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Thermal quasiparticle correlations and continuum coupling in nuclei far from stability
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The contributions of quasiparticle correlations and of continuum coupling upon the superfluid properties of
neutron-rich Ni isotopes are studied within the modified BCS~MBCS! approximation at finite temperature. The
effect of quasiparticle correlations is included using a secondary Bogoliubov-type canonical transformation
explicitly involving the quasiparticle occupation numbers at temperatureT. The effect of continuum coupling
is taken into account via the finite widths of the resonant states. It is shown that the combined effect of thermal
quasiparticle correlations and of continuum coupling washes out the sharp superfluid-normal phase transition
given by the standard finite-temperature BCS calculations. Within the proposed resonant-continuum MBCS
approximation the fluctuations of particle number also become more suppressed especially at high temperature
for nuclei closer to the drip line. Finally, it is found within the same approximation that the two-neutron
separation energy for84Ni drops to zero atT.0.8 MeV.
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I. INTRODUCTION

It is well known that there exists a sharp phase transit
from the superfluid phase to the normal-fluid one in infin
Fermi systems at finite temperature. For metal supercond
ors @1# and nuclear matter the pairing correlations shar
vanish at the critical temperatureTc'0.567D(0), where
D(0) is the pairing gap at zero temperatureT5 0 @2#. This
value is obtained by solving the finite-temperature B
~FTBCS! equations for a constant level density around
chemical potential, where the pairing correlations are str
@3–5#.

In finite Fermi systems, especially in small systems su
as nuclei, fluctuations due to the finiteness of the sys
become large. Several papers took into account thermal
tuations in the pairing field using the macroscopic Land
theory of phase transitions@6–8# or the static path approxi
mation@9#. Their results showed that the gapD(T) does not
collapse, but decreases with increasing temperature, an
mains finite even at rather high temperature. This has b
confirmed also by calculations using the particle number p
jection @10#, as well as by the exact solution of the nucle
pairing problem@11#. Modern nuclear shell-model calcula
tions in Ref.@12# also show that the pairing correlations d
not abruptly disappear atTÞ 0 because of the existence
pairing fluctuations. The latter are enhanced near the B
phase transition point and survive atT.Tc , where the static
superfluid condensate is destroyed.

In nuclei close to the drip line, the effects of the nucle
finiteness upon its superfluid properties also show up in
other aspect. As the Fermi level is close to the continu
threshold in such nuclei, with increasing the temperature,
nucleons are easily promoted into the continuum part of
single-particle spectrum, mainly into the single-particle re
nant states which are trapped by the centrifugal or/and C
lomb barrier inside the nucleus. The resonant states, w
become now important for the pairing correlations, hav
continuous energy spreading and therefore the Pauli blo
0556-2813/2003/67~1!/014304~14!/$20.00 67 0143
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ing, responsible for the superfluidity suppression at fin
temperature, is less effective than for a spectrum formed o
by bound states. On the other hand, the energy spreadin
the resonant states diminishes the pairing correlations c
pared to a calculation in which the resonant states are tre
like quasibound states@13,14#. As a result, the critical tem-
peratureTc of the superfluid-normal phase transition with
the FTBCS approximation@3–5# is reduced due to the finite
width of resonant states@14#. However, the sharp superfluid
normal phase transition still persists within the FTBCS a
FT Hartree-Fock-Bogoliubov~FTHFB! approximations due
to the omission of thermal fluctuations in these studies.

Recently, an improved treatment of ground-state corre
tions has been proposed in Ref.@15#. This approach employs
the modified quasiparticles obtained by a secondary can
cal transformation of usual quasiparticles explicitly invol
ing the quasiparticle occupation numbers. At finite tempe
ture, the quasiparticle occupation number is described by
Fermi-Dirac distribution function and depends on the qua
particle energy and temperature. The finite-temperat
modified BCS ~FTMBCS! equations have been obtaine
which include the quasiparticle correlations in the therm
equilibrium. The numerical calculations have shown that
modified BCS~MBCS! approximation increases significant
the temperature of the superfluid-normal phase transi
point until smearing out completely this phase transition
120Sn @15#.

The aim of this paper is to combine the approaches de
oped in Refs.@14,15# to study how the continuum couplin
and the thermal quasiparticle correlations affect together
properties of the superfluid-normal phase transition in nu
far from stability. The paper is organized as follows. In Se
II we summarize the main features of the BCS, the renorm
ized BCS~RBCS! and modified BCS~MBCS! approxima-
tions as well as their extension to finite temperature. We a
present the basic features of the model, in which the coup
to single-particle resonant states in the continuum is inclu
in the MBCS equations at finite temperature. The results
©2003 The American Physical Society04-1
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numerical calculations are analyzed in Sec. III. The gen
conclusions are drawn in the last section.

II. FORMALISM

A. Pairing Hamiltonian

We consider a system of fermions described by the p
ticle creation and destruction operators,ajm

† and ajm , in a
spherical mean field, where the single-particle orbitals
labeled by the total angular-momentum quantum numbej
andm. The pairing correlations of the system is induced
an attractive two-body force with the pairing constantG. The
Hamiltonian of such system is given as

H5(
jm

e jajm
† ajm2

1

4
G (

j j 8mm8
ajm

† ajm̃
†

aj 8m̃8aj 8m8 . ~1!

where the sigñ stands for the time reversal operation, e.
ajm̃5(21) j 2maj 2m . Using the canonical Bogoliubov trans
formation from the particle operators,ajm

† and ajm̃ , to the
quasiparticle ones,a jm

† anda jm̃

ajm
† 5uja jm

† 1v ja jm̃ , ajm̃5uja jm̃2v ja jm
† , ~2!

the Hamiltonian~1! is transformed into the quasiparticle re
resentation, whose explicit form is given as@16,17#

H5a1(
j

bjNj1(
j

cj~A j
†1Aj !1(

j j 8
dj j 8A j

†Aj 8

1(
j j 8

gj~ j 8!~Aj 8
† Nj1NjAj 8!1(

j j 8
hj j 8~A j

†Aj 8
†

1Aj 8Aj !1(
j j 8

qj j 8NjNj 8 . ~3!

HereNj is the operator of the quasiparticle number on thj
shell, whileA j

† andAj are the creation and destruction o
erators of a pair of time-conjugate quasiparticles:

Nj5(
m

a jm
† a jm , A j

†5
1

AV j
(

m.0
a jm

† a jm̃
† ,

Aj5~A j
†!†, V j5 j 1

1

2
. ~4!

They obey the following exact commutation relations:

@Aj ,A j 8
†

#5d j j 8S 12
Nj

V j D , ~5!

@Nj ,A j 8
†

#52d j j 8A j
† , @Nj ,Aj 8#522d j j 8Aj . ~6!

The coefficients in Eq.~3! are

a52(
j

V je jv j
22GS (

j
V jujv j D 2

2G(
j

V jv j
4 , ~7!
01430
al

r-

e

y

,

bj5e j~uj
22v j

2!12Gujv j(
j 8

V j 8uj 8v j 81Gv j
4 , ~8!

cj52AV je jujv j2GAV j~uj
22v j

2!(
j 8

AV j 8uj 8v j 8

22GAV jujv j
3 , ~9!

dj j 852GAV jV j 8~uj
2uj 8

2
1v j

2v j 8
2

!5dj 8 j , ~10!

gj~ j 8!5Gujv jAV j 8~uj 8
2

2v j 8
2

!, ~11!

hj j 85
G

2
AV jV j 8~uj

2v j 8
2

1v j
2uj 8

2
!5hj 8 j , ~12!

qj j 852Gujv juj 8v j 85qj 8 j . ~13!

B. BCS approximation

The standard BCS equation is usually obtained mak
use of the variational procedure to get the minimum of
average value ofH2lN̂ (l is the chemical potential,N̂
5( jmajm

† ajm is the particle-number operator! over the BCS
ground stateuBCS&, which is taken as the quasipartic
vacuum, i.e.,

a jmuBCS&50. ~14!

This approximation leads to the following average values
commutator~5!,

^BCSu@Aj ,A j 8
†

#uBCS&5d j j 8 , ~15!

because the average of the quasiparticle occupation num
nj

BCS in the BCS ground stateuBCS& vanishes due to defini
tion ~14!,

nj
BCS[^BCSua jm

† a jmuBCS&5
1

2V j
^BCSuNj uBCS&50.

~16!

The average value~15! means that, within the BCS approx
mation, the quasiparticle pair operatorsA j

† and Aj behave
like bosons~the Cooper pairs!, just violating the Pauli prin-
ciple between them.

Within the BCS approximation, only thea term in Eq.~3!
contributes, which leads to the well-known BCS equations
determine the gapD and chemical potentiall:

D5G(
j

V jujv j , N52(
j

V jv j
25(

j
V j S 12

e j82l

Ej
D ,

~17!

where the single-particle energy ise j85e j if the self-energy
term 2Gv j

2 is neglected, ore j85e j2Gv j
2 if the self-energy

term is included. The quasiparticle energy isEj

5A(e j82l)21D2. Theuj andv j coefficients are given as
4-2
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uj
25

1

2 S 11
e j82l

Ej
D , v j

25
1

2 S 12
e j82l

Ej
D . ~18!

The a term @Eq. ~7!# is actually the ground state energ
within the BCS, since this is the only term that remains in
average over the quasiparticle vacuumuBCS&, where the sec-
ond term in Eq.~7! can be now replaced with2D2/G using
Eq. ~17!.

The violation of the Pauli principle within the BCS ap
proximation due to the BCS ground state~14! causes the
well-known violation of the particle-number conservatio
As the result, the BCS approximation induces the followi
fluctuations of the particle number@17#:

dN25^BCSuN̂2uBCS&2^BCSuN̂uBCS&254(
j

V juj
2v j

2

5D2(
j

V j

Ej
2

. ~19!

These fluctuations can be roughly estimated using a sym
ric V-degenerate two-level model with the shell distan
equal to e. In this caseEj5GV (V5N/2) and dN2

52D2/(G2N). Therefore, in finite small systems such
nuclei, when the particle number is not sufficiently large,
effects of particle-number fluctuations must be taken i
account. The BCS equations~17! do not have a nontrivia
solution below a critical valueGc of the pairing interaction
strengthG, at which the BCS approximation breaks dow
For example, in the above-mentioned two-level model, i
easy to find thatGc5e/(2V) ~neglecting the self-energy cor
rection! @16# or e/(2V21) ~including the self-energy cor
rection! @18#, below which the BCS pairing gapD becomes
imaginary.

C. Renormalized BCS„RBCS… approximation

A simplest way to restore the Pauli principle for the qu
siparticle pair operatorsA j

† and Aj is to introduce a new

ground stateu0̄&, in which the correlations among quasipa
ticles lead to a nonzero value of the quasiparticle occupa
numbernjÞ0. By doing so, we obtain

^0̄u@Aj ,A j 8
†

#u0̄&5d j j 8S 12
^0̄uNj u0̄&

V j
D 5d j j 8~122nj !,

~20!

instead of the quasiboson approximation~15!. Now nj is the
quasiparticle number in the correlated ground stateu0̄&

nj5^0̄ua jm
† a jmu0̄&5

1

2V j
^0̄uNj u0̄&Þ0, ~21!

instead of Eq.~16!. Repeating the same variational procedu
with the Hamiltonian~3! as it was done to derive the sta
dard BCS equation, but taking into account Eq.~21!, one
obtains the following equations:
01430
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D̃5G(
j

V jujv j~122nj !, ~22!

N5(
j

V jF12
e j82l

Ej
~122nj !G . ~23!

We shall call Eqs.~22!–~23! RBCS equations due to th
renormalization factor (122nj ), which makes the renormal
ized quasiparticle-pair operatorsÃj

†[A j
†/A122nj and Ãj

[Aj /A122nj behave now like bosons. The quasipartic
occupation numbernj can be calculated approximately i
terms of the backward-going amplitudeY within the renor-
malized RPA as described in Ref.@19#. The particle number
fluctuationsdN2 ~19! have now the following form@17#,

dN25dN1
21dN2

2 , ~24!

where

dN1
25D̃2(

j
V j

122nj

Ej
2

,

dN2
252(

j
V j

nj

Ej
2 @~e j82l!2~12nj !1nj D̃

2#. ~25!

D. Finite-temperature BCS „FTBCS… approximation

In this section we show that a direct result of the RBC
equations~22! and ~23! is the FTBCS equations.

The major assumption in the statistical approach to
theoretical description of nuclei at finite temperature is
replacement of the individual compound systems, each w
a given intrinsic excitation energy and particle number,
the grand canonical ensemble of nuclei in thermal equi
rium. The nuclear temperatureT (5b21) and chemical po-
tential l determine the average excitation energy and av
age particle number of the system, respectively. T
probability for a quantum system to have a given eigen
ergy is determined by the density matrixD rather than by a
pure wave function. The average value^Ô& of an observable
Ô is given as the statistical average over the grand canon
ensemble1

^Ô&5Tr$ÔD%. ~26!

1A quantum mechanical ground stateu0(b)& so that

^0(b)uÔu0(b)&5Tr$ÔD% does not exist in the physical spac
spanned by the eigenvectorsu j & with eigenvaluesEj of Hamiltonian
~3! because it is impossible to construct a stateu0(b)&
5( j f j (b)u j & so thatf j (b)* f k(b)5exp(2bEj)djk /Z with f j (b) be-
ing numbers. In order to construct such state, the founders of
thermo field dynamics@20# had to introduce a fictitious dynamica
system, whose physical interpretation still remains to be clarifie
4-3
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The formal solution for the density operatorD is found from
the stationary requirement for the grand potentialV in ther-
mal equilibrium

dV/dD50, V5E2lN2TS, ~27!

where E5Tr$HD%, N5Tr$N̂D%, and S52Tr$DlnD% are
the average energy, average particle number, and entrop
the system, respectively. As the result the density operatoD
is given as

D5Z21e2b(H2lN̂), Z5Tr$e2b(H2lN̂)%, b5T21.
~28!

Since the quasiparticle Hamiltonian~3! can be represented a
H5( jEja jm

† a jm within the BCS approximation, the quas
particle occupation number is defined in the average over
grand canonical ensemble as

nj~b!5Tr$a jm
† a jmD%5

1

ebEj11
. ~29!

The proof that, when the residual interactions beyond
quasiparticle mean field are neglected, the occupation n
bernj (b) of independent quasiparticles is indeed determin
by the Fermi-Dirac distribution~29! is given in the Appendix
A. The statistical approach has been demonstrated to
overwhelmingly accurate for highly-excited nuclei.

As the quasiparticle occupation numbernj ~21! is not zero
within the RBCS approximation due to the contribution
residual interactions beyond the BCS approximation and
dom phase approximation~RPA!, its statistical equivalence
does not become exactlynj (b) at TÞ0 since the latter gives
zero in the zero-temperature limit. Moreover, the presenc
the residual interactions also smooth out the Fermi-Dirac
tribution as has been shown a long time ago by Bogoliub
and Tyablikov@4,21#. However, in the case of small quas
particle damping due to coupling to collective degrees
freedom as in hot nuclei, such corrections are negligible
has been shown in Ref.@22#. Therefore, except for a ver
low-temperature region, where quantal fluctuations are
portant, one can neglect the effects of residual interaction
the quasiparticle correlations so that we have

nj.nj~b! at TÞ0. ~30!

By doing so, we easily see that the RBCS equations~22! and
~23! become the well-known FTBCS equations@4,5#. Thus,
by using average~29! and approximation~30!, the FTBCS
equations also take into account a part of the effects of
Pauli principle between the quasiparticle pair operatorsA j

†

and Aj via the thermal correlations of the quasiparticles
the grand canonical ensemble.

The factor 122nj (b) effectively decreases the pairin
strength with increasing the temperature until the po
where the FTBCS approximation collapses. This behav
inspired speculations on the superfluid-normal phase tra
tions at finite temperature in nuclei. In reality, the violatio
of the particle-number conservation makes the FTBCS eq
tions unreliable at high temperature. Indeed, atTÞ0, the
01430
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partsdN1
2 anddN2

2 of the particle-number fluctuations in Eq
~25! can be called the quantal and thermal fluctuations,
spectively, as the former exists atT50 while the latter ap-
pears only atTÞ0 within approximation~29!. Although, due
to the renormalization factor@122nj (b)#, the quantal fluc-
tuationsdN1

2 of particle number decrease with increasingT
and vanish atTc where the BCS gap collapses, the therm
fluctuationsdN2

2 increase with increasingT @See Fig. 1~a! of
Ref. @17##. These thermal fluctuations of particle number s
nificantly reduce the accuracy of the FTBCS approximati

E. Modified BCS „MBCS… approximation

Because of Eq.~21!, the correlated ground stateu0̄& ~20!
is no longer the vacuum of the BCS quasiparticle opera
a jm

† and a jm . A further step to improve the treatment o
ground-state correlations has been taken within the MB
approximation and the modified RPA@15#. This formalism
proposes that the quasiparticles are modified by the corr
tions in the correlated quasiparticle ground stateu0̄& accord-
ing the following secondary Bogoliubov-type canonic
transformation between the quasiparticle operators,a jm

† and

a jm , and the modified ones,ā jm
† and ā jm :

ā jm
† 5U ja jm

† 1Vja jm̃ , ā jm̃5U ja jm̃2Vja jm
† . ~31!

The coefficientsU j andVj are normalized as usual,

U j
21Vj

251, ~32!

and are determined so that the average valuen j of the modi-
fied quasiparticles in the correlated ground stateu0̄& van-
ishes, i.e.,

n j[^0̄uā jm
† ā jmu0̄&50. ~33!

Indeed, using the inverse transformation of Eq.~31!, namely,

a jm
† 5U j ā jm

† 2Vj ā jm̃ ~34!

to calculate the quasiparticle occupation numbernj ~21!, we
can easily see that

nj[^0̄ua jm
† a jmu0̄&5U j

2^0̄uā jm
† ā jmu0̄&1Vj

2^0̄uā jm̃ā jm̃
† u0̄&

5Vj
2 ~35!

because of Eq.~33!. Using Eq.~35! and normalization~32!,
we obtain

Vj5Anj , U j5A12nj . ~36!

The secondary transformation~31! with U j and Vj coeffi-
cients given by Eq.~36!, wherenj is the quasiparticle occu
pation number~21! was proposed for the first time in Re
@15#.

Using Eqs.~31! and~36! in combination with the original
Bogoliubov transformation~2!, one obtains the transforma
tion from the particle operators directly to the modified qu
siparticle operators in the following form@15#:
4-4
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ajm
† 5ū j ā jm

† 1 v̄ j ā jm̃ , ajm̃5ū j ā jm̃2 v̄ j ā jm
† , ~37!

where the coefficientsū j and v̄ j are related to the conven
tional Bogoliubov coefficientsuj andv j as

ū j5ujA12nj1v jAnj , v̄ j5v jA12nj2ujAnj . ~38!

Due to definition~33! the average value of the commutatio
relations between the modified quasiparticle-pair opera
Āj

† and Āj in the modified ground state~33! is exactly the
same as Eq.~15! for the quasiparticle-pair operatorsA j

† and
Aj in the BCS ground stateuBCS&. The transformation of the
pairing Hamiltonian~1! into the modified quasiparticlesā jm

†

and ā jm also has the form identical to Eq.~3! with (ū j ,v̄ j )
replacing (uj ,v j ) and (ā jm

† ,ā jm) replacing (a jm
† ,a jm), re-

spectively. The MBCS equations, therefore, has exactly
same form as the standard BCS equations~17!, where the
coefficientsuj andv j are replaced withū j and v̄ j , i.e.,

D̄5G(
j

V j ū j v̄ j

5G(
j

V j@~122nj !ujv j2Anj~12nj !~uj
22v j

2!#,

~39!

N52(
j

V j v̄ j
2

52(
j

V j@~122nj !v j
21nj22Anj~12nj !ujv j #,

~40!

using Eq.~38!. It is easy to see that the MBCS approxim
tion suppresses completely the partdN̄2

(2) for fluctuations

~25! of particle number in the modified ground stateu0̄& ~33!.
Indeed, using transformation~37! we obtain

dN̄2[^0̄uN̂2u0̄&2^0̄uN̂u0̄&254(
j

V j ū j
2v̄ j

25D̄2(
j

V j /Ēj
2

5dN̄1
2 , dN̄2

250, ~41!

because of definition~33!.
The quasiparticle numbernj ~35!, which enters Eqs.~36!–

~40!, in general, should be calculated self-consistently us
the MBCS ~or RBCS! and the modified quasiparticle RP
~MQRPA! @or renormalized QRPA~RQRPA!# equations, as
has been proposed in Ref.@15#. These elaborated calculation
are presented in Appendix B for both of the schem
namely, the RBCS1RQRPA and MBCS1MQRPA ones, us-
ing the Hamiltonian~3!. In Sec. 3 of Appendix B, the result
of numerical calculations are compared with those obtai
whennj is replaced by the Fermi-Dirac distributionnj (b) of
noninteracting quasiparticles~Fermi gas! @Eq. ~29!#. This
comparison shows that approximation~30! turns out to be
01430
rs

e

g

,

d

very good. Therefore, we will use this approximation for
the numerical calculations in the rest of the paper.

We call the MBCS equations~39! and ~40! within ap-
proximation~30! the FTMBCS equations. The expression
ū j andv̄ j in terms ofuj andv j at the right-hand side~rhs! of
Eqs. ~39! and ~40! is important to reveal the dependence
the pairing gapD̄ and the modified chemical potentiall̄ on
nj (b), i.e., on temperatureT of the usual quasiparticlesa jm

†

anda jm since the average is taken in the canonical ensem
of usual quasiparticles in thermal equilibrium. These eq
tions differ from the conventional FTBCS equations~22! and
~23! @nj5nj (b)# by the second terms at the rhs, containi
Anj (b)@12nj (b)#, which take into account the correlation
induced by thermal effects. The presence of the last term
the rhs of Eq.~39! increases the valueT̄c of the critical
temperature at which the gapD̄ vanishes. Indeed, the critica
temperatureT̄c is determined as the value ofT at which
( jV jAnj (b)@12nj (b)#(uj

22v j
2) is positive and become

equal to ( jV jujv j@122nj (b)#, depending on the shel
structure of the given single-particle energy spectrum. Si
the absolute value of the last term at the rhs of Eq.~39! is
suppressed largely due to the factorAnj (b)@12nj (b)#,
which is much smaller than (122nj ) in the low-temperature
region, it is easy to see thatT̄c.Tc . At T.T̄c , the gapD̄(b)
~39! becomes negative and the results given by the FTMB
are no longer reliable. Finally, based on Eqs.~41! we also see
that the FTMBCS equations suppress completely the ther
fluctuationsdN̄2

2(b) of the particle number.

F. Coupling to continuum single-particle states

The extension of the conventional FTBCS equations
include the contribution of the continuum single-partic
states has been performed in Ref.@14#. The treatment of both
continuum and temperature effects in stationary models s
as the BCS approximation is complicated by the fact that
particles scattered in the continuum are permanently emi
from the nucleus, producing a nucleonic gas in thermal eq
librium with the nucleus. Therefore, in order to calculate t
quantities related to the nucleus itself, the contribution of
nucleonic gas should be subtracted@23#. As discussed in Ref
@14#, within the BCS approximation this can be done
evaluating the contribution of the continuum by the co
tinuum level densityg(e) defined by

g~e!5
2

p (
j

V j

dd j

de
, ~42!

whered j is the phase shift related to the nuclear mean fie
Therefore the FTBCS equations with continuum coupli
can be obtained by writing formally the FTBCS equatio
~22! and~23! @nj5nj (b)# in terms of the bound states leve
density gb(e) and then replacinggb(e) by the total level
density, i.e.,gb(e)1g(e).

Using the same prescription we can also include the ef
of the continuum coupling into the FTMBCS equations~39!
and ~40! with nj5nj (b):
4-5
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D̃5GH(
j

V j@~122nj !ujv j2Anj~12nj !~uj
22v j

2!#

1
1

2E g~e!$@122n~e!#u~e!v~e!2An~e!@12n~e!#

3@u2~e!2v2~e!#%deJ , ~43!

N52(
j

V j@~122nj !v j
21nj22Anj~12nj !ujv j #

1E g~e!$@122n~e!#v2~e!1n~e!

22An~e!@12n~e!#u~e!v~e!%de, ~44!

where n(e) is obtained fromnj (b) replacing the discrete
single-particle energye j with the integration parametere. In
a similar way we can now introduce the continuum con
bution to the total energyE of the system, calculated within
the FTMBCS approximation,

E52(
j

V je j@~122nj !v j
21nj22Anj~12nj !ujv j #

1E g~e!e$@122n~e!#v2~e!1n~e!

22An~e!@12n~e!#u~e!v~e!%de2D̃2/G, ~45!

wheree j are the single-particle energies, supposed here t
temperature independent quantities. This assumption is
ported by the Hartree-Fock~HF! calculations at finite tem-
perature, which show that forT<5 MeV the variation of the
single-particle energies with the temperature is negligi
@23,24#. The excitation energyE* is defined using Eq.~45!
as

E* 5E~T!2E~0!. ~46!

As has been pointed out in Ref.@13#, although one starts with
a constant pairing interaction, in the resonant-continu
BCS equations the variation of the matrix elements of
interaction in the energy region of a resonance is in f
taken into account through the continuum level densityg(e).
This effect, related to the width of resonant states, is los
the continuum is replaced by a set of discrete states, e.g
selected by a box of finite radius. One should notice also
in the equations above the continuum level density can
the contribution of the nonresonant continuum, for which
derivative of the phase shift is practically zero. The co
tinuum usually contributes through a few narrow and w
separated resonant states@13,14#. Therefore, one can replac
in the equations above the continuum level density with
01430
-

be
p-

e

e
t

if
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at
ls
e
-
l

g~e!5
1

p (
j

~2 j 11!

1

2
G j

~e2e j !
21S 1

2
G j D 2 , ~47!

wheree j and G j are the energy and the width of the res
nance state with angular momentumj, respectively. One no-
tices that in the limit of zero widths, the rhs of Eq.~47!
becomes a sum ofd functions, recovering the level densit
of the bound spectrum. The numerical calculations discus
in the following section are obtained with the integration
Eqs.~43!–~45! carried out within the region near the singl
particle resonances, which is defined asue2e j u<2G j .

III. NUMERICAL RESULTS

In order to illustrate how the continuum and the therm
quasiparticle correlations affect the properties of open-s
nuclei far from b-stability line, we solved the FTMBCS
equations plus continuum coupling~43! and ~44!, discussed
in the preceding section, for neutron-rich Ni isotopes. W
analyze how the pairing correlations are changing whe
few neutrons are subtracted or added to the doubly clos
shell nucleus78Ni, which is the heaviest Ni isotopes pro
duced at present. Since all the calculations are performe
finite temperature, we drop the prefix ‘‘FT’’ when addressi
to the FTBCS and FTMBCS equations hereafter.

The neutron single-particle states used in the present
culations are shown in Table I. They were calculated usin
Woods-Saxon potential with the depthV0540 MeV, radius
R051.27 fm, and surface thicknessa50.67 fm. For the
spin-orbit interaction we use a Woods-Saxon potential w
the same values for the radiusR0 and surface thicknessa, but
the depth is changed to the valueVso521.43 MeV. These
parameters are chosen so that the obtained single-pa
spectrum for78Ni is similar to that given by the Skyrme-HF
calculations@13#. The calculations used the single-partic
energiese j85e j in Eqs.~17!, neglecting the self-energy cor
rection2Gv j

2 , as its effect on the gap atTÞ0 turns out to
be negligible@15#. As seen in Table I, the structure of th
standard major shell 50–82 is drastically changed close
the drip line. Thus from all five states which typically form

TABLE I. Neutron single-particle states used in calculations
68284Ni isotopes.

Shell State e j ~MeV! G j /2 ~MeV!

1g7/2 4.229 0.171
50–82 2f 7/2 3.937 1.796

1h11/2 3.334 0.014
2d3/2 1.338 0.489
3s1/2 20.284
2d5/2 20.80

28–50 1g9/2 24.398
1 f 5/2 25.623
2p1/2 25.649
2p3/2 27.836
4-6
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THERMAL QUASIPARTICLE CORRELATIONS AND . . . PHYSICAL REVIEW C67, 014304 ~2003!
this major shell, only two states, 2d5/2 and 3s1/2, are bound,
while the rest of the three states, 2d3/2, 1h11/2, and 1g7/2,
are resonant states. Moreover, we can see that the state 2f 7/2,
which usually belongs to the next major shell, appears n
as a resonant state with energy below the state 1g7/2. The
widths of these resonant states are shown in the fourth
umn of Table I. Their effects on the pairing correlations, bo
in resonant-continuum BCS and MBCS equations, app
through the continuum level density. In order to see th
effects we perform also a calculation, in which the reson
states are treated as quasibound states, i.e., replacing i
BCS equations the continuum level density with the Diracd
function. These calculations will be quoted below as qua
bound BCS and quasibound MBCS. The pairing matrix e
ments are considered equal with the constantG in all the
calculations. We chose forG the value 0.214 MeV. This
value gives within the quasibound BCS a pairing gap of
MeV for 84Ni at T50, as in Ref.@14#. The pairing gaps a
T50 obtained for the sequence of Ni isotopes under con
eration are plotted in Fig. 1. As can be seen in this figure,
gaps are reduced by including the effect of the widths
resonant states in the BCS equations, in agreement with
previous findings@14#. The same reduction of the gap due
the finite widths of the resonant states is observed at fi
temperature, as shown in Fig. 2. As expected, this effec
enhanced in the vicinity of the drip line, but for all the is
topes shown in Fig. 2, the curvesD(T) obtained within the
resonant-continuum BCS and quasibound BCS are alm
parallel to each other. Moreover, although the critical te
perature is significantly diminished due to the finite widths
the resonant states, the ratioTc /D(0) remains close to 0.57
in both calculations.

The situation changes when together with the continu
coupling we introduce the effect of the thermal quasiparti
correlations. From Fig. 2 one can see that, as compared
the quasibound BCS, the quasibound-modified BCS pred
a slower decrease of pairing gap with increasing temperat
as has been noticed previously in the calculations usin
bound spectrum within the MBCS approximation@15#. The
sharp superfluid-normal phase transition occurs at a m
higher temperatureT̄c@Tc . However, as the thermal quas
particle correlations decrease with increasing the part

FIG. 1. Pairing gaps for Ni isotopes calculated at zero temp
ture within the quasibound BCS~open circles! and resonant-
continuum BCS~full squares!. The dashed and solid lines are draw
to guide the eyes.
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number, the slopes of two curves are getting closer. For84Ni,
in the temperature range 0.5 MeV<T<0.6 MeV, the gap
obtained within the quasibound-MBCS drops even fas
than that given by the quasibound BCS.

Taking the widths of the resonant states into account,
MBCS predicts a slower decrease of the gap than that g
by the quasibound MBCS as the temperature increases.
is due to the fact that, with the increasing temperature,
Pauli blocking becomes less effective due to the spreadin
the resonant states. The gap obtained within the reson
continuum MBCS remains finite as a long tail extended
T.2 MeV. In general, we found that by introducing th
width of the resonances into the MBCS equations the sh
superfluid-normal phase transition is washed out for all
isotopes under consideration. As seen in Fig. 2, for the
topes close to the drip line,82,84Ni, the gap remains finite a
high temperatures, far beyond the critical temperature p
dicted by the quasibound-MBCS calculations. At such h
temperatures the Fermi distribution becomes smooth
covers more and more levels in the valence shell 50–82
well as in the major shell 28–50 so that the latter starts
contribute significantly to the pairing correlations. This c
be seen in Fig. 3~a!, which displays the pairing gap calcu
lated after removing one, two, three, and all four levels fro
the major shell 28–50, starting from the lowest level. T
constantG is changed so that the gap remains the same
all the calculations at zero temperature. The results show
the coupling to a smaller number of bound states in the s
28–50 decreases the critical temperature of the superfl
normal phase transition back to a value close to that obta
within the quasibound BCS.

The contribution of the major shell 28–50 to the pairin
correlations increases with the temperature, and therefore
actual value of the gap can also increase at high temp
tures, if the Pauli blocking is not very strong. This effect c
be seen in Fig. 3~b!, where the gap in84Ni increases from
0.06 MeV at T51.5 MeV to a value of 0.2 MeV atT
56 MeV. As shown also in Fig. 3~b!, this effect can be
made more evident by artificially reducing the energy of t
lowest resonant state 2d3/2. This numerical test shows tha
the effect of gap increase at high temperature may be st
ger for those drip line nuclei which have a resonant st
close to the continuum threshold.

The MBCS equations~39! and ~43! also suggest that, in
principle, thermal effects may induce pairing correlatio
even for doubly closed-shell nucleus at finite temperature
fact, for 78Ni, we found that, within the resonant-continuu
MBCS, the gap becomes nonzero atTÞ0, increases with
increasing T to reach its maximal value equal to around 0
MeV at T50.68 MeV, then decreases again to vanish aT
51.2 MeV. However, a maximal value of 0.07 MeV of th
pairing gap cannot be considered to be physically significa

Shown in Fig. 4 is the temperature dependence of
excitation energyE* . The slope of the excitation energy
slightly smaller within the quasibound BCS, where the effe
of the width of resonant states is neglected, as has been
cussed previously in Ref.@14#. Within the resonant-
continuum MBCS, the persistence of the pairing gap at h
temperature significantly reduces the excitation energy.

a-
4-7
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FIG. 2. Pairing gaps for Ni isotopes as a function of temperature. The dashed, dotted, dash-dotted, and solid lines represent th
of the quasibound BCS, resonant-continuum BCS, quasibound MBCS, and resonant-continuum MBCS, respectively.
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though the difference between different approximations
der consideration in the excitation energy is reduced u
increasing the mass numberA, there remains a clear effect o
coupling to the continuum in at high temperature for all is
topes under consideration.

The temperature dependences of the particle-number
tuationsAdNi

2 ( i 51,2) within the BCS and the resonan
continuum MBCS approximations for70,76,84Ni are displayed
in Fig. 5. The quantal fluctuations of particle numberi
51) decrease and vanish atT5Tc while the thermal fluctua-
tions of particle number (i 52) increase with increasingT
within the standard BCS approximation, as has been
cussed in Secs. II D, II E, and Ref.@17#. Meanwhile, within
the MBCS approximation, onlyAdN1

2 survives, which de-
01430
-
n

-

c-

s-

creases with increasingT. In nuclei close to the drip line, the
particle-number fluctuations are more suppressed within
MBCS approximation especially at high temperature.

A particular interest in the study of unstable nuclei is t
identification of the location of the two-neutron drip line
One of the quantities that provide the relevant information
the two-neutron drip line is the two-neutron separation
ergy S2n , defined as the difference between the energy
the (N22)- and N-neutron systems with the same proto
number, i.e.,S2n5E(N22,Z)2E(N,Z) @25#. A nucleus with
N neutrons is unstable against the emission of a neutron
if S2n becomes negative. The nucleus is then beyond
two-neutron drip line. Using this quantity, it has been fou
by the recent continuum Hartree-Fock-Bogoliubov~HFB!
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FIG. 3. Pairing gap for84Ni obtained within the resonant-continuum MBCS as a function of temperature. The thick solid line is the
as in Figs. 2~h!. In ~a!, the thin, dashed, dotted, and dash-dotted lines are results obtained after removing one, two, three, and all fo
from the major shell 28–50, respectively, starting from the lowest level. The thin solid lines in~b! represent the results obtained using t
single-particle spectrum from Table I, in which the energy of the lowest resonant state is reduced to 1, 0.9, 0.8, 0.6, 0.4, and 0.2
indicated on the curves, respectively.
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calculations in Ref.@26# that the heaviest bound Ni isotope
86Ni.

The two-neutron separation energiesS2n calculated within
the BCS and MBCS approximations are plotted in Figs. 6~a!
and 6~b!, respectively, against the mass numberA for the Ni
isotopes under consideration at several temperatures.
coupling to the continuum via the widths of the resona
states are taken into account in both approximations.
results obtained within the quasibound BCS and quasibo
MBCS are very similar to those shown in this figure. It
seen that the decrease ofS2n with increasingA is smoother
within the MBCS approximation than the BCS one, esp
cially with increasing temperature. This is a direct con
quence of the smooth temperature dependence of the pa
gap within the MBCS discussed previously. A particular
teresting feature revealed by this figure is the reduction
two-neutron separation energy with increasingT within the
MBCS approximation for the isotopes close to the drip lin
Thus, the value ofS2n for 84Ni drops from around 1 MeV a
T50.3 MeV to almost zero atT50.8;1 MeV @see Fig.
6~b!#. This does not happen within the BCS approximati
@See Fig. 6~a!#. This observation suggests that thermal qu
siparticle correlations, which are taken into account with
the MBCS approximation, may cause the drip line to
reached earlier in mass units at finite temperature. In
present example, the two-neutron drip line is reached
84Ni, i.e., at two mass units earlier, atT50.8;1 MeV.

IV. CONCLUSIONS

In this paper we have studied how the thermal quasip
ticle fluctuations and the continuum coupling affect the pa
ing correlations in neutron-rich Ni isotopes. The therm
quasiparticle correlations are introduced making use of a
ondary canonical Bogoliubov-type transformation, which d
fines the modified quasiparticle operators. The latter depe
on temperature via the usual quasiparticle occupation n
ber, which is approximated by a Fermi-Dirac distribution.
addition, the coupling to the continuum is introduced into t
BCS approximation via a few low-lying resonant states t
01430
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ing into account the effect of their widths in terms of th
continuum level density. The calculations of the pairing g
and excitation energy have been done for neutron-rich
topes 68284Ni. The results show that the combined effect
the thermal quasiparticle correlations and of continuum c
pling reduces the pairing gap in the low-temperature reg
and washes out the sharp superfluid-normal phase trans
found in the standard FTBCS and FTHFB calculation
which neglect these effects. We noticed that at high temp
tures the smooth decrease of the gap is partially cause
the spreading width of resonant states, which make the P
blocking less effective. The fluctuations of particle numb
are also more suppressed within the resonant-continu
MBCS approximation, especially at high temperature and
nuclei closer to the drip line. The results obtained sugg
that it is more reliable to use the proposed approximat
rather than the conventional FTBCS~or FTHFB! formalism
for the study of superfluid properties of nuclei close to t
drip line at finite temperature.

Two interesting features, from our point of view, hav
been observed within this work. The first feature is that
two-neutron separation energy obtained within the MB
approximation for84Ni reaches zero at temperature arou
T50.8;1 MeV. This suggests that the thermal quasiparti
fluctuations may cause the drip line to be reached earlie
mass units compared to the zero-temperature case. The
ond feature is a weak increase of the pairing gap with
creasing temperature atT.1.5 MeV for nuclei close to the
drip line, and the enhancement of this effect when the ene
of the lowest resonant state is artificially pushed close
zero. These observations may serve as a hint to search
stronger effects of this kind in drip line nuclei at finite tem
perature.
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FIG. 4. Excitation energies for Ni isotopes as a function of temperature. The notations are as in Fig. 2.
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APPENDIX A: OCCUPATION NUMBER FOR
INDEPENDENT QUASIPARTICLES

This appendix summarizes the derivation for the quasip
ticle occupation numbernj (b) at finite temperature~29!,
which was given for the first time in Ref.@4#.

We consider the Hamiltonian of noninteracting quasip
ticles with energiesEj in the form

H5(
j

Eja jm
† a jm , ~A1!

and introduce for them the double-time retarded Green fu
tion Gj (t2t8) as @4#

Gj~ t2t8!52 iu~ t2t8!^$a j~ t !,a j
†~ t8!%&, ~A2!
01430
r-

-

c-

where ^•••& is the average over the grand canonical e
semble~26! with density operator~28!. The sign$ . . . , . . .%
denotes the fermion commutator~anticommutator!. The
magnetic quantum numberm is omitted as the result does no
depend on it. The equation of motion for the Green funct
~A2! is given following the standard method of double-tim
Green functions@4# as

i
dGj~ t2t8!

dt
5d~ t2t8!1EjGj~ t2t8!. ~A3!

Making the Fourier transform

Gj~ t2t8!5E
2`

`

Gj~E!e2 iE(t2t8)dE, ~A4!
4-10
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and using the integral representation ford function

d~ t2t8!5
1

2pE2`

`

e2 iE(t2t8)dE, ~A5!

one finds

FIG. 5. Particle-number fluctuationsAdNi
2 for 70,76,84Ni as a

function of temperature. The dashed and dotted line showAdN1
2

andAdN2
2, respectively, within the BCS. The solid line stands f

AdN1
2 within the resonant-continuum MBCS.
01430
Gj~E!5
1

2p

1

E2Ej
. ~A6!

Using the spectral representation for the retarded Green f
tion ~A2!, one obtains

Gj~v1 i«!2Gj~v2 i«!52 i ~ebv11!Jj~v!, ~A7!

where v is real, «→0 («.0), and Jj (v) is the spectral
intensity, which defines the time correlation function for qu
siparticles as

Fj~ t2t8!5^a j
†~ t8!a j~ t !&5E

2`

`

Jj~v!e2 iv(t2t8)dv.

~A8!

Inserting Jj (v) from Eq. ~A7! to Eq. ~A8! and using the
d-function representation

d~x!5
1

2p i S 1

x2 i«
2

1

x1 i« D , ~A9!

one finds

^a j
†~ t8!a j~ t !&5

e2 iE j (t2t8)

ebEj11
. ~A10!

By setting t5t8 in Eq. ~A10!, one obtains the Fermi-Dirac
distribution for the average quasiparticle numbernj (b) in
Eq. ~29!.

APPENDIX B: SELF-CONSISTENT CALCULATIONS OF
QUASIPARTICLE OCCUPATION NUMBER

1. QRPA, RQRPA, and MQRPA equations

a. The QRPA

The standard QRPA operators, called phonon operat
have the following form in the present pairing Hamiltonia
en
nuum
FIG. 6. Two-neutron separation energies as a function of the mass numberA for Ni isotopes at temperaturesT50.3 ~thick solid line!, 0.5
~dashed line!, 0.6 ~dotted line!, 0.8 ~dash-dotted line!, and 1 MeV~thin solid line!. ~The lines are drawn just to connect the points at giv
values ofA in order to make the trend more visible!. The results obtained within the resonant-continuum BCS and resonant-conti
MBCS are shown in~a! and ~b!, respectively.
4-11
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Qn
†5(

j
~Xj

(n)A j
†2Yj

(n)Aj !, Qn5~Qn
†!†, ~B1!

whereA j
† andAj are defined in Eq.~4!. The QRPA ground

stateuQRPA& is defined as the vacuum for the phonon o
erator, i.e., QnuQRPA&505^QRPAuQn

† . The 01 excited
state u01& is obtained by actingQn

† on this vacuum, i.e.,
u01&5Qn

†uQRPA&. The excitation energyvn of the state
u01&, and the amplitudesXj

(n) and Yj
(n) are found, respec

tively, as the eigenenergy and the components of the eig
vector of the QRPA equation, which is derived from the fo
lowing equation of motion for the Hamiltonian~3!:

^QRPAu@dQ,@H,Qn
†##uQRPA&

5vn^QRPAu@dQ,Qn
†#uQRPA&. ~B2!

In the standard way of derivation of the QRPA equations,
BCS equation is solved first. Then thea andb terms in the
Hamiltonian~3! are replaced with the BCS result, which
HBCS5( jEjNj . Using the exact commutation relations~5!
and ~6!, we see that, among the remaining terms of Eq.~3!,
which do not contribute in the BCS, thed, h, and q terms
start to contribute within the QRPA. Thec term andg term
do not contribute since, in the commutation with the phon
operators~B1!, the former gives a number, while the latt
leads to the terms;A j

†A j 8
† , ;A j

†Aj 8 , and Nj (1
2Nj 8 /V j 8), which are left out by linearizing the equation o
motion according to Eq.~B2!. Moreover, in order to obtain a
set of QRPA equations, linear with respect to theXj

(n) and
Yj

(n) amplitudes, another approximation called the quasi
son approximation is made, which implies that the followi
approximate commutation relation holds,

@Aj ,A j 8
†

#5d j j 8 ~B3!

instead of Eq.~5!. The definition of phonon operators~B1!
and the quasiboson approximation~B3! lead to the well-
known normalization of the QRPAXj

(n) andYj
(n) amplitudes,

(
j

@Xj
(n)Xj

(n8)2Yj
(n)Yj

(n8)#5dnn8 , ~B4!

so that the phonon operators are bosons, i.e.,

@Qn ,Qn8
†

#5dnn8. ~B5!

The quasiboson approximation~B3! shows that the
quasiparticle-pair operatorsA j

† and Aj behave like boson
operators when interacting with each other. The effect of
Pauli principle represented by the last term at the rhs of
~5! is just ignored. The set of QRPA equations obtained
this way is written in the matrix form as

S A B

2B 2AD S X

YD 5vS X

YD , ~B6!

where the explicit form of the matricesA andB is given as
01430
-

n-

e

n

-

e
q.
n

Aj j 852~Ej12qj j !d j j 81dj j 8 , Bj j 852S 12
1

V j
d j j 8Dhj j 8 .

~B7!

b. The RQRPA

The collapse of the BCS approximation and QRPA has
same origin of neglecting the Pauli principle between qua
particle pairs operators in the BCS approximation@Eq. ~15!#
and the quasiboson approximation~B3!. The Lipkin-Nogami
method@27# approximately corrects this inconsistency with
the BCS approximation. For the QRPA this is done by t
RQRPA.

The essence of the RQRPA is to replace the quasibo
approximation in the form of Eq.~B3! with the average value
of the commutator

^RQRPAu@Aj ,A j 8
†

#uRQRPA&5D jd j j 8 , D j5122nj
0 ,
~B8!

in a new ground stateuRQRPA&, where the correlations be
yond the QRPA due to the fermion structure of the quasip
ticle pairsA j

† andAj are taken into account, namely,

nj
05

1

2V j
^RQRPAuNj uRQRPA&Þ0. ~B9!

The phonon operators are renormalized as

Qn5(
j

1

AD j

~X j
(n)A j

†2Y j
(n)Aj !, Qn5~Q n

†!†,

~B10!

so that the condition for phonons to be bosons within
correlated ground stateuRQRPA&

^RQRPAu@Qn ,Q n8
†

#uRQRPA&5dnn8 ~B11!

leads to the same normalization condition for the amplitu

X j
(n) and Y j

(n) as that of the QRPA, i.e.,( j (X j
(n)X j

(n8)

2Y j
(n)Y j

(n8))5dnn8 . The factorD j is calculated according to
the approximation in Refs.@15,19# as

D j5
1

11~Y j
(n)!2/V j

. ~B12!

The RQRPA matricesAj j 8 andBj j 8 are given as

Aj j 852~Ej12qj j !d j j 814(
j 9

V j 9qj 8 j 9~12D j 9!1D jdj j 8 ,

~B13!

Bj j 852S D j2
1

V j
d j j 8Dhj j 8 . ~B14!

c. The MQRPA

The modified RPA~MRPA! has been proposed in Re
@15#. Its quasiparticle representation is called the modifi
4-12
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QRPA ~MQRPA!. The MQRPA equations have the sam
form as that of the QRPA ones given in Eqs.~B6! and~B7!,
but with coefficientsuj andv j replaced withū j and v̄ j @Eq.
~38!#, wherenj5nj

0 ~B9! @15#. The quasiparticle occupatio
numbernj

0 ~B9! is found by solving self-consistently the s
of RBCS1RQRPA or MBCS1MQRPA equations.

2. Quasiparticle occupation number at finite temperature

At T50 coefficientsū j and v̄ j take the form

ū j
05ujA12nj

01v jAnj
0, v̄ j

05v jA12nj
02ujAnj

0,
~B15!

wherenj
0 is defined in the preceding section. The physics

this transformation is that the Bogoliubov coefficientsuj and
v j are renormalized due to the quantal fluctuations of part
number resulting in a nonzero value ofnj

0 . It is well-known
that the Lipkin-Nogami method@27# is an alternative ap-
proximation to take into account such kind of renormaliz
tion. If nj

0 is zero or negligible, the standard Bogoliubo
coefficientsuj and v j are recovered from Eq.~B15! and
transformation~37! becomes the usual Bogoliubov transfo
mation ~2!. The results of Ref.@17# have shown that the
quantal fluctuations of particle number due to nonzeronj

0

decreases with increasingT, while the thermal fluctuations o
particle number due to the thermal distribution of quasip
ticles according to the Fermi-Dirac distribution increas
with increasingT. It is also well-known that atT.2 MeV
the quasiparticles in the system described by the pai
Hamiltonian~3! behave like a pure Fermi gas. Assuming th
the correctionnj

0 of the BCS approximation is small, we ca
approximate Eq.~38! by the following expressions:

ū j.uj
0A12nj~b!1v j

0Anj~b!,

v̄ j.v j
0A12nj~b!2uj

0Anj~b!, ~B16!

wherenj (b) is given by the Fermi-Dirac distribution~29!.
With this ansatzū j and v̄ j becomeū j

0 and v̄ j
0 at zero tem-

perature sincenj (b)50 at T50. Inserting Eqs.~B15! into
the rhs of Eq.~B16!, we find that Eq.~38! is recovered if

nj5nj
01nj~b!, ~B17!

provided nj
0 is sufficiently small. The results of numerica

calculations discussed below are obtained by solving
self-consistent set of RBCS1 RQRPA equations and the on
of MBCS 1 MQRPA equations, in which the quasipartic
occupation numbernj is approximated by Eq.~B17!. Since
nj

0 in the calculations is found from Eq.~B8!, which is in
turn determined by the RQRPA amplitudeY j

(n) ~B12!, the
self-consistent solution can numerically verify the assum
tion of the smallness ofnj

0 .
01430
f

le

-

r-
s

g
t

e
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3. Results of numerical calculations

Shown in Fig. 7 are quasiparticle occupation numbersnj

~B17! ~solid lines! and nj (b) ~29! ~dotted lines!, obtained
within the RBCS1RQRPA scheme@Fig. 7~a!# and MBCS
1MQRPA schemes@Fig. 7~b!# for 74Ni. It is very clear on
the figure that the solid and dotted lines practically coinc
for all values of temperatureT up toT52 MeV. This feature
is robust for all other nuclei considered in this paper. T
means thatnj

0 is indeed negligible, and, therefore, approx
mation~30!, which replacesnj at TÞ0 with the Fermi-Dirac
distributionnj (b) of noninteracting quasiparticles, is indee
a very good approximation. This justifies all the calculatio
in the present paper, wherenj (b) in Eq. ~29! has been used
instead ofnj .

It is worth mentioning that this work is restricted on
to the pairing Hamiltonian~1! with monopole pairing inter-
action leading to the Cooper pairs. A more realistic mo
Hamiltonian, of course, contains also residual interact
of other multipolarities. Taking all the multipolarities int
account, which is beyond the framework of the pairing pro
lem considered here, enlarge the difference betweennj
andnj (b). The self-consistent calculation including all mu
tipolarities, e.g., up toL55, is in fact a formidable task
Hence this could serve as an exciting challenge for fut
study.

FIG. 7. Quasiparticle occupation numbersnj corresponding to
the levels in Table I for74Ni. The solid lines denote thenj5nj

0

1nj (b), while the dotted lines stand for onlynj (b). Results ob-
tained within the RBCS1RQRPA scheme are displayed in~a!,
while those obtained within the MBCS1MQRPA scheme are
shown in~b!.
4-13
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