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Nuclear collective motion with full nonlinearity
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The periodic solutions previously considered for nuclear time-dependent Hartree-Fock problems are recal-
culated by a new method which is more accurate and reliable. It starts from a first guess of the entire periodic
trajectory, instead of a first guess of the initial state. An exact solution of the discretized nonlinear equations is
then obtained in three to five iterations involving, once again, the entire trajectory. The resulting families of
solutions, and in particular the relationship between the period and the energy, are much more complicated than
previously thought. The meaning of this outcome is discussed.
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[. INTRODUCTION effect on the collective motion after quantization, because
quantum mechanics has a way of smoothing out classical
This is a report on the continuation of our calculations ofdetails over a phase space volume measured by a power of
nuclear collective motion with full inclusion of nonlinearity. Planck’s constant. A few of the resonances, however, appear
In a first paper[1] we presented our early results for the to be wider and not so easy to dismiss. In the future, we want
monopole oscillations of*He based on a simple nuclear to use the present work to study the collective motion of
model of the Skyrme type. In our next pagé] we dis- nuclei heavier and more interesting théide, and then these
cussed in detail the motivation for this kind of investigation, wider resonances could have a big impact on how we think
which involves a mean-field approximation with a classicalabout collective motio3-5].
aspect, a search for the periodic solutions of the dynamics of Previous calculations of cyclical time-dependent Hartree-
the mean field, and a requantization process. In the sanfeock (TDHF) motion have made use of what is sometimes
paper we also gave the details of the discretization procedur@lled “the tail-chasing method6,7]. One starts with some
and of the numerical method, as well as a set of new result@ell-chosen Slater determinant, one evolves it one time step
for %0 and more complete ones f6He. The present pub- at a time with a good unitary kernel, and at some point one
lication is devoted mostly to a new and very different algo-attempts to close the trajectory somehow, by using one of
rithm for solving the same numerical problems and to themany possible@d hoctricks [8]. These tricks usually involve
presentation of extensive results obtained with it for the coldarge numbers of iterations, often thousands or even hun-
lective monopole motion ofHe. The emphasis is more tech- dreds of thousands. The method that we introduce now is
nical than in the two previous papers, an attitude justified byery different, because we consider the entire time evolution
the fact that this new method is more reliable, faster, andll at once. We start with a well-chosen guess, not for the
more accurate than the previous one. With it we hope tdnitial state, but for the complete periodic trajectory, all times
extend the calculations eventually to bigger nuclei and tdncluded. Then we proceed to refine this guess by successive
nonspherically symmetric kinds of collective motion. We iterations using the Newton-Raphson method. The remark-
shall assume the reader to be familiar with the contents o@ible fact is that very few iterations are necessary, three to
Secs. Ill and IV of Ref[2]; we shall not repeat this material five usually, and that this number of needed iterations-is
here. dependent of the size of the proble®f course there are
The superior accuracy of the new method has an interesgther difficulties, as we shall see.
ing, and perhaps unexpected, consequence. The nonlinearity In the following, we first write down the equations to be
manifests itself by producing a large variety of resonancessolved(Sec. I). These equations include all times. Then we
The (E,T) p|0t gets transformed from a Simp|e smooth CurvefOCUS on the periodicity and we make sure that we have the
to a highly capricious collection of lines. See, for instance same number of variables as equatié®ec. I1). We bring in
Fig. 2, below. Most of the resonances are quite narrow, anéime-reversal invarianceSec. V). We examine in some de-
they were invisible in the previous approach. Their origin istail the Newton-Raphson process and we discuss the numeri-
clear. In a many-dimensional linear system, consider two difcal difficulties (Sec. \). We show how to generate the very
ferent types of periodic motion. They are uncoupled in genfirst guesgSec. V). We show and discuss some resi(sc.
eral, but their periods vary with energy, and therefore therd/Il). And finally we consider the futuréSec. VIII).
are discrete points in thé=( 7) plane where their two periods
have _a_simple rational ratio. This is Whe_re th_e resonances IIl. EQUATIONS OF MOTION
will originate, because any amount of nonlinearity, even very
small, will couple the two modes there. Actually, most of  Since this paper considers onfiHe, there is only one
these resonances are very narrow, and they cannnot have single-particle wave functio(r,t), with a degeneracy of
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g=4. Recall from Sec. IV of2] that we discretize with a The densityp, Eq. (38) of [2], is given by
time indexn and a time steg. According to Eqs(27) and
(28) of [2], our equations of motion are g

Pmn:4ﬂ_0_2m2|umn|2- 8

2i
-— —len)+H + =0. (1
¢ (ene2)=len)) +Hnr vl en ) +lom) @) It will be necessary to have discretized expressions for the
normalizationP of u and the total many-body energy. We
showed in2] that these two quantities are exactly conserved

by the numerical algorithm. As first pointed out in REJ],

After substitution from Eqs(29) and(31) of [2], this is

2i
- ?(|(pn+1>—|qon>)+[K—7\—a(pn+1+pn) the expression foP, which should be unity, is
M
2 2 _
+B(phr1T pnripnt P (@) +en)=0.  (2) P:(Tmz=:l U 2=P, . )

This takes care of the time dependence. Now we show the

space dependence. _ _ The total many-body energy per partidiee., divided byg)
This is monopole motion; hence, there is no angular moj;g according to Eq(4) of [2]

mentum. Equatiori37) of [2] becomes

Un(r) E=ExntEvn=En, (10
en(r)= \/E : . 3 with
M

This defines the usual radial wave functi@nwhich behaves

. . : . . = * =_ — 2
effectively like a one-dimensional wave function. It must EKn—UZ/ UKy Um/n= 20 mE_O U+ 10— Uil
mm -

vanish atr=0 and also at some arbitrary large radius (11)

=R. It is usually complex, except for the ground state. We

discretizer according to the end point methéske Sec. IV of M

[2]). We divide the interval &r=<R into M +1 equal sub- Evn=0 2, (—apmntBp2)|Umi?. (12)
m=1

intervals of sizes. For I=m=<M we defineu,, as the value

of u(r) at one of the points separating two subintervals. In ) ) o _
addition, it is useful to definey=uy, ;=0 to represent the The value of\ is not determined yet. This will come in
fact thatU(r) must vanish at the ends of the interval. Ac- S€C- IlI.

cording to Eqs(22) and(23) of [2], we represent the kinetic N Sec. V we shall solve the equations of motiah by
energy operatoK by the matrix the Newton-Raphson method, which involves a linearization

in the vicinity of a first guess. Becauge Eq. (8), contains
the absolute value ofi, the linearization turns out to be

K T 242 (28mm = dm+1m ~ Om-1m') tricky if we use as variables the complex quantitigs,. It is
easier to separate into its real and imaginary parts and to
for 1<(mm’)<M. (4)  have nothing but real variables and equations. We do this,
This leads to the expressions U= 0t W (13)
1 . . .
(Ku)m= 2 Ky U = — 2_2(um+1_ 22U+ Um_1), (note thatw is not the SP potential which occurs throughout
m’ o Ref. [2]), and Egs.(7) — (12) become the real part of the
(®  equations of motion,
M
(u*,Ku)= 0'2 u’r;kmm’um’ :%mEO |um+l_ um|2- 2(Wm,n+1—Wmn)/6+ 2 kmmr(vmr'n_,_l-f— Umn)
mm’ = m’
(6)
+[-A—a + pmn) + B(p2
We can now introduce this space discretization into the equa- [ (Prun+2 Pmn) AP 1
tions of motion(2). All terms are diagonal im except forK. + pmns 1Pmnt PA 10 mni 1+ Vmn) =0; (14
The variables are,,,, and the equations are

i the imaginary part of the equations of motion,
i
_:(um,n+l_umn)+2 kmm’(um',n+1+um’n)

m _Z(Um,n+l_vmn)/5+2 kmm’(Wm’,n+l+Wm’n)
F[=A=a(pmn+1tPmn) "

2
2 2 +[—-N—«a + +
+B(pm,n+1+Pm,n+lpmn+pmn)](um,n+1+umn):O- [ (pm,n+1 Pmn) B(Pm,n+1

(7) +Pm,n+1pmn+pﬁm)](wm,n%—l"}'Wmn):O; (15
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the energy equation®ne for eachn, but E is actually inde- left-hand side of Eq(14) and |, the left-hand side of Eq.

pendent ofn) (15), one of the relations between thtMN equations is
1 M
EnE 2— E [(Um+1n_Umn)2+(Wm+1n_Wmn)2] % [(Wm,n+1+Wmn)Rmn_(Um,n+1+vmn)| mn]zo-
0 m=0 ' '
. (22
+0 >, (—apmntBp2) (W3, +W2)=E; (16) If we substitute the expressions f&, and |, into the
m=1 left-hand side of Eq(22), all the terms involving the kinetic

. . energy, the quasienergy, and the interaction cancel out, and
and the probability equationssame remark we a%g left V\?ith 9y

: 2 2 2 Nt
Pn=0'mE:1 (VmntWhn=P=1, (17) ; ngo (Phs1— P, (23)

with the definition whereP,, is the normalization, or probability, per particle at
time n, as defined in Eq(17). Since we proved if2] the

(18) identity P,. ,=P,,, Eqg. (23) vanishes identically. Thus Eq.
(22) is a consequence of the conservation of probability.
Similarly, the other relation between th&/N equations is a
consequence of the conservation of energy. It is

g

2 2
Zro2mp U Winn)-

Pmn=

lll. CYCLES

We are now ready to look for the periodic solutions,

. : - - Rynt — | =0.
which we call cycles. For a cycle the time indexgoes only % LOmn+170mn)Rmnt (Winn--2 = Wine) ol

throughN distinct values, which we usually choose as (29
n=0,1,2 ... N—1, (29 SubstitutingR,,, and | ,,,, into the left-hand side again, we
find that the terms multiplying 2/ cancel out, the kinetic
and with the next time step the solution repeats itself: energy terms give
UmN=Umos Wmn=Wmo forall m. (20 1
m m m m ;; [(u:+l,Kun+1)—(u:,Kun)], (25

The period of the cycle is

=Ne. 1) the \ terms give

It is essential that the number of equations match the — 5 E (Prs1—Pp), (26)
number of variables. The space indexakesM values. The O n
time index n takesN values. This makes MN variables
Umn» Wmn- There are two more variables. One is the
quasienergy\. The other requires some discussion. In Sec.
Il of [2], we saw that cycles occur in one-parameter fami-

and the interaction terms give

[— a(pm,n+1+Pmn)

lies, each family being represented in tHe, f) plane by a +B(poni 1t Pmns1Pmnt Pl ([Umns1/2 = [Umn ),
line. We need to know what point on this line we wish to 5
calculate. Thus, we must fix priori either the value oE or (27)

the value ofr. The other quantity(t.he one we have not. which, given the simple relatiof8) betweenp and|u
fixed) must come out of the calculation; this is our last vari- the same as

able. If we fixE, 7 becomes a variable; if we fix, E be-
comes a variable.. Actually, it turns out to be necessary, as Wﬁ;myn+l|2( — apm’n+1+,8pﬁ1’n+1) ~Unn|*(— apmnt Bpﬁm)-
shall see, to do it sometimes one way and sometimes the (29
other, though one should never mix both in the same calcu-
lation. Thus there are MN+2 variables. Now we must Given the definition(16) of E,, the left-hand side of Eq.
count equations. (24) becomes

Each one of the equatior{¢4) and (15) exists for I=m LN
<M and 0sn=<N-1. This should add up toMN equa-
tions. But it does not, since the equations are not indepen- o ngo [(Ens2=APni1) = (BEn=AP0)], (29
dent. There are two relations between thebEN2equations,
so that actually the number of independent equations in Eqgsvhich vanishes if energy and probability are conserved. We
(14) and(15) is 2MN—2. The reasons for this are probabil- have thus shown that the set of equatidd8) and (14)
ity conservation and energy conservation. If we &ll,the  amounts only to IN—2 independent equations, but it is

2 is

014318-3



MICHEL BARANGER, MICHAEL STRAYER, AND JIAN-SHI WU PHYSICAL REVIEW C67, 014318(2003

not at all clear so far how one should proceed to get rid oflV. CONSEQUENCES OF TIME-REVERSAL INVARIANCE
two equations and make the set manifestly independent
which .WOUld be a.good thing to do if we are to engage Nreversal invariance makes the following statement. Given a
numerical calculations. We return to this in a moment. solution u®(r,t) of the equation of motion, the function
We saw that there are two special variableand E or u®(r t) defined by
7). How these should be determined is fairly obvious. One
can think ofA as a Lagrange multiplier associated with the u@(r,ty=u®*(r —t) (31)
normalization condition, and it will be determined by the
equationP=1, i.e., Eq.(17). There areN equationg17), but  is also a solution. This is obvious from the continuous form
one is enough since ait,, are equal. For the other variable, of the equation of motion if2]. We shall now prove the
let us assume for definiteness that we have fixezhd we  €quivalent statement in discrete form — namely, that if we
are looking forE: it will be determined by one of th&l  know a solutionu$)=v)+iw(;), then the quantityu;)
equations(16), or by the average of alN equations if one Ev%)fn—iwﬁﬁ),n is also a solution. To see this, start from
prefers. Egs. (14) and (15) for solutionu® and changen into —n
Therefore, so far we haveN®N equations for the IN ~ —1, which also changes+1 into —n. This does nothing
+2 variables. Hence there must be two additional equation€Xxcept relabel the time without changing its sense of flow;

These we calantisliding equations. The periodic solution hence the equation is still true. Then replagg)

that we are looking for is capable of sliding in two ways. U%,)-n, WEnl,)—n—la and WE];L,)—n by 01, Uﬁqz%’_wsnz,%ﬂi
There is phase sliding, which means that the solutigmt) ~ and —w(%), respectively. Note thqbgr{)—n—l andply)_, are

can be multiplied by an arbitrary constant phase faetér  replaced bypfnz,)nﬂ and p(2), respectively. Finally, verify
And there is time sliding, which means that the functionthat Eq.(14) has become the identical equation &), and
u(r,t+s), with arbitrary constand, is just as good a solution similarly Eq.(15) has become the identical equation fcm
asu(r,t). Thus every solution of our problem is actually a also, but with an overall change of sign.

doubly infinite set, with two arbitrary real parametgrand There are now two possibilities1) u® andu™ are one

s. The purpose of the two antisliding equations is to giveand the same solution, possibly after some time sliding and
definite values toy ands. For the phase antisliding equation, Phase sliding(2) u® andu® are different solutions. Both
we can say, for instance, thafr,,to), at some pointy, and  types of solutions exist. In classical dynamics with two de-
presumablyt,=0, is real, i.e.w(rq,to) =0. For a smoother 9r€€s of f.reed.om, t_hese_ types of cycles are known, respec-
prescription, we could say that the time average over ondVely; aslibrations (identical to each other except for pos-
period of w(ro,t) should vanish. For the time antisliding sible time sliding and rotations (not identical but occurring

equation, it works well to set to zero a particular Fourier' " PAIrS, each twin being th? time reversed of the gudere
. we shall look only at the simplest case, type 1. All random
component — for instance,

phase approximatiofRPA) solutions are of this type. In the

present paper, we shall start from an RPA solution and ex-

N-1 tend it into the nonlinear domain. This is a continuous evo-
E coszin|u 2=0 (30) lution, which can never break the original time-reversal sym-
=0 [\ ' metry. Nonsymmetrical solutions, i.e., solutions of type 2, do

exist, and they can be found as bifurcations of the time-
symmetric ones, but we shall not look for them in the present
We now have as many equations as we have variables -Paper.

namely, MN+2. There are two antisliding equations, one  Returning now to Eq(31), suppose that there exists a

probability equation, one energy equation, andi@—2 dy-  solution u®(r,t) of type 1. This means that®)(r,t) is

namical equations to be p|cked somehow out of théN identical to it except for time S|Id|ng and phase Slldlng

equations(14) and (15). The question is, how do we pick Therefore it can be written

them? Do we just throw away two equations chosen at ran- @) _ (D)

dom? That would be very dangerous. We did this at the be- U (r,H=utr (r, —t)=eXutt(r, t+s), (32

ginning and we got some solutions, associated with the fact , i

that Eqs.(22) and (24) can be satisfied sometimes even if a X @nds being real constants. Now define

few of the quantitieR,,, and I, do not vanish. What is

needed is an answer to the problem which treats all equations uG(r t)=e¥2y®

on the same footing, preserving the symmetry between all

values ofm andn. We did find a very general answer of this

sort eventually, but we are not going to present it here, beand calculatei®* (r,—t), first by substituting in Eq(33),

cause it turned out in the end that it was not needed. The

situation simplified considerably when we took into account U@ (p —t)=eiX’2u(1)*(r e s (34)

the one remaining symmetry of the model, time-reversal in- ' ’ 2)’

variance. It took care of both the sliding problem and the

dependent equations problem, as the next section shows. and then by using the second equatigg) for u®*

' For a scalar wave function such as ouwfr,t), time-

(33

t+s
r, E
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o s
u(3)*(r,—t)=e"X’2e'Xu(1>( rt-s +s) =u®(r,1).
(35

Thus we have found a solutioru®(r,t)=v®(r,t)

PHYSICAL REVIEW C 67, 014318 (2003

N/2—1

—12 Y E +Eo+Eyy| =E, (41)
n=1

N

whereE, is defined in Eq(16). Recall thatt can be either a
variable or a constant. The same equation is used in both

+iw®)(r,t) which remains identical to itself under time re- cases.

versal, without extra sliding. This means thaf)(r,t) is an
even function oft andw(®)(r,t) is an odd function of. We

These are theViN+2 equations that are solved in the
following section. It is good to realize that the argument of

have just shown that every solution of type 1 can be writtersec. I, showing that Eq$14) and(15) are not independent,
in the u® form. This is the form that we shall adopt for our does not carry through any more, since we do not use all of

cycle calculations. If the solution is a cycle, thenis also

these equations but only half of them. When the argument

even with respect to=7/2 andw is also odd, which means gets to Eq(23), what we have instead is

thatw vanishes for botti=0 andt= 7/2. It is clear that this

choice eliminates all sliding possibilities, both in time and in
phase. The timé=0 plays a very special role, and the phase

att=0is 0.
In the discrete representation we now have

Um,=n=Umns Wm,—n="Wnn,

Wyo=0, Wm,N2= 0. (36)

The last equation supposes that we have chdseszven,

which we always will. Let us count variables. tn,, the

ranges ofm andn are
l=m=M,

o=n=<N/2, (37)

which makesM (N/2+1) variables. Inw,,, the ranges are
Ism=M,

0<n<N/2, (38

which makedM (N/2—1) variables. The sum i8IN. Add to

this A and eitherE or 7; the total number of variables is

MN+2. Now let us count equations. We have Etd) for
the ranges

IsmsM, 0sn<N/2-1, (39

which adds up tdM N/2 equations, and Eq15) for the same

ranges, giving another set MN/2 equations. We have two

N/2—1
> 2 (Pni1i=Po), (42)
which, by virtue of the identity?,,, ;=P,,, becomes
2 Pno— P 43
— (Pno—Po). (43

Pne @and Py are not identical; hence there is no automatic
vanishing here. Similar reasoning applies to E9). In
other words, we do havielN+ 2 independent equations for
MN+ 2 variables.

V. NUMERICAL SEARCH FOR CYCLES
A. Overview

We have found a large numbéaf the order of 100D of
solutions of the above equations. Each solution is a cycle
with a certain periodr and a certain energlf. Plots of the
relationship betweek and 7 [the (E,7) plot] will be shown
in Sec. VII. It is perfectly possible to have two different
solutions with the samE and the same, but this is unusual
since the solutions arrange themselves into continuous one-
parameter families or lines in th&(7) plane, and crossings
are rare. Each one of these cycles is obtained through the
following steps:

(1) An educated guess is made for the cycle.

(2) The equations are linearized in the vicinity of the
guess.

(3) The linear equations are solved, which yields a better

more equations, one associated with probability and one WitBuess.

energy. We actually havid probability equations in Eq17)

(4) The process is repeated until convergence is achieved

andN energy equations in EG16), but we only need one of {5 gouble precision.

each type, since we already know that probability and energyhese are the steps which constitute the Newton-Raphson
are exactly conserved by the equations of motion. The beshethod. In a typical case, convergence is achieved with three
choice in each case is to take the average of all the equationg, five iterations. The number of necessary iterations is ap-
Hence we use as probability equation proximately independent of the dimensionality of the prob-
lem; this is one of the advantages of using Newton-Raphson
for large problems. In our work, each iteration took a few
seconds on a very ordinary, vintage 1997, desktop computer.
As we mentioned in the Introduction, the main difference
between the present method and other ways of finding time-
whereP,, is defined by the identity on the left-hand side of dependent Hartree-Fock cycles, including our own work
Eqg. (17). Similarly we use as energy equation [1,2], is that here we always consider the complete periodic

N/2—1

—12 > P,+Py+Pynl=1,
n=1

o (40)
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trajectory all at once, instead of choosing a wave function arero excitation energy — i.e., the ground state — or they
an initial time and then evolving it time step by time step.form (E,7) curves without loose ends, except possibly at
Consequently the present algorithm needs to handle simultéafinity. They also bifurcate. Bifurcations were studied exten-
neously a much larger number of variables. This added difsively in[10], but we have not done any systematic work on
ficulty is compensated by the fact that the resulting procethem for the present problem. We started our search for
dure is much more robust and stable. The present method ¢ycles by looking at energies very close to the ground state,
essentially the same as the “monodromy method” describedvhere our equations become identical with those of the ran-
and applied if10]. The monodromy method is just one par- dom phase approximation. We solved the RPA equations,
ticular way of solving the same Newton-Raphson equationswhich provided the starting points of th& (r) lines at low
Here we solve them by “brute force” instead. This is be- energy. All other cycles were found, either by the continuity
cause the dimensionality of the present problem is muclprocess described earlier or by the jumping process described
higher than in[10], which leads to a larger and more com- earlier. The details of the RPA solution are given in Sec. VI.
plicated monodromy matrix, which would necessitate much

more programming, which would lead to an increased danger C. Linearized equations
of error. .
Generally, suppose that one needs to solve the following
p nonlinear equations irp variablesx; (i=1,...p) or
B. The guess simply x,
Since we know that the cycles lie on various continuous )
lines in the €,7) plane, we look for these lines, and we fix)=A;, 1=1,...p, (44)

progress along each one of them in a continuous fashion: we , ,
use each found solution as the first guess for our next pointN€reA; is a constant, possibly 0. In the Newton-Raphson

in the family. This is the approach already used long ago ifnethod, one starts with a guess, which we &8l Then one
the first work of this typeg10]. Here the difference between 00ks for a better answer, which we Ocaﬂ+ dx, by linear-
a large problem(like this oné and a small problenflike  iZing the equations in the vicinity of”. We write this lin-
those of[10]) is not in the number of iterations necessary to€arization in the form
achieve convergence, which is always three to five; it is in 0
the fact that, for the large problem, you have to pick the next E f9_fj(
point much closer to the original one. In both cases, large =1 X
and small, it is possible, and in fact rather common, to be
overambitious in choosing the size of the, ) jump and to  with
find that the new Newton-Raphson solution converges to a
cycle which looks very different from the family one has RjEAj—fj(xo). (46)
been following and is not connected continuously to it — a
pleasant surprise, usually. It is also possible, and even morEhese are linear equations for the variab&s in which our
common, to find that Newton-Raphson does not converge ajuessx’ functions as a set of constants. Once the equations
all — less pleasant, but not really surprising. have been solved, the new guess becomrfeséx and the

In this fashion, one can follow each continuous line as faprocess is repeated if necessary.
as one wants. But how does one find that family in the first We now write the linearized form of the equations of
place? It is important to realize that families of cycles do notmotion (14) and (15) in a similar notation. Some manipula-
start or stop in the middle of nowhere: either they start ation needs to take place, and we find

x°)ox=R;, (45)

2
Z(&Nm,n+1_ OWmp) + 27._2(25Um,n+1+25vmn_ 5Um—1,n+1_ é\Um—l,n_ 5Um+1,n+l_ 5Um+1,n)

—(ov mn+17t 5Umn)[a(Pm,n+l+ Pmn) — ﬁ(Przn,n+1+Pm,n+1Pmn+ prznn) +\]

g
- m(vm,n+l+ Umn) (@ — 2IBPm,nJrl_IBPmn)(Um,n+151)m,n+l‘l'Wm,nJrlé\Nm,n+l)

g
- 5 22 (Um,n+1+ Umn)(a’_ 2Bpmn— Bpm,n+1)(vmn50mn+wmné\’vmn)
TO

1
_(Um,n+1+Umn)é)\+2(wm,n+1_wmn)5(;):R:nn, (47)
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2 1
- ;(5Um,n+1_ OV mp) + F(Zé\wm,mrl"'za’vmn_ &Nmfl,nJrl_ &Nmfl,n_ é\Nm+l,n+l_ 5Wm+l,n)

- (é\Nm,n+1+ é\Nmn)[a(Pm,nJrl'{'Pmn) - ﬁ(Przn,n+1+Pm,n+1pmn+ prznn) +A]

g

- —(Wm,n+l+Wmn)(a_ 2:8pm,n+1_Bpmn)(vm,n+15Um,n+1+Wm,n+1é\Nm,n+1)
2mwo’m?

g

- 27022 (Wm,n+1+Wmn)(a_ 2Bpmn— Bpm,n+1)(vmn5vmn+wmné\’vmn)

1 )
_(Wm,n+l+Wmn)5)\_2(vm,n+1_vmn)5<Z):leny (48)

whereR|  andR,,,, are the left-hand sides of Eq4.4) and(15), respectively. The ranges of variationmfandn were given
in Egs. (39). One must also remember thatandw vanish form=0 andm=M +1, and thatw vanishes foN=0 andn
=N/2. Note that the equations contai(l/e) sincee, or 7= Ne, is one of the possible variablésne variable must be either
7 or E). Note also the presence éi\, again one of the variables.

The linearized form of the probability equati¢#0) is

M N/2—1
2 E (VmnOV mntWmndWmp) + 0 mgdU mo+v m,N/25U m,NIZ} =RP, (49)

m=1 n=1

20
N
with

N/2—1
RP=1—-—|2 > P,+Py+ PN,Z}. (50)
Nl i1

Finally, the linearized form of the energy equati@H) is

N/2—1
2 2 [;(van_ Um-1n—" Um+1,n) +20(—2apmnt 3:8pr2nn)vmn] SV mn

1 M
Nrn2:1 n=1

N/2—1
+2 nzl {;(Zwmn_wm—l,n_wm+l,n)+20'(_2apmn+ 3:8pr%nn)wmn} W

1
+ ;(vao_vm—l,o_vm-%—l,o)—"20—(_2a’pm0+3ﬂp§n0)vm0] OUmo

1 2 e
+ ;(va,N/2_vm—l,N/Z_Um+l,N/2)+20(_2apm,N/2+ 3BPmNVmN2( OUmNez| — SE=RE, (51)

|
with D. Solution
We define a precisioW, which is simply the sum of the
N/2—1 squares of the right-hand sides of the linearized equations
RE=E——|2 >, En+Eo+Enp|. (52 M N2-1
N n=1 ro\2 i N2 p\2 AV
V=2 2 L(Ru) (R 1 (RP)? 4 (RO,

Here we haveSE as a possible variable. We discuss in the (53

next subsection when to chooBeand when to choose as
the variable. In practice, the program contains a binary pa- Some care must be taken to ensure that, in a typical run,

rameter with the possible value€“fixed” and “ r fixed,” all the additive terms iV are very roughly of the same order
and the same program solves both cases, depending on h@frmagnitude. If they are not, some multiplicative constants
this parameter has been set. should be introduced. We keep performing Newton-Raphson
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Finally, we shall explain why we need to have the choice
between fixingr and fixingE and then use the other quantity
as one of the variables. The continuous families of cycles
may follow any smooth curve in thée( 7) plane. There is no
theorem which says that there has to be a one-to-one corre-
spondence between the valueskbaind the values of. A
very common situation is the one shown in Fig. 1, where the
curve possesses both a vertical tangent and a horizontal tan-
gent. Suppose that we got our first cycle at point A by using
the RPA. Then we proceed by small steps up the curve to-
ward point B, then past point B. When we approach the
vicinity of C, we need to pinpoint the next cycle to be cal-
culated by giving itsE. We cannot give itsr, becauser
varies too slowly in the vicinity of C; if we try to give, we
have a good chance of givingzathat is completely wrong,
and the program will refuse to converge. Hence we explore
the vicinity of C by fixing E ahead of time and letting the
program decide the value af i.e., we treatr as a variable.

FIG. 1. Navigating anf,7) line. See text. But after we have passed C and we arrive in the vicinity of

D, the situation is reversed. Now we must fbahead of time

iterations untilV has decreased sufficiently to jump aroundand let the program decide the valueEofThus, somewhere
randomly due to the limited precision of the computer. Forbetween C and D, we must switch from fixedto fixed 7.
the machine we were using, given that most of the quantitie®n the other hand, in any section of the curve which is not
in the equations were of order unity and given that we usegither nearly horizontal or nearly vertical, such as around
mainly M =15 andN=#64, this limit V turned out to be ap- point B or E, both fixedE and fixedr will work and give
proximately 1033 Thus, our results are very accurate solu-identical results. The times necessary to do a fikethlcu-
tions of the given equations. This is an important remark/ation and a fixedr calculation turn out to be the same.
since our results might be considered strange in some quar-

A energy

period

v o

ters. We repeat that thg number of iterations. necessary to V1. RANDOM PHASE APPROXIMATION
reach that level of precision was only three to five. We show
the results in Sec. VII. It is well known that the RPA can be obtained by linear-

We solve theVIN+2 (=962 in our casglinear equations izing the TDHF equations in the vicinity of the static HF
with an all-purpose subroutine for real equations. There arground state. We shall use this fact to generate the starting
several ways to speed up the calculation by using the fadtoints of the E,7) families of cycles.
that the matrix of the coefficients is fairly sparse, but we The TDHF equations of motion are Eqd4) and (15).
have not tried this so far; we just use a general methodWe already linearized them in Eqe}7) and (48). In these
Certainly, when we start calculating more complicated nudatter equations, we must now choose “the guess” to be the
clei, we will need to pay attention to this point. HF ground state. The latter has a real, time-independent

Even with a good algorithm and a modern computer, thevave function which we callig,. The equation satisfied by
process of following the families in theE(7) plane can be Ugm can be obtained from Eq14) by assuming no time
slow and tedious. It is very tempting to try to free oneself bydependence. It is
automating it. So far, everyone who has tried to do this has
failed. The apparent reason is that the landscape is chaotic 2 _
and many unforeseeable accidents can happen. Each accident %‘ K Ugm (= 2apemt 38pGm=Ae)Uem=0,
results in a diverging sequence of iterations and the absence (54)
of a suitable guess to continue the search. All the results
presented in Sec. VIl were obtained with somebody sitting afvhere pg,, is the density in the ground state ang is the
the computer and directing every step — a personal adverHF single-particle energy. This equation can be solved easily
ture akin to the exploration of a new continent. In the future,by a Newton-Raphson method. We now write E4j7) re-
whoever succeeds in automating the process will have t@lacingv,,, by Ugm, Wmn BY O, pmn BY pem, N by Ag, and

allow for the following, at least(1) places where theH, 7) R’ by 0 and using Eq(8) for the ground state. We find
curve turns unexpectedly, and it becomes necessary to swit¢fter division by 2

beween fixedr and fixedE; (2) places where another curve
approaches very closely and the convergence gets derailed

unless extremely small steps are usé®); the onset of a (é\Nm,nH—b\Nmn)/eJrE Ky (80 mr ns 17+ 60 min) /2
resonance, many examples of which can be seen in Sec. VII; m’

(4) bifurcations, where it is possible for thg program to get_ +(—Bapon+t 15/8Pém—7\e)(5vm,n+1+ S0 )2
confused by the presence of several possibilities and to di-

verge as a result. —UgmOA=0. (55
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whinobiny e binynlh

1O3E

FIG. 2. Solid line: the breathing mode
(E,7) plot for N=64. Isolated points: same

260

210 220 230 240 250

We do the same for Eq48):
_(5Um,n+1_ OV mn)/ €+ E kmm’(é\Nm’,nJrl"' OWpmrn)/2
m/

+(—2apemt 3Bp&m— N6) (Wmns 1+ W) 2=0.
(56)

In these equationsév,,, and éw,,, are the small time-
dependent increments that must be addeddq to produce

a harmonically oscillating solution. The equations are linear
and homogeneous; therefore they have no nontrivial solution

unless some special condition is met — namely, hust be
an eigenvalue of the matrix. As fai\, it is not coupled to
any other variable; therefore it can be taken to vanish.

for N=32. The units are given at the begin-
ning of Sec. VII.

~ doobengnbogoule ol

Upon substitution into Eqs(55) and (56), all time depen-
dence disappears and we are left with

2 T 5
—tang Bt E K A + (= 6pgm+ 158p2 = Ag) Am
m
=0,

2 T )
—tangAn+ > Ky B + (— 2apgm+68p2m—Ag)Bm
m!
=0, (59

which are eigenvalue equations determininge{@&n(=/N),
the eigenvalue, and,,, B,,, the eigenvector. In the limit of

To proceed further, we note that all the coefficients ardarge N, (2/e)tan(m/N) becomes Z/Ne=w, the angular
time independent. Just as in linear differential equations witfréquency, and the equations become the traditional RPA
constant coefficients, this means that the functional form ofquations for this problem. _ .
the solution is harmonic. A convenient form which possesses [N practice, we solve these equations, and we pick the

the required symmetries is

2mn
N

2mn

T' 5\Nmn= Bm sin (57)

OV mn=Ap, COS

Using some simple trigonometric identities, we can write

T 27(n+1/2)
(v mne1T UM /2=A,, COS— COS——————,
: N N
) . 2w(n+1/2)
(vmni1— O mp)/2=—Ap, SIN— sin ————,
: N N
T 2m(n+1/2)
(OWm ns 1t Wn)/2=B,, cos— sin ———,
: N N
oo 2m7(n+1/2)
(OWm nt1— OWmpn)/2=By, sin N COST.

(58)

eigenvalue that we want to work with, usually the most col-
lective. We multiply the eigenvector by a coefficient small
enough that, after addingg,, to dv,, the energy of the
new guess will still be very close to that of the ground state.
We also renormalize the guess to make its time-averaged
probability equal to unity. Then we feed it to the main pro-
gram. The latter works well in the vicinity of the ground state
provided (1) the quantity which we hold fixed i&, not 7
(otherwise the iterations lead back to the ground staiel

(2) very small steps are taken. The size of the steps can be
increased later.

VII. RESULTS

All the calculations presented here were done vwith
=15 radial points spaced hy=2. Our units are such that
m=#=c=1. The energy unit is 939 MeV, the length unit is
0.2101 fm, and the time unit is 0.2101 ftn/The parameters
used for the interaction are=46.905,8=13 360.33.

The solid line in Fig. 2 is theK, 7) plot — i.e., energy in
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FIG. 3. This and all remaining figures plot the densitfr,t)
over a time interval of half a period. The abscissaiis units of .
The ordinate isp times 1§ in units specified at the beginning of

Sec. VII. The nine curves correspond to nine times separated

b . .
7/16. The curves have been displaced vertically by multiples of gf\;ave only calculated witfN=16, 32, and 64. Figure 2 also
(times 16) to make them clear. The rms radii at each time are givenShows theN =32 results, as isolated points. The comparison
on the right. The top and bottom curves are at the special times dpetween the two sets leads to the following tentative conclu-

time-reversal symmetry — i.en=0 andn=N/2 in Sec. IV. The  sions. First, the bottom envelope is roughly the same for both
other half-period would be identical to this, but in reverse order.N’s. It is also roughly the same as the smooth curve that we
This cycle hasN=64, E=—6.4x10"%, and r=221.249. Itis on  found previouslyf2], when we did less accurate calculations.
the main breathing line. As we shall see shortly, cycles close to this ideal smooth line
do exhibit the “breathing” type of motion which the simple

terms of period — for 64 time pointdN(=64). The “reso- models imagine. Other cycles do not. Hence it is reasonably
nances” that we mentioned in the Introduction are in full safe to conclude that the bottom envelope is the actat)(
view. The naive expectation of a smooth, gradual relationcurve for the breathing mode.
ship could not be farther from the truth. The smooth curve The second conclusion is that most of the “resonances”
imagined by our intuition is actually the bottom envelope, asdo not seem to be the same fdr=32 andN=64. Actually,
we shall see. the number of resonances is larger fd=64 than forN

Now we can understand why, in our previous calculations= 32, and it was also larger fod=32 than forN=16. This
[1,2] and in those of other authors as well, there were regionsumber is expected to go on increasing withand the limit
of the (E, 7) plane where the iteration procedure could not beof N—o° is not expected to be simple and smooth. Coming
made to converge. This was very puzzling at the time, buback to whether the resonances agree for the Mg one
now we can check that these regions were precisely thosghould note that the widest resonance fb+ 64 overlaps
where resonances were happening, strongly perturbing theith the widest resonance fdf=32 and that the next two
evolution of our wave function in a way that we did not widest in each case almost overlap. These facts point to the
comprehend. The beauty of the present method is that orfellowing. For each value oN there are “real” resonances
always gets strong convergence, as long as the initial guess4s i.e., resonances which remain Bsgets large — and
close enough. “false” resonances — i.e., resonances due to the finiteness of

An obvious question arises. How much of this resonanthe time mesh and which change drastically whisthanges.
behavior is due to the finiteness of the time mesh, and howoth kinds increase in numbers hkincreases. Both kinds
much is independent of it? One way to begin answering is thave the same cause — namely, a simple ratio between the
compare two sets of results with different sets. So far weperiod of this breathing mode and the lower period of some

FIG. 4. Cycle on the main breathing lineN=64,E=
—3.983 5310 3, and r=234.5.
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FIG. 6. Cycle on the main breathing lin&|=64,E=-0.9

FIG. 5. Cycle on the main breathing lineN=64,E= %1073 andr=259.9276.

—1.959 81x 10" 3, and r=251.

other mode of oscillation of the system. But the order of=0, this time forN=64, on opposite sides of a more “sub-
magnitude of this ratio is not the same: real resonances tergiantial” resonance — i.e., wider and probably partially real.
to have ratios of order 1 false resonances tend to have ratiédne can distinguish a good amount of third harmonic and of
of order N. The distinction should become more and moreeighth harmonic. Once again the two components of the
apparent asN increases, although there will always be aeighth harmonic are out of phase with each other. We guess,
middle region of ratios, appreciably larger than 1, but appre-
ciably smaller tharN, where most of the resonances will be

partly real and partly false. In fact, for the comparatively yf‘\\ \
small dimensions with which we have worked so far, this is A S
essentially what happens. The width of the resonances als R D —
behaves differently in the two cases. For a real resonance, th Pa— a—
width should remain stable &increases. For a false one the — ~
width, usually small, can be highly variable. R— S—
Some of these conclusions can be checked by looking a = —\
the nuclear density as a function of space and time. We shov. X, —
the latter in Figs. 3—6 for four cycles along the main breath- ~ NN w—
ing line (or bottom envelope All four of them exhibit R— —X
simple breathing motion, although it is plain that those at e (E——
higher energies contain some admixtures of low harmonics AN A
By contrast we show in Fig. 7 the density for what appears to T N
be a false resonance: we show two cycles at the same hig TS N
energy E=0), on opposite sides of the first, very thiN, ’ - \ \\\
=32 resonance. The curves show obviously that the breath , E—=—— S~

ing mode is mixed very strongly with harmonic 7 and, more- °¢ 2 4 ¢ & w0 12 14 0o 2 4 6 5 10 2 14 I
over, that the components of this seventh harmonic in the
two cycles are out of phase by 180°, everything else being FIG. 7. Two cycles on both sides of the first, very thife 32
the same — a typical resonancelike feature. We show a mon@sonanceE=0 for both,7=218.6627 on the leftr=218.6648 on
complicated case in Fig. 8. Again we have two cycleg€at the right. The radii have been omitted for lack of space.
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FIG. 8. Two cycles on both sides of a not so thiy 64 reso-
nance E=0 for both,7=255.9164 on the leftr=256.1675 on the

right.
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perfectly possible, but it is pointless, given that helium itself
is not that interesting.

We intend to go on and apply this method to more inter-
esting nuclei, beginning with the breathing modes %9 and
49Ca. However, we must also attend to the problem of reso-
nances which has surfaced as the result of this work. It is
imperative that we be able to distinguish between the real
and false resonances. The false resonances just do not belong
in a reasonable physical theory. Actually, the more narrow
real resonances do not belong either, since they should be
eliminated by quantization, as we said earlier. Thus we must
have a way to retain only the reasonably wide real reso-
nances.

We have been working on this problem for quite some
time now, and we think that we have a solution. Without
compromising any of the accuracy attained by the method of
the present paper, we think that we can Fourier transform
from the time variable to the frequency variable and then
drop the high frequencies from the equations. In other words,
instead of a time mesh, we would use a frequency cutoff. The
false resonances would be gone, since they are an artifact of
the finite time step. And the narrow real resonances would be

without proof, that the third harmonic is probably real andmostly gone also, since they usually involve mixing with

the eighth false.

We embarked on this work in order to improve by an

VIIl. OUTLOOK

higher frequencies than do the wide ones. We intend to pub-
lish the details once we have accumulated a sufficient collec-
tion of results.
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