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Seniority-conserving forces and USf2j+1) partial dynamical symmetry
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A quasispin tensor decomposition of the two-nucleon interaction determines the most general seniority-
conserving rotationally invariant two-body interaction iy shell. Such interactions define solvable and par-
tially solvable shell model Hamiltonians for which the unitary symplectic algebra USp{2 provides a
complete set of quantum numbers for a subset of states. The matrix elements of seniority-conserving interac-
tions are deduced from the matrix elements of U§g{2) operators. A new and powerful numerical tech-
nique is presented for computing irreps of the Ugp(24) algebra. Applications are reported for the low-
energy spectra d=50 andN=126 isotones. The effects of including seniority nonconserving interactions
are investigated.
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[. INTRODUCTION teractions that split the degeneracies of same-seniority states
but do not mix states of different seniority. Lgtv pJM)

The objective of this paper is to explore the remarkabledenote a basis for the space mfidentical fermions in g
successes and simplifications that can be achieved in a modghell, wherev is the seniority ang is the multiplicity of the
description of singly-closed shell nuclei with seniority con- angular momentundM. When the Hamiltoniard is rota-
serving interactions restricted to a singleshell. For such tionally invariant and seniority conserving, the angular mo-
interactions, many low-energy states are uniquely defined byhentum and seniority are good quantum numbers:
seniority and angular momentum quantum numbers. Thus
the model has a partial dynamical symmetry according to the (nu'p'J'M ’|I:||nva M)= 8,1, 83 30m ME (N0 J).
definition of Alhassid and Leviatafil]. The seniority cou- )
pling scheme and the properties of seniority-conserving
Hamiltonians are given in Talmi's booR2]. In Sec. Il we In the simple quasispin model the matkyx, ,(nvJ) is diag-
provide a brief summary of those parts of the theory needednal and independent Jf
for present purposes. Our approach makes extensive use of As shown by Talmi[2], any seniority-conserving two-
the duality relationship, observed by Helm¢8, between body interaction is the sum of a monopole pairing interaction
the classification of states by seniority and by quasispin. Aand a quadratic operator in the compact unitary symplectic
preliminary account of part of the current study was pre-algebra, USp(R+1). The operators of USp{2-1) com-
sented in Ref[4]. mute with the quasispin generators. In fact, USpf2) is

When identical fermions occupy a singleshell, mono- the maximal subalgebra of U{2-1) having this property,
pole pairing dominates the nucleon-nucleon interaction. Thevhere U(4 +1) is the algebra of all hermitian one-body
energy spectrum of a closed-shell-plus-two-profontwo-  operators that act in a singieshell. As a result, USp(j2
neutron nucleus, such a§?Mo or 2'%o, in which the en- +1) serves to classify all the states of a singshell
ergy of theJ=0 ground state is substantially below the en-nucleus of a given seniorityg,3]; indeed seniority is a label
ergies of theJ#0 excited states, shows that monopolefor a USp(3+1) irrep. Moreover, the representation theory
pairing is a major influence. of USp(2j +1) provides an algebraic framework for diago-

The quasispin algebra SU(2)s a spectrum generating nalizing any seniority conserving Hamiltonian.
algebra for the monopole pairing interaction in the sense that The intimate relationship between the commuting
this interaction is a polynomial in the elements of SW{2) USp(2j+1) and SU(2} algebras[3] is an example of a
In this case, the irreducible representatiofgeps of  duality relationshid6,7]. A familiar example of such a rela-
SU(2)s determine analytically the spectrum of the Hamil- tionship (also known asomplementarityin the physics lit-
tonian. The SU(2g irreps are labeled by a total quasispin erature[8]) is the famous Schur-Weyl duality of the permu-
guantum numbes=(Q —v)/2, whereQ=(2j+1)/2 andv tation groupS, and the unitary group () when acting in
denotes the senioritithe number of unpaired nuclegri2].  the tensor product space pfcopies of anm-dimensional
Excitation energies of the monopole pairing quasispin modeVvector space. A consequence of this duality is that the repre-
depend only on the total quasispin or equivalently the seniorsentations of the permutation and unitary groups intertwine
ity. However, while the model explains some gross featuresnd both are labeled uniquely by Young diagrams.
of many singly-closed shell nuclei, it provides a poor de- Duality within aj-shell implies similarly that the irreps of
scription of the details. the quasispin algebra and the irreps of the unitary symplectic

The quasispin model can be improved by introducing in-algebra are in one-to-one correspondence. The common label
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TABLE |I. Irreducible representations of $2) sxUSp(2j +1) derived by Ginocchio and Haxtdrd 1].

for j=7/2. Calculating the matrix elements of rotationally invariant
two-body operators in the USp[2 1) algebra is a nontrivial
Irrep n S J task because the angular momentum algebra Si€hot
v=4 4 0 2 4 5 8 embedded canonically in USpj2 1). Fractional parentage
S=0 coefficients, when they are known, provide a tool for calcu-
lating such states and matrix elements. However, to calculate
v=2 2 1 2 4 6 fractional parentage coefficients is to compute the matrix el-
s—1 4 0 5 4 6 ements of an even larger fermion—_pgir algebra. As shown in
6 1 5 4 6 Sec. IV, a recursive met_hod of defining states of gqod angu-
lar momentum by stepping down from a highest weight state
v=0 0 _o 0 provides anal_ytical resul_ts for a few high _angular momentum
B states. But this method is also too complicated for more than
S=2 2 -1 0 a few steps and for large values jofWe present a simpler
4 B B and more direct method for matrix element computation that
g ; 8 can be used for low-dimensional irreps of any Lie algebra.

Our technique is particularly useful when the rank of the
algebra makes standard methods intractable.

. . . The method is based on the observation that the Ugp(2
for the SU(2) and USp(3 +1) irreps is the seniority. As + 1) commutation relations define an overdetermined system

an example, Table | organizes the basis states of even seni%rf- nonlinear equations for the unknown matrix elements. The
ity in the j=% shell with respect to SU(2)and USp(3 9 '

11). Each senioritw in the table labels a unitary irrep of fundamental theorem of highest weight representations guar-

the compact symplectic algebra U8p A basis of good an- antees that a solution to this system exists. In spite of the fact
gular momentum states that spans this representation is inc}}]at the number of equations and the number of unknowns

: X are large, we are able to solve the equations for all matrix
cated by reading the table horizontally, e.qg., for4, the ) i . .
) i)r/rep congt]ains states Gf=2 45 g Fgrv=2 there elements of a USp(j2+ 1) operator basis up to and including

. : . the j =% shell on a small notebook computer. These matrix
are three equivalent US}) irreps, each with1=2,4,6. For 2 ;
v=0, there are five equivalent identity€0) USH®) ir- elements are then used to compute the eigenvalues of the

o SN ; most general seniority-conserving interaction.
reps. In addition, each seniority in the table determines a g y g

X . e In Sec. V, the theory of seniority-conserving interactions
unique dual irrep of the quasispin algebra SU{Bpeled by is applied to the isotgnegzMo 94¥2u 9%pg gnd 2105,

the quasispirs. The angular momentum is constant within a 212%n, 21Ra regarded as singly-closed proton shell nuclei

quasispin irrep, and the irrep's basis is found by readlnquth their extra-core neutrons inja 9/2 shell. The predicted

\éggacsay\yhitgﬁ ;agLeaen;gi?é gglésir:ger?:;re_fuzle tcr){e‘r]e:aore energies of excited states are an order of magnitude better
three e uivale?n setg of three-dimerﬁ)éioS;E ir’re s with than those of the monopole pairing model. In particular, the
q P v=4 states of angular momentud J,,,, and J=J a2

f:2'4’6 _anIthz _t‘]’ o ,+J,d_and, Whr?arﬁgd'.’ thereTa;]re are observed experimentally and their measured energies are
our equivaient sets of one-dimensio Ireps. 1€ gescribed rather well with a seniority-conserving Hamil-

“Sp” component of the quasispin algebra is related linearlytonian. The states of angular momentip, andJ a2 are
to the number operator b§,=(n—Q)/2. always multiplicity-free in a USp(R+ 1) irrep and analytic
Within a singlej shell, there are) linearly independent formulas are reported for their energies.
two-body rotationally invariant interactions. However, the A model may be solvable, for example, because its eigen-
number of interactions that mix seniority is much smaller forstates are identified completely by the quantum numbers of a
the values ofj that occur in nuclear physics. In fact, it is subgroup chain. Likewise a model may be partially solvable
known from the work of Racah in atomic spectroscdfy because a set of quantum numbers defines uniquely a subset
that whenj<1 every two-body rotational-scalar interaction of multiplicity-free stateg12]. Models described by Levia-
conserves seniority. This is clear from Table | which showstan [1] as having apartial dynamical symmetrare of the
that states of a givenv andJM are multiplicity free for a second type. Such a partial dynamical symmetry is antici-
j=712 shell configuration. The conditions that the matrixpated in the seniority-conserving models when there is no
elements of a general interaction must satisfy to conservangular momentum multiplicity so that the energy matrix
seniority have been given by Talni2]. These conditions E(nvJ)=E, ,(nvJ) of Eq. (1) is one dimensional. How-
were rediscovered in Reff4] and used to construct linearly- ever, the energies of multiplicity-free states have not been
independent combinations of tlée interactions such that all calculated analytically until now. We find analytical expres-
but one conserve seniority faf<j<2; all but two con- sions for the energies of some multiplicity-free states in the
serve seniority forg<j<%. The explicit number of qua- seniority-conserving model.
sispin scalar interactions and the number of seniority-mixing The effect of seniority-mixing interactions is investigated
interactions for any shell is given in Sec. lll in confirmation in Sec. VI. When the seniority conservation assumption is
of a result inferred previously by Talni2] from a criterion  relaxed, the interaction becomes quadratic in the jW{2)
of de-Shalit and Talm[10] and a number-of-states identity algebra of all hermitian one-body operators inj ashell
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[rather than its subalgebra USg®1)]. The most general n o ~ ,
seniority-mixing interaction is determined using the theory <‘]3||WJ2||31>:[32]2 W(J1j133)2:3"I2)(I5] Yy Jlad")
of Sec. Il and its matrix elements are derived using the @

numerical technique of Sec. IV B extended to ¢21). ><<aJ'||)‘(j 131), (8)
The effect of seniority-mixing on the energy spectra of the !

isotones studied in Sec. V is found to be small, thereby ConWhere[J]z J23T andW(- --) is a Racah coefficient. A

firming that seniority-conservation is a good approximation : ; i
for thgse nuclei y g PP coupled commutator of two spherical tensors is then defined
. by

Il. FERMION LIE ALGEBRAS ~ o~ ~ ~ A ~
(X, Y5, lom= (X, @Y ) smu— (= D)I1279(Y) @X; )y -
This section gives definitions of the fermion Lie algebras (9)
relevant to aj shell and the duality relationships between
their irreducible unitary representations. It also provides ) ) .
highest weight data and branching rules for these represen- B. The fermion pair algebra and its subalgebras
tations. The fermion pair algebra for a singleshell is spanned by
the pair creation and annihilation operators
A. Basic definitions

. . . . L ~ 1
For a singlej shell, Ieta}rm and its Hermitian adjoina/™ ALM:—(a;r@ajT)LM, (10
denote the creation and annihilation operators for a single V2
nucleon(e.g., neutropthat satisfy the fermion anticommu-
tation relations R
) BLM:_(aj(X)aj)LM, (11)
{almaaan}z Omn- 2 \/E

The one-body operators for evenL<2j—1, and the number conserving operators
~AM_ T 4jm i< <i ~
Cn=ajna™, J=mn=] @ CLM:%[(ajT®aj)LM+(aj®a}r)LM]v
span a Lie algebra U{2+1) of the unitary group. The an- QO
] =(aj®a) m— \/;5L,o,

gular momentumly, is a one-body vector operator, (12)
Iu=2, (in|Iyljm)cm. (4)  for all L<2j. These operators obey the commutation rela-
m.n tions
The creation and annihilation operators for time-reversed or- A L A
bitals are assumed to be given by [BL, AL TL=2(= D) [La][L]W(L4jLoj;jL)C,
(1)l mgt im_(_1)i-mgi,—m S A
= (DT, @T=(=DTTAE ) [CL AT =2[La T Lo IW(L4iLoj ;LA
The creation operatm;'m and the destruction operatag, L .
=al™ are them components of spherical tensor operators [BL,CLlL=2[La][L2]W(L4jLj;jL)BL,
(note the subscripts to indicate tengors
Given any two spherical tensor operatofsi and \?jz, [EL,C 1 =[(-Dtr+t L 1][L,]
~ ~ ~ 1" k2
define the coupled tensor operaW[,M:(YJ-z@le)JM by L
X[L2JW(L4jLoj;jL)Cy, (13
WJM:mgnz (i1m1,1'2m2|‘]M)YizszJ'1m1' (6) where[L]=+2L+ 1. This algebra is the Lie algebra (4

+2) of a group of orthogonal transformations of a
This right-to-left coupling convention yields the Wigner- (4j+2)-dimensional vector space of operators spanned by

Eckart theorem with the usual sequence\bialues, i.e., the fermion creation and annihilation operators.
The fermion pair algebra has several subalgebras of use
<\]3||\7\/J [3,) for classifying states of a singlgshell. In particular, the
<J3M3|WJ2M2|J1M 1>=(J1M1,J2M2|JMM3)#, subset of all number conserving operatdfs ! span a
3

7) U(2j+1) algebra and the subset di=0 operators
{Ay,Bo,Co! span the so-called quasispin algebra SU(2)
and the intermediate state sum formula Equivalently, SU(2} is spanned by the quasispin operators
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common. For example, the stafg,HW), constructed by

] i
P T P imai . ! . ) .
Si= _21/2 a;rmaja, S = _21/2 almal™, putting a nucleon in each of the orbitals withh=j,j
m= m= —1,...j+1—n,isaUSp(3+1) highest weight state and,
1 ® being annihilated byS_, it is simultaneously an SU(2)
“SO:_(ﬁ_ 0)= \/:(:0, (14) lowest weight state,. Such arparticle state contain no zero-
2 2 coupled pairs and is said to have senionity: n and qua-
. . . . sispin
which satisfy the usual SU(2) commutation relations 'SP
.~ . R . 4 A S=(Q—-v)/2. (18
[S:,S-1=28, [S),S:]==%S.. (15
] ) It follows that these states simultaneously define related ir-
The U(2 + 1) subalgebra is useful because all the states of feps of USp(2+1) and SU(2).
given nucleon number belong to a single [¢21) irrep. As shown by Helmerd3] in a more general context,

The_quasispin algebra is useful because it is fa.spe_ctrum 9eQUsp(2j + 1)~ SU(2)s duality can also be inferred from a
erating algebra for the standard monopole pairing interactiofjnear relationship between the Casimir invariants of these

two algebras. The Casimir invariant of USp®1) is

G% afma;n;aj”_ai”=6§+ S . (16) o

@z[usq21+1>]=—2§ [LIIC.®Cilo. (19
C. Dual pairs of subalgebras of Gi4j+2)

As subalgebras of O(4- 2), the elements of U(2+ 1), It is known from Lie_algebr.’_;\ structure the_o[;kB] that _aII
and SU(2), do not commute with one another. Thus, it is Stat€s of a USp(+1) irrep with highest weight
useful to consider mutually commuting pairs of subalgebradfi:f2; - .fj+12) are eigenstates of the Casimir operator
of O(4j +2). There are two such pairs and their representalVith €igenvalues
tions have valuable duality relations as discovered by Helm-
ers|3].

Two subalgebrag; andg, of a Lie algebrag are said to
be dual within a representation gfif g; andg, are mutual
centralizers ing and if each set of equivalent irreps @f  The irreps of seniority for a nucleon of a single type inja
together comprise an irrep of the direct sum algebra shell have highest weights with=1 forr<v andf,=0 for
©g,Cg and vice versgd6,7]. In less technical terms, this r>y. Thus, in terms of seniority
meangi) thatg, is the maximal subalgebra of all elements of
g that commute with all elements @b and vice versa, and C[USp2j+1)]=v(2j+3—v) (21
(i) that every irrep ofy, is associated uniquely with a single
irrep of g,,and vice versa, as illustrated in the introduction. and, in terms of quasispin,

Not every subalgebra of Of4-2) has a dual. However,
the two important subalgebras U(21) and SU(2y do. ColUSp2j+1)]=Q(Q+1)—4S(S+1). (22
The dual of U(3+1) is the subalgebra U(%)of SU(2)g
spanned by the operat&, and the dual of SU(2)is the ~ The USp(3+1)~SU(2)s duality implies that the set of all

USp(2j +1) algebra spanned by the operat{ﬁ:vw :Lodd. v-nucleon stategvpJM) that are annihilated by the qua-
The algebra U(P+1) is the maximal subalgebra of num- Sispin lowering operator, i.e.S_[vpJM)=0, span a

ber conserving operators in O(42). Conversely, any op- USP(Z +1) irrep. Moreover, the set of afi-nucleon states

erator in O(4 +2) that commutes with all the operators of |nvpIM)o<(S, )"y pIM) obtained by adding r(

U(2j+1) is proportional t0S,. More importantly, the —v)/2 zero-spin pairs te-particle quasispin vacuum states

U(2j +1)~U(1)s duality requires that all states of a U(2 SPan an equivalent USp(2 1) irrep.

+1) irrep occurring within the totally antisymmetric space ~ Basis stateg|nvpJIM)} for a nucleus oh neutrons(or n

of identical nucleons in a singjeshell are eigenstates with a Protons in a singlej shell are classified by the quantum

common eigenvalue (fﬁo This is understood by writing numbers of the subalgebra chain
§,=1(h-0), (17) U(2j+1)DUSp2j+1)DSU(2);DU(1);, (23
{1"} v p J M

j+1/2
CIUSpH2j+1)]= > f,(f,+2j+3-2r). (20
r=1

wheren is the number operator. The Uj2 1)~ U(1)g du- . o .
ality then follows from the fact that all totally antisymmetric Where p is multiplicity index and SU(2) is the algebra

n particle states in a singleshell span a U(R+1) irrep. spanned by the angular momentum operators

The USp(3 +1)~SU(2)s duality can be inferred from — i
the fact that these two commuting algebras have a complete Jo— [1G+1D)(2] +1)é (24)
set of unique extremahighest and lowest weighstates in M 3 M=
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It follows from the above noted U(2-1)~U(1l)s and The sum in Eq(28) can be carried out explicitly and gives,
USp(2j + 1)~ SU(2)s dualities that the same basis states ardfor example, the following reduced matrix elements of the

also labeled equivalently by the subalgebra chain USp(2j +1) operators, which commute with the quasispin
operators:
SU(2)sX SU(2);0U(1)sxU(1),, (25
S J $ M, (N0 Imal CallNv I man
V7

with S=3(Q—v) andSy=3(n— ), where the multiplicity

index p is now interpreted as labeling the multiplicity of \/(2J+4)(2J+3)- -+ 2J

SU(2)sX SU(2);, irreps that occur. - (2J-1)(23-2)
With basis state§|nvpJM)} symmetry adapted to both

the subalgebra chain@3) and (25), it is possible to exploit [X?—(5n—2)x+(5n*~5n+2)] 30
the tensorial properties of operators with respect to the alge- X (X+4)---(x—2) . (30

bras of either chain to facilitate calculations. For example,
the SU(2) @ SU(2); algebra can be used to classify simul-

taneously the second quantized operators jo$taell as qua- (N0 Imasl Cell N0 Ima
sispin and angular momentum tensptd]. J11
The fermion operators transform into one another as com-
ponents of a quasispif= 3 tensor; o \/ (2J+6)(2J+5)---2J
A A B (23-1)(23—2)(23-3)(23—4)
[S: . ajml=ajn, [5-.an]=anm,
) ) Qs(x,N)
[So.alm]=3a)n.  [S0.8jm]=—3ajm. (26) Jx+6)---(x—4)’

For even J and fixed M, the three pair operators
{As;m.Cym.Byul, are the (1,0;1) components of a qua-
sispin S=1 tensor and the operatof€ ;) ;Jodd of the —84n°x+112n°x— 112nx+ 34x+42n* - 84n°
USp(2 + 1) algebra are quasispin scal@t]. +1260%—84n+ 24, (31)

Qs(x,n)=x*—14nx3+ 4x3+56n%x?— 42nx2+ 21x?

D. U(2j+1)DUSp(2j+1) highest weight states

The state|n, HW)=| 3 M3 ructed (anmaJ|C7||anmaQ (2J+8)(23+7)- -

e state|n, =[n,v=n,JpaM=Jma cONstructe

by putting a nucleon in each of the orbitals with=j,j V15 (23=1)---(23= 5)(2J 6)
—-1,...j+1—n is a state of U(2+1), O(4j+2), and Q,(x,n)
SU(2); highest weight, having maximum angular momen- X AN ,
tum Ja=n(2j+1-n)/2. It is a totally antisymmetric and V(X+8)(X+7)- - - (x—5)(Xx—6)
multiplicity-free state with U(2+1) weight{1"}, defined

by specifying the nonzero occupation fact6irs this case 1~ Q7(x,n)=x%—3(9n—2)x°+5(45n2—27n+17)x*

or 0) of each orbital in them=j,j—1,...,+] sequence. 3 5 3 4

Othern-particle O(4 +2) highest weight states of<n are —15(55n"—60n"+ 74n—20)x"+ (1485,

given, to within norm factors, by — 24753+ 45002 — 2790 + 904)x2— 3(42N°
1NV Imadma) (S " 920, HW). (27) —99M*+ 2365° — 240h%+ 159h — 408) x

In calculating matrix elements of operators in the (2 +3(143°-42M°+12651" — 18151°+ 183N°

+1) and O(4 +2) Lie algebras, it is useful to start with the _

expectation values of these operators in the highest weight 996n+240), (32)

states. wherex=2j.

The expectation of the operat@y o in a U(2j + 1) high-

est weight state is E. Branching rules

- ey . The space oh identical fermions in g shell is of dimen-
— _ jtm e

{n,HWIC,oln, HW) % (=10, —mijm[LO)Am, sion (2j+1)!/[n!(2j+1—n)!]. It is the carrier space for

(28)  the totally antisymmetric irreg1"} of the unitary algebra

u(2j+1).
where The highest weight state of U{2 1) in the n-fermion
i space is also a highest weight state for an irrep of the sym-
[Tz, j—m<n plectic subalgebra USp{2-1). The latter is labeled by the
Am= . (29 o N S
—-1/2, j—m=n. seniority quantum number=n, and its dimension is
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TABLE II. Angular momentum branching rules fgr=9/2. The conditions thal/ must satisfy to conserve seniority can
. 3 be derived by expressing the basit;©B;), of two-body
rotational scalars as a sum of quasispin tensors. The opera-

0 0 tors

1 9/2 L o o

2 2,4,6,8 X%(J)=(A;®B;)o—(C;®C))o+(B;®A)),,

3 3/2,5/2, 712, 9/2, 11/2, 13/2, 15/2, 17/2, 21/2 R R R

4 0,234 567,809, 10, 12 X5(3)=(A;©By)o— (B3®Ayo, (36)

5 1/2, 512, 712, 912, 11/2, 13/2, 15/2, 17/2, 19/2, 25/2 o o o

X5(3)=(A;©By)o+2(Cy0C)o+ (By®Ay),,

2j+3\2j+3-2v are components of quasispin tensor operaXoi@) of rank

(33 S. The operators<S(J) are constructed by coupling of the

quasispin vector operatdA;y ,Civ,Biv} with itself.
For compactness of notation, denote the basic two-body
scalar operators by the symbols

dim=

v 2j+3
The entire U(2+1) antisymmetric irrep space foridenti-
cal fermions decomposes into irreps of USp{2l) with
senioritiesv=n,n—2,...0 or 1.

The angular momentum branching rules for a Ugp(2
+1) irrep were given by Flowergs] and Hamermeshl6]
for j=<7/2. Forj=9/2 andj=11/2, Tables Il and Ill provide
the SU(2)CUSp(2j+1)CSU(2j+1) branching rules.
These decompositions were deduced using tmestheme”

Z,=(A;®B))o, J=024.... (37)

The explicit relationship between tizg andX(S,(J) operators
is found by normal ordering the right hand side of E8f)
with the help of the identities

and confirmed by a branching rule cofde?]. For example, o .3 -
when n=2 identical fermions are in th¢=9/2 shell, the (By®Ay) =23+ E(n—ﬂ), (38
space decomposes into a seniority-2 subspace with)
=2,4,6,8 and a seniority =0 subspace witld=0. [J]
(Cy8Cy)o=2 MZ,+ 55n—8,dN—30), (39
Y

IIl. SENIORITY-CONSERVING FORCES

A two-body interactionfassumed generally to be number Where

conserving and rotationally invarigntacting within a )" ML =ML =21 Wi :vd 40
configuration space, has the standard expansion Iy 9= 2Ly IWGIT ) (40
1 andJ, y run over the even integers from 0 toj(21). The
l .
V=—_ JIVI(A,®B,),. 34 S=1 operatoron(J).are seen to be proportional to one
4 ; HIVIA©BY 34 another and related linearly to the number operator,

where[J]=+2J+1: the sum is over even angular momen- 11V =TA. B :ﬂ _:
tum J=0,2,...,3—1, andV’ is the M-independent two- X)) =[As,Blo=" (2= 1) (41)

nucleon matrix element o ) )
It follows that, to within constants and terms linear in the

VJ=<j2.JM|\"/|j2.JM> (35) number operator, the scalar and tensor quasispin operators
are related to th&; operators by
TABLE lll. Angular momentum branching rules fgre=11/2.

X0(3)=—(ME=21)Zy+ - -, (42)
v J
0 0 X5H=2(M2+1)Z+ - -, (43)
; 5 41(15/28 10 whereM® is the linear transformation for which
3 312, 512, 7/2, (9/8, 11/2, 13/2, (15/2, o L g
1712, 1912, 21/2, 23/2, 27/2 MOZ,=> Z M9, (44)
4 0, 2, 3,4, 5%, 63 72 8% 9% 1(7, 11, 1%, 13, 14, 16 ’
5 1/2, 312, (5/2%, (7/2)%, (9/2)?, (11/2), (13/2), o - - £5 _5
ndl is the identi ratonZ;=2;.
(15123, (17/2)%, (19120, (21/2%, (23127, andl is the identity operatonz,=2, .
(25120, 2712, 2912, 31/2, 35/2 Let W denote the linear space spanned byZheperators
6 022 42 5 & %2 82’92 1'02 11’ 12 13. 14 15 and letW, andW, denote subspaces Wf spanned, respec-
T gt T T T T T T ively, by the operatorg (M2 —21)Z5) and {(M2+1)Z5).

Then,W, andW, are subspaces of two-body operators\in
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that are, respectively, quasispin scalars and tensors to within TABLE IV. The numberp_, (p,—1) of linearly independent
constants and terms linear in the number operator. For corfotationally invariant two-body quasispin scalaeniority-mixing
venience, we shall refer to elements\Wwf, and W, as qua-  interactions in g shell.

siscalar and quasitensor operators, respectively.

Proposition 1.The eigenvalues df1* are equal to- 1 or J P-1 P21
2. The space of operatow is the direct sum 3/2 1 0
5/2 2 0
and 9/2 3 1
11/2 4 1
R 1 . A R 1 . R 13/2 5 1
P0=—§(MQ—2I), P2=§(MQ+I), (46) 1502 5 2
17/2 6 2
are, res i jecti 1972 7 2
, pectivelyw— W, and W— W, projection operators. o1/ ; 3

Proof. The matrixM* is real and symmetric. Therefore
M is completely diagonalizable. Léte W be an eigenvec-
tor of M of eigenvaluek. It follows from Eqs.(42) and(43)  Note that in the last line of Eq51) we have used a sum rule

that for the Racah coefficient that was conjectured and confirmed,
~ o R using Maple with exact arithmetic, for glk260.
(M2=21U=(k—2)U e W,, (47 In Table IV the numbers of two-body interactions that
conserve and break seniority in §f configuration space
(M2+1)U=(k+1)UeW,, (48  are listed. Thus, for ajj" configuration space, seniority is a

good quantum number for a wide range of interactions. For
and, becaus®/, and W, have no nonzero vectors in com- example, in thg =13/2 shell, there are seven linearly inde-
mon,k must be equal te- 1 or 2. It also follows tha¥Wis the ~ pendent two-body interactions, but only one of the seven

direct sum ofw, andW, and that mixes seniority. Proposition 2 implies that a two-body inter-
action must satisfp,— 1 constraint conditions in order for it
PoU=0 forall Uew, (49  to conserve seniority.
Using the results of Proposition 1, we can now derive
p,0=0 forall UeW,. (50) explicit conditions that an interaction
V=—- Z [JIVIZ,eW (52

Thus, P3=P, and P3=P, and Py:W—W, and P,:W
—W, are projection operators.

Let p_, = dimW, andp,= dimw, denote the dimensions must satisfy to conserve seniority. To be a quasiscaar,

. s 0 . . must lie in the subspad&/,CW; hence, by Proposition 1, it
of the eigenspaces &fl** belonging to the eigenvaluesl1

. . ", Q A _ . . .
and 2, respectively. We now give an explicit expression formUSt satisfy the equatioM™+1)V=0 so that its projection
p, and thereby obtain by our new methods a result g|verP2V onto W, should vanish. However, as observed above,
previously by Talmi[2] based on results of de-Shalit and the monopole pairing operator, proportlonaIZ@ also con-
Talmi [10] and Ginocchio and Haxtofi1]. serves seniority. Thus, to conserve seniority, it is sufficient

Proposition 2 (Talmi).The number of independent rota- that the projectionP,V of V onto the subspac&/,CW
tionally invariant two-body interactions that mix seniority in gp5,1d be proportional to the componef?gzoewz of 20_

a (j)" configuration space is equal [{(2j — 3)/6], where[X] ~ . .
denotes the largest integer less than or equal to In other wordsV should satisfy the equation

Proof. As a result of the duality relationship between QL TV =% (K12 TV5
USp(2j+1) and SU(2y, any two-body interaction that (MPHDV=AMMT+DZ, ®3
conserves quasispin also conserves seniority. Thus, the setfoi some\. The coefficientsv’ of the interaction, should
seniority conserving interactions includes all quasiscalar opthen satisfy the equations
erators(elements ofW,) and the monopole pairing interac-
tion —GS,S_ proportional toX3(0) e W,. The number of [V [YIMEN =N (830+ M) (54)
independent two-body interactions that mix seniority is Y

thereforep,—1 and, from the first propositiorp, is given for all even values ofl and some value of

by The value of\, determined for a given interaction from
2j—1 . the J=0 equation, is
.1 2j+3
p=trP,= 2| Q42 Z (234 DW(ij 39 | = | ——|. .2
Jeven )\:V 2 +1 Vy 55
51) 3-1 2, (2r+D) (55
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Eliminating A from the J=2 equations and making use of H=en—GS,5_ +V, (63)
the identity[2] '
even where V, is a linear combination of thd[C, ®C ]Jo;L

22 (2y+DW(jjjj Iy =1-(2j+1)5, (56 =1.3.5...,2} operators.

Y The classification of stateg$nvpJM)} by the subalgebra
chain(23) also implies that a two-body interaction that con-
serves seniority should be of the form Wf, plus a term
quadratic in the number operator. The latter result is consis-
tent with Talmi’s theorem because, to within terms quadratic
in the number operator, the opera®rS_ is the SU(2);
Casimir invariant which, by the duality relationship2), is
linearly related to the USp(2-1) Casimir invariant(19)
which, in turn, is of the form required fov,,.

then leads to Talmi's theoreh2]

Theorem 1 (Talmi)A necessary and sufficient set of con-
ditions for theV? coefficients of a two-body interaction to
conserve seniority are that

even

VI—A+22) (2y+1)W(jjjj :dn(V'—A)=0, (57)
Y

for all (even values ofJ=2, where Given the form of any seniority-conserving interaction
1 (Theorem 2 and the number of independent quasispin sca-
A=— > (2y+1)V. (58  lars two-body interactiongProposition 2, it is possible to
(J+1D(2j-1) 750 construct a basis of seniority conserving interactions explic-

From Proposition 2, it now follows that among the set of ty- The nu7mberp_lg of linearly-independent quasispin sca-
(2j—1)/2=0—1 conditions given by this theorem, only lars forj=3 andj =73 is equal to three. Two of these scalars

[(Q+1)/3] equations are linearly independent. fee7/2, ~ areC[USp(2+1)] andJ-J. A convenient choice for the

all interactions conserve seniority and, for €/p<13/2, third scalar is [C30Cs]p. For j=3%, the seniority-
there is a single condition conserving interaction consists of four operators. The fourth
9 operator can b¢Cs®Cs]o, for example. Forj=% and j
65v2—315v4+403v6—153v8=0 forj==, (59 =22 the seniority-conserving interaction consists of five op-
2 erators, and so on. The seniority conserving Hamiltonian
1020v2— 3519v4 + 637V -+ 4403/8— 2541/10= 0 (63) for j=9/2, for example, can then be expressed as
11 = 24 pC v,
for j=7, (60) H=Hy+aJ+bC,[USp10)]+cZ, (64)
where H, depends only on the particle number aid
1615/2—4275/4—1456v°+ 3196v8+5145/10-4225/12 = —(C,®C,)o/\7. The energies of this Hamiltonian are
then
B - 13
=0 forj=7- (61) Enpos=Enotad(J+1)+bv(2j +3-v)+cZ,,,. (65)

The duality relationship between the USp(2l) and whereZ , ; is an eigenvalue a. The excitation energies are
SU(2)s quasispin algebras implies that any two-body inter-. pud 9 ' 9
gdependent oh.

action that conserves seniority is a quadratic in the element
of the USp(3 +1) and U(2); algebras. This result follows
directly from Burnside’s theorerfil8] which states that:

Any linear operator on the Hilbert spadd, for an irre- This section presents a method for computing reduced

dhumble reprgsentlau%n T ?fl.a Lie algebgais an element ?jf matrix elements of théCL;Lodd} operators in the USp(2
tb etﬁzsgue?g;/(?r a_lgi( r.e;(o inear operators big generate +1) Lie_ algebra. The desired matri>§ elements are shown_ to
y P 4T(X); X g}. . be solutions of a sequence of equations. The early equations
In other words, if the elemen{;} of a basis fprg have iy the set involve a small number of unknown matrix ele-
an irreducible representation as linear operafotg on a  ments and some of these equations can be solved analytically
Hilbert spaceHo, then any linear operatoH, such as a for the unknowns. Subsequent sets of equations involve more
Hamiltonian, which |eaVEHO invariant is eXprESSible in the unknowns and it rap|d|y becomes impracti(ﬁa{/en impos-
form sible, in generalto solve all of them analytically. It is nev-
. L ertheless possible, as we show, to solve them numerically.
H=Co+2 Cixi+z Cij XiXj+ -+, (62 Once these matrix elements are_determined, the matrix
' ! elements of quasispin scalar operatdZs ® C, )y, which are
wherecy, ¢;, cjj, etc., are complex coefficients. Thus, we possible two-body interaction terms of a general seniority-
obtain the theorem: conserving Hamiltonian, are easily inferred. Analytic formu-
Theorem 2 (Talmi)Any rotationally invariant number- las are reported for some of the energy eigenvalues of qua-
conserving hermitian Hamiltonian with seniority-conservingsispin scalar Hamiltonians. An eigenstate of a seniority-
two-body interactions acting within a singjeshell can be conserving interaction that has an analytic expression for its
expressed in the form energy is said to possess a USp{2l) partial dynamical

IV. MATRIX ELEMENTS OF LIE ALGEBRAS
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symmetry according to Leviatan’s definiti¢f]. where p=(—1)'1*t2"L derived from the commutation re-

_ Let|vpJIM) denote an orthonormal basis for the irreduc- |ations (13). For a unitary representation, tif operators
ible representation of USp{2-1) in aj shell with seniority  yyst also satisfy a hermiticity condition
v, wherep is the multiplicity index for the states with total

angular momentund and z-componentM. The branching
rules of Sec. Il E determine the range of quantum numbers in
this basis. The problem is to find the reduced matrix ele- A . J—y - )
ments of the unitary symplectic algebra generators, (vp'I[[Cullopd)*=(=1)""(vpI|CLlvp' ). (67)
(vp'J'||Clupd) for odd L. These matrix elements are solu-
tions to the equations

A. Recursion formulas

. {vp'Y|CLlvpd)
(7= DW(LjL o5 jL )t

J2L+1 Expectation values of the USpj2 1) operators with re-
spect to the irrep’s highest weight vector are known, see Eq.
(vp'J’||éLl||Up"J"> (28). Starting with these values, matrix elements with respect
= 2 W(JL,J'L4;Jd"L) to other basis states can be calculated sequentially. Consider,
p"J" v2ba+1 for example, the special cases of E6) with L=1,3, L,

=L,=3, and|vp'J')=|vpd)=|v,HW). Angular momen-

X<vp VIC0 lvpd) tum coupling rules and the irrep branching rules limit the

— pW(JILJ L, L)

V2L,+1 intermediate state sums in E§6) for these cases to just two
. . terms. Matrix elements of the= 1 operator<;, being pro-
(p'I'CLJlvp"3") (wp"3"|CL [lvpd) portional to angular momentum operators are already known.
\/m \/m By applying the highest weight datd0) and the hermiticity

condition(67), the following solutions for the other unknown
(66) matrix elements are found:

(v(3—2)]C4llvd)|? ~(23+2)(23+1)2]  60(n*~1)(x—2n+1)*(x—n)(X—n+2)
7 C(X+4)(x+3)---(x—2) (2J—4)(23-1) ’

(68)

(v (3—3)[C4llvd)|? _(22+2)(23+1)2]  60(n*—1)(n*~4)(x—n—1)(X—Nn)(X—N+2)(x—n+3)
7 T (x+4)(x+3)- - (x—2) (23—4)(23—2)(23+2) :

wherex=2j and|vJ)=|v,HW) denotes the multiplicity free state df=J,,.. We take the real positive square root for these
two reduced matrix elements as our phase choice.
Similarly, for theL=3,5 special cases with;=3, L,=5 , we obtain the solution

. 46202J+4)(23+3)(23+2)(23+1)23 ,
(v(I-2)|C4llvI)= 252 62 AL X 2Nt DO¢-123+2x+12)

(n°—1)(x—n)(x—n+2)
(X+6)(x+5)---(x—4)"’

(69)

. _\/462(3(2J+3)(2J+2)(2J+1)2J/ ,
(v(I-3)||CslvI)= BT 26 21 A2i_2) 2 1A+ 12)

\/(nz— 1)(n>—4)(x—n—1)(x—n)(x—n+2)(x—n+3)
x (XT6)(x+5)---(x—4)

again withJ=J,,,, andx=2j.

More reduced matrix elements can be evaluated by stepping down from the highest weight state. For example, putting
L;=L,=3, andL=1,3,5 into Eq.(66) with |[vp'J")=|v(Imax—2)) and |vpd)=|vImay Yields three equations for three
unknown matrix elements with the solution

014303-9
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R B 143(2J—3)(23—2) Q232
(W(I=2)[Cellv(I=2))=~ \/(ZJ—G)(ZJ—S)(ZJ—4)(2J—1) JX+4)(x+3)- - (x—2)

Q3= N?x*—7n3x3+4n?x3—25nx3+ 16n*x?— 21n3x?+ 15T?x?
—75nx%—36x%—15n° x+ 32n* x—273n% x+ 306n% x—40n x
—72x+5n%-15n%+142n*-259n%+ 117n%+ 10n+48, (70)

. 3 7(2J-5)(2J-3) Qsss
(vQ=3)Csllv(I=3)) =~ \/(ZJ—S)(ZJ—7)(2J—6)(2J—4)(2J—2) I3 2

Qz3=n3x°—8n*x*+5n3x*—42n?x*+23n°x3—32n* x3+305n°% x°
—168n2x3—136n x°—31n°® x?+ 69n° x?>— 723n* x?+ 895n° x?
—78n2x?—408n x*+192x2+ 20N’ x—62n° x+ 702n° x— 1382n* x
+814n3 x+180n?% x+ 656n x+ 384x— 5 n8+20n’ — 242n%+ 656n°
—645n*+220n%—932n%+928n— 1536,

R (2J-3) (n°—4)(x—n—1)(x—n+3)
(0(3-2)|Csllo(3-3)) =~ 30\1422)(x~2n+1) \/(2J—4)(2J—6)(2J—7) FA(xF3) - (x—2)

with J=J,ax andx=2j.
Some additional USp(j2+-1) reduced matrix elements obtained by sequential solution of the equations are

. | 8402)-1)(23-2) Qa4
Ep) (@=2ClorI =)= =g 23— 6)23-5) T DT 3) 2"

Qu3,=n* x5+ n?x5—8n°x%+6n*x°—44n3 x5+ 6 n? x5+ 24n x°+ 26n° x*— 40n° x*
+302n* x*—220n3 x*+ 20n? x*+ 120n x*+ 144x*— 44n" x>+ 104n° x3
—846n° x3+1168n* x3—1174n3 x3+40n2x3— 972n x3+ 576x3+ 41n8 x2
—132n7 x2+ 1158n° x2— 2378n° x2+ 3794n* x?— 2642n° x*+ 5169n? x?
—3396n x?—1008x%—20Nn° x+82n8 x— 772n" x+2108n° x— 4366n° x
+5268n* x— 10246n° x+ 10274n? x— 492n x— 3168x+ 4 n'%+20n°+201n®

—684n’+1704n%—2802n°+ 6257n*—8602n3+ 2106n%+ 1836n + 3456, (71)
R B (23)(23—1)(23—-3) 420n°—4)(x—n—1)(x—n+3)Qy3s
2 (w@=2)IClr - = G5 g s s B4 KA D)

Ques=n3x3+5nx3—3n*x2+3n3x2—57n2x?+15n x>+ 3n°x—6n*x

+107n8x— 114n? x+334n x—n®+ 3 n®-55n*+105n%—376n%+324n— 1008,

) 4620231 4)(2343)(23+ 2)(23+ 1)2].
<U(J_2)”05”UJ>:\/ (20-5)(20-6)(20—-4)(20-1)

\/(nz—l)(x—n)(x—n+2)
(X+6)(x+5)---(x—4)"

x—2n+1)(x?>—12J+2x+12)
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\/4620(2J+3) 23+2)(23+1)2J
(v(3-3)Csllv)= (2J—7)(2J—6)(23—4)(2-2)"

\/(n —1)(n?=4)(x—n—1)(x—n)(x—n+2)(x— n+3)
x (XT6)(Xx+5)- - (x—4)

(2x?— 181+ 4x+12)

For any seniority, theZ eigenvalues for angular momentuhs J,,,,=v(x—v+1)/2 andJ=J,,,— 2 are deduced using the
formulas of this section for the matrix elements®f,

v(x—v+1)

1124 4 4 333 AA2y3_ 3
max) = X d) (= 2)(vx 11v°Xx*+50v X"+ 12x*+450° x°— 44v° x°— 48v X

(0Imad Z|vd
+48x3—850* X2+ 13503 X2+ 10202 x2— 164p X2 — 24x%+ 750° x— 170v* x— 8503 x
+2920% x+ 12v Xx— 144x—250°%+ 7505+ 2504 — 17503 — 2402+ 124y + 48), (72

1
(X+4)---(x—2)

459302 x*— 1800 x*+ 48x*— 1300° x3+ 22404 x3— 277403 x3+ 233202 x°

(0(Imax—2)|Z|v (Imax—2)) = (v2x8—1203 x5+ 6 v2 x>~ 360 x°+560* x*—600° x*

— 4320 x3+192x3+ 1600 ° x2— 3900 ° x2+ 558804 x2— 80820 ° x2

+3376v2 x?>— 5760 x*—336x%— 1000 X+ 3200° x—51000° x+ 1072804 x
—7664v° x+ 210402 x+48v x— 1056x + 2508 — 10007+ 173006 — 48400 °
+5129*— 230803+ 2802+ 336v + 1152). (73)

B. Numerical solutions a solution X. To find the relative minima ofF(X), the
method of steepest descent is used in our calculations. Sup-
gosexo is an initial guess foX. The linearization of-(X)
ﬁlbouth gives a first approximatiolX, for X by

When the dimensions of a USpj(21) irrep are large,
and especially when there are multiple basis states of th
same angular momentum, the above analytical solution of a
the equations becomes prohibitively difficult and ultimately
impossible. The equations can nevertheless be solved nu- 0=F(Xo) +VF(Xo)- (X1=Xo)=F(Xy). (74)
merically for quite large irreps.

Let X denote a column vector whose entries are the unThe zero of the linearized function, and, therefore, the ap-
known reduced matrix elements of the USp{2l) opera- proximation to the zero of the function is
tors. Thus X excludes any known or already determined ma-
trix elements. MoreovetX includes only one of each pair of X1=Xo+ €VF(Xo), (75)
unknown matrix elements, (vp'J'||C [lvpd) and
(vpd|Cllvp’d"), since these are not independent for a uni-with e=— F(Xy)/|VF(Xo)|2.
tary representation. If F(X;) were to vanish, then a solution is found. Other-

The commutation relation&66) determine a set of equa- wise, X, is used as the nexand one hopes betleguess for
tions forX. The number of independent equations grows rapthe starting point of the method of steepest descent. By iter-
idly with the seniorityv and the shell's dimension (2 ating the steepest descent algorithm, a sequence of points
+1). For two particles in thg=11/2 shell, there are 47 X,,X;,X,, ... is computed that, in favorable cases, con-
unknown reduced matrix elements that satisfy 1275 distincterges to a relative minimum of the functién
equations. For four particles in the=9/2 (j=11/2) shell In shells withj<11/2 and all possible particle numbers
there are 2431281 unknown reduced matrix elements that computer calculations using the method of steepest descent
satisfy 4550(32,130 distinct equations. converged after about 100 iterations to an approximate solu-

Each equation that the unknown matrix elements satisfyion, F(X)<10 2. Without exception, the steepest descent
can be expressed in the forin(X) =0, wherea indexes the method converged to a global minium and a true solution to
set of distinct equations. All the equations will be satisfiedthe commutation relations.
simultaneously wher(X)=3 [ f.(X)]? is zero. Convergence to a relative minimum is expected when us-

A solution to F(X)=0 also minimizes the nonnegative ing the steepest descent method. But convergence to a global
function F(X) and, hence, the derivativeF (X) vanishes at minimum is unusual. The inference is that the functieqrX)
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TABLE V. Energy levels in keV of®2Mo positive parity states. TABLE VI. Hamiltonian parameters in keV of seniority-

The theoretical levels are calculated in the S approximation.  conserving interactions.
USp(10) Theory Constant Mo %Ru %pd
J v=0 v=2 Experiment a 20.36 19.74 18.13
o o o —1227.38 —1203.90 —1079.76
c —96.37 —89.75 —93.40

2 1509 1509
4 2283 2283
6 2589 2612 of the Hamiltonian(64). Equation(65) then predicts the en-
8 2761 2761

ergy of theJ=6 state. Equivalently, one could say that, for a

seniority-conserving interaction, EG9) gives directly the
afnergy of theJ=6 state in terms of the experimental ener-
gies of theJ=2,4,8 states. Table V shows that seniority is an
approximate symmetry for these energy levelS®o since
tt(;]e experimental energy of it3=6 level is just 23 keV

number of equations are not excessive, then it is possible . : o
solve for all the unknown matrix elements simultaneously.above the value required for conservation of seniority. The
[=9/2 shell spaces of th&*Ru (n=4 protons and **Pd

More generally, it is possible to proceed sequentially, as del

scribed in the previous subsection, to obtain solutions fo" =6 Protons isotones include states of seniority-4 as

subsets of of matrix elements in which the number of un-Well asv=0,2. In the USp(10) model, the lowest-enegy

known matrix elements at each step is kept much below the:2’4j8 §tates fix the energy parametessh(c) .Of the
total number of unknowns. Hamiltonian (64), cf. Table VI. Eq.(65) then predicts the

energies of all other (9/2)states of these nuclei as listed in
Tables VII and VIII. The errors for the predicted energies of
the J=6 levels in the USp(10) approximation are 0.6% for
The reduced matrix elements of USp(R1) operators °‘Ru and 2.1% for®Pd. The predicted energies of tide
are frequently the square roots of rational numbers, cf. Sec=J,,,,=12 andJ= 10 states are calculated analytically from
IV A. This favorable situation for a matrix element occurs Egs. (72) and (73). The differences between the predicted
routinely when the angular momentum is multiplicity free USp(10) energy and the experimental energy forikel0
for both the bra and ket vectors. The quantum system is theandJ= 12 levels of**Ru and°*Pd are small—an indication
said to exhibit a partial dynamical symmetffDS among that seniority is a rather good quantum number for the low-
the multiplicity free state vectors. energy states of these isotones. Another region to test senior-
Using double precision arithmetic in Fortran, the squarety is the N=126 isotones?'%o, ?1Rn, and?!“Ra. These
of a reduced matrix element can be expressed as a rationaliclei have an active protonyg shell, and Eq(65) deter-
number with an error that is less than 2 By calculating  mines the energies of their excited states when the interac-
these rational numbers among a number of PDS states, paien conserves seniority. Table IX compares the predicted
terns can be recognized that suggest analytic forn|@ék USp(10) energy and the experimental energy of Jke6
For example, wherj<21/2 and for senioritw =2, the  state when the Hamiltonian parameters are fixed by the ex-
difference between the numerically-calculated matrix ele-
ments of the scalar operatd=—[C3XC3]o/\7 and the TABLE VII. Energy levels in keV of**Ru positive parity states.

following formula is less than TG The theoretical levels are calculated in the USp(10) aftDUap-
proximations.

is very special; in a large neighborhood containing the glob
minimum, F has no relative minimum besides the global one.
It is worth noting that, if the dimension oX and the

C. Analytic formulas redux

2312123y = Y et ome a5+
(2|2]20)= Gy x—2) 16X +24¢=3[53(J+ 1) USP(10) Theory
+41x2—6[5J(I+ 1)+ 12]x+2[5J4(I+1)? J  v=0 v=2 v=4 U(10) Theory  Experiment
+20J(J+1)+12]}, (769 O 0 3574 0, 3600 0
2 1431 2772 1431, 2777 1431
where x=2j, and the angular momentund=x—1x 3 3546 3567
~3,....2. 4 2187 2362, 3527 2187, 2354, 3546 2187
5 3220 3228
V. APPLICATIONS 6 2483 2780, 3824 2498, 2775, 3841 2498
7 3281 3280
We apply the seniority-conserving model to the low lying 8 2645 3986 2645, 3997 2645
energy levels of th&l=50 isotones®Mo, *Ru, and*®Pd, 9 4306 4318
considered as systems of a closed neutron shell plus activg 4073 4074 3992
protons in the g, shell. The experimental energies of the 12 4948 4953 4717

=2,4,8 yrast levels determine the three parametayb, )
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TABLE VIII. Energy levels in keV of °Pd positive parity TABLE X. Energy levels in keV of?'?Rn positive parity states.
states. The theoretical levels are calculated in the USp(10) andhe theoretical levels are calculated in the USp(10) aridéiOJ
U(10) approximations. approximations.

USp(10) Theory USp(10) Theory
J v=0 v=2 v=4 U(10) Theory Experiment J v=0 v=2 v=4 U(10) Theory Experiment
0 0 3354 0, 3501 0 0 0 2383 0, 2432 0
2 1415 2636 1415, 2719 1415 2 1274 2167 1274, 2180 1274
3 3334 3464 3 2390 2430
4 2099 2275, 3320 2099, 2312, 3443 2099 4 1502 2071, 2395 1502, 2059, 2430 1502
5 3049 3137 5 2322 2338
6 2373 2659, 3595 2424, 2703, 3715 2424 6 1611 2215, 2504 1640, 2207, 2539 1640
7 3113 3178 7 2372 2375
8 2531 3752 2531, 3852 2531 8 1694 2588 1694, 2610 1694
9 4047 4148 9 2699 2723
10 3846 3911 3784 10 2660 2663 2655
12 4650 4728 4574 12 2960 2972 2881

perimental energies of the=2,4,8 levels. The configuration
spaces for’'’Rn and?'“Ra are the direct sums of=0,2,4
irreps of USp(10). Thed=2,4,6,8 yrast states of these iso- ) .
tones are interpreted as pure=2 vectors when the interac- o, In Tg?les \Z/JI_IZi?V”L X, E;?%Xl, the theorechI energies of
tion conserves seniority. The experimental energies ofithe Ru, ~°Pd, n, aT‘d a are reported in the (l]JQ)
=2,4,8 yrast levels determine the Hamiltonian parameter&heory' _The Ham|l_ton|an parameters are chosen to give an
a,b,c of Eq. (65) and, thereby, predict the energies of the €xact fit to experiment for the energies _of_ the-2,4,6,8
J=6,J=10, andJ= 12 states. The energies of all the stategyrast states. These parameters yield predictions for the ener-
of the configuration spaces fé#%Rn and?'“Ra are reported gies of a]l other states in the.configuration spaces. The
in Tables X and XI. The small differences between the pre£hanges in the energy spectra it10) from the seniority-
dicted USp(10) levels and the experimental energies indicatéonserving model are rather small. Moreover, although the
that seniority-conserving terms dominate the Hamiltoniangnergy of the lowesg=6 state is brought into agreement
for these isotones. with the experimentally observed energy, the energies of the
J=10 and 12 states are worsened. Thus, little improvement
is achieved by extending the dynamical symmetry from
USp(10) to U10). Neither the USp(10) nor (10) energies
When the potential mixes seniority, USp(21) dynami- agree exactly with experiment because the model space is
cal symmetry is broken and the fijlishell model space is limited to a pure [)" configuration. To improve results the

active. The configuration spacg){ carries the fully anti-
P 9 11 13
symmetric irrep of SU(R+1). Forj=3,%5,5 (see Table TABLE XI. Energy levels in keV of?*“Ra positive parity states.

IV), there is one independent seniority-mixing two-body ro-The theoretical levels are calculated in the USp(10) ari#ioU
tational scalar interaction that must be added to the seniorityzpproximations.

conserving Hamiltonian. The seniority-breaking term may be

C, are needed; they are determined by a straightforward gen-
eralization of the numerical methods of Sec. IV B.

VI. SENIORITY-MIXING INTERACTIONS

taken to beY=[C,®C,],. To determine the matrix ele- USp(10) Theory
ments ofY, the matrix elements of the SU(2 1) operator 3 ,—g ,—2 v=4 U(10) Theory  Experiment
TABLE IX. Energy levels in keV of?'%o positive parity states. 0 0 2594 0, 2689 0
The theoretical levels are calculated in the USp(10) approximation? 1382 2355 1382, 2381 1382
3 2605 2681
USp(10) Theory 4 1639 2251, 2612 1639, 2228, 2681 1639
. 5 2533 2564
J =0 =2 Experiment
v v Xper 6 1767 2416, 2739 1820, 2401, 2806 1820
0 0 0 7 2594 2600
2 1181 1181 8 1865 2838 1865, 2882 1865
4 1427 1427 9 2966 3012
6 1516 1473 10 2927 2933 2944
8 1557 1557 12 3272 3293 3256
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model space should be augmented with othshells plus algebras. For the classical Lie algebras, the matrix elements

neutron and proton core-excited basis states. are well known in bases that are adapted to canonical chains.
However, more sophisticated methods are needed when the
VIl. CONCLUSION matrices are required in bases that do not correspond to a

) . ] canonical chain. Vector coherent state methiddd provide

The partially-solvable USp(j2+ 1) model poses an inter-  ajgorithms for handling many such cases. But, as they stand,
esting group theoretical problem because, although its irrépgey are not capable of handling the irreps of high rank al-
have many states that are labeled uniquely by good quantugkpras such as the US(21) and U(J +1) algebras we
numbers, analytical expressions are available for only a renaye considered. We plan to apply our numerical method to
stricted subset of the corresponding energy eigenvalues. Thiner Lie algebraic problems in the future.
possibility of deriving the energie€(nvJ) of general
multiplicity-free states by some, as yet undiscovered, alge-
braic method is a significant challenge. However, for the
USp(2j+1) states that are observed experimentally as of
this writing, we have reported formulas for their energy ei- The authors are pleased to acknowledge helpful advice
genvalues. and suggestions from I. Talmi and J. Repka. We are particu-

The numerical technique of this paper to calculate matriXarly indebted to R. E. Howe for bringing Burnside’s theorem
elements of a Lie algebra irrep may be useful for other Lieto our attention.
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