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Nuclear collective motion with full nonlinearity
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The periodic solutions previously considered for nuclear time-dependent Hartree-Fock problems are recal-
culated by a new method which is more accurate and reliable. It starts from a first guess of the entire periodic
trajectory, instead of a first guess of the initial state. An exact solution of the discretized nonlinear equations is
then obtained in three to five iterations involving, once again, the entire trajectory. The resulting families of
solutions, and in particular the relationship between the period and the energy, are much more complicated than
previously thought. The meaning of this outcome is discussed.
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I. INTRODUCTION

This is a report on the continuation of our calculations
nuclear collective motion with full inclusion of nonlinearity
In a first paper@1# we presented our early results for th
monopole oscillations of4He based on a simple nuclea
model of the Skyrme type. In our next paper@2# we dis-
cussed in detail the motivation for this kind of investigatio
which involves a mean-field approximation with a classi
aspect, a search for the periodic solutions of the dynamic
the mean field, and a requantization process. In the s
paper we also gave the details of the discretization proce
and of the numerical method, as well as a set of new res
for 16O and more complete ones for4He. The present pub
lication is devoted mostly to a new and very different alg
rithm for solving the same numerical problems and to
presentation of extensive results obtained with it for the c
lective monopole motion of4He. The emphasis is more tech
nical than in the two previous papers, an attitude justified
the fact that this new method is more reliable, faster, a
more accurate than the previous one. With it we hope
extend the calculations eventually to bigger nuclei and
nonspherically symmetric kinds of collective motion. W
shall assume the reader to be familiar with the contents
Secs. III and IV of Ref.@2#; we shall not repeat this materia
here.

The superior accuracy of the new method has an inter
ing, and perhaps unexpected, consequence. The nonline
manifests itself by producing a large variety of resonanc
The (E,t) plot gets transformed from a simple smooth cur
to a highly capricious collection of lines. See, for instan
Fig. 2, below. Most of the resonances are quite narrow,
they were invisible in the previous approach. Their origin
clear. In a many-dimensional linear system, consider two
ferent types of periodic motion. They are uncoupled in g
eral, but their periods vary with energy, and therefore th
are discrete points in the (E,t) plane where their two period
have a simple rational ratio. This is where the resonan
will originate, because any amount of nonlinearity, even v
small, will couple the two modes there. Actually, most
these resonances are very narrow, and they cannnot hav
0556-2813/2003/67~1!/014318~12!/$20.00 67 0143
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effect on the collective motion after quantization, becau
quantum mechanics has a way of smoothing out class
details over a phase space volume measured by a pow
Planck’s constant. A few of the resonances, however, app
to be wider and not so easy to dismiss. In the future, we w
to use the present work to study the collective motion
nuclei heavier and more interesting than4He, and then these
wider resonances could have a big impact on how we th
about collective motion@3–5#.

Previous calculations of cyclical time-dependent Hartr
Fock ~TDHF! motion have made use of what is sometim
called ‘‘the tail-chasing method’’@6,7#. One starts with some
well-chosen Slater determinant, one evolves it one time s
at a time with a good unitary kernel, and at some point o
attempts to close the trajectory somehow, by using one
many possiblead hoctricks @8#. These tricks usually involve
large numbers of iterations, often thousands or even h
dreds of thousands. The method that we introduce now
very different, because we consider the entire time evolut
all at once. We start with a well-chosen guess, not for
initial state, but for the complete periodic trajectory, all tim
included. Then we proceed to refine this guess by succes
iterations using the Newton-Raphson method. The rema
able fact is that very few iterations are necessary, three
five usually, and that this number of needed iterations isin-
dependent of the size of the problem. Of course there are
other difficulties, as we shall see.

In the following, we first write down the equations to b
solved~Sec. II!. These equations include all times. Then w
focus on the periodicity and we make sure that we have
same number of variables as equations~Sec. III!. We bring in
time-reversal invariance~Sec. IV!. We examine in some de
tail the Newton-Raphson process and we discuss the num
cal difficulties ~Sec. V!. We show how to generate the ver
first guess~Sec. VI!. We show and discuss some results~Sec.
VII !. And finally we consider the future~Sec. VIII!.

II. EQUATIONS OF MOTION

Since this paper considers only4He, there is only one
single-particle wave functionw(r ,t), with a degeneracy of
©2003 The American Physical Society18-1
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g54. Recall from Sec. IV of@2# that we discretize with a
time indexn and a time stepe. According to Eqs.~27! and
~28! of @2#, our equations of motion are

2
2i

e
~ uwn11&2uwn&)1Hn11/2~ uwn11&1uwn&)50. ~1!

After substitution from Eqs.~29! and ~31! of @2#, this is

2
2i

e
~ uwn11&2uwn&)1@K2l2a~rn111rn!

1b~rn11
2 1rn11rn1rn

2!#~ uwn11&1uwn&)50. ~2!

This takes care of the time dependence. Now we show
space dependence.

This is monopole motion; hence, there is no angular m
mentum. Equation~37! of @2# becomes

wn~r !5
un~r !

A4p r
. ~3!

This defines the usual radial wave functionu, which behaves
effectively like a one-dimensional wave function. It mu
vanish at r 50 and also at some arbitrary large radiusr
5R. It is usually complex, except for the ground state. W
discretizer according to the end point method~see Sec. IV of
@2#!. We divide the interval 0<r<R into M11 equal sub-
intervals of sizes. For 1<m<M we defineum as the value
of u(r ) at one of the points separating two subintervals.
addition, it is useful to defineu05uM1150 to represent the
fact thatU(r ) must vanish at the ends of the interval. A
cording to Eqs.~22! and~23! of @2#, we represent the kinetic
energy operatorK by the matrix

kmm85
1

2s2 ~2dmm82dm11,m82dm21,m8!

for 1<~m,m8!<M . ~4!

This leads to the expressions

~Ku!m5(
m8

kmm8um852
1

2s2~um1122um1um21!,

~5!

~u* ,Ku!5s (
mm8

um* kmm8um85
1

2s (
m50

M

uum112umu2.

~6!

We can now introduce this space discretization into the eq
tions of motion~2!. All terms are diagonal inm except forK.
The variables areumn and the equations are

2
2i

e
~um,n112umn!1(

m8
kmm8~um8,n111um8n!

1@2l2a~rm,n111rmn!

1b~rm,n11
2 1rm,n11rmn1rmn

2 !#~um,n111umn!50.

~7!
01431
e
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The densityr, Eq. ~38! of @2#, is given by

rmn5
g

4ps2m2 uumnu2. ~8!

It will be necessary to have discretized expressions for
normalizationP of u and the total many-body energy. W
showed in@2# that these two quantities are exactly conserv
by the numerical algorithm. As first pointed out in Ref.@9#,
the expression forP, which should be unity, is

P5s (
m51

M

uumnu2[Pn . ~9!

The total many-body energy per particle~i.e., divided byg)
is, according to Eq.~4! of @2#

E5EKn1EVn[En , ~10!

with

EKn[s (
mm8

umn* kmm8um8n[
1

2s (
m50

M

uum11,n2umnu2

~11!

EVn[s (
m51

M

~2armn1brmn
2 !uumnu2. ~12!

The value ofl is not determined yet. This will come in
Sec. III.

In Sec. V we shall solve the equations of motion~7! by
the Newton-Raphson method, which involves a linearizat
in the vicinity of a first guess. Becauser, Eq. ~8!, contains
the absolute value ofu, the linearization turns out to be
tricky if we use as variables the complex quantitiesumn . It is
easier to separateu into its real and imaginary parts and t
have nothing but real variables and equations. We do thi

umn5vmn1 iwmn ~13!

~note thatw is not theSP potential which occurs throughou
Ref. @2#!, and Eqs.~7! – ~12! become the real part of th
equations of motion,

2~wm,n112wmn!/e1(
m8

kmm8~vm8,n111vm8n!

1@2l2a~rm,n111rmn!1b~rm,n11
2

1rm,n11rmn1rmn
2 !#~vm,n111vmn!50; ~14!

the imaginary part of the equations of motion,

22~vm,n112vmn!/e1(
m8

kmm8~wm8,n111wm8n!

1@2l2a~rm,n111rmn!1b~rm,n11
2

1rm,n11rmn1rmn
2 !#~wm,n111wmn!50; ~15!
8-2
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the energy equations~one for eachn, but E is actually inde-
pendent ofn)

En[
1

2s (
m50

M

@~vm11,n2vmn!
21~wm11,n2wmn!

2#

1s (
m51

M

~2armn1brmn
2 !~vmn

2 1wmn
2 !5E; ~16!

and the probability equations,~same remark!

Pn[s (
m51

M

~vmn
2 1wmn

2 !5P51, ~17!

with the definition

rmn5
g

4ps2m2
~vmn

2 1wmn
2 !. ~18!

III. CYCLES

We are now ready to look for the periodic solution
which we call cycles. For a cycle the time indexn goes only
throughN distinct values, which we usually choose as

n50,1,2, . . . ,N21, ~19!

and with the next time step the solution repeats itself:

vmN5vm0 , wmN5wm0 for all m. ~20!

The period of the cycle is

t5Ne. ~21!

It is essential that the number of equations match
number of variables. The space indexm takesM values. The
time index n takes N values. This makes 2MN variables
vmn , wmn . There are two more variables. One is t
quasienergyl. The other requires some discussion. In S
III of @2#, we saw that cycles occur in one-parameter fam
lies, each family being represented in the (E,t) plane by a
line. We need to know what point on this line we wish
calculate. Thus, we must fixa priori either the value ofE or
the value oft. The other quantity~the one we have no
fixed! must come out of the calculation; this is our last va
able. If we fix E, t becomes a variable; if we fixt, E be-
comes a variable. Actually, it turns out to be necessary, as
shall see, to do it sometimes one way and sometimes
other, though one should never mix both in the same ca
lation. Thus there are 2MN12 variables. Now we mus
count equations.

Each one of the equations~14! and ~15! exists for 1<m
<M and 0<n<N21. This should add up to 2MN equa-
tions. But it does not, since the equations are not indep
dent. There are two relations between these 2MN equations,
so that actually the number of independent equations in E
~14! and~15! is 2MN22. The reasons for this are probab
ity conservation and energy conservation. If we callRmn the
01431
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left-hand side of Eq.~14! and I mn the left-hand side of Eq.
~15!, one of the relations between the 2MN equations is

(
mn

@~wm,n111wmn!Rmn2~vm,n111vmn!I mn#50.

~22!

If we substitute the expressions forRmn and I mn into the
left-hand side of Eq.~22!, all the terms involving the kinetic
energy, the quasienergy, and the interaction cancel out,
we are left with

2

es (
n50

N21

~Pn112Pn!, ~23!

wherePn is the normalization, or probability, per particle
time n, as defined in Eq.~17!. Since we proved in@2# the
identity Pn11[Pn , Eq. ~23! vanishes identically. Thus Eq
~22! is a consequence of the conservation of probabil
Similarly, the other relation between the 2MN equations is a
consequence of the conservation of energy. It is

(
mn

@~vm,n112vmn!Rmn1~wm,n112wmn!I mn#50.

~24!

SubstitutingRmn and I mn into the left-hand side again, w
find that the terms multiplying 2/e cancel out, the kinetic
energy terms give

1

s (
n

@~un11* ,Kun11!2~un* ,Kun!#, ~25!

the l terms give

2
l

s (
n

~Pn112Pn!, ~26!

and the interaction terms give

@2a~rm,n111rmn!

1b~rm,n11
2 1rm,n11rmn1rmn

2 #~ uum,n11u22uumnu2!,

~27!

which, given the simple relation~8! betweenr and uuu2, is
the same as

uum,n11u2~2arm,n111brm,n11
2 !2uumnu2~2armn1brmn

2 !.
~28!

Given the definition~16! of En , the left-hand side of Eq
~24! becomes

1

s (
n50

N21

@~En112lPn11!2~En2lPn!#, ~29!

which vanishes if energy and probability are conserved.
have thus shown that the set of equations~13! and ~14!
amounts only to 2MN22 independent equations, but it
8-3
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not at all clear so far how one should proceed to get rid
two equations and make the set manifestly independ
which would be a good thing to do if we are to engage
numerical calculations. We return to this in a moment.

We saw that there are two special variablesl and (E or
t). How these should be determined is fairly obvious. O
can think ofl as a Lagrange multiplier associated with t
normalization condition, and it will be determined by th
equationP51, i.e., Eq.~17!. There areN equations~17!, but
one is enough since allPn are equal. For the other variabl
let us assume for definiteness that we have fixedt and we
are looking forE: it will be determined by one of theN
equations~16!, or by the average of allN equations if one
prefers.

Therefore, so far we have 2MN equations for the 2MN
12 variables. Hence there must be two additional equatio
These we callantisliding equations. The periodic solutio
that we are looking for is capable of sliding in two way
There is phase sliding, which means that the solutionu(r ,t)
can be multiplied by an arbitrary constant phase factoreix.
And there is time sliding, which means that the functi
u(r ,t1s), with arbitrary constants, is just as good a solution
as u(r ,t). Thus every solution of our problem is actually
doubly infinite set, with two arbitrary real parametersx and
s. The purpose of the two antisliding equations is to g
definite values tox ands. For the phase antisliding equatio
we can say, for instance, thatu(r 0 ,t0), at some pointr 0 and
presumablyt050, is real, i.e.,w(r 0 ,t0)50. For a smoother
prescription, we could say that the time average over
period of w(r 0 ,t) should vanish. For the time antislidin
equation, it works well to set to zero a particular Four
component — for instance,

(
n50

N21

cos
2pn

N
uum0nu250. ~30!

We now have as many equations as we have variable
namely, 2MN12. There are two antisliding equations, o
probability equation, one energy equation, and 2MN22 dy-
namical equations to be picked somehow out of the 2MN
equations~14! and ~15!. The question is, how do we pic
them? Do we just throw away two equations chosen at r
dom? That would be very dangerous. We did this at the
ginning and we got some solutions, associated with the
that Eqs.~22! and ~24! can be satisfied sometimes even if
few of the quantitiesRmn and I mn do not vanish. What is
needed is an answer to the problem which treats all equat
on the same footing, preserving the symmetry between
values ofm andn. We did find a very general answer of th
sort eventually, but we are not going to present it here,
cause it turned out in the end that it was not needed.
situation simplified considerably when we took into accou
the one remaining symmetry of the model, time-reversal
variance. It took care of both the sliding problem and t
dependent equations problem, as the next section show
01431
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IV. CONSEQUENCES OF TIME-REVERSAL INVARIANCE

For a scalar wave function such as ouru(r ,t), time-
reversal invariance makes the following statement. Give
solution u(1)(r ,t) of the equation of motion, the function
u(2)(r ,t) defined by

u(2)~r ,t ![u(1)* ~r ,2t ! ~31!

is also a solution. This is obvious from the continuous fo
of the equation of motion in@2#. We shall now prove the
equivalent statement in discrete form — namely, that if
know a solutionumn

(1)[vmn
(1)1 iwmn

(1) , then the quantityumn
(2)

[vm,2n
(1) 2 iwm,2n

(1) is also a solution. To see this, start fro
Eqs. ~14! and ~15! for solution u(1) and changen into 2n
21, which also changesn11 into 2n. This does nothing
except relabel the time without changing its sense of flo
hence the equation is still true. Then replacevm,2n21

(1) ,
vm,2n

(1) , wm,2n21
(1) , and wm,2n

(1) by vm,n11
(2) , vmn

(2) ,2wm,n11
(2) ,

and 2wmn
(2) , respectively. Note thatrm,2n21

(1) and rm,2n
(1) are

replaced byrm,n11
(2) and rmn

(2) , respectively. Finally, verify
that Eq.~14! has become the identical equation forumn

(2) , and
similarly Eq. ~15! has become the identical equation forumn

(2)

also, but with an overall change of sign.
There are now two possibilities:~1! u(2) andu(1) are one

and the same solution, possibly after some time sliding
phase sliding;~2! u(2) andu(1) are different solutions. Both
types of solutions exist. In classical dynamics with two d
grees of freedom, these types of cycles are known, res
tively, as librations ~identical to each other except for po
sible time sliding! and rotations ~not identical but occurring
in pairs, each twin being the time reversed of the other!. Here
we shall look only at the simplest case, type 1. All rando
phase approximation~RPA! solutions are of this type. In the
present paper, we shall start from an RPA solution and
tend it into the nonlinear domain. This is a continuous ev
lution, which can never break the original time-reversal sy
metry. Nonsymmetrical solutions, i.e., solutions of type 2,
exist, and they can be found as bifurcations of the tim
symmetric ones, but we shall not look for them in the pres
paper.

Returning now to Eq.~31!, suppose that there exists
solution u(1)(r ,t) of type 1. This means thatu(2)(r ,t) is
identical to it except for time sliding and phase slidin
Therefore it can be written

u(2)~r ,t ![u(1)* ~r ,2t ![eixu(1)~r ,t1s!, ~32!

x ands being real constants. Now define

u(3)~r ,t ![eix/2u(1)S r ,t1
s

2D ~33!

and calculateu(3)* (r ,2t), first by substituting in Eq.~33!,

u(3)* ~r ,2t !5e2 ix/2u(1)* S r ,2t1
s

2D , ~34!

and then by using the second equation~32! for u(1)* ,
8-4
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u(3)* ~r ,2t !5e2 ix/2eixu(1)S r ,t2
s

2
1sD[u(3)~r ,t !.

~35!

Thus we have found a solutionu(3)(r ,t)[v (3)(r ,t)
1 iw (3)(r ,t) which remains identical to itself under time re
versal, without extra sliding. This means thatv (3)(r ,t) is an
even function oft andw(3)(r ,t) is an odd function oft. We
have just shown that every solution of type 1 can be writ
in theu(3) form. This is the form that we shall adopt for ou
cycle calculations. If the solution is a cycle, thenv is also
even with respect tot5t/2 andw is also odd, which mean
that w vanishes for botht50 andt5t/2. It is clear that this
choice eliminates all sliding possibilities, both in time and
phase. The timet50 plays a very special role, and the pha
at t50 is 0.

In the discrete representation we now have

vm,2n5vmn , wm,2n52wmn ,

wm050, wm,N/250. ~36!

The last equation supposes that we have chosenN even,
which we always will. Let us count variables. Invmn the
ranges ofm andn are

1<m<M , 0<n<N/2, ~37!

which makesM (N/211) variables. Inwmn the ranges are

1<m<M , 0,n,N/2, ~38!

which makesM (N/221) variables. The sum isMN. Add to
this l and eitherE or t: the total number of variables i
MN12. Now let us count equations. We have Eq.~14! for
the ranges

1<m<M , 0<n<N/221, ~39!

which adds up toMN/2 equations, and Eq.~15! for the same
ranges, giving another set ofMN/2 equations. We have two
more equations, one associated with probability and one w
energy. We actually haveN probability equations in Eq.~17!
andN energy equations in Eq.~16!, but we only need one o
each type, since we already know that probability and ene
are exactly conserved by the equations of motion. The b
choice in each case is to take the average of all the equat
Hence we use as probability equation

1

N F2 (
n51

N/221

Pn1P01PN/2G51, ~40!

wherePn is defined by the identity on the left-hand side
Eq. ~17!. Similarly we use as energy equation
01431
n

th

y
st
ns.

1

N F2 (
n51

N/221

En1E01EN/2G5E, ~41!

whereEn is defined in Eq.~16!. Recall thatE can be either a
variable or a constant. The same equation is used in b
cases.

These are theMN12 equations that are solved in th
following section. It is good to realize that the argument
Sec. III, showing that Eqs.~14! and~15! are not independent
does not carry through any more, since we do not use a
these equations but only half of them. When the argum
gets to Eq.~23!, what we have instead is

2

es (
n50

N/221

~Pn112Pn!, ~42!

which, by virtue of the identityPn11[Pn , becomes

2

es
~PN/22P0!. ~43!

PN/2 and P0 are not identical; hence there is no automa
vanishing here. Similar reasoning applies to Eq.~29!. In
other words, we do haveMN12 independent equations fo
MN12 variables.

V. NUMERICAL SEARCH FOR CYCLES

A. Overview

We have found a large number~of the order of 1000! of
solutions of the above equations. Each solution is a cy
with a certain periodt and a certain energyE. Plots of the
relationship betweenE andt @the (E,t) plot# will be shown
in Sec. VII. It is perfectly possible to have two differen
solutions with the sameE and the samet, but this is unusual
since the solutions arrange themselves into continuous
parameter families or lines in the (E,t) plane, and crossings
are rare. Each one of these cycles is obtained through
following steps:

~1! An educated guess is made for the cycle.
~2! The equations are linearized in the vicinity of th

guess.
~3! The linear equations are solved, which yields a be

guess.
~4! The process is repeated until convergence is achie

to double precision.
These are the steps which constitute the Newton-Raph
method. In a typical case, convergence is achieved with th
to five iterations. The number of necessary iterations is
proximately independent of the dimensionality of the pro
lem; this is one of the advantages of using Newton-Raph
for large problems. In our work, each iteration took a fe
seconds on a very ordinary, vintage 1997, desktop compu

As we mentioned in the Introduction, the main differen
between the present method and other ways of finding ti
dependent Hartree-Fock cycles, including our own wo
@1,2#, is that here we always consider the complete perio
8-5
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trajectory all at once, instead of choosing a wave function
an initial time and then evolving it time step by time ste
Consequently the present algorithm needs to handle sim
neously a much larger number of variables. This added
ficulty is compensated by the fact that the resulting pro
dure is much more robust and stable. The present metho
essentially the same as the ‘‘monodromy method’’ descri
and applied in@10#. The monodromy method is just one pa
ticular way of solving the same Newton-Raphson equatio
Here we solve them by ‘‘brute force’’ instead. This is b
cause the dimensionality of the present problem is m
higher than in@10#, which leads to a larger and more com
plicated monodromy matrix, which would necessitate mu
more programming, which would lead to an increased dan
of error.

B. The guess

Since we know that the cycles lie on various continuo
lines in the (E,t) plane, we look for these lines, and w
progress along each one of them in a continuous fashion
use each found solution as the first guess for our next p
in the family. This is the approach already used long ago
the first work of this type@10#. Here the difference betwee
a large problem~like this one! and a small problem~like
those of@10#! is not in the number of iterations necessary
achieve convergence, which is always three to five; it is
the fact that, for the large problem, you have to pick the n
point much closer to the original one. In both cases, la
and small, it is possible, and in fact rather common, to
overambitious in choosing the size of the (E,t) jump and to
find that the new Newton-Raphson solution converges t
cycle which looks very different from the family one ha
been following and is not connected continuously to it —
pleasant surprise, usually. It is also possible, and even m
common, to find that Newton-Raphson does not converg
all — less pleasant, but not really surprising.

In this fashion, one can follow each continuous line as
as one wants. But how does one find that family in the fi
place? It is important to realize that families of cycles do n
start or stop in the middle of nowhere: either they start
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zero excitation energy — i.e., the ground state — or th
form (E,t) curves without loose ends, except possibly
infinity. They also bifurcate. Bifurcations were studied exte
sively in @10#, but we have not done any systematic work
them for the present problem. We started our search
cycles by looking at energies very close to the ground st
where our equations become identical with those of the r
dom phase approximation. We solved the RPA equatio
which provided the starting points of the (E,t) lines at low
energy. All other cycles were found, either by the continu
process described earlier or by the jumping process descr
earlier. The details of the RPA solution are given in Sec.

C. Linearized equations

Generally, suppose that one needs to solve the follow
p nonlinear equations inp variables xi ( i 51, . . . ,p) or
simply x,

f j~x!5Aj , j 51, . . . ,p, ~44!

whereAj is a constant, possibly 0. In the Newton-Raphs
method, one starts with a guess, which we callx0. Then one
looks for a better answer, which we callx01dx, by linear-
izing the equations in the vicinity ofx0. We write this lin-
earization in the form

(
i 51

p
] f j

]xi
~x0!dxi5Rj , ~45!

with

Rj[Aj2 f j~x0!. ~46!

These are linear equations for the variablesdx, in which our
guessx0 functions as a set of constants. Once the equati
have been solved, the new guess becomesx01dx and the
process is repeated if necessary.

We now write the linearized form of the equations
motion ~14! and ~15! in a similar notation. Some manipula
tion needs to take place, and we find
2

e
~dwm,n112dwmn!1

1

2s2
~2dvm,n1112dvmn2dvm21,n112dvm21,n2dvm11,n112dvm11,n!

2~dvm,n111dvmn!@a~rm,n111rmn!2b~rm,n11
2 1rm,n11rmn1rmn

2 !1l#

2
g

2ps2m2
~vm,n111vmn!~a22brm,n112brmn!~vm,n11dvm,n111wm,n11dwm,n11!

2
g

2ps2m2
~vm,n111vmn!~a22brmn2brm,n11!~vmndvmn1wmndwmn!

2~vm,n111vmn!dl12~wm,n112wmn!dS 1

e D5Rmn
r , ~47!
8-6
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2
2

e
~dvm,n112dvmn!1

1

2s2
~2dwm,n1112dwmn2dwm21,n112dwm21,n2dwm11,n112dwm11,n!

2~dwm,n111dwmn!@a~rm,n111rmn!2b~rm,n11
2 1rm,n11rmn1rmn

2 !1l#

2
g

2ps2m2
~wm,n111wmn!~a22brm,n112brmn!~vm,n11dvm,n111wm,n11dwm,n11!

2
g

2ps2m2
~wm,n111wmn!~a22brmn2brm,n11!~vmndvmn1wmndwmn!

2~wm,n111wmn!dl22~vm,n112vmn!dS 1

e D5Rmn
i , ~48!

whereRmn
r andRmn

i are the left-hand sides of Eqs.~14! and~15!, respectively. The ranges of variation ofm andn were given
in Eqs. ~39!. One must also remember thatv and w vanish form50 andm5M11, and thatw vanishes forN50 andn
5N/2. Note that the equations containd(1/e) sincee, or t5Ne, is one of the possible variables~one variable must be eithe
t or E). Note also the presence ofdl, again one of the variables.

The linearized form of the probability equation~40! is

2s

N (
m51

M F2 (
n51

N/221

~vmndvmn1wmndwmn!1vm0dvm01vm,N/2dvm,N/2G5Rp, ~49!

with

Rp512
1

N F2 (
n51

N/221

Pn1P01PN/2G . ~50!

Finally, the linearized form of the energy equation~41! is

1

N (
m51

M F2 (
n51

N/221 H 1

s
~2vmn2vm21,n2vm11,n!12s~22armn13brmn

2 !vmnJ dvmn

12 (
n51

N/221 H 1

s
~2wmn2wm21,n2wm11,n!12s~22armn13brmn

2 !wmnJ dwmn

1H 1

s
~2vm02vm21,02vm11,0!12s~22arm013brm0

2 !vm0J dvm0

1H 1

s
~2vm,N/22vm21,N/22vm11,N/2!12s~22arm,N/213brm,N/2

2 !vm,N/2J dvm,N/2G2dE5Re, ~51!
he

pa

h

s

run,
r

nts
son
with

Re5E2
1

N F2 (
n51

N/221

En1E01EN/2G . ~52!

Here we havedE as a possible variable. We discuss in t
next subsection when to chooseE and when to chooset as
the variable. In practice, the program contains a binary
rameter with the possible values ‘‘E fixed’’ and ‘‘t fixed,’’
and the same program solves both cases, depending on
this parameter has been set.
01431
-
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D. Solution

We define a precisionV, which is simply the sum of the
squares of the right-hand sides of the linearized equation

V5 (
m51

M

(
n50

N/221

@~Rmn
r !21~Rmn

i !2#1~Rp!21~Re!2.

~53!

Some care must be taken to ensure that, in a typical
all the additive terms inV are very roughly of the same orde
of magnitude. If they are not, some multiplicative consta
should be introduced. We keep performing Newton-Raph
8-7
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iterations untilV has decreased sufficiently to jump arou
randomly due to the limited precision of the computer. F
the machine we were using, given that most of the quanti
in the equations were of order unity and given that we u
mainly M515 andN564, this limit V turned out to be ap-
proximately 10233. Thus, our results are very accurate so
tions of the given equations. This is an important rema
since our results might be considered strange in some q
ters. We repeat that the number of iterations necessar
reach that level of precision was only three to five. We sh
the results in Sec. VII.

We solve theMN12 ~5962 in our case! linear equations
with an all-purpose subroutine for real equations. There
several ways to speed up the calculation by using the
that the matrix of the coefficients is fairly sparse, but w
have not tried this so far; we just use a general meth
Certainly, when we start calculating more complicated n
clei, we will need to pay attention to this point.

Even with a good algorithm and a modern computer,
process of following the families in the (E,t) plane can be
slow and tedious. It is very tempting to try to free oneself
automating it. So far, everyone who has tried to do this
failed. The apparent reason is that the landscape is cha
and many unforeseeable accidents can happen. Each acc
results in a diverging sequence of iterations and the abs
of a suitable guess to continue the search. All the res
presented in Sec. VII were obtained with somebody sitting
the computer and directing every step — a personal adv
ture akin to the exploration of a new continent. In the futu
whoever succeeds in automating the process will have
allow for the following, at least:~1! places where the (E,t)
curve turns unexpectedly, and it becomes necessary to sw
beween fixedt and fixedE; ~2! places where another curv
approaches very closely and the convergence gets der
unless extremely small steps are used;~3! the onset of a
resonance, many examples of which can be seen in Sec.
~4! bifurcations, where it is possible for the program to g
confused by the presence of several possibilities and to
verge as a result.

FIG. 1. Navigating an (E,t) line. See text.
01431
r
s
d

-
,

ar-
to

re
ct

d.
-

e

s
tic
ent
ce
ts
t

n-
,
to

tch

led

II;
t
i-

Finally, we shall explain why we need to have the cho
between fixingt and fixingE and then use the other quanti
as one of the variables. The continuous families of cyc
may follow any smooth curve in the (E,t) plane. There is no
theorem which says that there has to be a one-to-one co
spondence between the values ofE and the values oft. A
very common situation is the one shown in Fig. 1, where
curve possesses both a vertical tangent and a horizontal
gent. Suppose that we got our first cycle at point A by us
the RPA. Then we proceed by small steps up the curve
ward point B, then past point B. When we approach
vicinity of C, we need to pinpoint the next cycle to be ca
culated by giving itsE. We cannot give itst, becauset
varies too slowly in the vicinity of C; if we try to givet, we
have a good chance of giving at that is completely wrong,
and the program will refuse to converge. Hence we expl
the vicinity of C by fixing E ahead of time and letting the
program decide the value oft; i.e., we treatt as a variable.
But after we have passed C and we arrive in the vicinity
D, the situation is reversed. Now we must fixt ahead of time
and let the program decide the value ofE. Thus, somewhere
between C and D, we must switch from fixedE to fixed t.
On the other hand, in any section of the curve which is
either nearly horizontal or nearly vertical, such as arou
point B or E, both fixedE and fixedt will work and give
identical results. The times necessary to do a fixedE calcu-
lation and a fixedt calculation turn out to be the same.

VI. RANDOM PHASE APPROXIMATION

It is well known that the RPA can be obtained by linea
izing the TDHF equations in the vicinity of the static H
ground state. We shall use this fact to generate the star
points of the (E,t) families of cycles.

The TDHF equations of motion are Eqs.~14! and ~15!.
We already linearized them in Eqs.~47! and ~48!. In these
latter equations, we must now choose ‘‘the guess’’ to be
HF ground state. The latter has a real, time-independ
wave function which we calluGm . The equation satisfied by
uGm can be obtained from Eq.~14! by assuming no time
dependence. It is

(
m8

kmm8uGm81~22arGm13brGm
2 2lG!uGm50,

~54!

whererGm is the density in the ground state andlG is the
HF single-particle energy. This equation can be solved ea
by a Newton-Raphson method. We now write Eq.~47! re-
placingvmn by uGm , wmn by 0, rmn by rGm , l by lG , and
Rmn

r by 0 and using Eq.~8! for the ground state. We find
~after division by 2!

~dwm,n112dwmn!/e1(
m8

kmm8~dvm8,n111dvm8n!/2

1~26arGm115brGm
2 2lG!~dvm,n111dvmn!/2

2uGmdl50. ~55!
8-8
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FIG. 2. Solid line: the breathing mod
(E,t) plot for N564. Isolated points: same
for N532. The units are given at the begin
ning of Sec. VII.
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We do the same for Eq.~48!:

2~dvm,n112dvmn!/e1(
m8

kmm8~dwm8,n111dwm8n!/2

1~22arGm13brGm
2 2lG!~dwm,n111dwmn!/250.

~56!

In these equations,dvmn and dwmn are the small time-
dependent increments that must be added touGm to produce
a harmonically oscillating solution. The equations are lin
and homogeneous; therefore they have no nontrivial solu
unless some special condition is met — namely, 1/e must be
an eigenvalue of the matrix. As fordl, it is not coupled to
any other variable; therefore it can be taken to vanish.

To proceed further, we note that all the coefficients
time independent. Just as in linear differential equations w
constant coefficients, this means that the functional form
the solution is harmonic. A convenient form which posses
the required symmetries is

dvmn5Am cos
2pn

N
, dwmn5Bm sin

2pn

N
. ~57!

Using some simple trigonometric identities, we can write

~dvm,n111dvmn!/25Am cos
p

N
cos

2p~n11/2!

N
,

~dvm,n112dvmn!/252Am sin
p

N
sin

2p~n11/2!

N
,

~dwm,n111dwmn!/25Bm cos
p

N
sin

2p~n11/2!

N
,

~dwm,n112dwmn!/25Bm sin
p

N
cos

2p~n11/2!

N
.

~58!
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Upon substitution into Eqs.~55! and ~56!, all time depen-
dence disappears and we are left with

2

e
tan

p

N
Bm1(

m8
kmm8Am81~26arGm115brGm

2 2lG!Am

50,

2

e
tan

p

N
Am1(

m8
kmm8Bm81~22arGm16brGm

2 2lG!Bm

50, ~59!

which are eigenvalue equations determining (2/e)tan(p/N),
the eigenvalue, andAm , Bm , the eigenvector. In the limit of
large N, (2/e)tan(p/N) becomes 2p/Ne[v, the angular
frequency, and the equations become the traditional R
equations for this problem.

In practice, we solve these equations, and we pick
eigenvalue that we want to work with, usually the most c
lective. We multiply the eigenvector by a coefficient sm
enough that, after addinguGm to dvmn , the energy of the
new guess will still be very close to that of the ground sta
We also renormalize the guess to make its time-avera
probability equal to unity. Then we feed it to the main pr
gram. The latter works well in the vicinity of the ground sta
provided ~1! the quantity which we hold fixed isE, not t
~otherwise the iterations lead back to the ground state! and
~2! very small steps are taken. The size of the steps can
increased later.

VII. RESULTS

All the calculations presented here were done withM
515 radial points spaced bys52. Our units are such tha
m5\5c51. The energy unit is 939 MeV, the length unit
0.2101 fm, and the time unit is 0.2101 fm/c. The parameters
used for the interaction area546.905,b513 360.33.

The solid line in Fig. 2 is the (E,t) plot — i.e., energy in
8-9
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terms of period — for 64 time points (N564). The ‘‘reso-
nances’’ that we mentioned in the Introduction are in f
view. The naive expectation of a smooth, gradual relati
ship could not be farther from the truth. The smooth cu
imagined by our intuition is actually the bottom envelope,
we shall see.

Now we can understand why, in our previous calculatio
@1,2# and in those of other authors as well, there were regi
of the (E,t) plane where the iteration procedure could not
made to converge. This was very puzzling at the time,
now we can check that these regions were precisely th
where resonances were happening, strongly perturbing
evolution of our wave function in a way that we did n
comprehend. The beauty of the present method is that
always gets strong convergence, as long as the initial gue
close enough.

An obvious question arises. How much of this reson
behavior is due to the finiteness of the time mesh, and h
much is independent of it? One way to begin answering i
compare two sets of results with different sets. So far

FIG. 3. This and all remaining figures plot the densityr(r ,t)
over a time interval of half a period. The abscissa isr in units ofs.
The ordinate isr times 103 in units specified at the beginning o
Sec. VII. The nine curves correspond to nine times separated
t/16. The curves have been displaced vertically by multiples o
~times 103) to make them clear. The rms radii at each time are giv
on the right. The top and bottom curves are at the special time
time-reversal symmetry — i.e.,n50 andn5N/2 in Sec. IV. The
other half-period would be identical to this, but in reverse ord
This cycle hasN564, E526.431023, and t5221.249. It is on
the main breathing line.
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have only calculated withN516, 32, and 64. Figure 2 als
shows theN532 results, as isolated points. The comparis
between the two sets leads to the following tentative conc
sions. First, the bottom envelope is roughly the same for b
N’s. It is also roughly the same as the smooth curve that
found previously@2#, when we did less accurate calculation
As we shall see shortly, cycles close to this ideal smooth
do exhibit the ‘‘breathing’’ type of motion which the simpl
models imagine. Other cycles do not. Hence it is reasona
safe to conclude that the bottom envelope is the actual (E,t)
curve for the breathing mode.

The second conclusion is that most of the ‘‘resonanc
do not seem to be the same forN532 andN564. Actually,
the number of resonances is larger forN564 than forN
532, and it was also larger forN532 than forN516. This
number is expected to go on increasing withN, and the limit
of N→` is not expected to be simple and smooth. Com
back to whether the resonances agree for the twoN’s, one
should note that the widest resonance forN564 overlaps
with the widest resonance forN532 and that the next two
widest in each case almost overlap. These facts point to
following. For each value ofN there are ‘‘real’’ resonances
— i.e., resonances which remain asN gets large — and
‘‘false’’ resonances — i.e., resonances due to the finitenes
the time mesh and which change drastically whenN changes.
Both kinds increase in numbers asN increases. Both kinds
have the same cause — namely, a simple ratio between
period of this breathing mode and the lower period of so

by
5
n
of

r.

FIG. 4. Cycle on the main breathing line,N564, E5
23.983 5331023, andt5234.5.
8-10
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other mode of oscillation of the system. But the order
magnitude of this ratio is not the same: real resonances
to have ratios of order 1 false resonances tend to have r
of order N. The distinction should become more and mo
apparent asN increases, although there will always be
middle region of ratios, appreciably larger than 1, but app
ciably smaller thanN, where most of the resonances will b
partly real and partly false. In fact, for the comparative
small dimensions with which we have worked so far, this
essentially what happens. The width of the resonances
behaves differently in the two cases. For a real resonance
width should remain stable asN increases. For a false one th
width, usually small, can be highly variable.

Some of these conclusions can be checked by lookin
the nuclear density as a function of space and time. We s
the latter in Figs. 3–6 for four cycles along the main brea
ing line ~or bottom envelope!. All four of them exhibit
simple breathing motion, although it is plain that those
higher energies contain some admixtures of low harmon
By contrast we show in Fig. 7 the density for what appear
be a false resonance: we show two cycles at the same
energy (E50), on opposite sides of the first, very thin,N
532 resonance. The curves show obviously that the bre
ing mode is mixed very strongly with harmonic 7 and, mo
over, that the components of this seventh harmonic in
two cycles are out of phase by 180°, everything else be
the same — a typical resonancelike feature. We show a m
complicated case in Fig. 8. Again we have two cycles aE

FIG. 5. Cycle on the main breathing line,N564, E5
21.959 8131023, andt5251.
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50, this time forN564, on opposite sides of a more ‘‘sub
stantial’’ resonance — i.e., wider and probably partially re
One can distinguish a good amount of third harmonic and
eighth harmonic. Once again the two components of
eighth harmonic are out of phase with each other. We gu

FIG. 6. Cycle on the main breathing line,N564, E520.9
31023, andt5259.9276.

FIG. 7. Two cycles on both sides of the first, very thin,N532
resonance.E50 for both,t5218.6627 on the left,t5218.6648 on
the right. The radii have been omitted for lack of space.
8-11
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without proof, that the third harmonic is probably real a
the eighth false.

VIII. OUTLOOK

We embarked on this work in order to improve by
order of magnitude the accuracy of the calculations. We s
ceeded, but we are now facing new problems.

Our goal has not changed. It is to provide accurate,
pendable calculations, in the mean-field approximation, w
full nonlinearity, of actual physical nuclei. We want to in
clude many shells, we want to include deformation, a
therefore we need to work in two dimensions at least. T
point of this paper was to develop a new method and to
it on the simplest of all closed-shell nuclei, helium. This
now done. We could generate more results for helium
going to higherN — for instance,N5128. This would be

FIG. 8. Two cycles on both sides of a not so thin,N564 reso-
nance.E50 for both,t5255.9164 on the left,t5256.1675 on the
right.
ys

ys

in
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perfectly possible, but it is pointless, given that helium its
is not that interesting.

We intend to go on and apply this method to more int
esting nuclei, beginning with the breathing modes of16O and
40Ca. However, we must also attend to the problem of re
nances which has surfaced as the result of this work. I
imperative that we be able to distinguish between the r
and false resonances. The false resonances just do not b
in a reasonable physical theory. Actually, the more narr
real resonances do not belong either, since they should
eliminated by quantization, as we said earlier. Thus we m
have a way to retain only the reasonably wide real re
nances.

We have been working on this problem for quite som
time now, and we think that we have a solution. Witho
compromising any of the accuracy attained by the method
the present paper, we think that we can Fourier transfo
from the time variable to the frequency variable and th
drop the high frequencies from the equations. In other wo
instead of a time mesh, we would use a frequency cutoff. T
false resonances would be gone, since they are an artifa
the finite time step. And the narrow real resonances would
mostly gone also, since they usually involve mixing wi
higher frequencies than do the wide ones. We intend to p
lish the details once we have accumulated a sufficient col
tion of results.
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