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Seniority-conserving forces and USp„2j¿1… partial dynamical symmetry
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A quasispin tensor decomposition of the two-nucleon interaction determines the most general seniority-
conserving rotationally invariant two-body interaction in aj shell. Such interactions define solvable and par-
tially solvable shell model Hamiltonians for which the unitary symplectic algebra USp(2j 11) provides a
complete set of quantum numbers for a subset of states. The matrix elements of seniority-conserving interac-
tions are deduced from the matrix elements of USp(2j 11) operators. A new and powerful numerical tech-
nique is presented for computing irreps of the USp(2j 11) algebra. Applications are reported for the low-
energy spectra ofN550 andN5126 isotones. The effects of including seniority nonconserving interactions
are investigated.
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I. INTRODUCTION

The objective of this paper is to explore the remarka
successes and simplifications that can be achieved in a m
description of singly-closed shell nuclei with seniority co
serving interactions restricted to a singlej shell. For such
interactions, many low-energy states are uniquely defined
seniority and angular momentum quantum numbers. T
the model has a partial dynamical symmetry according to
definition of Alhassid and Leviatan@1#. The seniority cou-
pling scheme and the properties of seniority-conserv
Hamiltonians are given in Talmi’s book@2#. In Sec. II we
provide a brief summary of those parts of the theory nee
for present purposes. Our approach makes extensive u
the duality relationship, observed by Helmers@3#, between
the classification of states by seniority and by quasispin
preliminary account of part of the current study was p
sented in Ref.@4#.

When identical fermions occupy a singlej shell, mono-
pole pairing dominates the nucleon-nucleon interaction. T
energy spectrum of a closed-shell-plus-two-proton~or two-
neutron! nucleus, such as92Mo or 210Po, in which the en-
ergy of theJ50 ground state is substantially below the e
ergies of theJÞ0 excited states, shows that monopo
pairing is a major influence.

The quasispin algebra SU(2)S is a spectrum generatin
algebra for the monopole pairing interaction in the sense
this interaction is a polynomial in the elements of SU(2)S .
In this case, the irreducible representations~irreps! of
SU(2)S determine analytically the spectrum of the Ham
tonian. The SU(2)S irreps are labeled by a total quasisp
quantum numberS5(V2v)/2, whereV5(2 j 11)/2 andv
denotes the seniority~the number of unpaired nucleons! @2#.
Excitation energies of the monopole pairing quasispin mo
depend only on the total quasispin or equivalently the sen
ity. However, while the model explains some gross featu
of many singly-closed shell nuclei, it provides a poor d
scription of the details.

The quasispin model can be improved by introducing
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teractions that split the degeneracies of same-seniority s
but do not mix states of different seniority. LetunvrJM&
denote a basis for the space ofn identical fermions in aj
shell, wherev is the seniority andr is the multiplicity of the
angular momentumJM. When the HamiltonianĤ is rota-
tionally invariant and seniority conserving, the angular m
mentum and seniority are good quantum numbers:

^nv8r8J8M 8uĤunvrJM&5dv8vdJ8JdM8MEr8r~nvJ!.
~1!

In the simple quasispin model the matrixEr8r(nvJ) is diag-
onal and independent ofJ.

As shown by Talmi@2#, any seniority-conserving two
body interaction is the sum of a monopole pairing interact
and a quadratic operator in the compact unitary symple
algebra, USp(2j 11). The operators of USp(2j 11) com-
mute with the quasispin generators. In fact, USp(2j 11) is
the maximal subalgebra of U(2j 11) having this property,
where U(2j 11) is the algebra of all hermitian one-bod
operators that act in a singlej shell. As a result, USp(2j
11) serves to classify all the states of a singlej-shell
nucleus of a given seniority@5,3#; indeed seniority is a labe
for a USp(2j 11) irrep. Moreover, the representation theo
of USp(2j 11) provides an algebraic framework for diag
nalizing any seniority conserving Hamiltonian.

The intimate relationship between the commuti
USp(2j 11) and SU(2)S algebras@3# is an example of a
duality relationship@6,7#. A familiar example of such a rela
tionship ~also known ascomplementarityin the physics lit-
erature@8#! is the famous Schur-Weyl duality of the perm
tation groupSp and the unitary group U~m! when acting in
the tensor product space ofp copies of anm-dimensional
vector space. A consequence of this duality is that the re
sentations of the permutation and unitary groups intertw
and both are labeled uniquely by Young diagrams.

Duality within a j-shell implies similarly that the irreps o
the quasispin algebra and the irreps of the unitary symple
algebra are in one-to-one correspondence. The common
©2003 The American Physical Society03-1
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for the SU(2)S and USp(2j 11) irreps is the seniorityv. As
an example, Table I organizes the basis states of even se
ity in the j 5 7

2 shell with respect to SU(2)S and USp(2j
11). Each seniorityv in the table labels a unitary irrep o
the compact symplectic algebra USp~8!. A basis of good an-
gular momentum states that spans this representation is
cated by reading the table horizontally, e.g., forv54, the
USp~8! irrep contains states ofJ52,4,5,8. Forv52, there
are three equivalent USp~8! irreps, each withJ52,4,6. For
v50, there are five equivalent identity (J50) USp~8! ir-
reps. In addition, each seniorityv in the table determines
unique dual irrep of the quasispin algebra SU(2)S labeled by
the quasispinS. The angular momentum is constant within
quasispin irrep, and the irrep’s basis is found by read
vertically the table entries. Thus, there are fivev50, J50
states which span a quasispinS52 irrep. Forv52, there are
three equivalent sets of three-dimensionalS51 irreps with
J52,4,6 andM52J, . . . ,1J, and, whenv54, there are
four equivalent sets of one-dimensionalS50 irreps. The
‘‘ Ŝ0’’ component of the quasispin algebra is related linea
to the number operator byŜ05(n̂2V)/2.

Within a singlej shell, there areV linearly independent
two-body rotationally invariant interactions. However, t
number of interactions that mix seniority is much smaller
the values ofj that occur in nuclear physics. In fact, it
known from the work of Racah in atomic spectroscopy@9#
that whenj < 7

2 every two-body rotational-scalar interactio
conserves seniority. This is clear from Table I which sho
that states of a givennv andJM are multiplicity free for a
j 57/2 shell configuration. The conditions that the mat
elements of a general interaction must satisfy to conse
seniority have been given by Talmi@2#. These conditions
were rediscovered in Ref.@4# and used to construct linearly
independent combinations of theV interactions such that al
but one conserve seniority for92 < j < 13

2 ; all but two con-
serve seniority for15

2 < j < 19
2 . The explicit number of qua-

sispin scalar interactions and the number of seniority-mix
interactions for anyj shell is given in Sec. III in confirmation
of a result inferred previously by Talmi@2# from a criterion
of de-Shalit and Talmi@10# and a number-of-states identit

TABLE I. Irreducible representations of SU~2!S3USp(2j 11)
for j 57/2.

Irrep n S0 J

v54 4 0 2 4 5 8
S50

v52 2 21 2 4 6
S51 4 0 2 4 6

6 1 2 4 6

v50 0 22 0
S52 2 21 0

4 0 0
6 1 0
8 2 0
01430
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derived by Ginocchio and Haxton@11#.
Calculating the matrix elements of rotationally invaria

two-body operators in the USp(2j 11) algebra is a nontrivial
task because the angular momentum algebra SU(2)J is not
embedded canonically in USp(2j 11). Fractional parentage
coefficients, when they are known, provide a tool for calc
lating such states and matrix elements. However, to calcu
fractional parentage coefficients is to compute the matrix
ements of an even larger fermion-pair algebra. As shown
Sec. IV, a recursive method of defining states of good an
lar momentum by stepping down from a highest weight st
provides analytical results for a few high angular moment
states. But this method is also too complicated for more t
a few steps and for large values ofj. We present a simple
and more direct method for matrix element computation t
can be used for low-dimensional irreps of any Lie algeb
Our technique is particularly useful when the rank of t
algebra makes standard methods intractable.

The method is based on the observation that the USpj
11) commutation relations define an overdetermined sys
of nonlinear equations for the unknown matrix elements. T
fundamental theorem of highest weight representations g
antees that a solution to this system exists. In spite of the
that the number of equations and the number of unknow
are large, we are able to solve the equations for all ma
elements of a USp(2j 11) operator basis up to and includin
the j 5 11

2 shell on a small notebook computer. These mat
elements are then used to compute the eigenvalues o
most general seniority-conserving interaction.

In Sec. V, the theory of seniority-conserving interactio
is applied to the isotones92Mo, 94Ru, 96Pd, and 210Po,
212Rn, 214Ra regarded as singly-closed proton shell nuc
with their extra-core neutrons in aj 59/2 shell. The predicted
energies of excited states are an order of magnitude b
than those of the monopole pairing model. In particular,
v54 states of angular momentumJ5Jmax and J5Jmax22
are observed experimentally and their measured energie
described rather well with a seniority-conserving Ham
tonian. The states of angular momentumJmax andJmax22 are
always multiplicity-free in a USp(2j 11) irrep and analytic
formulas are reported for their energies.

A model may be solvable, for example, because its eig
states are identified completely by the quantum numbers
subgroup chain. Likewise a model may be partially solva
because a set of quantum numbers defines uniquely a su
of multiplicity-free states@12#. Models described by Levia
tan @1# as having apartial dynamical symmetryare of the
second type. Such a partial dynamical symmetry is ant
pated in the seniority-conserving models when there is
angular momentum multiplicity so that the energy mat
E(nvJ)5Er8r(nvJ) of Eq. ~1! is one dimensional. How-
ever, the energies of multiplicity-free states have not be
calculated analytically until now. We find analytical expre
sions for the energies of some multiplicity-free states in
seniority-conserving model.

The effect of seniority-mixing interactions is investigate
in Sec. VI. When the seniority conservation assumption
relaxed, the interaction becomes quadratic in the U(2j 11)
algebra of all hermitian one-body operators in aj shell
3-2
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SENIORITY-CONSERVING FORCES AND USp(2j 11) . . . PHYSICAL REVIEW C67, 014303 ~2003!
@rather than its subalgebra USp(2j 11)]. The most general
seniority-mixing interaction is determined using the theo
of Sec. III and its matrix elements are derived using
numerical technique of Sec. IV B extended to U(2j 11).
The effect of seniority-mixing on the energy spectra of t
isotones studied in Sec. V is found to be small, thereby c
firming that seniority-conservation is a good approximat
for these nuclei.

II. FERMION LIE ALGEBRAS

This section gives definitions of the fermion Lie algebr
relevant to aj shell and the duality relationships betwe
their irreducible unitary representations. It also provid
highest weight data and branching rules for these repre
tations.

A. Basic definitions

For a singlej shell, letajm
† and its Hermitian adjointajm

denote the creation and annihilation operators for a sin
nucleon~e.g., neutron! that satisfy the fermion anticommu
tation relations

$ajm,ajn
† %5dmn . ~2!

The one-body operators

Ĉn
m5ajn

† ajm, 2 j <m,n< j ~3!

span a Lie algebra U(2j 11) of the unitary group. The an
gular momentumĴM is a one-body vector operator,

ĴM5(
m,n

^ jnuĴMu jm&Ĉn
m . ~4!

The creation and annihilation operators for time-reversed
bitals are assumed to be given by

ajm̄
†

5~21! j ,2maj ,2m
† , ajm̄5~21! j 2maj ,2m. ~5!

The creation operatorajm
† and the destruction operatorajm

[ajm̄ are them components of spherical tensor operato
~note the subscripts to indicate tensors!.

Given any two spherical tensor operators,X̂j 1
and Ŷj 2

,

define the coupled tensor operatorŴJM5(Ŷj 2
^ X̂j 1

)JM by

ŴJM5 (
m1 ,m2

~ j 1m1 , j 2m2uJM!Ŷj 2m2
X̂j 1m1

. ~6!

This right-to-left coupling convention yields the Wigne
Eckart theorem with the usual sequence ofM values, i.e.,

^J3M3uŴJ2M2
uJ1M1&5~J1M1 ,J2M2uJMM3!

^J3iŴJ2
iJ1&

@J3#
,

~7!

and the intermediate state sum formula
01430
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^J3iŴJ2
iJ1&5@J2#(

aJ8
W~J1 j 1J3 j 2 ;J8J2!^J3iŶj 2

iaJ8&

3^aJ8iX̂j 1
iJ1&, ~8!

where @J#5A2J11 andW(•••) is a Racah coefficient. A
coupled commutator of two spherical tensors is then defi
by

@X̂j 1
,Ŷj 2

#JM5~X̂j 1
^ Ŷj 2

!JM2~21! j 11 j 22J~Ŷj 2
^ X̂j 1

!JM .
~9!

B. The fermion pair algebra and its subalgebras

The fermion pair algebra for a singlej shell is spanned by
the pair creation and annihilation operators

ÂLM5
1

A2
~aj

†
^ aj

†!LM , ~10!

B̂LM5
1

A2
~aj ^ aj !LM , ~11!

for evenL<2 j 21, and the number conserving operators

ĈLM5 1
2 @~aj

†
^ aj !LM1~aj ^ aj

†!LM#,

5~aj
†

^ aj !LM2AV

2
dL,0 , ~12!

for all L<2 j . These operators obey the commutation re
tions

@B̂L1
,ÂL2

#L52~21!L@L1#@L2#W~L1 jL 2 j ; jL !ĈL ,

@ĈL1
,ÂL2

#L52@L1#@L2#W~L1 jL 2 j ; jL !ÂL ,

@B̂L1
,ĈL2

#L52@L1#@L2#W~L1 jL 2 j ; jL !B̂L ,

@ĈL1
,ĈL2

#L5@~21!L11L22L21#@L1#

3@L2#W~L1 jL 2 j ; jL !ĈL , ~13!

where @L#[A2L11. This algebra is the Lie algebra O(4j
12) of a group of orthogonal transformations of
(4 j 12)-dimensional vector space of operators spanned
the fermion creation and annihilation operators.

The fermion pair algebra has several subalgebras of
for classifying states of a singlej shell. In particular, the
subset of all number conserving operators$ĈLM% span a
U(2 j 11) algebra and the subset ofL50 operators

$Â0 ,B̂0 ,Ĉ0% span the so-called quasispin algebra SU(2S .
Equivalently, SU(2)S is spanned by the quasispin operato
3-3
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Ŝ15 (
m51/2

j

ajm
† ajm̄

† , Ŝ25 (
m51/2

j

ajm̄ajm,

Ŝ05
1

2
~ n̂2V!5AV

2
Ĉ0 , ~14!

which satisfy the usual SU(2) commutation relations

@Ŝ1 ,Ŝ2#52Ŝ0 , @Ŝ0 ,Ŝ6#56Ŝ6 . ~15!

The U(2j 11) subalgebra is useful because all the states
given nucleon number belong to a single U(2j 11) irrep.
The quasispin algebra is useful because it is a spectrum
erating algebra for the standard monopole pairing interac

G(
mn

ajm
† ajm̄

†
ajn̄ajn5GŜ1Ŝ2 . ~16!

C. Dual pairs of subalgebras of O„4j¿2…

As subalgebras of O(4j 12), the elements of U(2j 11),
and SU(2)S do not commute with one another. Thus, it
useful to consider mutually commuting pairs of subalgeb
of O(4j 12). There are two such pairs and their represen
tions have valuable duality relations as discovered by He
ers @3#.

Two subalgebrasg1 andg2 of a Lie algebrag are said to
be dual within a representation ofg if g1 andg2 are mutual
centralizers ing and if each set of equivalent irreps ofg1
together comprise an irrep of the direct sum algebrag1
% g2,g and vice versa@6,7#. In less technical terms, thi
means~i! thatg1 is the maximal subalgebra of all elements
g that commute with all elements ofg2 and vice versa, and
~ii ! that every irrep ofg1 is associated uniquely with a sing
irrep of g2,and vice versa, as illustrated in the introductio

Not every subalgebra of O(4j 12) has a dual. However
the two important subalgebras U(2j 11) and SU(2)S do.
The dual of U(2j 11) is the subalgebra U(1)S of SU(2)S
spanned by the operatorŜ0 and the dual of SU(2)S is the
USp(2j 11) algebra spanned by the operators$ĈLM ;Lodd%.

The algebra U(2j 11) is the maximal subalgebra of num
ber conserving operators in O(4j 12). Conversely, any op
erator in O(4j 12) that commutes with all the operators
U(2 j 11) is proportional to Ŝ0. More importantly, the
U(2 j 11);U(1)S duality requires that all states of a U(2j
11) irrep occurring within the totally antisymmetric spa
of identical nucleons in a singlej shell are eigenstates with
common eigenvalue ofŜ0. This is understood by writing

Ŝ05 1
2 ~ n̂2V!, ~17!

wheren̂ is the number operator. The U(2j 11);U(1)S du-
ality then follows from the fact that all totally antisymmetr
n particle states in a singlej shell span a U(2j 11) irrep.

The USp(2j 11);SU(2)S duality can be inferred from
the fact that these two commuting algebras have a comp
set of unique extremal~highest and lowest weight! states in
01430
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common. For example, the stateun,HW&, constructed by
putting a nucleon in each of the orbitals withm5 j , j
21, . . . ,j 112n, is a USp(2j 11) highest weight state and
being annihilated byŜ2 , it is simultaneously an SU(2)S
lowest weight state,. Such ann-particle state contain no zero
coupled pairs and is said to have seniorityv5n and qua-
sispin

S5~V2v !/2. ~18!

It follows that these states simultaneously define related
reps of USp(2j 11) and SU(2)S .

As shown by Helmers@3# in a more general context
USp(2j 11);SU(2)S duality can also be inferred from
linear relationship between the Casimir invariants of the
two algebras. The Casimir invariant of USp(2j 11) is

Ĉ2@USp~2 j 11!#522(
L

odd

@L#@ĈL ^ ĈL#0 . ~19!

It is known from Lie algebra structure theory@13# that all
states of a USp(2j 11) irrep with highest weight
( f 1 , f 2 , . . . ,f j 11/2) are eigenstates of the Casimir opera
with eigenvalues

C2@USp~2 j 11!#5 (
r 51

j 11/2

f r~ f r12 j 1322r !. ~20!

The irreps of seniorityv for a nucleon of a single type in aj
shell have highest weights withf r51 for r<v and f r50 for
r .v. Thus, in terms of seniority

C2@USp~2 j 11!#5v~2 j 132v ! ~21!

and, in terms of quasispin,

C2@USp~2 j 11!#5V~V11!24S~S11!. ~22!

The USp(2j 11);SU(2)S duality implies that the set of al
v-nucleon statesuvrJM& that are annihilated by the qua
sispin lowering operator, i.e.,Ŝ2uvrJM&50, span a
USp(2j 11) irrep. Moreover, the set of alln-nucleon states
unvrJM&}(Ŝ1)(n2v)/2uvrJM& obtained by adding (n
2v)/2 zero-spin pairs tov-particle quasispin vacuum state
span an equivalent USp(2j 11) irrep.

Basis states$unvrJM&% for a nucleus ofn neutrons~or n
protons! in a single j shell are classified by the quantu
numbers of the subalgebra chain

U~2 j 11!.USp~2 j 11!.SU~2!J.U~1!J , ~23!

$1n% v r J M

where r is multiplicity index and SU(2)J is the algebra
spanned by the angular momentum operators

ĴM52Aj ~ j 11!~2 j 11!

3
Ĉ1M . ~24!
3-4
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It follows from the above noted U(2j 11);U(1)S and
USp(2j 11);SU(2)S dualities that the same basis states
also labeled equivalently by the subalgebra chain

SU~2!S3SU~2!J.U~1!S3U~1!J, ~25!

S J S0 M ,

with S5 1
2 (V2v) andS05 1

2 (n2V), where the multiplicity
index r is now interpreted as labeling the multiplicity o
SU(2)S3SU(2)J irreps that occur.

With basis states$unvrJM&% symmetry adapted to bot
the subalgebra chains~23! and ~25!, it is possible to exploit
the tensorial properties of operators with respect to the a
bras of either chain to facilitate calculations. For examp
the SU(2)S % SU(2)J algebra can be used to classify simu
taneously the second quantized operators of aj shell as qua-
sispin and angular momentum tensors@14#.

The fermion operators transform into one another as c
ponents of a quasispinS5 1

2 tensor;

@Ŝ1 ,ajm#5ajm
† , @Ŝ2 ,ajm

† #5ajm ,

@Ŝ0 ,ajm
† #5 1

2 ajm
† , @Ŝ0 ,ajm#52 1

2 ajm . ~26!

For even J and fixed M, the three pair operator

$ÂJM ,ĈJM ,B̂JM%, are the (1,0,21) components of a qua
sispin S51 tensor and the operators$ĈJM ;Jodd% of the
USp(2j 11) algebra are quasispin scalars@15#.

D. U„2j¿1…¤USp„2j¿1… highest weight states

The stateun,HW&5un,v5n,Jmax,M5Jmax& constructed
by putting a nucleon in each of the orbitals withm5 j , j
21, . . . ,j 112n is a state of U(2j 11), O(4j 12), and
SU(2)J highest weight, having maximum angular mome
tum Jmax5n(2j112n)/2. It is a totally antisymmetric and
multiplicity-free state with U(2j 11) weight $1n%, defined
by specifying the nonzero occupation factors~in this case 1
or 0! of each orbital in them5 j , j 21, . . . ,1 j sequence.
Othern-particle O(4j 12) highest weight states ofv<n are
given, to within norm factors, by

unvJmaxJmax&}~Ŝ1!(n2v)/2uv,HW&. ~27!

In calculating matrix elements of operators in the U(j
11) and O(4j 12) Lie algebras, it is useful to start with th
expectation values of these operators in the highest we
states.

The expectation of the operatorĈL0 in a U(2j 11) high-
est weight state is

^n,HWuĈL0un,HW&5(
m

~21! j 1m~ j ,2m; jmuL0!lm ,

~28!

where

lm5H 11/2, j 2m,n

21/2, j 2m>n.
~29!
01430
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The sum in Eq.~28! can be carried out explicitly and gives
for example, the following reduced matrix elements of t
USp(2j 11) operators, which commute with the quasisp
operators:

^nvJmaxiĈ3invJmax&

A7

52A~2J14!~2J13!•••2J

~2J21!~2J22!

3
@x22~5n22!x1~5n225n12!#

A~x14!•••~x22!
, ~30!

^nvJmaxiĈ5invJmax&

A11

52A ~2J16!~2J15!•••2J

~2J21!~2J22!~2J23!~2J24!

3
Q5~x,n!

A~x16!•••~x24!
,

Q5~x,n!5x4214nx314x3156n2x2242nx2121x2

284n3x1112n2x2112nx134x142n4284n3

1126n2284n124, ~31!

^nvJmaxiĈ7invJmax&

A15
52A ~2J18!~2J17!•••2J

~2J21!•••~2J25!~2J26!

3
Q7~x,n!

A~x18!~x17!•••~x25!~x26!
,

Q7~x,n!5x623~9n22!x515~45n2227n117!x4

215~55n3260n2174n220!x31~1485n4

22475n314500n222790n1904!x223~429n5

2990n412365n322400n211592n2408!x

13~143n62429n511265n421815n311832n2

2996n1240!, ~32!

wherex52 j .

E. Branching rules

The space ofn identical fermions in aj shell is of dimen-
sion (2j 11)!/@n!(2 j 112n)! #. It is the carrier space for
the totally antisymmetric irrep$1n% of the unitary algebra
U(2 j 11).

The highest weight state of U(2j 11) in the n-fermion
space is also a highest weight state for an irrep of the s
plectic subalgebra USp(2j 11). The latter is labeled by the
seniority quantum numberv5n, and its dimension is
3-5
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dim5S 2 j 13

v D 2 j 1322v
2 j 13

. ~33!

The entire U(2j 11) antisymmetric irrep space forn identi-
cal fermions decomposes into irreps of USp(2j 11) with
senioritiesv5n,n22, . . . 0 or 1.

The angular momentum branching rules for a USp(j
11) irrep were given by Flowers@5# and Hamermesh@16#
for j <7/2. For j 59/2 andj 511/2, Tables II and III provide
the SU(2)J,USp(2j 11),SU(2j 11) branching rules.
These decompositions were deduced using the ‘‘m scheme’’
and confirmed by a branching rule code@17#. For example,
when n52 identical fermions are in thej 59/2 shell, the
space decomposes into a seniorityv52 subspace withJ
52,4,6,8 and a seniorityv50 subspace withJ50.

III. SENIORITY-CONSERVING FORCES

A two-body interaction~assumed generally to be numb
conserving and rotationally invariant!, acting within a (j )n

configuration space, has the standard expansion

V̂52
1

4 (
J

@J# VJ~ÂJ^ B̂J!0 , ~34!

where@J#5A2J11: the sum is over even angular mome
tum J50,2, . . . ,2j 21, andVJ is the M-independent two-
nucleon matrix element

VJ5^ j 2;JMuV̂u j 2;JM&. ~35!

TABLE II. Angular momentum branching rules forj 59/2.

v J

0 0
1 9/2
2 2, 4, 6, 8
3 3/2, 5/2, 7/2, 9/2, 11/2, 13/2, 15/2, 17/2, 21/2
4 0, 2, 3, 42, 5, 62, 7, 8, 9, 10, 12
5 1/2, 5/2, 7/2, 9/2, 11/2, 13/2, 15/2, 17/2, 19/2, 25/2

TABLE III. Angular momentum branching rules forj 511/2.

v J

0 0
1 11/2
2 2, 4, 6, 8, 10
3 3/2, 5/2, 7/2, (9/2)2, 11/2, 13/2, (15/2)2,

17/2, 19/2, 21/2, 23/2, 27/2
4 0, 22, 3, 43, 52, 63, 72, 83, 92, 102, 11, 122, 13, 14, 16
5 1/2, 3/2, (5/2)2, (7/2)3, (9/2)2, (11/2)3, (13/2)3,

(15/2)3, (17/2)3, (19/2)3, (21/2)2, (23/2)2,
(25/2)2, 27/2, 29/2, 31/2, 35/2

6 0, 2, 32, 42, 5, 63, 72, 82, 92, 102, 11, 122, 13, 14, 15,
18
01430
The conditions thatV̂ must satisfy to conserve seniority ca
be derived by expressing the basis (ÂJ^ B̂J)0 of two-body
rotational scalars as a sum of quasispin tensors. The op
tors

X0~J!5~ÂJ^ B̂J!02~ĈJ^ ĈJ!01~B̂J^ ÂJ!0 ,

X0
1~J!5~ÂJ^ B̂J!02~B̂J^ AJ!0 , ~36!

X0
2~J!5~ÂJ^ B̂J!012~ĈJ^ ĈJ!01~B̂J^ ÂJ!0 ,

are components of quasispin tensor operatorsXS(J) of rank
S. The operatorsXS(J) are constructed by coupling of th
quasispin vector operator$ÂJM ,ĈJM ,B̂JM% with itself.

For compactness of notation, denote the basic two-b
scalar operators by the symbols

ẐJ5~ÂJ^ B̂J!0 , J50,2,4, . . . . ~37!

The explicit relationship between theẐJ andX0
S(J) operators

is found by normal ordering the right hand side of Eq.~36!
with the help of the identities

~B̂J^ ÂJ!05ẐJ1
@J#

V
~ n̂2V!, ~38!

~ĈJ^ ĈJ!05(
g

MJg
V Ẑg1

@J#

2V
n̂2dJ,0~ n̂2 1

2 V!, ~39!

where

MJg
V 5MgJ

V 52@J#@g#W~ j j j j ;gJ! ~40!

andJ, g run over the even integers from 0 to (2j 21). The
S51 operatorsX0

1(J) are seen to be proportional to on
another and related linearly to the number operator,

X0
1~J!5@ÂJ ,B̂J#05

@J#

V
~V2n̂!. ~41!

It follows that, to within constants and terms linear in th
number operator, the scalar and tensor quasispin opera
are related to theẐJ operators by

X0~J!52~M̂V22Î !ẐJ1•••, ~42!

X0
2~J!52~M̂V1 Î !ẐJ1•••, ~43!

whereM̂V is the linear transformation for which

M̂VẐJ5(
g

ẐgMgJ
V ~44!

and Î is the identity operator;Î ẐJ5ẐJ .
Let W denote the linear space spanned by theẐJ operators

and letW0 andW2 denote subspaces ofW spanned, respec
tively, by the operators$(M̂V22Î )ẐJ% and $(M̂V1 Î )ẐJ%.
Then,W0 andW2 are subspaces of two-body operators inW
3-6
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that are, respectively, quasispin scalars and tensors to w
constants and terms linear in the number operator. For c
venience, we shall refer to elements ofW0 andW2 as qua-
siscalar and quasitensor operators, respectively.

Proposition 1.The eigenvalues ofM̂V are equal to21 or
2. The space of operatorsW is the direct sum

W5W0% W2 ~45!

and

P̂052
1

3
~M̂V22Î !, P̂25

1

3
~M̂V1 Î !, ~46!

are, respectively,W→W0 andW→W2 projection operators
Proof. The matrixMV is real and symmetric. Therefor

M̂V is completely diagonalizable. LetÛPW be an eigenvec-
tor of M̂V of eigenvaluek. It follows from Eqs.~42! and~43!
that

~M̂V22Î !Û5~k22!ÛPW0 , ~47!

~M̂V1 Î !Û5~k11!ÛPW2 , ~48!

and, becauseW0 and W2 have no nonzero vectors in com
mon,k must be equal to21 or 2. It also follows thatW is the
direct sum ofW0 andW2 and that

P̂0Û5Û for all ÛPW0 ~49!

P̂2Û5Û for all ÛPW2 . ~50!

Thus, P̂0
25 P̂0 and P̂2

25 P̂2 and P0 :W→W0 and P2 :W
→W2 are projection operators.

Let p215dimW0 andp25dimW2 denote the dimension
of the eigenspaces ofM̂V belonging to the eigenvalues21
and 2, respectively. We now give an explicit expression
p2 and thereby obtain by our new methods a result giv
previously by Talmi@2# based on results of de-Shalit an
Talmi @10# and Ginocchio and Haxton@11#.

Proposition 2 (Talmi).The number of independent rota
tionally invariant two-body interactions that mix seniority
a (j )n configuration space is equal to@(2 j 23)/6#, where@x#
denotes the largest integer less than or equal tox.

Proof. As a result of the duality relationship betwee
USp(2j 11) and SU(2)S , any two-body interaction tha
conserves quasispin also conserves seniority. Thus, the s
seniority conserving interactions includes all quasiscalar
erators~elements ofW0) and the monopole pairing interac
tion 2GŜ1Ŝ2 proportional toX0

2(0)PW2. The number of
independent two-body interactions that mix seniority
thereforep221 and, from the first proposition,p2 is given
by

p25trP̂25
1

3 S V12 (
Jeven

2 j 21

~2J11!W~ j j j j ;JJ!D 5F2 j 13

6 G .
~51!
01430
in
n-

r
n

t of
-

Note that in the last line of Eq.~51! we have used a sum rul
for the Racah coefficient that was conjectured and confirm
using Maple with exact arithmetic, for allj ,260.

In Table IV the numbers of two-body interactions th
conserve and break seniority in a (j )n configuration space
are listed. Thus, for a (j )n configuration space, seniority is
good quantum number for a wide range of interactions.
example, in thej 513/2 shell, there are seven linearly ind
pendent two-body interactions, but only one of the sev
mixes seniority. Proposition 2 implies that a two-body inte
action must satisfyp221 constraint conditions in order for i
to conserve seniority.

Using the results of Proposition 1, we can now deri
explicit conditions that an interaction

V̂52
1

4 (
J

@J#VJẐJPW ~52!

must satisfy to conserve seniority. To be a quasiscalarV̂
must lie in the subspaceW0#W; hence, by Proposition 1, i
must satisfy the equation (M̂V1 Î )V̂50 so that its projection
P̂2V̂ onto W2 should vanish. However, as observed abo
the monopole pairing operator, proportional toẐ0 also con-
serves seniority. Thus, to conserve seniority, it is suffici
that the projectionP̂2V̂ of V̂ onto the subspaceW2,W

should be proportional to the componentP̂2Ẑ0PW2 of Ẑ0.
In other words,V̂ should satisfy the equation

~M̂V1 Î !V̂5l~M̂V1 Î !Ẑ0 ~53!

for somel. The coefficientsVJ of the interaction, should
then satisfy the equations

@J#VJ1(
g

@g#MJg
V Vg5l~dJ01MJ0

V !. ~54!

for all even values ofJ and some value ofl.
The value ofl, determined for a given interaction from

the J50 equation, is

l5V02
2

2 j 21 (
g.0

~2g11!Vg. ~55!

TABLE IV. The numberp21 (p221) of linearly independent
rotationally invariant two-body quasispin scalar~seniority-mixing!
interactions in aj shell.

j p21 p221

3/2 1 0
5/2 2 0
7/2 3 0
9/2 3 1
11/2 4 1
13/2 5 1
15/2 5 2
17/2 6 2
19/2 7 2
21/2 7 3
3-7
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Eliminating l from the J>2 equations and making use o
the identity@2#

2(
g

even

~2g11!W~ j j j j :Jg!512~2 j 11!dJ0 , ~56!

then leads to Talmi’s theorem@2#
Theorem 1 (Talmi).A necessary and sufficient set of co

ditions for theVJ coefficients of a two-body interaction t
conserve seniority are that

VJ2D12(
g

even

~2g11!W~ j j j j :Jg!~Vg2D!50, ~57!

for all ~even! values ofJ>2, where

D5
1

~ j 11!~2 j 21! (
g.0

~2g11!Vg. ~58!

From Proposition 2, it now follows that among the set
(2 j 21)/25V21 conditions given by this theorem, onl
@(V11)/3# equations are linearly independent. Forj <7/2,
all interactions conserve seniority and, for 9/2< j <13/2,
there is a single condition

65V22315V41403V62153V850 for j 5
9

2
, ~59!

1020V223519V41637V614403V822541V1050

for j 5
11

2
, ~60!

1615V224275V421456V613196V815145V1024225V12

50 for j 5
13

2
. ~61!

The duality relationship between the USp(2j 11) and
SU(2)S quasispin algebras implies that any two-body int
action that conserves seniority is a quadratic in the elem
of the USp(2j 11) and U(2)S algebras. This result follows
directly from Burnside’s theorem@18# which states that:

Any linear operator on the Hilbert spaceH0 for an irre-
ducible representation T of a Lie algebrag is an element of
the associative algebra of linear operators onH0 generated
by the operators$T(X);XPg%.

In other words, if the elements$Xi% of a basis forg have
an irreducible representation as linear operators$X̂i% on a
Hilbert spaceH0, then any linear operatorH, such as a
Hamiltonian, which leavesH0 invariant is expressible in the
form

H5c01(
i

ci X̂i1(
i j

ci j X̂i X̂ j1•••, ~62!

wherec0 , ci , ci j , etc., are complex coefficients. Thus, w
obtain the theorem:

Theorem 2 (Talmi).Any rotationally invariant number-
conserving hermitian Hamiltonian with seniority-conservi
two-body interactions acting within a singlej shell can be
expressed in the form
01430
f

-
ts

H5«n̂2GŜ1Ŝ21V0 , ~63!

where V0 is a linear combination of the$@ĈL ^ ĈL#0 ;L
51,3,5, . . . ,2j % operators.

The classification of states$unvrJM&% by the subalgebra
chain~23! also implies that a two-body interaction that co
serves seniority should be of the form ofV0 plus a term
quadratic in the number operator. The latter result is con
tent with Talmi’s theorem because, to within terms quadra
in the number operator, the operatorŜ1Ŝ2 is the SU(2)S
Casimir invariant which, by the duality relationship~22!, is
linearly related to the USp(2j 11) Casimir invariant~19!
which, in turn, is of the form required forV0.

Given the form of any seniority-conserving interactio
~Theorem 2! and the number of independent quasispin s
lars two-body interactions~Proposition 2!, it is possible to
construct a basis of seniority conserving interactions exp
itly. The numberp21 of linearly-independent quasispin sc
lars for j 5 7

2 and j 5 9
2 is equal to three. Two of these scala

are Ĉ2@USp(2j 11)# and Ĵ• Ĵ. A convenient choice for the
third scalar is @Ĉ3^ Ĉ3#0. For j 5 11

2 , the seniority-
conserving interaction consists of four operators. The fou
operator can be@Ĉ5^ Ĉ5#0, for example. Forj 5 13

2 and j
5 15

2 , the seniority-conserving interaction consists of five o
erators, and so on. The seniority conserving Hamilton
~63! for j 59/2, for example, can then be expressed as

H5H01aJ21bĈ2@USp~10!#1cẐ, ~64!

where H0 depends only on the particle number andẐ

52(Ĉ3^ Ĉ3)0 /A7. The energies of this Hamiltonian ar
then

EnrvJ5En01aJ~J11!1bv~2 j 132v !1cZrvJ . ~65!

whereZrvJ is an eigenvalue ofẐ. The excitation energies ar
independent ofn.

IV. MATRIX ELEMENTS OF LIE ALGEBRAS

This section presents a method for computing redu
matrix elements of the$ĈL ;Lodd% operators in the USp(2j
11) Lie algebra. The desired matrix elements are shown
be solutions of a sequence of equations. The early equat
in the set involve a small number of unknown matrix e
ments and some of these equations can be solved analyti
for the unknowns. Subsequent sets of equations involve m
unknowns and it rapidly becomes impractical~even impos-
sible, in general! to solve all of them analytically. It is nev
ertheless possible, as we show, to solve them numerical

Once these matrix elements are determined, the ma
elements of quasispin scalar operators (ĈL ^ ĈL)0, which are
possible two-body interaction terms of a general senior
conserving Hamiltonian, are easily inferred. Analytic form
las are reported for some of the energy eigenvalues of q
sispin scalar Hamiltonians. An eigenstate of a senior
conserving interaction that has an analytic expression fo
energy is said to possess a USp(2j 11) partial dynamical
3-8
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symmetry according to Leviatan’s definition@1#.
Let uvrJM& denote an orthonormal basis for the irredu

ible representation of USp(2j 11) in a j shell with seniority
v, wherer is the multiplicity index for the states with tota
angular momentumJ and z-componentM. The branching
rules of Sec. II E determine the range of quantum number
this basis. The problem is to find the reduced matrix e
ments of the unitary symplectic algebra generato

^vr8J8iĈLivrJ& for oddL. These matrix elements are sol
tions to the equations

~h21!W~L1 jL 2 j ; jL !
^vr8J8iĈLivrJ&

A2L11

5 (
r9J9

H W~JL2J8L1 ;J9L !
^vr8J8iĈL1

ivr9J9&

A2L111

3
^vr9J9iĈL2

ivrJ&

A2L211
2hW~JL1J8L2 ;J9L !

3
^vr8J8iĈL2

ivr9J9&

A2L211

^vr9J9iĈL1
ivrJ&

A2L111
J ,

~66!
01430
-

in
-
,

whereh5(21)L11L22L, derived from the commutation re

lations ~13!. For a unitary representation, theĈL operators
must also satisfy a hermiticity condition,

^vr8J8iĈLivrJ&* 5~21!J2J8^vrJiĈLivr8J8&. ~67!

A. Recursion formulas

Expectation values of the USp(2j 11) operators with re-
spect to the irrep’s highest weight vector are known, see
~28!. Starting with these values, matrix elements with resp
to other basis states can be calculated sequentially. Cons
for example, the special cases of Eq.~66! with L51,3, L1
5L253, and uvr8J8&5uvrJ&5uv,HW&. Angular momen-
tum coupling rules and the irrep branching rules limit t
intermediate state sums in Eq.~66! for these cases to just tw
terms. Matrix elements of theL51 operatorsĈ1, being pro-
portional to angular momentum operators are already kno
By applying the highest weight data~30! and the hermiticity
condition~67!, the following solutions for the other unknow
matrix elements are found:
se

, putting
e

u^v~J22!iĈ3ivJ&u2

7
5

~2J12!~2J11!2J

~x14!~x13!•••~x22!

60~n221!~x22n11!2~x2n!~x2n12!

~2J24!~2J21!
, ~68!

u^v~J23!iĈ3ivJ&u2

7
5

~2J12!~2J11!2J

~x14!~x13!•••~x22!

60~n221!~n224!~x2n21!~x2n!~x2n12!~x2n13!

~2J24!~2J22!~2J12!
,

wherex52 j anduvJ&5uv,HW& denotes the multiplicity free state ofJ5Jmax. We take the real positive square root for the
two reduced matrix elements as our phase choice.

Similarly, for theL53,5 special cases withL153, L255 , we obtain the solution

^v~J22!iĈ5ivJ&5A4620~2J14!~2J13!~2J12!~2J11!2J

~2J25!~2J26!~2J24!~2J21!
~x22n11!~x2212J12x112!

3A~n221!~x2n!~x2n12!

~x16!~x15!•••~x24!
, ~69!

^v~J23!iĈ5ivJ&5A4620~2J13!~2J12!~2J11!2J

~2J27!~2J26!~2J24!~2J22!
~2x2218J14x112!

3A~n221!~n224!~x2n21!~x2n!~x2n12!~x2n13!

~x16!~x15!•••~x24!

again withJ5Jmax andx52 j .
More reduced matrix elements can be evaluated by stepping down from the highest weight state. For example

L15L253, and L51,3,5 into Eq.~66! with uvr8J8&5uv(Jmax22)& and uvrJ&5uvJmax& yields three equations for thre
unknown matrix elements with the solution
3-9
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^v~J22!iĈ3iv~J22!&52A 14J~2J23!~2J22!

~2J26!~2J25!~2J24!~2J21!

Q232

A~x14!~x13!•••~x22!
,

Q2325n2x427n3x314n2x3225nx3116n4x2221n3x21157n2x2

275nx2236x2215n5 x132n4 x2273n3 x1306n2 x240n x

272x15 n6215n51142n42259n31117n2110n148, ~70!

^v~J23!iĈ3iv~J23!&52A 7~2J25!~2J23!

~2J28!~2J27!~2J26!~2J24!~2J22!

Q333

A~x14!~x13!•••~x22!
,

Q3335n3 x528 n4 x415 n3 x4242n2 x4123n5 x3232n4 x31305n3 x3

2168n2 x32136n x3231n6 x2169n5 x22723n4 x21895n3 x2

278n2 x22408n x21192x2120n7 x262n6 x1702n5 x21382n4 x

1814n3 x1180n2 x1656n x1384x25 n8120n72242n61656n5

2645n41220n32932n21928n21536,

^v~J22!iĈ3iv~J23!&5230A14~2J!~x22n11!A ~2J23!

~2J24!~2J26!~2J27!
A~n224!~x2n21!~x2n13!

~x14!~x13!•••~x22!
,

with J5Jmax andx52 j .
Some additional USp(2j 11) reduced matrix elements obtained by sequential solution of the equations are

(
r

u^v~J22!iĈ3ivr~J24!&u25
840~2J21!~2J22!

~2J28!~2J26!~2J25!

Q234

~x14!~x13!•••~x22!
,

Q2345n4 x61n2 x628 n5 x516 n4 x5244n3 x516 n2 x5124n x5126n6 x4240n5 x4

1302n4 x42220n3 x4120n2 x41120n x41144x4244n7 x31104n6 x3

2846n5 x311168n4 x321174n3 x3140n2 x32972n x31576x3141n8 x2

2132n7 x211158n6 x222378n5 x213794n4 x222642n3 x215169n2 x2

23396n x221008x2220n9 x182n8 x2772n7 x12108n6 x24366n5 x

15268n4 x210246n3 x110274n2 x2492n x23168x14 n10120n91201n8

2684n711704n622802n516257n428602n312106n211836n13456, ~71!

(
r

u^v~J22!iĈ3ivr~J25!&u25
~2J!~2J21!~2J23!

~2J28!~2J27!~2J26!~2J24!

420~n224!~x2n21!~x2n13!Q235

~x14!~x13!•••~x22!
,

Q2355n3 x315 n x323 n4 x213 n3 x2257n2 x2115n x213 n5 x26 n4 x

1107n3 x2114n2 x1334n x2n613 n5255n41105n32376n21324n21008,

^v~J22!iĈ5ivJ&5A4620~2J14!~2J13!~2J12!~2J11!2J

~2J25!~2J26!~2J24!~2J21!
~x22n11!~x2212J12x112!

3A~n221!~x2n!~x2n12!

~x16!~x15!•••~x24!
,

014303-10
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^v~J23!iĈ5ivJ&5A4620~2J13!~2J12!~2J11!2J

~2J27!~2J26!~2J24!~2J22!
~2x2218J14x112!

3A~n221!~n224!~x2n21!~x2n!~x2n12!~x2n13!

~x16!~x15!•••~x24!
.

For any seniorityv, theẐ eigenvalues for angular momentumJ5Jmax5v(x2v11)/2 andJ5Jmax22 are deduced using th
formulas of this section for the matrix elements ofC3,

^vJmaxuẐuvJmax&5
v~x2v11!

~x14!•••~x22!
~v x5211v2 x415 v x4112x4145v3 x3244v2 x3248v x3

148x3285v4 x21135v3 x21102v2 x22164v x2224x2175v5 x2170v4 x285v3 x

1292v2 x112v x2144x225v6175v5125v42175v3224v21124v148!, ~72!

^v~Jmax22!uẐuv~Jmax22!&5
1

~x14!•••~x22!
~v2 x6212v3 x516 v2 x5236v x5156v4 x4260v3 x4

1593v2 x42180v x4148x42130v5 x31224v4 x322774v3 x312332v2 x3

2432v x31192x31160v6 x22390v5 x215588v4 x228082v3 x2

13376v2 x22576v x22336x22100v7 x1320v6 x25100v5 x110728v4 x

27664v3 x12104v2 x148v x21056x125v82100v711730v624840v5

15129v422308v3128v21336v11152!. ~73!
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B. Numerical solutions

When the dimensions of a USp(2j 11) irrep are large,
and especially when there are multiple basis states of
same angular momentum, the above analytical solution o
the equations becomes prohibitively difficult and ultimate
impossible. The equations can nevertheless be solved
merically for quite large irreps.

Let X denote a column vector whose entries are the
known reduced matrix elements of the USp(2j 11) opera-
tors. Thus,X excludes any known or already determined m
trix elements. Moreover,X includes only one of each pair o

unknown matrix elements, ^vr8J8iĈLivrJ& and

^vrJiĈLivr8J8&, since these are not independent for a u
tary representation.

The commutation relations~66! determine a set of equa
tions forX. The number of independent equations grows r
idly with the seniority v and the shell’s dimension (2j
11). For two particles in thej 511/2 shell, there are 47
unknown reduced matrix elements that satisfy 1275 dist
equations. For four particles in thej 59/2 (j 511/2) shell
there are 243~1281! unknown reduced matrix elements th
satisfy 4550~32,130! distinct equations.

Each equation that the unknown matrix elements sat
can be expressed in the formf a(X)50, wherea indexes the
set of distinct equations. All the equations will be satisfi
simultaneously whenF(X)5(a@ f a(X)#2 is zero.

A solution to F(X)50 also minimizes the nonnegativ
functionF(X) and, hence, the derivative¹F(X) vanishes at
01430
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a solution X. To find the relative minima ofF(X), the
method of steepest descent is used in our calculations. S
poseX0 is an initial guess forX. The linearization ofF(X)
aboutX0 gives a first approximationX1 for X by

05F~X0!1¹F~X0!•~X12X0!'F~X1!. ~74!

The zero of the linearized function, and, therefore, the
proximation to the zero of the function is

X15X01e¹F~X0!, ~75!

with e52F(X0)/u¹F(X0)u2.
If F(X1) were to vanish, then a solution is found. Othe

wise,X1 is used as the next~and one hopes better! guess for
the starting point of the method of steepest descent. By
ating the steepest descent algorithm, a sequence of p
X0 ,X1 ,X2 , . . . is computed that, in favorable cases, co
verges to a relative minimum of the functionF.

In shells withj <11/2 and all possible particle numbersn,
computer calculations using the method of steepest des
converged after about 100 iterations to an approximate s
tion, F(X),10222. Without exception, the steepest desce
method converged to a global minium and a true solution
the commutation relations.

Convergence to a relative minimum is expected when
ing the steepest descent method. But convergence to a g
minimum is unusual. The inference is that the functionF(X)
3-11
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is very special; in a large neighborhood containing the glo
minimum,F has no relative minimum besides the global on

It is worth noting that, if the dimension ofX and the
number of equations are not excessive, then it is possibl
solve for all the unknown matrix elements simultaneous
More generally, it is possible to proceed sequentially, as
scribed in the previous subsection, to obtain solutions
subsets of of matrix elements in which the number of u
known matrix elements at each step is kept much below
total number of unknowns.

C. Analytic formulas redux

The reduced matrix elements of USp(2j 11) operators
are frequently the square roots of rational numbers, cf. S
IV A. This favorable situation for a matrix element occu
routinely when the angular momentum is multiplicity fre
for both the bra and ket vectors. The quantum system is t
said to exhibit a partial dynamical symmetry~PDS! among
the multiplicity free state vectors.

Using double precision arithmetic in Fortran, the squ
of a reduced matrix element can be expressed as a rat
number with an error that is less than 10215. By calculating
these rational numbers among a number of PDS states,
terns can be recognized that suggest analytic formulas@20#.

For example, whenj <21/2 and for seniorityv52, the
difference between the numerically-calculated matrix e
ments of the scalar operatorẐ52@Ĉ33C3#0 /A7 and the
following formula is less than 10221:

^2JuẐu2J&5
4 J~J11!

~x14!•••~x22!
$6x4124x323@5J~J11!

14#x226@5J~J11!112#x12@5J2~J11!2

120J~J11!112#%, ~76!

where x52 j , and the angular momentumJ5x21,x
23, . . . ,2.

V. APPLICATIONS

We apply the seniority-conserving model to the low lyin
energy levels of theN550 isotones,92Mo, 94Ru, and96Pd,
considered as systems of a closed neutron shell plus a
protons in the g9/2 shell. The experimental energies of theJ
52,4,8 yrast levels determine the three parameters (a,b,c)

TABLE V. Energy levels in keV of92Mo positive parity states.
The theoretical levels are calculated in the USp~10! approximation.

J

USp~10! Theory

Experimentv50 v52

0 0 0
2 1509 1509
4 2283 2283
6 2589 2612
8 2761 2761
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of the Hamiltonian~64!. Equation~65! then predicts the en
ergy of theJ56 state. Equivalently, one could say that, for
seniority-conserving interaction, Eq.~59! gives directly the
energy of theJ56 state in terms of the experimental ene
gies of theJ52,4,8 states. Table V shows that seniority is
approximate symmetry for these energy levels of92Mo since
the experimental energy of itsJ56 level is just 23 keV
above the value required for conservation of seniority. T
j 59/2 shell spaces of the94Ru (n54 protons! and 96Pd
(n56 protons! isotones include states of seniorityv54 as
well asv50,2. In the USp(10) model, the lowest-energyJ
52,4,8 states fix the energy parameters (a,b,c) of the
Hamiltonian ~64!, cf. Table VI. Eq. ~65! then predicts the
energies of all other (9/2)n states of these nuclei as listed
Tables VII and VIII. The errors for the predicted energies
the J56 levels in the USp(10) approximation are 0.6% f
94Ru and 2.1% for96Pd. The predicted energies of theJ
5Jmax512 andJ510 states are calculated analytically fro
Eqs. ~72! and ~73!. The differences between the predicte
USp(10) energy and the experimental energy for theJ510
andJ512 levels of94Ru and96Pd are small—an indication
that seniority is a rather good quantum number for the lo
energy states of these isotones. Another region to test se
ity is the N5126 isotones:210Po, 212Rn, and 214Ra. These
nuclei have an active proton g9/2 shell, and Eq.~65! deter-
mines the energies of their excited states when the inte
tion conserves seniority. Table IX compares the predic
USp(10) energy and the experimental energy of theJ56
state when the Hamiltonian parameters are fixed by the

TABLE VI. Hamiltonian parameters in keV of seniority
conserving interactions.

Constant 92Mo 94Ru 96Pd

a 20.36 19.74 18.13
b 21227.38 21203.90 21079.76
c 296.37 289.75 293.40

TABLE VII. Energy levels in keV of94Ru positive parity states
The theoretical levels are calculated in the USp(10) and U~10! ap-
proximations.

USp(10) Theory

U~10! Theory ExperimentJ v50 v52 v54

0 0 3574 0, 3600 0
2 1431 2772 1431, 2777 1431
3 3546 3567
4 2187 2362, 3527 2187, 2354, 3546 2187
5 3220 3228
6 2483 2780, 3824 2498, 2775, 3841 2498
7 3281 3280
8 2645 3986 2645, 3997 2645
9 4306 4318
10 4073 4074 3992
12 4948 4953 4717
3-12
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perimental energies of theJ52,4,8 levels. The configuration
spaces for212Rn and 214Ra are the direct sums ofv50,2,4
irreps of USp(10). TheJ52,4,6,8 yrast states of these is
tones are interpreted as purev52 vectors when the interac
tion conserves seniority. The experimental energies of thJ
52,4,8 yrast levels determine the Hamiltonian parame
a,b,c of Eq. ~65! and, thereby, predict the energies of t
J56, J510, andJ512 states. The energies of all the sta
of the configuration spaces for212Rn and214Ra are reported
in Tables X and XI. The small differences between the p
dicted USp(10) levels and the experimental energies indi
that seniority-conserving terms dominate the Hamiltonia
for these isotones.

VI. SENIORITY-MIXING INTERACTIONS

When the potential mixes seniority, USp(2j 11) dynami-
cal symmetry is broken and the fullj-shell model space is
active. The configuration space (j )n carries the fully anti-
symmetric irrep of SU(2j 11). For j 5 9

2 , 11
2 , 13

2 ~see Table
IV !, there is one independent seniority-mixing two-body
tational scalar interaction that must be added to the senio
conserving Hamiltonian. The seniority-breaking term may
taken to beŶ5@Ĉ2^ Ĉ2#0. To determine the matrix ele
ments ofŶ, the matrix elements of the SU(2j 11) operator

TABLE VIII. Energy levels in keV of 96Pd positive parity
states. The theoretical levels are calculated in the USp(10)
U~10! approximations.

J

USp(10) Theory

U~10! Theory Experimentv50 v52 v54

0 0 3354 0, 3501 0
2 1415 2636 1415, 2719 1415
3 3334 3464
4 2099 2275, 3320 2099, 2312, 3443 2099
5 3049 3137
6 2373 2659, 3595 2424, 2703, 3715 2424
7 3113 3178
8 2531 3752 2531, 3852 2531
9 4047 4148
10 3846 3911 3784
12 4650 4728 4574

TABLE IX. Energy levels in keV of210Po positive parity states
The theoretical levels are calculated in the USp(10) approximat

J

USp(10) Theory

Experimentv50 v52

0 0 0
2 1181 1181
4 1427 1427
6 1516 1473
8 1557 1557
01430
rs

s

-
te
s

-
y-
e

Ĉ2 are needed; they are determined by a straightforward g
eralization of the numerical methods of Sec. IV B.

In Tables VII, VIII, X, and XI, the theoretical energies o
94Ru, 96Pd, 212Rn, and 214Ra are reported in the U~10!
theory. The Hamiltonian parameters are chosen to give
exact fit to experiment for the energies of theJ52,4,6,8
yrast states. These parameters yield predictions for the e
gies of all other states in the configuration spaces. T
changes in the energy spectra in U~10! from the seniority-
conserving model are rather small. Moreover, although
energy of the lowestJ56 state is brought into agreeme
with the experimentally observed energy, the energies of
J510 and 12 states are worsened. Thus, little improvem
is achieved by extending the dynamical symmetry fro
USp(10) to U~10!. Neither the USp(10) nor U~10! energies
agree exactly with experiment because the model spac
limited to a pure (j )n configuration. To improve results th

nd

n.

TABLE X. Energy levels in keV of212Rn positive parity states.
The theoretical levels are calculated in the USp(10) and U~10!
approximations.

J

USp(10) Theory

U~10! Theory Experimentv50 v52 v54

0 0 2383 0, 2432 0
2 1274 2167 1274, 2180 1274
3 2390 2430
4 1502 2071, 2395 1502, 2059, 2430 1502
5 2322 2338
6 1611 2215, 2504 1640, 2207, 2539 1640
7 2372 2375
8 1694 2588 1694, 2610 1694
9 2699 2723
10 2660 2663 2655
12 2960 2972 2881

TABLE XI. Energy levels in keV of214Ra positive parity states
The theoretical levels are calculated in the USp(10) and U~10!
approximations.

J

USp(10) Theory

U~10! Theory Experimentv50 v52 v54

0 0 2594 0, 2689 0
2 1382 2355 1382, 2381 1382
3 2605 2681
4 1639 2251, 2612 1639, 2228, 2681 1639
5 2533 2564
6 1767 2416, 2739 1820, 2401, 2806 1820
7 2594 2600
8 1865 2838 1865, 2882 1865
9 2966 3012
10 2927 2933 2944
12 3272 3293 3256
3-13
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model space should be augmented with otherj shells plus
neutron and proton core-excited basis states.

VII. CONCLUSION

The partially-solvable USp(2j 11) model poses an inter
esting group theoretical problem because, although its irr
have many states that are labeled uniquely by good quan
numbers, analytical expressions are available for only a
stricted subset of the corresponding energy eigenvalues.
possibility of deriving the energiesE(nvJ) of general
multiplicity-free states by some, as yet undiscovered, a
braic method is a significant challenge. However, for
USp(2j 11) states that are observed experimentally as
this writing, we have reported formulas for their energy
genvalues.

The numerical technique of this paper to calculate ma
elements of a Lie algebra irrep may be useful for other
-
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algebras. For the classical Lie algebras, the matrix elem
are well known in bases that are adapted to canonical cha
However, more sophisticated methods are needed when
matrices are required in bases that do not correspond
canonical chain. Vector coherent state methods@19# provide
algorithms for handling many such cases. But, as they sta
they are not capable of handling the irreps of high rank
gebras such as the USp(2j 11) and U(2j 11) algebras we
have considered. We plan to apply our numerical method
other Lie algebraic problems in the future.
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