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Deuteron distribution in nuclei and the Levinger’s factor
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We compute the distribution of quasideuterons in doubly closed shell nuclei. The ground stfi@saoid
40Ca are described its coupling using a realistic Hamiltonian including the Argonrjeand the Urbana IX
models of two- and three-nucleon potentials, respectively. The nuclear wave function contains central and
tensor correlations, and correlated basis functions theory is used to evaluate the distribution of neutron-proton
pairs, having the deuteron quantum numbers, as a function of their total momentum. By computing the number
of deuteronlike pairs we are able to extract Levinger’s factor and compare to both the available experimental
data and the predictions of the local density approximation, based on nuclear matter estimates. The agreement
with the experiments is excellent, whereas the local density approximation is shown to sizably overestimate
Levinger’s factor in the region of the medium nuclei.
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[. INTRODUCTION The effective number of deuteronlike pairs, as well as of
three- and four-body structures, in spherical nuclei has been
Within Levinger’s quasideuteronQD) model[1-3] the investigated within the shell model approach in R¢%8].
nuclear photoabsorption cross sectief(E,), above the gi- In a recent papef9] (referred to as | hereaftgrwe have
ant dipole resonance and below the pion threshold, is asxnalyzed the properties of deuteronlike structures in infinite
sumed to be proportional to the break-up cross section of aymmetric nuclear mattéNM), described by a Hamiltonian

deuteron in hadronic mattes,op(E,): containing the realistic Urbanga;, NN potential and the Ur-
bana TNI many-body potentifl0]. A correlated wave func-
oa(E,)=Ppoop(E,), (1) tion having spin-isospin dependent, central, and tensor cor-

relations has been used within the correlated basis functions
(CBF) theory to compute the QD distribution function in
matter, and extract the NM Levinger’s factor at equilibrium
density,Lyy=11.63, to be compared to the empirical esti-
mateL ¢, A=) =9.26.

The CBF theory has established itself as one of the most
effective tools to realistically study, from a microscopic
Z(A—2) . . . S ;

PD:L{ } 2) viewpoint, properties of infinite matter of nucleons ranging
A from the equation of statfl1,17 to the momentum distri-
bution [13] and the one- and two-body Green’s functions
where A and Z are the mass and atomic numbers of the[14—17. In the last decade these studies have been success-
nucleus and. is the so called Levinger's factoP, can be fully extended to deal with finite nucl¢l8—22.
calculated for a given nuclear ground state wave function, In this paper we extend the CBF many-body approach,
thus allowing for amicroscopidnterpretation of thgghenom-  used in | for NM, to evaluatab initio the momentum distri-
enologicallLevinger’s factor. bution Pp(kp) and the total number per particle, /A of

The value ofL has been extracted from experiments ac-QD pairs in the doubly closed shell nucléfO and “°Ca,
cording to the following two modelsi) Levinger’s model described in thds coupling scheme. FrorP, /A we then
[5], in whichogp(E,) is taken as the deuteron cross sectionextract the corresponding Levinger's factors.
damped by an exponential function, taking care of Pauli In Sec. Il we review and generalize the CBF approach to
blocking of the final states available to the nucleon ejectedhe QD distribution in terms of the overlap between the
from the QD and(ii) Laget’s model[6], which associates nuclear and deuteron ground state wave functions. In Sec. Il
oop(E,) with the transition amplitudes of virtual we compute the QD distribution anfg, in nuclei described
(7+ p)-meson exchanges between the two nucleons of thby a realistic Hamiltonian including the modern Argonne
QD pair. [23] and the Urbana IX24] models of two- and three-

Both models provide satisfactory fits of photoreactionnucleon potentials, respectively. The correlated nuclear wave
data in heavy nuclei, but yield different values of Levinger’'sfunction contains central and tensor correlations, as in Ref.
factor, L ¢\(A) andL agefA), Liage(A) being~20% larger  [21]. The results are compared with the analogous NM quan-
thanL o (A). tities, obtained in I. We also evaluate Levinger’s factors, and

whereE , is the photon energy anfl, is interpreted as the
effective number of the nucleon-nucledNN) pairs of the
QD type (see Ref[4] and references thergirPy is written
in the form
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compare them to the experimental values, as well as to those Taﬁ(;,_):'s;_q;g_ 5B, 9)
derived using the local density approximatiofiDA) ' e

and the NM results of I. Summary and conclusions are given ysing the above definition$(X) can finally be rewrit-

in Sec. IV. ten as
Il. QUASIDEUTERON DISTRIBUTION PD(X)= o 2f A3 103,03 1,03 5 W o XiR1o)
Following the approach developed in I, infanucleon
system the distribution of QD pairs whose center of mass is XP(D )(r1,r2;f1' Jo)WE (XiRyior), (10
in the orbital state specified by the quantum nunieean be '
written wherep@)(rq,r,;r1/,r,) is ageneralized two-body density
1 matrix defined by
Po(X)= <A|(aD) (X)ap(X)[A), @ pI(DZ)(rlyrZ;rl’ o)
where|A) denotes theé\-body ground sTta;ce anilbzll'l.s the =A(A— 1)f dT?‘l’Z(rl,rzﬁ) YR ei(12)
spin of the deuteron. The operatata')p(X) annihililates

(creates a deuteron with the quantum numbXrin the «

o ’ ! * B
=1,2,3 Cartesian state. By introducing a complete set of X[00X00[ ¥ rei(1'2") " Wa(r1r .2 R),

intermediate A—2)- particle states and exploiting the com- (11
pleteness relatiol ,|n(A—2)){(n(A—2)|=1, we can recast ) S
Eq. (3) in the form where summation over the repeated indices is understood.

The sum oveKX yields the total number of QD pairs in the
nucleuspPy thus allowing for a direct estimate of Levinger’s

Pp(X) = 2 (Al(@d)"(xX)[n(A-2)) factor L to be compared to the empirical values resulting
from phenomenological analys¢&5,26 of photoreaction
><<n(A—2)|ag(X)|A). (4) data[27,28§.

A realistic A-body wave function, accounting for both
In configuration space the above expression takes the fornshort- and intermediate-range correlations induced by the
strong nuclear interaction, is given in the CBF theory by

1 AA-1) ([ .
PD(X): 27 +1 2 f de3I’1d3r2d3I’1rd3I’2r .
D VAR)=8 lj] F(ij)|®o(R), (12
Wa(ry, 1, RWEOGr, 1) (WE(Xiry ,rp))*
_ whereR=(rq, ... ra), Sis a symmetrization operator, and
XWa(ryr,re,R), (5 @, is the Slater determinant of single particle orbitalg(i),

_ which are eigenfunctions of a suitable single particle Hamil-
where R=(r3, ... a), WA is the normalized nuclear tonian. For nuclear matter, the orbitals, (i) are plane
ground state wave function an#ig is the deuteron wave waves corresponding to a noninteracting Fermi gas of nucle-
function (DWF). ons with momentak| <kgr=(672pym/v)*3, v=4 andpyy

The DWF can be split into its center of mass and relativeare the NM spin-isospin degeneracy and density, respec-
motion parts according to tively.
The two-body correlation operatét(ij) is given by the

WI(X;r; ,rj):\lfovcm(x;Rij)ngvrel(ij)|OO>, (6) sum of six central and noncentral spin-isospin dependent

components,
whereRj; = (ri+r;)/2, rij=r;—rj, |00) is the spin-isospin
singletNN state and F(ij)=fe(rij) +T,(r) (o o)+ rij) (7 7)
) o(Fi) o . +tor(1i) (01 0) (7 1) + 11 Tap(Ti o 0]
U (i) =] Up(ryj) of ——=—T*8(r;)ol|, (7 R
V2 i) Tap(Fi o of (7). (13

Up(r) andwp(r) being thel =0 andl =2 components of the where thef (r) correlation functions are variationally fixed

deuteron wave function, whose normalization is given by by minimizing the ground state energ21,29,3Q. All the
correlation functions heal to zero, excdp{r —=)—1.

fxrzdr[uzD(r)ﬂLw%(r)]: 1 ®) The generalized two-body density matr,_i»&,z) can be ex-
0 panded in a series of terms involving an increasing number

of nucleons by means of cluster expansion technidGé&s

In Eq. (7) of are the spin Pauli matrices, while the tensorlin I, the dressed leading order approximatioorresponding

operator reads to the cluster diagram shown in Fig. 1 of Wwas used to
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evaluate the momentum distribution of QD pairs in nuclearThis expression reduces to E@.3) of | in nuclear matter.
matter. The validity of this approximation has been satisfacNote that, in principle, different basis functions for the c.m.
torily checked in CBF calculations of the NM responsesorbitals, describing the spatial distribution of deuteronlike
[32,33 and Green's functiongl4,15. In Ref.[22] the one- clusters inside the nucleus, can be used.

body density matrix of théN=2Z doubly closed shell nuclei In order to evaluatePp(kp), we define the function
160 and °Ca has been computed using the correlation opN(r,,r;/) through the relatiofi22]

erator of Eq.(13), the realistic Argonne -+ Urbana IX in-

teraction and the Fermi hypernetted chain/single operator 1 _ + ,

chain (FHNC/SOQ diagrams resummation meth$29,30. 2 )(rl’rl')_N(rl’rl'); Xor(DXor(17), (19
Here we extend the approximation employed to calculate

p(DZ) in | to these two nuclei. where x,(1) is the spin-isospin single particle wave func-
In the dressed leading order approximation,tion. Py(kp) can be written in terms of the Fourier trans-
p@(ry,rp;ry0,ry0) is given by forms of N, U, andW as
(2) ) T v? (2m)3 k k
Pb (rler!rl 1r2 ) PD(kD):_( ) dedek/N _D_k,_D+kr
16 47 2 2
. 2ot O(ry,r1)2(r2,F 1) pM(r,r00) -
4 PSPz 2 X[U(K)U (k") +W(k)W(k")Q(k-K")]
(14 ko = kp
XN 7+k,?—k/ . (20
wherep™M(r,,ry/) is the one-body density matrf22] and

1 N(k,k") is related toN(r,r") through
(112, 112) =g TR (L' 2) e (12 Moot ei(12)

N(r r/): 1 J' d3kd3k/efi(k-rfk’.r')N(k k/)
XF(12)(1-P,P)]. (15 ’ (27r)3 e
21
I1gg and PP are the projector onto theS(T)=(00) two- @)
nucleon state and the spin-isospin exchange operator, respegd U (k) andW(k) are given in I.
tively (see | for details . o In spherically symmetric nuclei spin and isospin indices
By explicitly evaluating the trace in E(19) in spin-  are saturated antl(k,k’) can be expressed in terms of
isospin saturated systems, one gets Fourier-like transforms of theatural orbits (NO), ¢NC(k)
. [22],
S(r,r) =22 [UMUr) +WInW(r)Q(r-r')],
16 ' 21+1 C 0 NO NO/, 1
(16) N(k,k') =2 =PIk K)o g (k) i (k'),
(22)

with Q(x)=(3x2—1)/2, U(r)=up(r)—Au(r), and W(r)
;xﬁg%_eﬁi\gg )c.o-rl-rr:a(laaeiggs)e?fneitA(\;vrf rt'r)];ubn;rtéogsn?;ggggis 0 here Pi(x) denotes thelth Legendre polynomial and
NO/Iy i . ; 0
the DWF. Their explicit expressions, in terms of the correla—th%lgk)h is related to the configuration space Nﬂ:' (),
tion functions, are given in I. 9
Similarly to what is done to obtain the one-body momen-

tum distribution in a nucleus, we consider the c.m. orbital to ¢r“1‘|0(k):(277)—3/2f d3rj |(kr)¢mo(f). (23
be a plane wave with momentukg, in a periodical box of

volume {2, ji1(kr) being the spherical Bessel functions of ordler

The NO and their occupation numbers, , are obtained

dko-Rjj . . . o .
Vo em(Kp iRij) = . (17) by first expanding the one-body density matrix in multipoles,
N®
(1) =S AL G ) (20
As a consequence, for the QD momentum distributidid) p(ry,ry)= ~ A (- r)pi(ryrar),

we get
11 and then diagonalizing{®(r,,r1/),
PD(kD) :Q PD(kD) = E EJ' d3r1d3r2d3rl/d3r2/

@0 (RazRurz) SO p 11 VS : pIrLr)=v 2 nudnCrognr). (29
P I’l,l’lr rlz,rlrzr

XpM(ry,r50). (18  The NO normalization is
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1:fr2dr|¢§,°(r)|2:fkzdk|¢2‘|0(k)|2. (26)

In the independent particle modédPM), W ,(R)=®y(R),

andnfM=1, ¢N°= ¢, for occupied states, wheread, "
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full v4g contribute very little to the binding energy of light
nuclei and nuclear matter, and can be safely estimated either
by perturbation theory or from FHNC/SOC calculations.

It is well known that, to quantitatively describe the prop-
erties of nuclei withA>2, modernNN interactions need to

=0 for unoccupied states. Deviations from IPM provide abe supplemented with three-body forces. The Urbana IX
measure of correlation effects, as they allow higher NO tdUIX) model provides a very good description of the ener-

become populated with,# 0.
Using Eq.(22) we obtain

Po(kp)= 2 Nany P5 (ko). (27)
with
, v2 (2m)° )
Pp (kD):E a4 |wg* (kp)l?
2
+2 [vge ;S(kD>|2} (28

wherea=(nlm),

Kp

wg'“’(kD)zj d3k ¢2‘0T( > Tk

’. 4
\Pg,a ,S(kD): \ [?f d3k ¢§OT

XW(K)p\>

U<k>¢§9("2—D—k),
(29)

Kp
?'f'k

Kp ) "
—— k| Yo (k), (30
2

and

Aim(A) = BhI(A) Yim(QD). (3D
Yim(0) being the spherical harmonics.

Ill. RESULTS

gies of both the ground and the low-lying excited states of
light nuclei (A<8). In the present calculations we use Ar-
gonnevg+ UIX interaction, which will be referred to as as
the AU8 model. This interaction has already been used in
the variational FHNC/SOC calculations of Rg22] as well
as in the quantum Monte Carlo simulations of R&#].

For the single particle wave functiors,(i) entering the
shell model wave functionb,, we have solved the single
particle Schrdinger equation with a Woods-Saxon potential,

Vwe) = T e (r—Ro)ag]’

(32)

In principle, the parameters of the correlation functiopi )
and of the Woods-Saxon potential may be both fixed by
minimizing the ground state energy. This complete minimi-
zation was performed for the AU8model in Ref[21], and
provided a binding energy per nucleon®fA=5.48 MeV in
180 andB/A=6.97 MeV in “°Ca (the experimental values
are 7.97 MeV in*®0 and 8.55 MeV in**Ca). These differ-
ences are compatible with the results of nuclear matter cal-
culations at saturation densityy,,=0.16 fm 3, carried out
with the same Hamiltonian. In fact, the FHNC/SOC nuclear
matter energy per nucleon &y /A=—10.9 MeV[21], to
be compared to the empirical value 6f1l6 MeV.

However, the calculated root mean square radii of the two
nuclei turned out to b&=2.83 fm in %0 andR=3.66 fm
in 4%Ca, showing a difference of 5% with the experimen-
tal values,Rep=2.73 fm andRg,,—=3.48 fm, respectively.
Moreover, the one-body densities were not in close agree-
ment with the experimental ones. In order to take care of this
feature of the variational approach, a set of single particle
wave functions providing an accurate description of the em-
pirical densities was chosen, and the energy was then mini-

Last generatiorNN potentials are able to fit deuteron mized with respect to the correlation functions only. The

properties and the Nijmegen 93 nucleon-nucleon scatteringasumng radii wereR=2.67 fm (°0) and R=23.39 fm
phase shifts[36] up to the pion-production threshold (4ca), with a density description very much improved. The
(~4000 data poinswith a x>~1. The Argonnev s, be-  energies obtained by this partial minimization procedure
longing to this generation, is given by the sum of 14 isoscayere B/A=5.41 MeV in %0 andB/A=6.64 MeV in *°Ca,

lar and four isovector terms, including charge-symmetry angargely within the accuracy of the FHNC/SOC scheme. Here,
charge-invariance breaking componef@s]. In this work e adopt this same wave function, whose parameters are
we have used a simpl&N potential, referred to as Argonne given in Table V of Ref[21].

vg, obtained from the the full Argonneyg retaining only the The structure of the NO if®0 and “°Ca is discussed at
first eight operatorial terms, corresponding to those shown ifength Ref.[22]. Here we limit ourselves to recall some of
Eq. (13) plus spin orbit and spin-orbit/isospin. The Argonne their main characteristics. The effect of correlations is mostly
vg is constructed in such a way to reproduce the isoscalayisible in the Is orbital, where the NO are larger than the
part of the fullv,g in the S P, and ®D; waves and the shell model ones at short distances, resulting in stronger lo-
3D,-%S; coupling. Thevy parametrization, while allowing calization. The influence on the shape of the other occupied
for a fully realisticNN interaction, makes the use of modern shell model orbitals is negligible. The occupation of the NO
many-body methods, such as CBEL,34] or the quantum corresponding to the fully occupied shell model states is de-
Monte Carlo simulation§24,35 much more practical. It has pleted by 9.6% in*®0 and by 10.5% in*°Ca, with a maxi-
been found that the differences between Argonp@nd the mum depletion of~22% for the 2 state in “*Ca. As a
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FIG. 1. Radial componentd(r) and W(r) of the AU8" QD
wave functions in*®0, 4°Ca, and nuclear matter. Upper panel, the
solid and dashed lines show the radial dependentk,of) for 60
and *°Ca, respectively. The dot-dashed and dotted lines correspon
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FIG. 3. Momentum distribution of QD pairs ifO as a function
of the total momentunikp| [see Eq.27)]. The solid, dashed, and
dash-dotted lines are the results obtained within fheand the
Jastrow correlation models and IPM, respectively. The short-dashed
line displays thefg momentum distribution of the QD in nuclear
matter at equilibrium densityyyy=0.16 fm 3. The inset shows a
blow up of the regionkp|/(2ks)<1, plotted in linear scale. The
Iaevinger factord_(A) for the various calculations are also reported.

to the nuclear matted y(r) and the bareiy(r). Lower panel, as
in the upper panel for thd-wave components of the QD and deu- AU8'. For comparison, we also show the bare components

teron wave functions.

of the Argonnevg DWF. It appears that the main differences
between deuteron and QD occurrat2 fm. At small rela-

consequence, the lowest mean field unoccupied states béve distances bott(r) (r=1 fm) andW(r) (r=<0.5 fm)

come sizably populatedngs~n,,~n;4~0.02 in '°0 and

are slightly suppressed with respectug(r) andwp(r). On

N3s~0.05,N,,~0.02,n,3~0.03 in 40Ca). These two effects the contrary, they are appreciably enhanced at larger dis-

are largely due to the presence of the tensor correlation.
Figure 1 shows the behavior &f(r) and W(r) in 0,

tances. These effects are more visible for the lightest nucleus.
The differences between nuclear matter and nuclei mostly

4%Ca, and nuclear matter, evaluated using the Hamiltoniafisappear in the Fourier transformsb(k)|, |W(K)],

— — = Uioga(k)
—-— Unm(k)

|up(Kk)|, and|wp(K)|, whose behavior is displayed in Fig. 2.
The nuclear medium shifts the second minimunwgf(k)|
towards lower values &, as obtained in | for nuclear matter
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FIG. 2. As in Fig. 1 in momentum space.
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FIG. 5. Convergence oPp(kp)/A for %0
and “°Ca in the number of natural orbits included
in the summation of Eq(27). The results have
been obtained within thég correlation model.

(i) NN correlations introduce high momentum compo-

not exihibit any diffraction minimum, which, however, ap- nents in the distribution. The fulPp(kp) is strongly en-

pears in|W(K)|.

hanced with respect t@p

PM(kp) at large |kp|, and it is

The distribution of deuteron pairs with total momentum correspondingly depleted at smdkp|. The depletion is
ko, Pp(kp), resulting from our approach is displayed by the mostly due to the noncentral tensor correlations.

solid line in Fig. 3 for *0 and in Fig. 4 for“°Ca. The

following comments are in order:

1

10

(i) The effect of state-dependent correlations is large, as

one can see by comparing the f@h(kp) with the Jastrow

*“(kp)/A [fm?]

(27
Pp
e\

n15(10) = 0.8425]
[0.9564]+

A\
| ;\/\\/’

n1,(1°0) = 0.9020,
[0.9763]

‘ '

*“(kp)/A [fm?]

Po

n14(*0) = 0.0244

[0.0062]

n2s(160) = 0.0194
[0.0020],

*“(kp)/A [fm®]

Pr

-3

nap(190) = 0.0215:
[0.0036]

n24(10) = 0.0106:
[0.0027]]

10 : ‘

1 1.5 0

kp/(2kr)
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FIG. 6. Diagonal contributions from thiels
—2d] orbitals toPp(kp)/A for 0. The solid,
dashed, and dash-dotted lines refer to figeJa-
strow, and IP models, respectively. The occupa-
tion numbers,,(*%0) computed with thd ¢ cor-
relation [22] are also reported. The numbers in
square brackets refer to the Jastrow case.
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FIG. 7. As in Fig. 6 for*’Ca.
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kp/(2kr)

1.5

2

modelP)(kp) [obtained by retaining only the scalar compo- Where the factor 3 in the rhs corresponds to the spin multi-

nent in the two-body correlation operatdd)].

(iii) The tail of Py(kp) is appreciably different from that
of nuclear matter. Atk | = 4kg the difference is still a factor
of ~10 for both *°0 and *°Ca.

Figure 5 displays the convergencef(kp) in the num-
ber of natural orbits included in the sum of E@7). Full
convergence is reached with the inclusion of orbits upfto 5
for both %0 and *°Ca. The figure shows that, in the case of
40Ca, the tail of Pp(kp) is still ~10 times too small if only
orbitals up to & are included.

The contributions toPy(kp) coming from the various
orbitals are displayed in Fig. 6 fol°0 and on Fig. 7 for

plicity of the deuteron, 2p+1.

We have repeated the calculations for nuclear matter by
using the AUS8 interaction. The resulPp(NM)/A=2.707
(the corresponding Fermi gas model result is 3.382) should
be compared to the value 2.895, obtained in | with the Ur-
bana vy, two-nucleon plus the Urbana TNI many-body
forces[10] (which will referred to as the UU14 modelThe
corresponding numbers f3fO and“°Ca turn out to be much
smaller: P5(*°0)/A=1.090 and Pp(*°Ca)/A=1.370, re-
spectively.

The Levinger factor is easily obtained frofi, /A by

“%Ca. They are also compared with the corresponding result®eans of Eq(2). As we are dealing with symmetriclematter
obtained within the IPM and Jastrow models. The effects of N=2=A/2), L(A)=4Pp/A. Our estimatesL; (™O),
state-dependent correlations is large in all channels, and pak; (*°Ca), andL; (NM) for *°0, *®Ca, and nuclear matter,

ticularly in the highest ones.
The total number of pairs of the QD type in both finite
nuclei and nuclear mattef), is obtained by the integration

of Pp(kp) overkp,
f d*kp Pp(kp)
3 ,
(2m)® A

Po
T_

(33

corresponding to thdég correlation model, are reported in
Figs. 3 and 4. These results are not too different from the
values obtained within the independent particle and Jastrow
models. This fact actually implies that the high momentum
tail of Pp(kp) is not relevant for the calculation of the Lev-
inger factorL. It has to be stressed that the Jastrow model
turns out to consistently underestimate the Levinger factor.
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for the AU8' interaction.L,pa(A) is displayed on Fig. 8.
125 l — 3 N ousay LDA turns out to be not satisfactory for medium nuclei, such
——» NM (AUS)) as %0 and“*°Ca. Figure 8 also repott ¢,(A) andL age(A),
10.0 | | as extracted25,26 from the available experimental data on
g ik ‘JE % % T % : photoreactions. The computed Levinger’s factors are almost
A \ A-independent for heavy nucleA100), and result to be
50 [ % [Lioa(4) = 10.83 — 9.76471/3] ; ~15% larger thanL ¢(A) and ~25% smaller than
| LiagefA). Such disagreement between theory and experi-
25 | ] 0Ca 1 ment is likely to be ascribed to the sizable tail contributions
16 to the electric dipole sum rule, absent in the definition of Eq.
0.0 : ‘ ‘ Ce (35).
0 50 100 150 200 250
A
FIG. 8. Levinger's factot_(A) for 0, °Ca, and nuclear mat- V. CONCLUSION

ter (shown by the arrows for the UU14 and AU&rces. The filled

circles, the empty circles, and the triangles show Levinger's factors The correlated basis function theory of the two-body den-
obtained within thef g and Jastrow correlation models and the IPM, sity matrix has been applied to microscopically compute the
respectively. The LDA, as discussed in the text, is also reporte@jistripution of QD pairs carrying total momenturkp ,
(solid line). The phenomenological values bf,,(A) correspond- Po(kp), in doubly closed shell nuclei®0 and %°Ca and

ing to the photoreaction data of Lepreeeal. [27] (squares and nuclear matter, starting from the realistic Argonng plus
Ahrenset al.[28] (crosses and diamondare taken from Ref25]. e 9 gonng p
Urbana IX potential.

The empirical values ot ,4(A), represented by circles in the . .
heavy nuclei region, are from R26]. It has been found that tHeN correlations produce a high

momentum tail inPp(kp) and, correspondingly a depletion
The spatial structure afip pairs having the deuteron quan- at smallky for both nuclei and nuclear matter. These effects
tum numbers has been investigated in R8%] in light (A  are mainly due to the presence of the state-dependent corre-
=3, 4, 6, and Y nuclei and*®0 using a variational Monte lations associated with the tensor component of the one pion
Carlo approach and the Argonngg two-nucleon and Ur- exchange interaction. Contrary to what happens for the one-
bana IX three-nucleon potentials. The estimated Levingenucleon momentum distibution, the tail & (kp) sizably
factor for 10 is Lyyc(*%0)=4.70, comfortably close to our differs from that of nuclear matter.
value Lf6(160)=4.36. Summation ofPp(kp) overkp provides the total number
Our results for the Levinger factors are summarized inPp of QD pairs, and, consequently, allows for ab initio
Fig. 8, where they are also compared with the available exealculation of Levinger’s factot (A). The CBF result for
perimental estimates. The agreement with the photoreactionuclear matter is significantly reduced with respect to the
data of Ahrenset al. [28] for the case of'®0 and “°Ca is  value obtained in | with the Urbana, plus the Urbana TNI
rather impressive. The “experimental” valug () many-body forces. The corresponding Levinger factors for
=9.26 deduced from the phenomenological formula 160 and“°Ca are much smaller than the nuclear matter value
and in very good agreement with the available photoreaction
A data analyzed within the quasideuteron phenomenology. In
_ 2 addition, our results show that LDA overestimatg@\) in
Lep(A)=13.8 R3[fm3]’ (34) the region of the light-medium nuclei.

TheL(A) resulting from the full calculation are relatively
reported in Ref[25], is ~15% smaller than our theoretical close to the corresponding values obtained within the IPM
value. In |, the surface contribution 1o(A) has been esti- and Jastrow models. Actually, the high momentum tail of
mated exploiting the calculated enhancement factor of th@p(kp) gives a small contributions to the Levinger factor.
electric dipole sum rule for finite nuclek’ [38], obtained This feature indicates that the approximation used in our
using CBF theory and LDA. The enhancement factor is recalculation(which amounts to including only diagrams at the
lated to experimental data on photoreactions through th@ressed lowest order of the FHNC cluster expansi®fully
equation adequate. However, it should be noticed that the Jastrow

model underestimates the Levinger factor.

In addition, the analysis described in this paper shows that

14K t:imeUA(E )dE. (35) when a deuteron is embedded in a nucleus, or in nuclear
P ey matter at equilibrium density, its wave function gets appre-
ciably modified by the surrounding medium. While in the
where oy=60Z(A—-2Z)/A] MeV mb and m, is the case of theSwave component the difference is mostly vis-
m-meson production threshold. By using the same parametrible at small relative distance €1 fm), the D-wave com-

zation as in | for the surface term, we get ponent of the QD appears to be significantly enhanced, with
respect to the deuteramp(r), over the range<<2 fm. This
L.pa(A)=10.83-9.76 A~ 13, (36) effect is particularly evident in the lightest nucleus.
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