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Thermal quasiparticle correlations and continuum coupling in nuclei far from stability
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The contributions of quasiparticle correlations and of continuum coupling upon the superfluid properties of
neutron-rich Ni isotopes are studied within the modified B®BCS) approximation at finite temperature. The
effect of quasiparticle correlations is included using a secondary Bogoliubov-type canonical transformation
explicitly involving the quasiparticle occupation numbers at temperafuficne effect of continuum coupling
is taken into account via the finite widths of the resonant states. It is shown that the combined effect of thermal
quasiparticle correlations and of continuum coupling washes out the sharp superfluid-normal phase transition
given by the standard finite-temperature BCS calculations. Within the proposed resonant-continuum MBCS
approximation the fluctuations of particle number also become more suppressed especially at high temperature
for nuclei closer to the drip line. Finally, it is found within the same approximation that the two-neutron
separation energy fo#*Ni drops to zero al'=0.8 MeV.
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[. INTRODUCTION ing, responsible for the superfluidity suppression at finite
temperature, is less effective than for a spectrum formed only

It is well known that there exists a sharp phase transitiorby bound states. On the other hand, the energy spreading of
from the superfluid phase to the normal-fluid one in infinitethe resonant states diminishes the pairing correlations com-
Fermi systems at finite temperature. For metal superconducpared to a calculation in which the resonant states are treated
ors [1] and nuclear matter the pairing correlations sharplylike quasibound statgs3,14]. As a result, the critical tem-
vanish at the critical temperaturé,~0.567A(0), where peratureT, of the superfluid-normal phase transition within
A(0) is the pairing gap at zero temperatdre 0[2]. This  the FTBCS approximatiof8—5] is reduced due to the finite
value is obtained by solving the finite-temperature BCSwidth of resonant statd44]. However, the sharp superfluid-
(FTBCS equations for a constant level density around thenormal phase transition still persists within the FTBCS and
chemical potential, where the pairing correlations are strong-T Hartree-Fock-BogoliuboYFTHFB) approximations due
[3-5]. to the omission of thermal fluctuations in these studies.

In finite Fermi systems, especially in small systems such Recently, an improved treatment of ground-state correla-
as nuclei, fluctuations due to the finiteness of the systentions has been proposed in REE5]. This approach employs
become large. Several papers took into account thermal fluthe modified quasiparticles obtained by a secondary canoni-
tuations in the pairing field using the macroscopic Landaucal transformation of usual quasiparticles explicitly involv-
theory of phase transitio$—8] or the static path approxi- ing the quasiparticle occupation numbers. At finite tempera-
mation[9]. Their results showed that the gAgT) does not ture, the quasiparticle occupation number is described by the
collapse, but decreases with increasing temperature, and rEermi-Dirac distribution function and depends on the quasi-
mains finite even at rather high temperature. This has beeparticle energy and temperature. The finite-temperature
confirmed also by calculations using the particle number promodified BCS (FTMBCS) equations have been obtained,
jection[10], as well as by the exact solution of the nuclearwhich include the quasiparticle correlations in the thermal
pairing problem[11]. Modern nuclear shell-model calcula- equilibrium. The numerical calculations have shown that the
tions in Ref.[12] also show that the pairing correlations do modified BCS(MBCS) approximation increases significantly
not abruptly disappear at# 0 because of the existence of the temperature of the superfluid-normal phase transition
pairing fluctuations. The latter are enhanced near the BC$oint until smearing out completely this phase transition in
phase transition point and survive®tT,, where the static  2°Sn[15].
superfluid condensate is destroyed. The aim of this paper is to combine the approaches devel-

In nuclei close to the drip line, the effects of the nuclearoped in Refs[14,15 to study how the continuum coupling
finiteness upon its superfluid properties also show up in anand the thermal quasiparticle correlations affect together the
other aspect. As the Fermi level is close to the continuunproperties of the superfluid-normal phase transition in nuclei
threshold in such nuclei, with increasing the temperature, théar from stability. The paper is organized as follows. In Sec.
nucleons are easily promoted into the continuum part of thél we summarize the main features of the BCS, the renormal-
single-particle spectrum, mainly into the single-particle resoized BCS(RBCS and modified BCSMBCS) approxima-
nant states which are trapped by the centrifugal or/and Coutions as well as their extension to finite temperature. We also
lomb barrier inside the nucleus. The resonant states, whicpresent the basic features of the model, in which the coupling
become now important for the pairing correlations, have &o single-particle resonant states in the continuum is included
continuous energy spreading and therefore the Pauli blockn the MBCS equations at finite temperature. The results of
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numerical calculations are analyzed in Sec. Ill. The general
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conclusions are drawn in the last section. bjzej(ujz_vjz)+26ujvjz Qjupvj +Gof, (8
J!
Il. FORMALISM ) )
A. Pairing Hamiltonian CJ:Z@EiuJUj_G\/ﬁj(UJ _vj)?‘ €Qjujrog
We consider a system of fermions described by the par- 260 up? 9)
ticle creation and destruction operatoaém andaj,, in a i,
spherical mean field, where the single-particle orbitals are .~ faa
labeled by the total angular-momentum quantum numpers djj;=-G Qij,(u u +v Yj = di’j. (10
andm. The pairing correlations of the system is induced by _ 5
an attractive two-body force with the pairing const@nfThe 9;(1")=Guju;vQ;.(uj, —vj) (13)
Hamiltonian of such system is given as
G
1 . hij =5V Q. (UPof +viul) =hyj, (12)
H=>, €2 majm— 70 > aJmaJmaJ mdjm . (1) I VEREEEIE E TR I
jm ji"mm’
Cljj’:_Gujvjuj’Uj'ZQj’j- (13)

where the sing stands for the time reversal operation, e.g.,
ajm=(— 1)~ Ma;_m. Using the canomcal Bogoliubov trans-
formation from the partlcle operatoralm andajn, to the
quasiparticle onesajm and a;n,

B. BCS approximation

The standard BCS equation is usually obtained making
use of the variational procedure to get the minimum of the
average value oH—AN (\ is the chemical potentialN
zEjmaijajm is the particle-number operajaover the BCS
ground state|BCS), which is taken as the quasiparticle
vacuum, i.e.,

.
ajy=

)

the Hamiltonian(1) is transformed into the quasiparticle rep-
resentation, whose explicit form is given [ds,17]

T
Ujar Jm-l—v Ajm, Am=Ujajm—Uj®jm,

@jm|BC=0. (14)

H=a+2 b]./\/]‘f'z C](A}.‘FAJ)'FE d“rAIAJr
: : . This approximation leads to the following average values for

+2 gj(] )( ATN+NA )+2 h“ (.,4 AT commutator(5),

i’

(BCY[A4;,A]1BCY =3, (19

+AJ,A]~)+Z QNN 3
i’

because the average of the quasiparticle occupation number
nP®in the BCS ground statBCS) vanishes due to defini-
HereVj is the operator of the quasiparticle number onjthe tion (14),
shell, Whl|eAT and 4; are the creation and destruction op- .
erators of a pair of t|me -conjugate quasiparticles:
p jugate quasip nfS=(BCY a/na;m|BCS = Z—Qj(Bca/\/j|Bcs>=o.

(16)

M:E aJTmal'm’ _\/__ E almajm’
m The average valu€l5) means that, within the BCS approxi-
mation, the quasiparticle pair operatoat'qJr and A; behave
like bosons(the Cooper paips just violating the Pauli prin-
ciple between them.
Within the BCS approximation, only theeterm in Eq.(3)
contributes, which leads to the well-known BCS equations to

determine the gap and chemical potentia:

1
=AD" Q=j+3 @

They obey the following exact commutation relations:

t N
[Aj'Aj']:5li'(1_Q_j)’ 5 -\
J
[N Al T=28 AT, [N A ]==28.4;. (6 "

The coefficients in Eq(3) are where the smgle particle enerqué 5
term — Gv] is neglected, ok = €;—Guj if the self-energy
term |s included. The quaS|part|cIe energy iE;

=(e/ —\)?2+A% The u; andv; coefficients are given as
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72 E.

1 € —\
u2=—(1+ '
i

| 02:_(1_ fj_)\). 19 Z=G; Q;ujv;(1-2n)), (22)

The a term [Eq. (7)] is actually the ground state energy e —\
within the BCS, since this is the only term that remains in the N= >, Q| 1- J_(l_an) ) (23)
average over the quasiparticle vaculBCS), where the sec- ] E
ond term in Eq(7) can be now replaced with A%/G using
Eq.(17). S . We shall call Egs.(22)—(23) RBCS equations due to the
The violation of the Pauli principle within the BCS ap- renormalization factor (* 2n;), which makes the renormal-
proli(llinatlon O,'UIG to thef E:]CS gr(_)ulnd stdga4) causes the ;o4 quasiparticle-pair operatord] = A/\1-2n; and A;
well-known violation of the particle-number conservation. _ . ; o
As the result, the BCS approximation induces the followin = A/ 1 2n; behave now like bosons. The ql_JaS|part|pIe
' PP goccupatlon numben; can be calculated approximately in
fluctuations of the particle numbgt7]: ) . . e
terms of the backward-going amplitudewithin the renor-
malized RPA as described in R¢fL9]. The particle number

SN?=(BCY N2|BCS>—<BCSN|BCS>2=4Z quJ?vJ? fluctuationséN? (19) have now the following fornj17],
i

~ O ONZ= 5N2+ N3, (24)
=A2> . (19)
=
] where

These fluctuations can be roughly estimated using a symmet-

ric ( -degenerate two-level model with the shell distance 2_%2% q 1-2n;

equal to e. In this caseE;=GQ (Q=N/2) and 6N? oNi= —~ T gz

=2A?/(G?N). Therefore, in finite small systems such as !

nuclei, when the particle number is not sufficiently large, the

effects of particle-number fluctuations must be taken into 5 n_ 5 <5
account. The BCS equatiorf47) do not have a nontrivial SN3=22> ng[(fj —M)(1—n)+mAc]. (25
solution below a critical valu&,. of the pairing interaction . j

strengthG, at which the BCS approximation breaks down.

For example, in the above-mentioned two-level model, it is D. Finite-temperature BCS (FTBCS) approximation
easy to find thaG.= €/(2Q)) (neglecting the self-energy cor-
rection) [16] or €/(2Q—1) (including the self-energy cor-
rection) [18], below which the BCS pairing gafy becomes
imaginary.

In this section we show that a direct result of the RBCS
equationg22) and(23) is the FTBCS equations.

The major assumption in the statistical approach to the
theoretical description of nuclei at finite temperature is the
) o replacement of the individual compound systems, each with

C. Renormalized BCS(RBCS) approximation a given intrinsic excitation energy and particle number, by

A simplest way to restore the Pauli principle for the qua-the grand canonical ensemble of nuclei in thermal equilib-

siparticle pair operatorst] and 4; is to introduce a new fium. The nuclear temperatufe (= 8~ *) and chemical po-

ground statd0), in which the correlations among quasipar- tential A determine the average excitation energy and aver-

ticles lead to a nonzero value of the quasiparticle occupatioﬁgeb 'gial.rtt'cice numbert of thf sytstehm, resp_ectlvely. The
numbemn; #0. By doing so, we obtain probability for a quantum system to have a given eigenen-

ergy is determined by the density mattixrather than by a

— — (6| N |6> pure wave function. The average val@) of an observable
o[A AT 0y=5| 1- =T =5(1-2 P o .
(O[4;, il )=y Q, = Jjj( np), O is given as the statistical average over the grand canonical
(200  ensemblé

instead of the quasiboson approximatid®). Now n_jis the (@)=Tr{@D}. (26)
quasiparticle number in the correlated ground staje

. . 1 A gquantum mechanical ground staté0(B)) so that
nj=(0|al-Tmajm|0)=m(0|./\/'j|0>¢0, (21 (0(,8)|@\0(ﬁ))='|_’r{@2)} does not exist in the physical space
] spanned by the eigenvectdi$ with eigenvalueg; of Hamiltonian
(3) because it is impossible to construct a st3d@(B))
instead of Eq(16). Repeating the same variational procedure:gjfj(lg)|j> so thatf;(8)* f,(B) = exp(— BE;) 5 /Z with f,() be-
with the Hamiltonian(3) as it was done to derive the stan- ing numbers. In order to construct such state, the founders of the
dard BCS equation, but taking into account Ef1), one  thermo field dynamic$20] had to introduce a fictitious dynamical
obtains the following equations: system, whose physical interpretation still remains to be clarified.
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The formal solution for the density operatbris found from  partséN? and N3 of the particle-number fluctuations in Eq.
the stationary requirement for the grand poterflain ther-  (25) can be called the quantal and thermal fluctuations, re-

mal equilibrium spectively, as the former exists =0 while the latter ap-
_ _ pears only afl # 0 within approximation(29). Although, due
6Q/6D=0, Q=E-AN-TS, (27 o the renormalization factdrl —2n;(B)], the quantal fluc-

tuationsﬁNi of particle number decrease with increasihg
apd vanish aff ; where the BCS gap collapses, the thermal
ﬁuctuations&N% increase with increasing [See Fig. 1a) of
Ref.[17]]. These thermal fluctuations of particle number sig-
nificantly reduce the accuracy of the FTBCS approximation.

where E=Tr{HD}, N=Tr{ND}, and S=—Tr{DInD} are
the average energy, average particle number, and entropy
the system, respectively. As the result the density opefator
is given as

D=7l AH W) Z_Tr{e AH N} g=T1,
(28) E. Modified BCS (MBCS) approximation

Since the quasiparticle Hamiltoni&B) can be represented as ~ Because of Eq(21), the correlated ground staf@) (20)
H:EjEjaijajm within the BCS approximation, the quasi- S N0 longer the vacuum of the BCS quasiparticle operators

particle occupation number is defined in the average over th&jm and ajm. A further step to improve the treatment of
grand canonical ensemble as ground-state correlations has been taken within the MBCS
approximation and the modified RAAS5]. This formalism

proposes that the quasiparticles are modified by the correla-
(29 tions in the correlated guasiparticle ground sﬁ)eaccord—

ing the following secondary Bogoliubov-type canonical
The proof that, when the residual interactions beyond théransformation between the quasiparticle operatofs,and

quasiparticle mean field are neglected, the occupation numy;,,, and the modified ones?}rm and ajp,
bern;(B) of independent quasiparticles is indeed determined

(B)= T a - =
ni(B)=Tr{ajna;mD} L1

by the Fermi-Dirac distributiof29) is given in the Appendix al=Ujal+Vjaim, am=Uam—Vial,. (31
A. The statistical approach has been demonstrated to be o _
overwhelmingly accurate for highly-excited nuclei. The coefficientd); andV; are normalized as usual,

As the quasiparticle occupation numivgr(21) is not zero
within the RBCS approximation due to the contribution of
residual interactions beyond the BCS approximation and ra
dom phase approximatiofRPA), its statistical equivalence _ o ,
does I?wt becopnge exacntMO((rz) a)tTaﬁO since the Igttergives f|ed qan|part|cIes in the correlated ground st van-
zero in the zero-temperature limit. Moreover, the presence dgphes, i.e.,
the residual interactions also smooth out the Fermi-Dirac dis-
tribution as has been shown a long time ago by Bogoliubov
and Tyablikov[4,21]. However, in the case of small quasi-
particle damping due to coupling to collective degrees o
freedom as in hot nuclei, such corrections are negligible as ol =U al —V.a- (34)
has been shown in Ref22]. Therefore, except for a very jm- =M Em
low-temperature region, where quantal fluctuations are imyq calculate the quasiparticle occupation numbef21), we
portant, one can neglect the effects of residual interactions ogan easily see that
the quasiparticle correlations so that we have

Us+Vve=1, (32

Mand are determined so that the average vajuef the modi-

vj=(0]a}, ;| 0)=0. (33)

TJndeed, using the inverse transformation of E2{), namely,

—/nl T N—112/00~T o 10\ 2700 0 ~ T
njznj(ﬁ) at T#0. (30) nj=<0|ajma’jm|0>_uj<0|ajma'jm|0>+vj<0|ajma’jr'f]|o>

, , , =V? (35
By doing so, we easily see that the RBCS equati@2s and i

(23) become the well-known FTBCS equatig#s5]. Thus, fE ina E lizatior(32
by using averag€29) and approximatior(30), the FTBCS because of Eq33). Using Eq.(35) and normalization(32),

. . we obtain
equations also take into account a part of the effects of the
Pauli pr||_"|C|pIe between the qugsmartlcle pair o_pera_m;fs _ V= Jni, U= /1—n,-. (36)
and A; via the thermal correlations of the quasiparticles in
the grand canonical ensemble. The secondary transformatid81) with U; andV; coeffi-

The factor 1-2n;(B) effectively decreases the pairing cients given by Eq(36), wheren; is the quasiparticle occu-
strength with increasing the temperature until the pointpation number(21) was proposed for the first time in Ref.
where the FTBCS approximation collapses. This behaviof15].
inspired speculations on the superfluid-normal phase transi- Using Egs.(31) and(36) in combination with the original
tions at finite temperature in nuclei. In reality, the violation Bogoliubov transformatiorf2), one obtains the transforma-
of the particle-number conservation makes the FTBCS equdion from the particle operators directly to the modified qua-
tions unreliable at high temperature. Indeed,Tat0, the siparticle operators in the following forfii5]:
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LT PP very good. Therefore, we will use this approximation for all
al =ual + , amp=u . 3 ) . .
im= Ui @m T O s Sjm =) &jim U Yjm S the numerical calculations in the rest of the paper.
We call the MBCS equation§39) and (40) within ap-
prOX|mat|on(30) the FTMBCS equations. The expression of

uj andv] in terms ofuJ andv; at the right-hand sid&hs) of
=y /1—nj+vj\/ﬁ, U_j:Uj /_1—nj—uj\/n—j. (389  Eds.(39) and(40) is important to reveal the dependence of
the pairing gapA and the modified chemical potentllalon
Due to definition(33) the average value of the commutation n;(), i.e., on temperaturg of the usual quas|part|c|as
relations between the modified quasiparticle-pair operatorsnda. im since the average is taken in the canonical ensemble
AT andA in the modified ground state83) is exactly the  of usual quasiparticles in thermal equilibrium. These equa-
sa_me as Ec(]_5) for the quasiparticle-pair operata;st and tions differ from the conventional FTBCS equatid@®) an_d .
Aj in the BCS ground sta{@CS). The transformation of the (23 [n;=n,(8)] by the second terms at the rhs, containing
pairing Hamiltonian(1) into the modified quasiparticles],, V" (B)[1—-n;(B)], which take into account the correlations
— . . L = induced by thermal effects. The presence of the last term at
and ajy, also has the form identical to E¢B) with (u;,v;) , — .
. —~ — . + the rhs of Eq.(39) increases the valu&, of the critical
replacing (i;,v;) and (e} ,ajm) replacing @, ,ajm), re

spectively. The MBCS equations, therefore, has exactly thifmperature at which the gdpvanishes. Indeed, the critical
same form as the standard BCS equaﬂoh‘s where the temperatureT, is determ;ned2 as the value @f at which
coefficientsu; andv; are replaced withy; andv;, i.e., 2;QVni(B)[1-n;(B)](uj—vj) is positive and becomes
equal to =;Q;u;v;[1-2n;(B)], depending on the shell
_ _ structure of the given single-particle energy spectrum. Since
A=G> Qjupy; the absolute value of the last term at the rhs of @) is
. suppressed largely due to the facton;(B8)[1—n;(B)]
B 2 > 2 which is much smaller than (12n;) in the low- temperature
=G j OL=2nujp; = Vyn(1=ny(ui=v)], region, it is easy to see th@t>T.. At T>T,, the gapA(B)
(39) becomes negative and the results given by the FTMBCS

where the coefficiente_j andv_j are related to the conven-
tional Bogoliubov coefficients;; andv; as

39 areno longer reliable. Finally, based on E@kl) we also see
that the FTMBCS equations suppress completely the thermal
N=2>, QJJJ? fluctuationsSN2(3) of the particle number.
i
2 F. Coupling to continuum single-particle states
:2; Q;[(1—2n)v?+n;—2n;(1—njuju;],

The extension of the conventional FTBCS equations to
(40) include the contribution of the continuum single-particle
states has been performed in Hé#]. The treatment of both
using Eq.(39). It is easy to see that the MBCS approxima- continuum and temperature effects in stationary models such
tion suppresses completely the paﬁ@zz’ for fluctuations  @s the BCS approximation is complicated by the fact that the

. . o — particles scattered in the continuum are permanently emitted
fr%g)eggpirst;ﬁlgetrr];r:nstf)c?rrrrltr;ir:fﬂgOvegliit%riﬁund ste (33). from the nucleus, producing a nucleonic gas in thermal equi-

librium with the nucleus. Therefore, in order to calculate the
quantities related to the nucleus itself, the contribution of the
SN2=(0|N?|0)— (0|N|0)2=4, Qj =K Z : nucleonic gas should be subtraci@g]. As discussed in Ref.

i i [14], within the BCS approximation this can be done by
evaluating the contribution of the continuum by the con-

— SN2 N2
=06N1, oN3=0, (41) tinuum level densityg(e) defined by
because of definitiof33). 2 ds,
The quasiparticle numbe; (35), which enters Eq<36)— 9(e)=— > Te’ (42
J

(40), in general, should be calculated self-consistently using

the MBCS (or RBCS and the modified quasiparticle RPA

(MQRPA) [or renormalized QRPARQRPA] equations, as whered; is the phase shift related to the nuclear mean field.
has been proposed in RgL5]. These elaborated calculations Therefore the FTBCS equations with continuum coupling
are presented in Appendix B for both of the schemesgan be obtained by writing formally the FTBCS equations
namely, the RBC$RQRPA and MBCS-MQRPA ones, us- (22) and(23) [nj=n;(B)] in terms of the bound states level
ing the Hamiltonian(3). In Sec. 3 of Appendix B, the results density g,(e) and then replacin@,(e) by the total level

of numerical calculations are compared with those obtainedensity, i.e.gy(€) +g(e).

whenn; is replaced by the Fermi-Dirac distribution(g) of Using the same prescription we can also include the effect
noninteracting quasiparticled~ermi ga$ [Eqg. (29)]. This  of the continuum coupling into the FTMBCS equatid3$)
comparison shows that approximati¢80) turns out to be and(40) with nj=n;(5):
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- TABLE I. Neutron single-particle states used in calculations for
A:G[Z Q;[(1=2n))ujp;—n;(1—n)(u?=v)] 68-84Nj isotopes.
i
1 Shell State €; (MeV) I'j2 (MeV)
- - — —
+3 f g(e)[1-2n(e)]u(e)v(e)~n(e)[1-n(e)] o 4229 0171
50-82 X 3.937 1.796
X u2 € _vz € d6 , 43) 1h11/2 3334 0014
[ute) (o]} ] ( 2d3, 1.338 0.489
3sy, —0.284
2d5/2 _080
N=2> Q;[(1-2n)v?+n;—2yn;(1-n)uj;] 28-50 Yoo —4.398
] 1fs, —5.623
2pl/2 _5649
+ J g(e){[1—2n(e)Jv?(€)+n(e) 2D ~7.836
—2yn(e)[1—-n(e)]u(e)v(e)}de, (44) 1
1 20
wheren(e) is obtained fromn;(3) replacing the discrete g(e)=; E (2j+1) 1 2 (47)
single-particle energy; with the integration parametet In ! (e— e]-)2+ —F-)
a similar way we can now introduce the continuum contri- 2

bution to the total energy of the system, calculated within

the ETMBCS approximation wheree; andI'; are the energy and the width of the reso-

nance state with angular momentynrespectively. One no-

tices that in the limit of zero widths, the rhs of E@7)

becomes a sum of functions, recovering the level density

_ 2 N 1—n, ' : . .

5_2; Q[ (1=2n))vi+n;—2yni(1-njujvj] of the bound spectrum. The numerical calculations discussed
in the following section are obtained with the integration in

) Eqgs.(43)—(45) carried out within the region near the single-
+f g(e)ef[1—2n(e)Jv(e) +n(e) particle resonances, which is defined|as ¢|<2T; .
—2n(e)[1—n(e)Ju(e)v(e)}de—A%G, (45) . NUMERICAL RESULTS

In order to illustrate how the continuum and the thermal
wheree; are the single-particle energies, supposed here to bguasiparticle correlations affect the properties of open-shell
temperature independent quantities. This assumption is supuclei far from g-stability line, we solved the FTMBCS
ported by the Hartree-FockiF) calculations at finite tem- equations plus continuum couplirig3) and (44), discussed
perature, which show that far<5 MeV the variation of the in the preceding section, for neutron-rich Ni isotopes. We
single-particle energies with the temperature is negligibleanalyze how the pairing correlations are changing when a
[23,24]. The excitation energf* is defined using Eq45)  few neutrons are subtracted or added to the doubly closed-
as shell nucleus’Ni, which is the heaviest Ni isotopes pro-
duced at present. Since all the calculations are performed at
finite temperature, we drop the prefix “FT” when addressing
to the FTBCS and FTMBCS equations hereafter.

The neutron single-particle states used in the present cal-

As has been pointed out in R¢L3], although one starts with culations are shown in Table I. They were calculated using a
a constant pairing interaction, in the resonant-continuumyVoods-Saxon potential with the depy=40 MeV, radius
BCS equations the variation of the matrix elements of thdRo=1.27 fm, and surface thickness=0.67 fm. For the
interaction in the energy region of a resonance is in facSPin-orbit interaction we use a Woods-Saxon potential with
taken into account through the continuum level dengity). the same values for the radiRg and surface thickness but
This effect, related to the width of resonant states, is lost ithe depth is changed to the valig,=21.43 MeV. These
the continuum is replaced by a set of discrete states, e.g., ®rameters_are chosen so that the obtained single-particle
selected by a box of finite radius. One should notice also thagPpectrum fofNi is similar to that given by the Skyrme-HF

in the equations above the continuum level density cancelgalculations[13]. The calculations used the single-particle
the contribution of the nonresonant continuum, for which theenergiese; = €; in Egs.(17), neglecting the self-energy cor-
derivative of the phase shift is practically zero. The con-rection—ijz, as its effect on the gap a0 turns out to
tinuum usually contributes through a few narrow and wellbe negligible[15]. As seen in Table |, the structure of the
separated resonant staf@8,14]. Therefore, one can replace standard major shell 50-82 is drastically changed close to
in the equations above the continuum level density with  the drip line. Thus from all five states which typically form

E* =&(T)—&(0). (46)
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number, the slopes of two curves are getting closer.2fur,

in the temperature range 0.5 Me¥T=<0.6 MeV, the gap
obtained within the quasibound-MBCS drops even faster
than that given by the quasibound BCS.

Taking the widths of the resonant states into account, the
MBCS predicts a slower decrease of the gap than that given
by the quasibound MBCS as the temperature increases. This
is due to the fact that, with the increasing temperature, the
Pauli blocking becomes less effective due to the spreading of
68 70 72 74 76 78 80 82 84 the resonant states. The gap obtained within the resonant-

A continuum MBCS remains finite as a long tail extended to
T>2 MeV. In general, we found that by introducing the

FIG. 1. Pairing gaps for Ni isotopes calculated at zero tempera- . .
ture within the quasibound BCSopen circles and resonant- width of the resonances into the MBCS equations the sharp

continuum BCS(full square$. The dashed and solid lines are drawn _SUperﬂu'd'normal ph_ase tr_ans't'on IS W‘?‘Shed out for all _the
to guide the eyes. isotopes under consideration. As seen in Fig. 2, for the iso-
topes close to the drip liné?#Ni, the gap remains finite at

) _ high temperatures, far beyond the critical temperature pre-
this major shell, only two statesdz, and 3,,, are bound,  gicted by the quasibound-MBCS calculations. At such high
while the rest of the three statesda, 1hii, and 72, temperatures the Fermi distribution becomes smooth and
are resonant states. Moreover, we can see that the stafe 2 covers more and more levels in the valence shell 50-82 as
which usually belongs to the next major shell, appears nowvell as in the major shell 2850 so that the latter starts to
as a resonant state with energy below the st@@,1 The  contribute significantly to the pairing correlations. This can
widths of these resonant states are shown in the fourth cobe seen in Fig. @), which displays the pairing gap calcu-
umn of Table I. Their effects on the pairing correlations, bothjated after removing one, two, three, and all four levels from
in resonant-continuum BCS and MBCS equations, appeahe major shell 28-50, starting from the lowest level. The
through the continuum level density. In order to see theseonstantG is changed so that the gap remains the same for
effects we perform also a calculation, in which the resonan|| the calculations at zero temperature. The results show that
states are treated as quasibound states, i.e., replacing in tffe coupling to a smaller number of bound states in the shell
BCS equations the continuum level density with the Difac 28-50 decreases the critical temperature of the superfluid-
function. These calculations will be quoted below as quasinormal phase transition back to a value close to that obtained
bound BCS and quasibound MBCS. The pairing matrix elewithin the quasibound BCS.
ments are considered equal with the const@anin all the The contribution of the major shell 28—50 to the pairing
calculations. We chose foG the value 0.214 MeV. This correlations increases with the temperature, and therefore the
value gives within the quasibound BCS a pairing gap of 1.3actual value of the gap can also increase at high tempera-
MeV for Ni at T=0, as in Ref[14]. The pairing gaps at tures, if the Pauli blocking is not very strong. This effect can
T=0 obtained for the sequence of Ni isotopes under considbe seen in Fig. @), where the gap irt*Ni increases from
eration are plotted in Fig. 1. As can be seen in this figure, th®.06 MeV atT=1.5 MeV to a value of 0.2 MeV afl
gaps are reduced by including the effect of the widths of=6 MeV. As shown also in Fig. ®), this effect can be
resonant states in the BCS equations, in agreement with thfiade more evident by artificially reducing the energy of the
previous findingg14]. The same reduction of the gap due to Jowest resonant statedg,. This numerical test shows that
the finite widths of the resonant states is observed at finitghe effect of gap increase at h|gh temperature may be stron-
temperature, as shown in Fig. 2. As expected, this effect iger for those drip line nuclei which have a resonant state
enhanced in the vicinity of the drip line, but for all the iso- ¢lose to the continuum threshold.
topes shown in Fig. 2, the curvégT) obtained within the The MBCS equation$39) and (43) also suggest that, in
resonant-continuum BCS and quasibound BCS are almosgfrinciple, thermal effects may induce pairing correlations
parallel to each other. Moreover, although the critical tem-even for doubly closed-shell nucleus at finite temperature. In
perature is significantly diminished due to the finite widths offact, for 78Ni, we found that, within the resonant-continuum
the resonant states, the raﬁQ/A(O) remains close to 0.57 MBCS, the gap becomes nonzeroTat 0, increases with
in both calculations. increasing T to reach its maximal value equal to around 0.07

The situation changes when together with the continuunMev at T=0.68 MeV, then decreases again to vanisi at
coupling we introduce the effect of the thermal quasiparticle= 1.2 MeV. However, a maximal value of 0.07 MeV of the
correlations. From Fig. 2 one can see that, as compared Withajring gap cannot be considered to be physically significant.
the quaSibOUnd BCS, the quaSibOUnd'mOdiﬁed BCS prediCtS Shown in F|g 4 is the temperature dependence of the
a slower decrease of pairing gap with increasing temperatur@ycitation energyE*. The slope of the excitation energy is
as has been noticed previously in the calculations using glightly smaller within the quasibound BCS, where the effect
bound spectrum within the MBCS approximatifitb]. The  of the width of resonant states is neglected, as has been dis-
sharp superfluid-normal phase transition occurs at a muchyssed previously in Ref[14]. Within the resonant-
higher temperatur& >T.. However, as the thermal quasi- continuum MBCS, the persistence of the pairing gap at high
particle correlations decrease with increasing the particléemperature significantly reduces the excitation energy. Al-

A (MeV)
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(e) "°Ni

A (MeV)

A (MeV)

A (MeV)

A (MeV)

1.2
T (MeV)

FIG. 2. Pairing gaps for Ni isotopes as a function of temperature. The dashed, dotted, dash-dotted, and solid lines represent the solutions
of the quasibound BCS, resonant-continuum BCS, quasibound MBCS, and resonant-continuum MBCS, respectively.

though the difference between different approximations unereases with increasingy In nuclei close to the drip line, the
der consideration in the excitation energy is reduced upomparticle-number fluctuations are more suppressed within the
increasing the mass numb&rthere remains a clear effect of MBCS approximation especially at high temperature.
coupling to the continuum in at high temperature for all iso- A particular interest in the study of unstable nuclei is the
topes under consideration. identification of the location of the two-neutron drip line.

The temperature dependences of the particle-number flugyne of the quantities that provide the relevant information of
tuations \/6N? (i=1,2) within the BCS and the resonant- the two-neutron drip line is the two-neutron separation en-
continuum MBCS approximations fdf"**Ni are displayed ergy S,,, defined as the difference between the energy for
in Fig. 5. The quantal fluctuations of particle number ( the (N—2)- and N-neutron systems with the same proton
=1) decrease and vanish’at T, while the thermal fluctua- number, i.e.S,,=&(N—2,2) — (N, Z) [25]. A nucleus with
tions of particle numberiE2) increase with increasind N neutrons is unstable against the emission of a neutron pair
within the standard BCS approximation, as has been disif S,, becomes negative. The nucleus is then beyond the
cussed in Secs. I D, Il E, and RéfL7]. Meanwhile, within  two-neutron drip line. Using this quantity, it has been found
the MBCS approximation, only/SN? survives, which de- by the recent continuum Hartree-Fock-BogoliubthFB)
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1-2 T T T T T T T T T

1

0.8
< S
0.6 ©
s =
< 04 < 0.4
0.2
0
0 0.4 0.8 1.2 1.6 2
T (MeV)

FIG. 3. Pairing gap fof*Ni obtained within the resonant-continuum MBCS as a function of temperature. The thick solid line is the same
as in Figs. 2n). In (a), the thin, dashed, dotted, and dash-dotted lines are results obtained after removing one, two, three, and all four levels
from the major shell 28—-50, respectively, starting from the lowest level. The thin solid lings iapresent the results obtained using the
single-particle spectrum from Table |, in which the energy of the lowest resonant state is reduced to 1, 0.9, 0.8, 0.6, 0.4, and 0.2 MeV, as
indicated on the curves, respectively.

calculations in Ref|26] that the heaviest bound Ni isotope is ing into account the effect of their widths in terms of the
88N continuum level density. The calculations of the pairing gap
The two-neutron separation energg calculated within ~ and excitation energy have been done for neutron-rich iso-
the BCS and MBCS approximations are plotted in Figa) 6 topes®~#Ni. The results show that the combined effect of
and @b), respectively, against the mass numBgor the Ni  the thermal quasiparticle correlations and of continuum cou-
isotopes under consideration at several temperatures. THENg reduces the pairing gap in the low-temperature region
coupling to the continuum via the widths of the resonantand Wa_shes out the sharp superfluid-normal phase tra_nsmon
states are taken into account in both approximations. Théound in the standard FTBCS and FTHFB calculations,
results obtained within the quasibound BCS and quasibounthich neglect these effects. We noticed that at high tempera-
MBCS are very similar to those shown in this figure. It is tures the smooth decrease of the gap is partially caused by
seen that the decrease $f, with increasingA is smoother the spreadlng Wldth_of resonant states, which m_ake the Pauli
within the MBCS approximation than the BCS one, espe-blOCk'”g less effective. The qu<_:tu_at|ons of particle nur_nber
cially with increasing temperature. This is a direct conse-2r€ also more suppressed within the resonant-continuum
quence of the smooth temperature dependence of the pairifdBCS approximation, especially at high temperature and for
gap within the MBCS discussed previously. A particular in_nucl@ _closer to the drip line. The results obtained suggest
teresting feature revealed by this figure is the reduction ofhat it is more reliable to use the proposed approximation
two-neutron separation energy with increasigyithin the  rather than the conventional FTBG8r FTHFB) formalism
MBCS approximation for the isotopes close to the drip line.for the study of superfluid properties of nuclei close to the
Thus, the value 08,, for 8Ni drops from around 1 MeV at  drip line at finite temperature. _ _
T=0.3 MeV to almost zero alf=0.8~1 MeV [see Fig. Two interesting f_eatures, from our point of view, have
6(b)]. This does not happen within the BCS approximationbee” observed Wlthln this work. The_flrst featgre is that the
[See Fig. 6a)]. This observation suggests that thermal qualWo-neutron separation energy obtained within the MBCS
siparticle correlations, which are taken into account within@PProximation for*Ni reaches zero at temperature around
the MBCS approximation, may cause the drip line to beT=0.8~_1 MeV. This suggests th_at the thermal quaS|par_t|cI_e
reached earlier in mass units at finite temperature. In thfuctuations may cause the drip line to be reached earlier in
present example, the two-neutron drip line is reached af@ss units compared to the zero-temperature case. The sec-

84N i.e.. at two mass units earlier, &t=0.8~1 MeV. ond fc_—zature is a weak increase of the pairi_ng gap with in-
creasing temperature at>1.5 MeV for nuclei close to the

drip line, and the enhancement of this effect when the energy
IV. CONCLUSIONS of the lowest resonant state is artificially pushed close to

In this paper we have studied how the thermal quasiparzero' These observations may serve as a hint to search for

ticle fluctuations and the continuum coupling affect the pair_stronger effects of this kind in drip line nuclei at finite tem-
ing correlations in neutron-rich Ni isotopes. The thermajPerature.

guasiparticle correlations are introduced making use of a sec- ACKNOWLEDGMENTS

ondary canonical Bogoliubov-type transformation, which de-

fines the modified quasiparticle operators. The latter depends The authors are grateful to Dr. N. Sandulescu for his in-
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FIG. 4. Excitation energies for Ni isotopes as a function of temperature. The notations are as in Fig. 2.

APPENDIX A: OCCUPATION NUMBER FOR where (- --) is the average over the grand canonical en-
INDEPENDENT QUASIPARTICLES semble(26) with density operato(28). The sigry . . 3
denotes the fermion commutatdantlcommutatdr The
magnetic quantum numbaeartis omitted as the result does not
ticle occupation numben;(f) at finite temperaturg29), depend on it. The equation of motion for the Green function

which was given for the T'rSt _tlme In Reﬁé‘]- . . (A2) is given following the standard method of double-time
We consider the Hamiltonian of noninteracting quasipar-

ticles with energies; in the form Green functiong4] as

This appendix summarizes the derivation for the quasipar-

dG;(t—t) , ,
H— z Ejalnam. (A1) i~ g = ot +EGy(t-t'), (A3)

and introduce for them the double-time retarded Green funcMaking the Fourier transform
tion G;(t—t') as[4]

Gy(t-t)=—i0(t—t)({ay(0.al(t)]),  (A2) oit-t)=| e @e e a0
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Gi(E)= t 1 A6
(B)= 5 e (A6)
g Using the spectral representation for the retarded Green func-
R tion (A2), one obtains
<
Gj(w-i-is)—Gj(w—is):—i(eﬁ“’-i-l)Jj(w), (A7)
where o is real, e—0 (¢>0), andJj(w) is the spectral
intensity, which defines the time correlation function for qua-
siparticles as
%— ]—'j(t—t’):<a]-T(t’)aj(t)>Zfﬁw\]j(w)efi“’(tft’)dw.
- (A8)
Inserting Jj(w) from Eq. (A7) to Eq. (A8) and using the
S-function representation
s 1 1 1 ) A9
=R (X)_ﬁ X—ie x+ig)’ (A9)
C\]Z._
< one finds
—iEj(t—t")
(af () aj(t)=—r——. (A10)

efEi+1

By settingt=t’ in Eq. (A10), one obtains the Fermi-Dirac
FIG. 5. Particle-number fluctuationgsN? for *"*®Ni as a distribution for the average quasiparticle numiog¢s) in
function of temperature. The dashed and dotted line sh/d_Mf Eq. (29).
and \/6N2, respectively, within the BCS. The solid line stands for

VONi within the resonant-continuum MBCS. APPENDIX B: SELF-CONSISTENT CALCULATIONS OF

. . . . QUASIPARTICLE OCCUPATION NUMBER
and using the integral representation function

1. QRPA, RQRPA, and MQRPA equations
a. The QRPA

The standard QRPA operators, called phonon operators,
have the following form in the present pairing Hamiltonian
one finds 3):

1 (= .,
5(tft’)=EJ: e E-U)gE, (A5)

Szn (MeV)
San (MeV)

FIG. 6. Two-neutron separation energies as a function of the mass nénftneNi isotopes at temperaturds= 0.3 (thick solid line), 0.5
(dashed ling 0.6 (dotted ling, 0.8 (dash-dotted ling and 1 MeV(thin solid line. (The lines are drawn just to connect the points at given
values ofA in order to make the trend more visibléThe results obtained within the resonant-continuum BCS and resonant-continuum
MBCS are shown ir(@) and (b), respectively.
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” y 5!)h“r

1
Bjjr=2|1- Q, 7
(B7)

Q=2 (XWAl-Y"4), Q,=(Q)T, (B A =2(E+2q;)s; +d,
J

whereAJr and.A; are defined in Eq4). The QRPA ground

state|QRPA} is deflned as the vacuum for the phonon op- b. The RQRPA

erator, i.e.,Q,|QRPA=0=(QRPAQ!. The 0" excited The collapse of the BCS approximation and QRPA has the
state|0*) is obtained by actingQ! on this vacuum, i.e., same origin of neglecting the Pauli principle between quasi-
|0")=Q!|QRPA). The excitation energyw, of the state particle pairs operators in the BCS approximatiq. (15)]
|0*), and the amplitudeX (" and Y{" are found, respec- and the quasiboson approximatit®g). The Lipkin-Nogami
tively, as the eigenenergy and the components of the eigemnethod27] approximately corrects this inconsistency within
vector of the QRPA equation, which is derived from the fol-the BCS approximation. For the QRPA this is done by the

lowing equation of motion for the Hamiltonia(3): RQRPA.
The essence of the RQRPA is to replace the quasiboson
(QRPA[5Q,[H,QT1]|QRPA approximation in the form of EqB3) with the average value

of the commutator

=0,(QRPA[5Q,Q]IQRPA. (B2 ) )
In the standard way of derivation of the QRPA equations, the <RQRPA[A' ’A”]lRQRPA} Pidir Piml znj(ég)
BCS equation is solved first. Then theandb terms in the
Hamiltonian (3) are replaced with the BCS result, which is in a new ground statt)RQRPA), where the correlations be-
Hgcs=2jE;N . Using the exact commutation relatiots yond the QRPA due to the fermion structure of the quasipar-
and (6), we see that, among the remaining terms of 6. ticle pairsA;r and.4; are taken into account, namely,
which do not contribute in the BCS, tt&; h, and q terms

start to contribute within the QRPA. Theterm andg term 1

do not contribute since, in the commutation with tﬁe phonon ”?:E<RQRPAM|RQRPA>¢O' (B9)
operators(B1), the former gives a number, while the latter

leads to the terms~AjTAjT,, ~A1TA,-, , and A(1 The phonon operators are renormalized as

— N 1Q;), which are left out by linearizing the equation of 1

motion according to Eq(B2). Moreover, in order to obtain a _ v) 4t v —rAht

set of QRPA eq%anon(i linear with respect to %& and Q”_; \/_D—j(XJ( PATZIPAD Q=@

Y(”) amplitudes, another approximation called the quasibo- (B10)
son approximation is made, which implies that the following N o
approximate commutation relation holds, so that the condition for phonons to be bosons within the

correlated ground sta{RQRPA

CAT1=5.,
[A A 1=8; B3 (RQRPA[Q,,Q] JIRQRPA=5,,,  (B1D)

instead of Eq.(5). The definition of phonon operatofB1) L . .
and the quasiboson approximati¢B3) lead to the well- leads to the same normalization condition for the amplitudes

known normalization of the QRPX(" and Y{" amplitudes, X" and y() as that of the QRPA, i-e-Ej(XfV)X,(V’)
- yMy{y=34,, . The factoD; is calculated according to
2 [XJ(V)X]_(V Y(V)Y(V N=5,,, (B4) the approximation in Ref§15,19 as

1

Dj=—— . B12
P+ M, (812

so that the phonon operators are bosons, i.e.,
T
[Q..Q, 1=y (BS) The RQRPA matriced;;; andB;;. are given as

The quasiboson approximatioriB3) shows that the
quasiparticle-pair operatord | and A; behave like boson Ajjr=2(E;+20;) 8, +42 Qpugjrj0(1—Djn)+D;dj;
operators when interacting with each other. The effect of the "

Pauli principle represented by the last term at the rhs of Eq. (B13)
(5) is just ignored. The set of QRPA equations obtained in 1
this way is written in the matrix form as B--,=2( D;— —5--,>h--, . (B14)
ii iTq i)t
A B \/X X
B —ally/=ely) (B6) c. The MQRPA

The modified RPAMRPA) has been proposed in Ref.
where the explicit form of the matriceésandB is given as  [15]. Its quasiparticle representation is called the modified
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QRPA (MQRPA). The MQRPA equations have the same 0.4 — T
form as that of the QRPA ones given in Eqss) and(B7), L

11
but with coefficientsu; andv; replaced withu; andv; [Eq. 03l @ ’ 902
(39)], wherenj—n (B9) [15]. The quasiparticle occupanon i 2dg/»
numbern (B9) is found by solving self-consistently the set — oob
of RBCS+ RQRPA or MBCS-MQRPA equations. c '
2dg/p
2. Quasiparticle occupation number at finite temperature 0.1+ = 2p3/2

1 1h11e

e 270
0 e *‘% 197

At T=0 coefficientsu; andv; take the form

1g9r2
-
uW=u;v1-nl+o;Vn%, v0=0v;\1-nl—u;\n?, 0al (b |
(B15) | | 15
2pi72
0. i ) _ _ _ — 02L 2ds/2
wheren; is defined in the preceding section. The physics of c 3s1/2
this transformation is that the Bogoliubov coefficienfsand i 2pao
v; are renormalized due to the quantal fluctuations of particle 0.1+ 3 2d3p
number resulting in a nonzero valuemﬁ. It is well-known - 1]t111/2
that the Lipkin-Nogami methodi27] is an alternative ap- 0  — . 1977’/22
proximation to take into account such kind of renormaliza- 0 0.4 0.8 12 1.6 2
tion. If n]Q is zero or negligible, the standard Bogoliubov T (MeV)

coefficientsu; and v; are recovered from EqB15) and
transformation(37) becomes the usual Bogoliubov transfor-  FIG. 7. Quasiparticle occupation numberscorresponding to
mation (2). The results of Ref[17] have shown that the the levels in Table | for™Ni. The solid lines denote tha;=n?
quantal fluctuations of particle number due to nonzefo :r_n,(g), _\;\;}hllet:]he ggtéethnEspztandhfor ontyj(ﬁ;)_. R;esu(ljts(o)b-
decreases with increasiigwhile the thermal fluctuations of aned within the Q scneme are displayed @
while those obtained within the MBCSVIQRPA scheme are
particle number due to the thermal distribution of quasipar-
shown in(b).
ticles according to the Fermi-Dirac distribution increases
with increasingT. It is also well-known that aT>2 MeV
the quasiparticles in the system described by the pairing
Hamiltonia_n(S)Obehave like a pure Eerm_i gas. Assuming that 3. Results of numerical calculations
the correctiom: of the BCS approximation is small, we can

approximate Eq(38) by the following expressions:
Shown in Fig. 7 are quasiparticle occupation numbygrs

— 9 o (B17) (solid lineg and n;(B) (29) (dotted lines, obtained
uj=ujV1—n;(8)+uiVni(B), within the RBCSFRQRPA schemdFig. 7(a)] and MBCS
+MQRPA scheme$Fig. 7(b)] for "“Ni. It is very clear on
the figure that the solid and dotted lines practically coincide
for all values of temperatur@up toT=2 MeV. This feature
is robust for all other nuclei considered in this paper. This
wheren;(B) is given by the Fermi-Dirac d'St”bUt'oﬁzg) means than{ is indeed negligible, and, therefore, approxi-
With thls ansatzuJ andv; becomeu] andv? v; at zero tem-  mation(30), which replaces; at T+ 0 with the Fermi-Dirac
perature sincen;(8)=0 atT=0. Inserting Eqs(B15) into  distributionn; () of noninteracting quasiparticles, is indeed
the rhs of Eq.(816), we find that Eq(38) is recovered if 3 very good approximation. This justifies all the calculations
in the present paper, wherg(g) in Eq. (29) has been used
nJ=n?+ n(B), (B17) mstegd ofn; . o _ . .
It is worth mentioning that this work is restricted only
to the pairing Hamiltoniar{1) with monopole pairing inter-
providedn( is sufficiently small. The results of numerical action leading to the Cooper pairs. A more realistic model
calculations discussed below are obtained by solving thejamiltonian, of course, contains also residual interaction
self-consistent set of RBC& RQRPA equations and the one of other multipolarities. Taking all the multipolarities into
of MBCS + MQRPA equations, in which the quasiparticle account, which is beyond the framework of the pairing prob-
occupatlon numben; is approximated by EqB17). Since  |em considered here, enlarge the difference betwegn
? in the calculations is found from E@B8), which is in andn; (). The self-consistent calculation including all mul-
turn determined by the RQRPA amplltudé") (B12), the tipolarities, e.g., up td_=5, is in fact a formidable task.
self-consistent solution can numerically verify the assumpHence this could serve as an exciting challenge for future
tion of the smallness dﬁ?. study.

vj=v{VI=n;(B)—ufVni(B), (B16)
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