to the nuclear matterUNM(r ) and the bareuD(r ). Lower panel, as
in the upper panel for thed-wave components of the QD and de
teron wave functions.

FIG. 2. As in Fig. 1 in momentum space.
01432
be-

n

AU88. For comparison, we also show the bare compone
of the Argonnev88 DWF. It appears that the main difference
between deuteron and QD occur atr &2 fm. At small rela-
tive distances bothU(r ) (r &1 fm) andW(r ) (r &0.5 fm)
are slightly suppressed with respect touD(r ) andwD(r ). On
the contrary, they are appreciably enhanced at larger
tances. These effects are more visible for the lightest nucl

The differences between nuclear matter and nuclei mo
disappear in the Fourier transforms,uU(k)u, uW(k)u,
uuD(k)u, anduwD(k)u, whose behavior is displayed in Fig. 2
The nuclear medium shifts the second minimum ofuuD(k)u
towards lower values ofk, as obtained in I for nuclear matte

nd

FIG. 3. Momentum distribution of QD pairs in16O as a function
of the total momentumukDu @see Eq.~27!#. The solid, dashed, and
dash-dotted lines are the results obtained within thef 6 and the
Jastrow correlation models and IPM, respectively. The short-das
line displays thef 6 momentum distribution of the QD in nuclea
matter at equilibrium density,rNM50.16 fm23. The inset shows a
blow up of the regionukDu/(2kF),1, plotted in linear scale. The
Levinger factorsL(A) for the various calculations are also reporte

FIG. 4. As in Fig. 3 for40Ca.
6-5
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FIG. 5. Convergence ofPD(kD)/A for 16O
and 40Ca in the number of natural orbits include
in the summation of Eq.~27!. The results have
been obtained within thef 6 correlation model.
-

m
he

o-

, as
with the Urbanav14 potential. The Argonnev88 uwD(k)u does
not exihibit any diffraction minimum, which, however, ap
pears inuW(k)u.

The distribution of deuteron pairs with total momentu
kD , PD(kD), resulting from our approach is displayed by t
solid line in Fig. 3 for 16O and in Fig. 4 for 40Ca. The
following comments are in order:
01432
~i! NN correlations introduce high momentum comp
nents in the distribution. The fullPD(kD) is strongly en-
hanced with respect toPD

IPM(kD) at large ukDu, and it is
correspondingly depleted at smallukDu. The depletion is
mostly due to the noncentral tensor correlations.

~ii ! The effect of state-dependent correlations is large
one can see by comparing the fullPD(kD) with the Jastrow
a-

in
FIG. 6. Diagonal contributions from the@1s
22d# orbitals toPD(kD)/A for 16O. The solid,
dashed, and dash-dotted lines refer to thef 6, Ja-
strow, and IP models, respectively. The occup
tion numbersnnl(

16O) computed with thef 6 cor-
relation @22# are also reported. The numbers
square brackets refer to the Jastrow case.
6-6
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FIG. 7. As in Fig. 6 for40Ca.
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modelPD
J (kD) @obtained by retaining only the scalar comp

nent in the two-body correlation operator~13!#.
~iii ! The tail ofPD(kD) is appreciably different from tha

of nuclear matter. AtukDu54kF the difference is still a factor
of ;10 for both 16O and 40Ca.

Figure 5 displays the convergence ofPD(kD) in the num-
ber of natural orbits included in the sum of Eq.~27!. Full
convergence is reached with the inclusion of orbits up tof
for both 16O and 40Ca. The figure shows that, in the case
40Ca, the tail ofPD(kD) is still ;10 times too small if only
orbitals up to 3d are included.

The contributions toPD(kD) coming from the various
orbitals are displayed in Fig. 6 for16O and on Fig. 7 for
40Ca. They are also compared with the corresponding res
obtained within the IPM and Jastrow models. The effects
state-dependent correlations is large in all channels, and
ticularly in the highest ones.

The total number of pairs of the QD type in both fini
nuclei and nuclear matter,PD is obtained by the integration
of PD(kD) over kD ,

PD

A
53E d3kD

~2p!3

PD~kD!

A
, ~33!
01432
f

lts
f

ar-

where the factor 3 in the rhs corresponds to the spin mu
plicity of the deuteron, 2JD11.

We have repeated the calculations for nuclear matter
using the AU88 interaction. The resultPD(NM)/A52.707
~the corresponding Fermi gas model result is 3.382) sho
be compared to the value 2.895, obtained in I with the U
bana v14 two-nucleon plus the Urbana TNI many-bod
forces@10# ~which will referred to as the UU14 model!. The
corresponding numbers for16O and40Ca turn out to be much
smaller: PD(16O)/A51.090 and PD(40Ca)/A51.370, re-
spectively.

The Levinger factor is easily obtained fromPD /A by
means of Eq.~2!. As we are dealing with symmetric matte
(N5Z5A/2), L(A)54 PD /A. Our estimatesL f6

(16O),

L f6
(40Ca), andL f6

(NM) for 16O, 40Ca, and nuclear matter

corresponding to thef 6 correlation model, are reported i
Figs. 3 and 4. These results are not too different from
values obtained within the independent particle and Jast
models. This fact actually implies that the high momentu
tail of PD(kD) is not relevant for the calculation of the Lev
inger factorL. It has to be stressed that the Jastrow mo
turns out to consistently underestimate the Levinger fac
6-7
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The spatial structure ofnp pairs having the deuteron quan
tum numbers has been investigated in Ref.@37# in light (A
53, 4, 6, and 7! nuclei and16O using a variational Monte
Carlo approach and the Argonnev18 two-nucleon and Ur-
bana IX three-nucleon potentials. The estimated Levin
factor for 16O is LVMC(16O)54.70, comfortably close to ou
valueL f6

(16O)54.36.
Our results for the Levinger factors are summarized

Fig. 8, where they are also compared with the available
perimental estimates. The agreement with the photoreac
data of Ahrenset al. @28# for the case of16O and 40Ca is
rather impressive. The ‘‘experimental’’ valueLexpt(`)
59.26 deduced from the phenomenological formula

Lexpt~A!513.82
A

R3@ fm3#
, ~34!

reported in Ref.@25#, is ;15% smaller than our theoretica
value. In I, the surface contribution toL(A) has been esti-
mated exploiting the calculated enhancement factor of
electric dipole sum rule for finite nuclei,K @38#, obtained
using CBF theory and LDA. The enhancement factor is
lated to experimental data on photoreactions through
equation

11Kexpt5
1

s0
E

0

mp
sA~Eg!dEg , ~35!

where s0560@Z(A2Z)/A# MeV mb and mp is the
p-meson production threshold. By using the same param
zation as in I for the surface term, we get

LLDA~A!510.8329.76 A21/3, ~36!

FIG. 8. Levinger’s factorL(A) for 16O, 40Ca, and nuclear mat
ter ~shown by the arrows for the UU14 and AU88 forces!. The filled
circles, the empty circles, and the triangles show Levinger’s fac
obtained within thef 6 and Jastrow correlation models and the IP
respectively. The LDA, as discussed in the text, is also repo
~solid line!. The phenomenological values ofLLev(A) correspond-
ing to the photoreaction data of Lepretreet al. @27# ~squares! and
Ahrenset al. @28# ~crosses and diamonds! are taken from Ref.@25#.
The empirical values ofLLaget(A), represented by circles in th
heavy nuclei region, are from Ref.@26#.
01432
r

n
x-
on

e

-
e

ri-

for the AU88 interaction.LLDA(A) is displayed on Fig. 8.
LDA turns out to be not satisfactory for medium nuclei, su
as 16O and40Ca. Figure 8 also reportLLev(A) andLLaget(A),
as extracted@25,26# from the available experimental data o
photoreactions. The computed Levinger’s factors are alm
A-independent for heavy nuclei (A.100), and result to be
;15% larger than LLev(A) and ;25% smaller than
LLaget(A). Such disagreement between theory and exp
ment is likely to be ascribed to the sizable tail contributio
to the electric dipole sum rule, absent in the definition of E
~35!.

IV. CONCLUSION

The correlated basis function theory of the two-body de
sity matrix has been applied to microscopically compute
distribution of QD pairs carrying total momentumkD ,
PD(kD), in doubly closed shell nuclei16O and 40Ca and
nuclear matter, starting from the realistic Argonnev88 plus
Urbana IX potential.

It has been found that theNN correlations produce a high
momentum tail inPD(kD) and, correspondingly a depletio
at smallkD for both nuclei and nuclear matter. These effe
are mainly due to the presence of the state-dependent c
lations associated with the tensor component of the one p
exchange interaction. Contrary to what happens for the o
nucleon momentum distibution, the tail ofPD(kD) sizably
differs from that of nuclear matter.

Summation ofPD(kD) overkD provides the total numbe
PD of QD pairs, and, consequently, allows for anab initio
calculation of Levinger’s factorL(A). The CBF result for
nuclear matter is significantly reduced with respect to
value obtained in I with the Urbanav14 plus the Urbana TNI
many-body forces. The corresponding Levinger factors
16O and40Ca are much smaller than the nuclear matter va
and in very good agreement with the available photoreac
data analyzed within the quasideuteron phenomenology
addition, our results show that LDA overestimatesL(A) in
the region of the light-medium nuclei.

TheL(A) resulting from the full calculation are relativel
close to the corresponding values obtained within the IP
and Jastrow models. Actually, the high momentum tail
PD(kD) gives a small contributions to the Levinger facto
This feature indicates that the approximation used in
calculation~which amounts to including only diagrams at th
dressed lowest order of the FHNC cluster expansion! is fully
adequate. However, it should be noticed that the Jast
model underestimates the Levinger factor.

In addition, the analysis described in this paper shows
when a deuteron is embedded in a nucleus, or in nuc
matter at equilibrium density, its wave function gets app
ciably modified by the surrounding medium. While in th
case of theS-wave component the difference is mostly vi
ible at small relative distance (r ,1 fm), theD-wave com-
ponent of the QD appears to be significantly enhanced, w
respect to the deuteronwD(r ), over the ranger ,2 fm. This
effect is particularly evident in the lightest nucleus.
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