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Breakup in nucleon-deuteron scattering withD-isobar excitation
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Breakup in nucleon-deuteron scattering is described. The description is based on a coupled-channel two-
baryon potential that allows for the virtual excitation of a nucleon to aD isobar. The Coulomb interaction is not
included. Channel coupling gives rise to an effective three-nucleon force. The three-particle scattering equa-
tions are solved by real-axis integration using a separable expansion of the two-baryon transition matrix.
Examples for spin-averaged and spin-dependent observables are calculated and compared with experimental
data.
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I. INTRODUCTION

This paper is the third in a series on nucleon-deute
scattering. The first one@1#, called paper I, establishes
separable expansion for the underlying two-baryon inter
tion @2#, which explicitly allows forD-isobar excitation. The
second one@3#, called paper II, uses that separable expans
of the coupled-channel transition matrix for the calculati
of elastic nucleon-deuteron scattering, below and ab
three-nucleon breakup. This paper does so for inela
nucleon-deuteron scattering, i.e., for three-nucleon brea
The D isobar gives rise to an effective three-nucleon for
The calculation is without Coulomb interaction. Thus, it r
fers to breakup in neutron-deuteron scattering, though
comparison is mostly with data of proton-deuteron scat
ing.

The theoretical description of elastic nucleon-deute
scattering up to about 150 MeV nucleon lab energy in ter
of realistic two-nucleon potentials has been generally q
successful@4,5# with the following exceptions.

~1! At low energies the description of scattering obse
ables and of bound-state properties are correlated. An ap
priate three-nucleon force has to be added to account
trinucleon binding in full.

~2! The description of proton-deuteron scattering at v
low energies for most angles and at higher energies pred
nantly in forward direction requires the inclusion of the Co
lomb interaction between the protons.

~3! There are long-standing discrepancies in the spin
servablesAy(n) andiT11 around 10 MeV neutron lab energ
Furthermore, without a three-nucleon force, the minimum
the unpolarized differential cross section beyond 65 M
nucleon lab energy cannot be accounted for; this fac
called Sagara discrepancy.

Paper II and Ref.@6# study the effect of theD isobar on
elastic nucleon-deuteron scattering. The effect is usu
small; at most, modest for some spin observables at hig
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energies. Reference@6# finds a beneficialD-isobar effect on
the Sagara discrepancy. TheD isobar is not helpful for the
spin observablesAy(n) andiT11 around 10 MeV neutron lab
energy.

This paper extends the description to spin-averaged
spin-dependent observables of breakup in nucleon-deut
scattering. Experimental data for breakup are much sca
than for elastic scattering. Kinematical regimes in which t
three-nucleon force mediated by theD isobar may play a
determining role are searched for. The theoretical descrip
requires a change of technique when solving the thr
particle scattering equations compared with paper II, wh
employed a contour deformation technique. Real-axis in
gration is used instead. The technique is developed in
present context.

In Sec. II basic features of the calculation are describ
however, the important technical details are deferred to
Appendix. Section III presents our results for spin-averag
and spin-dependent observables of breakup in inela
nucleon-deuteron scattering. The conclusions are given
Sec. IV.

II. BASIC FEATURES OF THE CALCULATION

The notation is taken over from paper I and is assume
be self-evident; explanations of the notation are kept t
minimum.

A. Alt-Grassberger-Sandhas„AGS… breakup equation

The symmetrized break-up transition matrixU0(Z) is de-
fined in Eq.~2.13! of paper I according to

U0~Z!5G0
21~Z!1@11Ta~Z!G0~Z!#U~Z!. ~1a!

It is obtained from the symmetrized multichannel transiti
matrix U(Z),

U~Z!5PG0
21~Z!1PTa~Z!G0~Z!U~Z!, ~1b!

given in Eq.~2.12! of the same paper. Using Eq.~1b! once
more, we rewrite the standard quadrature for the brea
transition matrix as follows:

,
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U0~Z!5~11P!G0
21~Z!1~11P!Ta~Z!G0~Z!U~Z!,

~2!

whereG0(Z) is the free resolvent,P5P1231P321 the per-
mutation operator, andTa(Z) the two-baryon coupled
channel transition matrix between the baryonsb andg in the
three-particle space, (abg) cyclic. The free Hamiltonian in
G0(Z) does not contain center of mass~c.m.! motion, but
baryon rest masses, normalized to zero for three nucle
The channel statesufa(q)na& anduf0(pq)n0& are defined in
paper I,p andq are the internal Jacobi momenta,na andn0
e

t
a

tri
tra
n

on

01400
s.

are sets of discrete quantum numbers determining the c
nel states in full. Both channel states are antisymmetri
with respect to the pair (bg). ufa(qi)na i

& is the initial

nucleon-deuteron state with the initial c.m. energyEi5ed

1qi
2/2Ma , ed being the deuteron binding energy,Ma

52mN/3 the reduced spectator mass, andmN the nucleon
rest mass.uf0(pq)n0& is the final three-nucleon breaku
state. It is given in paper I as a coupled state with respec
pair spin and isospin. However, the final state is measure
the uncoupled form, i.e.,
uf0~pfqf !n0~mf !&5
12Pbg

A2
upfqf&ausamsa f

tamta f
ba f

&usbmsb f
tbmtb f

bb f
&usgmsg f

tgmtg f
bg f

&, ~3a!

uf0~pfqf !n0~mf !&5 (
Sf Msf

Tf MTf

uf0~pfqf !n0 f
&^sbmsb f

sgmsg f
uSfMSf

&^tbmtb f
tgmtg f

uTfMTf
&. ~3b!

The discrete quantum numbers of the final state are explained in Fig. 2 of paper I. Its c.m. energy isEf5pf
2/2ma1qf

2/2Ma

with the reduced pair massma5mN/2.
The S matrix for breakup is given by the symmetrized on-shell breakup transition matrixU0(Z), i.e.,

^f0~pfqf !n0~mf !uSufa~qi !na i
&522p id~Ef2Ei !^f0~pfqf !n0~mf !uU0~Ei1 i0!ufa~qi !na i

&. ~4!
i-
s

of

-

e

When determining theSmatrix the initial and final states ar
fully antisymmetrized and normalized through (11P)/A3;
however, those symmetrization operators are incorpora
into the definition of the symmetrized breakup transition m
trix U0(Z) of paper I. The on-shell transition matrixU0(Z)
is calculated according to Eq.~2!.

B. Separable expansion of coupled-channel interaction and
AGS breakup equation

The form ~2! of the breakup transition matrixU0(Z) is
especially convenient, when the two-baryon transition ma
Ta(Z) is separably expanded according to our general s
egy for solving the AGS three-particle scattering equatio
The separable expansion

Ta~Z!5uga&Ta~Z!^gau ~5a!

yields for U0(Z),

U0~Z!5~11P!G0
21~Z!1~11P!uga&Ta~Z!

3^gauG0~Z!U~Z!. ~5b!

Since the deuteron state defines one element, labeledi 0, in
the form factoruga& of the separable expansion~5a!, Ta(Z)
being the corresponding propagator, the initial nucle
deuteron state can be rewritten as
ed
-

x
t-

s.

-

ufa~qi !na i
&

5G0~Ei1 i0!uga
( i 0p0I 0T0)MI i

MT0
&uqis0msi

t0mt0
b0&a .

~6!

Thus, the breakupS matrix ~4! based on the breakup trans
tion matrixU0(Z) in the form~2! needs the matrix element
of the operator̂ gauG0(Z)U(Z)G0(Z)uga& half-shell. Paper
II calculated the same operator on shell for the description
elastic nucleon-deuteron scattering.

C. Solution of the integral equation for the half-shell
transition matrix ŠgazG0„Z…U„Z…G0„Z…zga‹

The transition matrix^gauG0(Ei1 i0)U(Ei1 i0)G0(Ei
1 i0)uga& is required half-shell for the on-shell breakup am
plitude U0(Ei1 i0)ufa(qi)na i

& according to Eqs.~5b! and
~6!. It is obtained by solving the integral equation

^gauG0~Z!U~Z!G0~Z!uga&5^gauPG0~Z!uga&

1^gauPG0~Z!uga&Ta~Z!

3^gauG0~Z!U~Z!G0~Z!uga&.

~7!

The kernel^gauPG0(Z)uga&Ta(Z) of the integral equation
~7! contains singularities:̂ gauPG0(Z)uga& develops so-
called movingsingularities of kinematical origin above th
breakup threshold, whereas the propagatorTa(Z) contains
2-2
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the deuteron bound-state pole. The arising of these singu
ties was discussed in depth in paper II which employed
method of contour deformation for dealing with them. Th
method was adequate for the calculation of on-shell ma
elements needed for the description of elastic scatterin
paper II, but it was already tedious there. For breakup ca
lations that method gets even more tedious. It require
least two distinct complex paths, and those paths have t
different for different available energiesEi . Contour defor-
mation for breakup has not been numerically successfu
the past. It was also tried by us tentatively, but problems
stability convinced us to develop the alternative technique
real-axis integration for solving Eq.~7!. Its implementation
rests on three technical pillars: spline interpolation, num
cal evaluation of the singular integrals by specially calc
lated weights, and Pade´ approximation.

The details of the method are described in the Appen
all items have novel aspects. The reliability of the techniq
is tested by comparing results for elastic nucleon-deute
scattering which were obtained with the contour-deformat
technique in paper II. In fact, all results given there in plo
were recalculated using the real-axis technique. No dif
ences, visible in plots, could be found, except minute o
for some spin observables of particularly small magnitu
Hence, no samples of that comparison are shown in this
per. The reliability check is an internal one for elas
nucleon-deuteron scattering; the comparison is possible
the coupled-channel interaction withD-isobar excitation em-
ployed @2# and for its purely nucleonic reference potenti
the Paris potential@7#. The method of real-axis integratio
can without technical change be carried over from ela
nucleon-deuteron scattering to breakup. Furthermore, in
case of the purely nucleonic Paris potential, the compari
is also possible with the breakup results of Ref.@5#. This
comparison turned out to be quite satisfactory. Thus, we c
sider our technique of real-axis integration highly reliab
and we employ it in this paper for calculating breakup
nucleon-deuteron scattering and for studyingD-isobar ef-
fects in that process.

D. Observables of nucleon-deuteron breakup

The calculations of this paper are entirely nonrelativis
Nevertheless, we like to make the step to observables
starting out from the relativistic form of the cross section

ds i→ f5u^ f uMu i &u2
dLips~ka i

1kd ,ka f
,kb f

,kg f
!

4c2A~ka i
•kd!22mN

2 md
2c4

. ~8a!

The reason is that we carry out corresponding calculation
electromagnetic processes; for them the relativistic form
the cross section has important conceptual advantages. In
~8a! ^ f uMu i & is the Lorentz-invariant singularity-free matri
element, dLips(ka i

1kd ,ka f
,kb f

,kg f
) the Lorentz-invariant

phase space element of the final state defined in Eq.~11!, and
4c2A(ka i

•kd)22mN
2 md

2c4 a Lorentz-invariant factor con
taining the initial-state information.
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We use the cross section~8a! in the lab system. The targe
deuteron is at rest, i.e.,kd50, the impinging nucleon has
momentumka i

, which defines thez direction. The changes
that arise when the deuteron impinges on a nucleon targe
obvious. The matrix element^ f uMu i & of Eq. ~8a! should be
derived from a fully relativistic description of hadron dy
namics. We are unable to give such a relativistic descript
The nonrelativistic hadron dynamics employed is based o
two-baryon potential, fitted to data with the nonrelativis
form of the cross section in contrast to Eq.~8a!, it connects
the S matrix with the symmetrized on-shell breakup tran
tion matrixU0(Ei1 i0) in Eq. ~4!; it uses nonrelativistic en-
ergies forEi andEf . When, nevertheless, that breakup tra
sition matrix is taken for an approximate construction
^ f uMu i &, ignoring the difference in kinetic energies for
relativisticSmatrix and its nonrelativistic correspondence
Eq. ~4!, the following identification is obtained:

^ f uMu i &5^f0~pfqf !n0~mf !uU0~Ei1 i0!ufa~qi !na i
&

3
~2p\!9/2

\c A2ka i

0 c2kd
0c2ka f

0 c2kb f

0 c2kg f

0 c.

~8b!

The calculation of ^f0(pfqf)n0(mf)uU0(Ei
1 i0)ufa(qi)na i

& uses the available initial c.m. energyEi

and the Jacobi momentaqi , pf , andqf ; their relations to the
single particle lab momenta are

Ei5ed1
ka i

2

3mN
, ~9a!

qi52
2

3
ka i

, ~9b!

pf5
1

2
~kb f

2kg f
!, ~9c!

qf5~kb f
1kg f

!2
2

3
ka i

. ~9d!

The employed nonrelativistic dynamics is Galilean invaria
This implies that the matrix element^ f uMu i & is frame de-
pendent. The frame dependence of Eq.~8b! is due to the
energy factorsA2ka i

0 c2kd
0c2ka f

0 c2kb f

0 c2kg f

0 c; they arise,

rather artificially in Eq.~8b!, since corresponding factor
have to be attached to the phase space part of the cross
tion ~8a!. We note that already at 65 MeV nucleon lab ener
the difference between lab and c.m. system amounts
frame dependence of 2.5% for^ f uMu i &. For the description
of spin-averaged and spin-dependent cross sections
breakup transition matrixU0(Ei1 i0) is conveniently abbre-
viated by the scattering amplitudeM (Eipfqf),

^f0~pfqf !n0~mf !uU0~Ei1 i0!ufa~qi !na i
&

5^msa f
msb f

msg f
uM ~Eipfqf !uMI i

msi
&, ~10!
2-3
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in which the dependence on the spin projections of the p
ticles in the initial and final states is made explicit. The ne
tron and proton nature of the nucleons (abg) in the final
state is notationally not indicated, but always determined
experiment.

In contrast to the matrix element^ f uMu i & that carries the
dynamics, the kinematical factors in Eq.~8a!, i.e., the
Lorentz-invariant phase-space element

dLips~ka i
1kd ,ka f

,kb f
,kg f

!

5~2p\!4d (4)~ka f
1kb f

1kg f
2ka i

2kd!

3
d3ka f

d3kb f
d3kg f

~2p\!92ka f

0 c2kb f

0 c2kg f

0 c
~11!

and the factor 4c2A(ka i
•kd)22mN

2 md
2c4, which contains the

incoming flux, the target density, and projectile and tar
normalization factors, could, in principle, be calculated re
tivistically. We shall not use that option in this paper; w
believe that it is not justified; we discuss the reason in m
detail in Sec. II E.

The momenta in the initial and final states are constrai
by energy and momentum conservation. For example, if
momentumkb f

and the directionk̂g f
were measured, al

three nucleon momenta are determined in the final state
though not always uniquely. In practice, the two nucle
scattering angles with respect to the beam direction (ub ,wb)
and (ug ,wg), usually notationally shortened to (ub ,ug ,wg
2wb), and their kinetic energies without rest masses,Eb f

and Eg f
, are meassured. Those energies are related by

mentum and energy conservation and therefore lie on a fi
kinematical curve. The observables are therefore given
functions of the arclengthS along that curve, i.e.,

S5E
0

S

dS ~12!

with dS5AdEb f

2 1dEg f

2 andEg f
being considered a functio

of Eb f
or vice versa depending on numerical convenien

The arclength is always taken counterclockwise along
kinematical curve. No confusion between the arclengthSand
theSmatrix of Eq.~4! should arise. The normalization of th
arclength value zero is chosen differently in different kin
matical situations.

The lab cross section therefore takes the compact for

ds i→ f5u^msa f
msb f

msg f
uM ~Eipfqf !uMI i

msi
&u2

3fpsdSd2k̂b f
d2k̂g f

~13a!

with the abbreviation fps for the phase-space factor. Us
relativistic kinematics it takes the following form, i.e.,
01400
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fps5~2p!4\2
ka i

0

uka i
ucE d3ka f

kg f

2 dkg f
S kb f

2 dkb f

dS
D d~Ea f

1Eb f

1Eg f
2ed2Ea i

!d~ka f
1kb f

1kg f
2ka i

!. ~13b!

Here,Ea i
andEa f

are kinetic energies, defined correspon

ingly to Eb f
and Eg f

; (2p\)23uka i
uc/ka i

0 is the incoming

flux in the lab system; the energy factors contained
^ f uMu i & of Eq. ~8b! and in d Lips(ka i

1kd ,ka f
,kb f

,kg f
) of

Eq. ~11! cancel exactly, once both are assumed to be co
puted in the same frame. The cross section~13a! is still spin
dependent.

The spin-averaged fivefold differential cross section is

d5s̄

dSd2k̂b f
d2k̂g f

5
1

6 (
MI i

msi

(
msa f

msb f
msg f

d5s i→ f

dSd2k̂b f
d2k̂g f

5
1

6
Tr@M ~Eipfqf !M

†~Eipfqf !# fps.

~14!

In the figures the spin-averaged fivefold differential cro
section is denoted byd5s/dSdV1dV2, the traditional nota-
tion.

The spin dependence of the initially prepared states
described by the Hermitian density matrixr i , normalized to
Tr r i51. The density matrixr i of the initially prepared
states is the tensor product of density matrices for
nucleon and the deuteron,rn andrd, i.e.,

r i5rn
^ rd. ~15!

Their individual spin dependence is carried by the spin1
2

operatorsSa2 and the spin-1 operatorsSa3, defined in Sec.
3.2 of paper II. As in paper II, the set of product operato
$Sai%5$Sa2^ Sa3% is formed. They are normalized by

Tr@SaiSbi#56daibi
. ~16!

With those product operatorsSai the initial density matrix
gets the concise form

r i5
1

6 (
ai

Tr@r iS
ai#Sai. ~17!

The final-state polarization measurement is described by
projection operatorr f , i.e., r f

25r f , which is the tensor
product of corresponding projection operators for the th
nucleons, i.e.,

r f5Nfr
n

^ rn
^ rn, ~18!

with Nf5232N, N being the number of polarization mea
surements.r f is normalized to Trr f5Nf . Equation~18! cor-
rects the imprecise description of this point in paper II. T
operatorsrn are parametrized in the form of the nucleo
density matrix. Their individual spin dependence is carr
2-4
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by the spin-12 operatorsSa2. The set of product operator
$Saf%5$Sa2^ Sa2^ Sa2% is formed, which are normalized b

Tr@SafSbf#58dafbf
. ~19!

With these product operatorsSaf the projection operatorr f
gets the concise form

r f5
1

8 (
af

Tr@r fS
af#Saf . ~20!

In terms of the scattering amplitudeM (Eipfqf), of the
initial density matrixr i and of the final-state projection op
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ch

m
ob

s;

ith

a
o

s
ta

th
ti
a

ny
i
n
a
oi

n
ic
-

01400
erator r f , the spin-dependent differential cross section b
comes

d5s

dSd2k̂b f
d2k̂g f

5Tr@M ~Eipfqf !r iM
†~Eipfqf !r f # fps.

~21!

Using the spin-averaged differential cross sect
d5s̄/dSd2k̂b f

d2k̂g f
of Eq. ~14! and the expansions~17! and

~20! for the initial density matrixr i and the final-state pro
jection operatorr f , the spin-dependent differential cros
sections take the form
d5s

dSd2k̂b f
d2k̂g f

5
d5s̄

dSd2k̂b f
d2k̂g f

1

8 (
aiaf

Tr@r iS
ai#Tr@r fS

af#
Tr@M ~Eipfqf !S

aiM†~Eipfqf !S
af#

Tr@M ~Eipfqf !M
†~Eipfqf !#

. ~22!
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Characteristic for the experimental setup of the stud
reaction are the parameters in the initial density matrixr i
and in the final-state projection operatorr f which determine
the expansion coefficient Tr@r iS

ai#Tr@r fS
af# in Eq. ~22!.

Characteristic for the spin dependence of the reaction me
nism is the way in which the spin operatorsSai of r i andSaf

of r f weigh the spin matrix elements of the scattering a
plitude. The experiment therefore aims at determining
servables of the type Tr@M (Eipfqf)S

aiM†(Eipfqf)S
bf#/

Tr@M (Eipfqf)M†(Eipfqf)#. A particular choice of the spin
operatorsSai and Sbf defines particular spin observable
their notation is standardized in Ref.@8#.

E. Problem in the comparison of theoretical predictions and
experimental data

The experimental setup for breakup usually works w
two particle detectors at two fixed angles measuringk̂b f

and

k̂g f
and determines cross sections as functions of the

clengthS on the kinematical curve corresponding to the tw
kinetic energiesEb f

and Eg f
. A sound comparison require

the same kinematical curve for the experimental interpre
tion of data and for the theoretical prediction. However,
experimental interpretation of data usually prefers relativis
kinematics, whereas theory prefers nonrelativistic kinem
ics, since the description of dynamics is nonrelativistic a
how. Without a relativistic treatment of the dynamics there
no fully consistent description of the experimental data a
of the theoretical prediction. Thus, approximative identific
tion procedures have to be applied; a discussion of this p
and a suggestion for identification is given in Ref.@9#. We
follow a somehow different procedure. At the rather low e
ergies considered in this paper the resulting kinemat
curves, defined in Eq.~12!, are often quite similar for rela
d
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-
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tivistic and nonrelativistic kinematics, but there are spec
situations with dramatic differences. Figures 1 and 2 g
examples for either case at 65 MeV nucleon lab energy
at 52 MeV deuteron lab energy, respectively.

Figure 1 refers to the space star configuration at 65 M
nucleon lab energy, which is realized for relativistic and no
relativistic kinematics at slightly different scattering angle
There are only minor differences between the relativistic a
nonrelativistic kinematical curves corresponding to the sa
angles. However, the kinematical curves for slightly differe
angles corresponding to the exact space star configura
with relativistic and nonrelativistic kinematics are even
most identical. The right-hand side of Fig. 1 shows a sam
effect on observables, which arises from differences in
kinematical curves. Correspondence is obtained by sca
all considered kinematical curves to the length of the rela
istic arclength. The length of the kinematical curves befo
scaling is recorded in the figure caption; the discrepancy
tween the results of different identification procedures
small.

The example of Fig. 2 is more dramatic. It refers to t
quasi-free-scattering~QFS! configuration for 52 MeV deu-
teron lab energy. Again, this special situation is with relat
istic and nonrelativistic kinematics realized only for slight
different scattering angles. However, in this case there
quite large differences between the relativistic and n
relativistic kinematical curves corresponding to the sa
angles; the reason is that the critical situati
(42.26°,42.26°,180.0°), at which the relativistic locus col-
lapses to a point, is near and that in nonrelativistic kinem
ics that critical situation occurs at larger angles. In contra
the kinematical curves for slightly different angles cor
sponding to the exact QFS configuration with relativistic a
nonrelativistic kinematics are quite close. The right-ha
side of Fig. 1 shows a sample effect on observables, wh
2-5
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FIG. 1. Left side: kinematical curves for the relativistic space star configuration (53.5°,53.5°,120.0°) with relativistic~dashed curve! and
nonrelativistic~dotted curve! kinematics and for the nonrelativistic space star configuration (54.0°,54.0°,120.0°) with nonrelativistic
matics~solid curve! at 65 MeV nucleon lab energy. The total arclengths are 62.92, 63.64, and 63.04 MeV, respectively. The solid and
curves are almost indistinguishable in the plot. The dot indicates the position of the exact space star point. Right side: differen
section as a function of the arclengthSalong the kinematical curve for the space star configurations of nucleon-deuteron breakup at 6
nucleon lab energy. As in all calculations of this paper, the results are obtained with a nonrelativistic arclengthS. Results for the nonrela-
tivistic space star configuration (54.0°,54.0°,120.0°)~solid curve! and for the relativistic space star configuration (53.5°,53.5°,120.
~dotted curve! are compared.
o
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n in
arises from differences in the kinematical curves. Corresp
dence is naturally achieved wihout scaling, since the exp
mental data at this energy are given and will be given
functions ofS/Smax, Smax being the full arclength of the rela
tivistic kinematical curve; we follow that procedure. The r
spective length of the kinematical curves is recorded in
figure caption. The sensitivity on the chosen kinemati
curve is alarmingly large. This observation also implies t
the corrections arising from finite geometry can become
able in this kinematical configuration.

With respect to the experimental data that this paper
tempts to describe or to predict, we therefore use the follo
ing theoretical strategy. We employ nonrelativistic kinem
01400
n-
ri-
s

e
l
t
-

t-
-

-

ics throughout, i.e., we use the lab cross section as give
Eq. ~13a!, define the arclengthS with nonrelativistic ener-
gies, and use the nonrelativistic phase space factor

fps5~2p!4\2
mN

uka i
u E d3ka f

kg f

2 dkg f
S kb f

2 dkb f

dS
D

3dS ka f

2

2mN
1

kb f

2

2mN
1

kg f

2

2mN
2ed2

ka i

2

2mN
D

3d~ka f
1kb f

1kg f
2ka i

!. ~23!
atics
position

is paper,
FIG. 2. Left side: kinematical curves for the relativistic QFS configuration (42.16°,42.16°,180.0°) with relativistic~dashed curve! and
nonrelativistic~dotted curve! kinematics and for nonrelativistic QFS configuration (42.32°,42.32°,180.0°) with nonrelativistic kinem
~solid curve! at 52 MeV deuteron lab energy. Total arclengths are 9.22, 15.34, and 10.09 MeV, respectively. The dot indicates the
of the exact QFS point. Right side: deuteron tensor analyzing powerAxx(d) as a function of the fractional arclengthS/Smax along the
kinematical curve for QFS configurations of nucleon-deuteron breakup at 52 MeV deuteron lab energy. As in all calculations of th
the results are obtained with a nonrelativistic arclengthS. Results for nonrelativistic QFS configuration (42.32°,42.32°,180.0°)~solid curve!
and for relativistic QFS configuration (42.16°,42.16°,180.0°)~dotted curve! are compared.
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FIG. 3. Differential cross section and nucleon analyzing powerAy(n) as functions of the arclengthS along the kinematical curve fo
various configurations of nucleon-deuteron breakup at 13 MeV nucleon lab energy.~a!,~b! space star configuration (50.5°,50.5°,120.0°),
~c!,~d! collinearity configuration (50.5°,62.5°,180.0°), ~e!,~f! FSI configuration (39.0°,62.5°,180.0°), and ~g!,~h! QFS configuration
(39.0°,39.0°,180.0°). Results of the coupled-channel potential withD-isobar excitation~solid curve! are compared with results of the Par
potential ~dashed curve!. The experimental data are from Ref.@10# referring to neutron-deuteron scattering~circles! and from Ref.@11#
referring to proton-deuteron scattering~crosses!.
014002-7
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FIG. 4. Deuteron analyzing powersAy(d), Ayy(d), andAxx(d) as functions of the fractional arclengthS/Smax along the kinematical
curve for various configurations of nucleon-deuteron breakup at 52 MeV deuteron lab energy.~a!–~c! configuration (32.5°,32.5°,180.0°
and~d!–~f! configuration (37.0°,37.0°,180.0°). Results of the coupled-channel potential withD-isobar excitation~solid curve! are compared
with results of the Paris potential~dashed curve!. Since the experimental analysis uses an arclengthS based on relativistic kinematics, th
theoretical nonrelativistic description resorts to the identification procedure of Sec. II E. The following scattering angles were use
calculation ~the ratio of the total relativistic over nonrelativistic arclengths is given simultaneously in square brackets!: ~a!–~c!
(32.7°,32.7°,180.0°)@1.002# and ~d!–~f! (37.2°,37.2°,180.0°)@1.002#.
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We also note that the fit of the underlying baryonic potenti
to data is based on a corresponding entirely nonrelativi
phase space factor. Thus, internal consistency requires
use of the nonrelativistic phase space factor~23!. Further-
more, that form of description is natural for experimen
data that are derived from a nonrelativistic analysis. If, ho
ever, the analysis of experimental data is relativistic, we m
the chosen particular kinematic configurations of the exp
ment, such as space star, collinearity, final-state interac
~FSI!, or QFS in nonrelativistic kinematics only by an appr
priate change of scattering angles, thereby approximating
relativistic kinematical curves nonrelativistically and scali
the resulting arclengths to the value of the relativistic leng
In case the experimental data do not refer to a partic
01400
s
ic
he

l
-
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r

kinematic configuration, we still change the scattering ang
slightly till the agreement of relativistic and nonrelativist
kinematical curves is significantly improved.

III. RESULTS

Observables of breakup in nucleon-deuteron scattering
calculated for 13 MeV and 65 MeV nucleon lab energy a
for 52 MeV deuteron lab energy. The calculations are ba
on the coupled-channel two-baryon potentialA2, defined in
Ref. @2#; it allows for singleD-isobar excitation. Its nucle-
onic reference potential, being almost phase equivalent toA2
at low energies, is the Paris potential@7#. Both potentials are
2-8
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FIG. 5. Deuteron analyzing powersAy(d), Ayy(d), andAxx(d) as functions of the fractional arclengthS/Smax along the kinematical
curve for various configurations of nucleon-deuteron breakup at 52 MeV deuteron lab energy.~a!–~c! configuration (38.7°,38.7°,180.0°
and~d!–~f! configuration (41.0°,41.0°,180.0°). Results of the coupled-channel potential withD-isobar excitation~solid curve! are compared
with results of the Paris potential~dashed curve!. The experimental data are from Ref.@13# and refer to proton-deuteron scattering; they a
given there as functions of the arclengthSmeasured clockwise along the kinematical curve. TheAy(d) data are therefore readjusted to mat
our convention of a counterclockwiseS. Furthermore, since the experimental analysis uses an arclengthS based on relativistic kinematics
the theoretical nonrelativistic description resorts to the identification procedure of Sec. II E. The following scattering angles were use
calculation ~the ratio of the total relativistic over nonrelativistic arclengths is given simultaneously in square brackets!: ~a!–~c!
(38.9°,38.9°,180.0°)@1.004# and ~d!–~f! (41.2°,41.2°,180.0°)@1.002#.
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used in order to maintain consistency with papers I and
Both potentials are taken into account in partial waves up
two-baryon total angular momentumI 54. Channel coupling
to the D isobar is considered in all isospin triplet parti
waves up toI 52. The symmetrized breakup transition m
trix ^f0(pfqf)n0(mf)uU0(Ei1 i0)ufa(qi)na i

& to be calcu-
lated is expanded into three-body partial waves; the exp
sion is terminated at the three-body total angular momen
J5 27

2 . Any additional three-body partial waveJ yields
changes not visible in plots.

The calculations are done without Coulomb interact
between protons, they therefore refer to neutron-deute
01400
I.
o

n-
m

n

breakup. Nevertheless, results are freely compared to pro
deuteron experiments. Kinematic regions, in which both p
tons in the final state have small relative momenta and wh
therefore could see the Coulomb repulsion between the
tons, do not occur in the presented plots.

Results for spin-averaged and spin-dependent observa
at 13 MeV nucleon lab energy are given in Fig. 3. The e
perimental data appear analyzed in Refs.@10,11# nonrelativ-
istically. The theoretical predictions of this paper do not ne
any readjustment of the nonrelativistic kinematical curv
for a sound comparison. Anyhow, at this energy the diff
ence between the relativistic and the nonrelativistic kinem
2-9
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FIG. 6. Differential cross section and nucleon analyzing powerAy(n) as functions of the arclengthS along the kinematical curve fo
various configurations of nucleon-deuteron breakup at 65 MeV nucleon lab energy.~a!,~b! space star configuration (54.0°,54.0°,120.0°),
~c!,~d! coplanar star configuration (35.2°,35.2°,180.0°), and~e!,~f! QFS configuration (44.0°,44.0°,180.0°). Results of the coupled-channe
potential withD-isobar excitation~solid curve! are compared with results of the Paris potential~dashed curve!. The experimental data ar
from Refs. @15,16# and refer to proton-deuteron scattering. Since the experimental analysis uses an arclengthS based on relativistic
kinematics, the theoretical nonrelativistic description has to resort to the identification procedure of Sec. II E. The following scatterin
were used for the calculation~the ratio of the total relativistic over nonrelativistic arclengths is given simultaneously in square brac!:
~a!,~b! (54.5°,54.5°,120.0°)@0.999#, ~c!,~d! (35.5°,35.5°,180.0°)@0.999#, and~e!,~f! (44.5°,44.5°,180.0°)@0.997#.
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cal curves is extremely small. The disagreement between
theoretical predictions and the experimental data is m
striking for the differential cross section in the space s
configuration of Fig. 3~a!. The experimental data for proton
deuteron and neutron-deuteron breakup are surprisingly
apart. Neither data set is accounted for by theory as has
already observed by others@5#. Furthermore, the calculation
are unable to reproduce the height of the differential cr
section peaks at arclengthSaround 10 MeV in the collinear
ity and in the FSI configurations of Figs. 3~c! and 3~e!. This
fact is a particular feature of the chosen potentials; additio
calculations with more modern potentials are able to rem
01400
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that discrepancy@12#. In the studied observables the effect
the D isobar and of its mediated three-nucleon force is irr
evant; there is a mild, but nonbeneficial, effect on the cen
peak of the differential cross section in the QFS configu
tion of Fig. 3~g!.

Results for deuteron analyzing powers of deuteron-pro
scattering at 52 MeV deuteron lab energy are given in Fig
and 5. The experimental data in Figs. 5~a!–5~c! are from Ref.
@13#. There exist also new, but still preliminary, experimen
data@14# for all observables of Figs. 4 and 5. The agreem
between our theoretical predictions and these new data
pears by and large satisfactory. The new data are not re
2-10
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FIG. 7. Differential cross section and nucleon analyzing powerAy(n) as functions of the arclengthS along the kinematical curve fo
various configurations of nucleon-deuteron breakup at 65 MeV nucleon lab energy.~a!,~b! collinear configuration (30.0°,98.0°,180.0°),
~c!,~d! collinear configuration (59.5°,59.5°,180.0°), and ~e!,~f! nonspecific configuration (20.0°,45.0°,180.0°). Results of the coupled-
channel potential withD-isobar excitation~solid curve! are compared with results of the Paris potential~dashed curve!. The experimental
data are from Refs.@9,17# and refer to proton-deuteron scattering. Since the experimental analysis uses an arclengthS based on relativistic
kinematics, the theoretical nonrelativistic description has to resort to the identification procedure of Sec. II E. The following scatterin
were used for the calculation~the ratio of the total relativistic over nonrelativistic arclengths is given simultaneously in square brac!:
~a!,~b! (30.3°,98.9°,180.0°)@1.000#, ~c!,~d! (60.0°,60.0°,180.0°)@0.993#, and~e!,~f! (20.2°,45.5°,180.0°)@0.999#.
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yet for publication; our predictions are given for further re
erence. The experimental data of Refs.@13,14# are and will
be analyzed with relativistic kinematics; the identificati
procedure described in Sec. II E is used. As discussed th
data and results for the configuration (41.0°,41.0°,180.
are most affected. On the other hand, theD-isobar effects on
the considered observables remain small.

Results for spin-averaged and spin-dependent observa
at 65 MeV nucleon lab energy are given in Figs. 6 and 7.
experimental data refer to proton-deuteron scattering.
experimental setup realizes the particular scattering confi
rations such as space star, coplanar star, QFS, and colli
ity within nonrelativistic kinematics. In contrast, the ar
01400
re,
)

les
ll
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u-
ar-

lengthS employed for presenting data is derived from re
tivistic kinematics; thus, the identification procedure for t
arclength described in Sec. II E has to be used. The ag
ment between theoretical predictions and experimental d
is satisfactory. The effects of theD isobar and of its mediated
three-nucleon force become more noticeable in some obs
ables, e.g., for the differential cross section in space star
collinear configurations. For some other observables, e
for the differential cross section in coplanar star and Q
configurations, the totalD-isobar effects are dominated b
the dispersive two-body effect; that aspect is worrisome
needs further investigation. TheD-isobar effects are not al
ways beneficial.
2-11
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IV. CONCLUSIONS

The main purpose of the paper is the presentation of
technique for calculating breakup observables in nucle
deuteron scattering; the paper also gives sample physic
sults. In order to preserve continuity with our previous p
pers I and II on elastic nucleon-deuteron scattering, the s
two-baryon potentials are used as dynamic basis. In the l
of existing improved two-nucleon potentials, the employ
potentials are outdated; however, we believe that the theo
ical predictions will only be affected in details.

The highlight of a theoretical prediction is reached wh
it is technically reliable, but fails in accounting for data. Th
situation occurs in elastic nucleon-deuteron scattering w
the neutron analyzing power at low energies and with
Sagara discrepancy in the minima of the differential cr
section at higher energies. Whereas the latter discrepan
removed by a three-nucleon force@6#, the disagreement fo
the low-energy neutron analyzing power, strongly depend
on the two-nucleon interaction inP waves, remains a puzzle
Observables of nucleon-deuteron breakup are studied
the same motivation of finding disagreements through wh
one may be able to learn more about two-nucleon and th
nucleon forces. Though some disagreement between the
ical predictions and experimental data is found in instanc
01400
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a clear-cut discrepancy for a theoretical description withou
three-nucleon force is not seen yet. But the search is still
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APPENDIX: TECHNICAL DETAILS OF THE
CALCULATION

The solution of the integral equation~7! for the half-shell
transition matrix ^gauG0(Z)U(Z)G0(Z)uga& with Z5Ei
1 i0 is the numerical basis for determining the breakupS
matrix ~4!. The quantities in Eq.~7! are operators with
respect to the spectator momentumq and matrices with re-
spect to the rank labels determining the form factor sta
uga& and ^gau and the discrete quantum numbers. The in
gral equation ~7! is solved in the nonorthogonal bas
u iqx(I j )PJMJTMT&a of paper II, i.e.,
u iqx~ I j !PJMJTMT&a5 (
MImj

(
MTmt

uga
( ipIT)MIMT&uq~ ls! jmj tmtb&a^IM I jmj uJMJ&^TMTtmtuTMT&, ~A1a!

u iqx~ I j !PJMJTMT&a5(
LSB

E p2dpupq@~LS!I ~ ls! j #JMJ~Tt!TMTBb&a^pLSBuga
( ipIT)&, ~A1b!

and for the initial nucleon-deuteron state~6! which can be expanded in terms of those basis states, i.e.,

ufa~qi !na i
&5G0~Ei1 i0! (

PJMJTMT
(

l iml i
j imj i

u i 0qix i~ I 0 j i !PJMJTMT&a^I 0MI i
j imj i

uJMJ&^ l iml i
s0msi

u j imj i
&Yl iml i

* ~ q̂i !

3^T0MT0
t0mt0

uTMT&. ~A2a!

Thus, the matrix elementsa^ i 8q8x8(I 8 j 8)PJMJTMTuG0(Ei1 i0)U(Ei1 i0)G0(Ei1 i0)u i 0qix i(I 0 j i)PJMJTMT&a are to
be calculated according to

a^ i 8q8x8~ I 8 j 8!PJMJTMTuG0~Ei1 i0!U~Ei1 i0!G0~Ei1 i0!u i 0qix i~ I 0 j i !PJMJTMT&a

5 a^ i 8q8x8~ I 8 j 8!PJMJTMTuPG0~Ei1 i0!u i 0qix i~ I 0 j i !PJMJTMT&a

1(
i 9 ix

E q2dqa^ i 8q8x8~ I 8 j 8!PJMJTMTuPG0~Ei1 i0!u i 9qx~ I j !PJMJTMT&a~ i 9uTa~Ei1 i0,qx~ I j !!u i !

3 a^ iqx~ I j !PJMJTMTuG0~Ei1 i0!U~Ei1 i0!G0~Ei1 i0!u i 0qix i~ I 0 j i !PJMJTMT&a . ~A2b!

The final breakup statesuf0(pfqf)n0(mf)& of Eqs.~3! are related to the three-particle basis statesupqn(I j )&a of paper I by
2-12
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uf0~pfqf !n0~mf !&5 (JMJTMT
(

L f ML f
Sf MSf

I f MI f
Tf MTf

(
l fml f

j fmj f

upfqf@~L fSf !I f~ l fsa! j f #JMJ~Tfta!TMTBb&a

3^I fM I f
j fmj f

uJMJ&^L fML f
SfMSf

uI fM I f
&YL f ML f

* ~ p̂f !^sbmsb f
sgmsg f

uSfMSf
&

3^ l fml f
samsa f

u j fmj f
&Yl fml f

* ~ q̂f !^TfMTf
tamta f

uTMT&^tbmtb f
tgmtg f

uTfMTf
&A2. ~A3a!

The factorA2 arises in Eq.~A3a!, since the basis statesupqn(I j )&a are antisymmetrized by (12Pbg)/2 in the pair (bg).
Thus, the on-shell breakup amplitude of Eq.~5b! has the following partial-wave projected form:

a^pfqfn8~ I 8 j 8!uU0~Ei1 i0!u i 0qix i~ I 0 j i !PJMJTMT&a

5(
i 9 ix

E q2dqa^pfqfn8~ I 8 j 8!u~11P!u i 9qx~ I j !PJMJTMT&a~ i 9uTa~Ei1 i0,qx~ I j !!u i !

3 a^ iqx~ I j !PJMJTMTuG0~Ei1 i0!U~Ei1 i0!G0~Ei1 i0!u i 0qix i~ I 0 j i !PJMJTMT&a . ~A3b!
he

i-
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e
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All matrix elements of Eqs.~A2b! and~A3b! are diagonal in
the three-particle quantum numbers parityP, total angular
momentumJ, and its projectionMJ and total isospinT and
its projectionMT . Furthermore, they are independent of t
projections MJ and MT . In each partial wave
(PJMJTMT) they are only required for at most three in
tial states u i 0qix i(I 0 j i)PJMJTMT&a , distinguished by
x i(I 0 j i), but for a full set of final states
a^ i 8q8x8(I 8 j 8)PJMJTMTu in case of the transition matrix
elements~A2b!, and for the three-particle partial-wave stat
a^pfqfn8(I 8 j 8)u in case of the breakup elements~A3b!. The
a
c

r-

01400
quadrature in Eq.~A3b! for the breakup amplitude can b
carried out without technical problems. The solution of t
integral equation~A2b! is more demanding. It is initiated by
determining the first terms of the corresponding, usually n
convergent, Neumann series up to a chosen orderM itera-
tively and then constructing a converging approximati
for the partial-wave projected solutiona^ i 8q8x8(I 8 j 8)uK(l
51 )u i 0qix i ( I 0 j i)&a5 a^ i 8q8x8 ( I 8 j 8 ) PJMJTMT uG0 ( Ei
1 i0)U(Ei1 i0)G0(Ei1 i0)u i 0qix i(I 0 j i)PJMJTMT&a of
the integral equation~A2b! from that series by the Pad´
method. The iteration proceeds as follows:
a^ i 8q8x8~ I 8 j 8!uK0u i 0qix i~ I 0 j i !&aªa^ i 8q8x8~ I 8 j 8!PJMJTMTuPG0~Ei1 i0!u i 0qix i~ I 0 j i !PJMJTMT&a , ~A4a!

a^ i 8q8x8~ I 8 j 8!uKm11u i 0qix i~ I 0 j i !&alm11

5(
i 9 ix

E q2dqa^ i 8q8x8~ I 8 j 8!PJMJTMTuPG0~Ei1 i0!u i 9qx~ I j !PJMJTMT&a

3l~ i 9uTa~Ei1 i0,qx~ I j !!u i ! a^ iqx~ I j !uKmu i 0qix i~ I 0 j i !&alm, ~A4b!

K (M )~l!5 (
m50

M

Kmlm, ~A4c!
it
nts
tory,
ince
l is an artificial strength parameter; the powers ofl count
the number of times at which the two-baryon transition m
trix acts on the initial channel state. The following subse
tions show how the Neumann series~A4c! is obtained and
how the solutionK(l) of the integral equation~A2b! is then
constructed.

1. Spline interpolation

The Neumann series~A4c! is to be calculated at predete
mined mesh points$q8%. However, the part
-
-

a^ i 8q8x8~ I 8 j 8!PJMJTMTuPG0~Ei1 i0!

3u iqx ~ I j !PJMJTMT&a

of the integrand in Eq.~A4b! has moving singularities in its
dependence onq. The nature of these singularities makes
necessary to access the integrand at untabulated argumeq.
Therefore, an interpolation scheme becomes manda
which has to be accurate and efficient at the same time, s
it will be used frequently for theKm in the step~A4b! during
2-13
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the buildup of the Neumann series~A4c!. We use cubic
spline interpolation to accomplish this task.

The q integration with the domain@0,̀ ) in Eq. ~A4b! is
carried out in two intervals@0,qsg# and @qsg,`), qsg

5A4mEi /3 being the end point of the moving singularitie
In the interval@qsg,`) the fixed set of predetermined mes
points$q8% is used, in the interval@0,qsg# the integrand, i.e.,
the partKm of it, needs interpolation. For the description
the interpolation scheme we now return to a mathemat
language denoting the dependence ofKm on q by the regular
function f (x). The functionf (x) needs interpolation, befor
the integration of Eq.~A4b! is carried out. In the interva
@0,qsg# we approximate the regular functionf (x), tabulated
at the n11 mesh points $x050,x1,•••,xn21,xn
5qsg%, by a set of piecewise cubic polynomials

Si~x!5ai1bi~x2xi !1ci~x2xi !
21di~x2xi !

3,

i 51, . . . ,n, ~A5!

whereSi(x) is defined only within the interval@xi 21 ,xi #. In
each interval f (x)'Si(x) is assumed. The coefficient
$ai ,bi ,ci ,di% of the polynomialsSi(x) are obtained by de
manding the interpolation property

; i :Si~xi 21!5 f ~xi 21!` Si~xi !5 f ~xi !, ~A6a!

and the continuity of derivatives

; i ~ i ,n!:Si8~xi !5Si 118 ~xi !` Si9~xi !5Si 119 ~xi !.
~A6b!

Equations~A6! yield 2n12(n21)54n22 conditions for
the 4n unknown coefficients$ai ,bi ,ci ,di%. The two remain-
ing conditions have to be supplied manually. We choo
natural splines@18#, i.e., we requireS19(x0)5Sn9(xn)50 or
often alternatively as an additional check for stabilitycon-
tinuous third derivatives at x1 and xn21, i.e., in this case we
requireS1-(x1)5S2-(x1) andSn21- (xn21)5Sn-(xn21).

The coefficients$ai ,bi ,ci ,di% depend linearly on the se
of functions values$ f (x0), . . . ,f (xn)% @18#. We can there-
fore write

~a0 ,b0 ,c0 ,d0 , . . . ,an ,bn ,cn ,dn!5@ f ~x0!, . . . ,f ~xn!#AT

~A7!

with a matrixAT that is solely determined by the mesh poin
xi . In practice,AT can easily be calculated, since Eqs.~A6!
couple only neighboring splines.

Given AT, the procedure of interpolating a particul
function f (x) to new arguments is as follows.

~1! Calculate the coefficients$ai ,bi ,ci ,di% from the lin-
ear equation~A7!.

~2! When interpolating the functionf (x) to the argument
x, locate the particular interval@xi 21 ,xi # containingx. Since
the mesh pointsxi are kept in sorted order, binary search
used to obtain that interval in onlyO(ln n) steps in contras
to theO(n) steps required by a linear search.

~3! EvaluateSi(x) and identify f (x)5Si(x).
01400
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Our particular feature of interpolation is the choice
different interpolation variablesx in different intervals, i.e.,q
in the vicinity of 0, andAqsg

2 2q2 in the vicinity of qsg, the
reason for the latter choice being the fact that the imagin
part of the propagatorTa(Ei1 i0) behaves in that limit as
constAqsg

2 2q2. Those special choices greatly enhance
numerical accuracy. In the intermediate regime, interpolat
in any of these variables works equally well.

2. Numerical integration

The iteration step~A4b! requires an integration on th
magnitudeq of the spectator momentum and a summation
form factor labels and on discrete quantum numbers. T
subsection describes that integration onq.

In contrast to the contour-deformation technique of pap
I and II, this paper uses real-axis integration. The integrat
has to deal with integrable singularities. The singularit
arise in the kernel from the propagatorTa(Ei1 i0) and from
the term ^gauPG0(Ei1 i0)uga&, whereas the driving term
andKm are regular in the integration variable. The propag
tor Ta(Ei1 i0) has a dynamic singularity, the deutero
bound-state pole in partial waves with the deuteron quan
numbers; that pole is rewritten as ad function, immediately
integrable, and a principal-part singularity which is regul
ized in standard fashion. Thus, the deuteron pole in
propagatorTa(Ei1 i0) deserves no further discussion he
The singularities in the term̂gauPG0(Ei1 i0)uga& are also
rewritten as ad function, immediately integrable, and
principal-part singularity; its regularization is more involve
it is given in detail in Appendix D of Ref.@19#. After the
regularization of the angular integration arising from the a
tion of the permutation operatorP, singularities inq integra-
tion remain; those singularities are dealt with in this subs
tion. The singularities of ^gauPG0(Ei1 i0)uga& are of
kinematical origin; they depend on both the initial and fin
spectator momentaq andq8, called therefore moving singu
larities, but they are independent of the form factor lab
and of discrete quantum numbers, except for baryonic c
tent. In subsection 1 the integrand is interpolated for m
points, which avoid the moving singularities. We therefo
proceed as follows.

~1! The integrand in the iteration step~A4b! is split up
into a sum of regular and singular functions. The integrat
of the regular integrand is not further discussed here, h
ever, the one on the singular integrand. That singular in
grand is factorized into a product of a regular function d
pending on the momenta, the form factor labels and
discrete quantum numbers, and a scalar function that ca
all integrable singularities@19#.

~2! The method of product integration@20–22# is used for
the factorized integrand.

The employed real-axis integration technique is desrib
for an integral of the form

I 5E
a

b

dxw~x! f ~x!, ~A8a!

where f :@a,b#°R is a regular test function and
2-14
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w:@a,b#°R is a function that carries the integrable sing
larities in (a,b). Also here we use standard mathemat
notation, though we have theq integration of Eq.~A4b! in
mind. For that integral~A8a! we seek a simple integratio
rule

I'(
j 51

N

wj f ~xj ! ~A8b!

involving a given finite set$x1 , . . . ,xN% of mesh points with
weights wj to be determined. Note that the presence of
singular functionw(x) will be completely hidden in the
weights wj of the integration rule~A8b!. Thus, once the
weights are calculated, all occurring singular integrals can
as easily evaluated in the same way as the familiar Ga
Legendre integration rule allows for regular functions.

The weightswj are determined by first calculating th
moments

mk5E
a

b

dxw~x!hk~x! ~A9!

for a set of basis functionsB5$h1(x), . . . ,hN(x)%. The re-
quirement that the integration rule~A8b! be exact for all
functionshk(x) yields the linear system

(
j 51

N

wjhk~xj !5mk ~A10!

for the unknown weightswj . The setB is chosen in such a
way that typical regular functionsf (x), as arising in the
integration of Eq.~A4b!, can be closely approximated by
linear combination of these basis functionshk(x). Since by
construction all singularities are carried byw(x) and the
function f (x) is regular, the basis functionshk(x) can simply
be chosen to be linearly independent polynomials of or
(k21). The resulting integration rule is therefore exact
all polynomials up to the degreeN21, i.e., deviations from
exact integration are of the orderO(xN).

Practically, the family of polynomials used for calculatio
of weightswj from the linear system~A10! has to be chosen
with care, in order to achieve numerical stability for the li
ear system~A10!. For example if the polynomials are na
ively selected as powers, i.e.,B5$1,x,x2, . . . ,xN21%, the
resulting linear system involves a Vandermonde matrix@23#
and is ill conditioned. A much better conditioned linear sy
tem is obtained for a set of basis functions with an eve
distributed range of function values, e.g., the Chebys
polynomials@20#.

Note that we did not specify how to calculate the m
ments mk . The mk can be either obtained analytically o
numerically, e.g., by using adaptive integration metho
@24,25#.

We close this subsection by giving an example. Since
singularities of the AGS equations are logarithmic we co
sider as examplew(x)5 ln x and choose the limitsa50, b
511 for the integration domain. We usef (x)5cosx as the
test function. The integral to be calculated is therefore
01400
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0

1

dx ln x cosx5Si~1!, ~A11!

with Si(1)'20.946 083 070 367 183 014 941 353, the si
integral, as analytical result. We compare the integration r
~A10! with the standard subtraction technique in Table~I!.
The subtraction technique regularizes the integral~A11! and
evaluates it according to the Gauß-Legendre integration
as follows:

E
0

1

d x ln x cosx5E
0

1

dx ln x@cosx2cos~0!#

1cos~0!E
0

1

dx ln x

'(
j 51

N

wj
GLln xj

GL~cosxj
GL21!21

~A12!

with xj
GL and wj

GL denoting the Gauß-Legendre quadratu
points and weights. The fast convergence of the integra
rule ~A10! is obvious from Table I and demonstrates its s
periority over the standard Gauß-Legendre quadrature w
subtraction.

3. Padésummation

In this subsection we carry out a construction of the so
tion K(l) of the integral equation~A2b! by the Pade´
method. We assume that the first terms of the Neumann
ries ~A4c! of K(l) are known to us in the form

K (M )~l!5 (
m50

M

Kmlm, ~A13!

according to Eq.~A4c!. The Neumann series might not b
globally convergent. The Pade´ method deals with the prob
lem of nonconvergence or slow convergence by genera
an approximating, better converging rational functionR(l)
5P(l)/Q(l) from the coefficients$Km% according to two
conditions.

~1! Improved convergence is achieved by requiring t
order of the denominator polynomialQ(l) to be equal or at

TABLE I. Comparison of integration techniques. The integ
I 5*0

1dx ln x cosx is evaluated by the subtraction technique~A12!
and the integration rule~A10! for different numbersN of mesh
points. The relative errorDI 5100u@ I 2Si(1)#/Si(1)u is given.

Gauß-Legendre Special weights
with subtraction according to Eq.~A10!

N DI DI

4 0.249612310202 0.287699310202

7 0.104399310203 0.456670310207

10 0.134596310204 0.127911310211

13 0.294369310205 0.117349310213
2-15
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least close to the order of the numerator polynomialP(l).
The convergence of the Neumann series is spoiled by p
in the complex plane. By introducing a rational approxim
tion, which generates isolated poles in the complex plane,
behavior of the underlying function should be better appro
mated, as by the Neumann series.

~2! The rational functionR(l) is required to be equivalen
to K (M )(l) up to the order inl to whichK (M )(l) is defined,
i.e., uR(l)2K (M )(l)u5O(lM11).

The reader has to keep in mind that all coefficients$Km%
are vectors with respect to their dependence on the
cretized set$q8% of the continuous spectator momentum,
the rank labeli 8 and on nonconserved discrete three-bo
quantum numbersx8(I 8 j 8), the conserved three-body qua
tum numbersPJMJTMT being fixed. Thus, the numerato
and denominator polynomials are constructed separately
each momentumq8 and for each of the discrete labels a
quantum numbers. We assume that all coefficients$Kmum
51, . . . ,M % are nonzero. In practice, this assumption is tr
except for the momentumq850 and particular quantum
numbers. However, in this exceptional caseall $Km% vanish
due to geometric reasons; thus, there is no need for a P´
resummation. In our use of the Pade´ method, the approximat
ing, better converging rational functionR(l) is obtained in
three steps.

The first step rewritesK (M )(l) in form of a continued
fraction Kcf

(n)(l). Its definition is iterative, where thenth
iteration is given by

Kcf
(n)~l!5K01

a1~l!

11

a2~l!

11
•••

an~l!

11p(n)~l!/q(n)~l!
~A14!

with

an~l!5anl l (n) ~A15!

being powers of orderl (n) in l and p(n)(l) and q(n)(l)
being polynomials inl. The notation for a continued frac
tion is a standard one, e.g., as given in Ref.@24#. The quan-
tities an11(l), p(n11)(l), andq(n11)(l) are obtained from
the corresponding quantities in the previous iteration s
an11(l) is the lowest order term ofp(n)(l); p(n11)(l) and
q(n11)(l) are obtained using the transformation of Viskov
tov @26#

p(n)~l!

q(n)~l!
5

an11~l!

q(n)~l!@an11~l!/p(n)~l!#

5
an11~l!

11q(n)~l!@an11~l!/p(n)~l!#21

5
an11~l!

11p(n11)~l!/q(n11)~l!
, ~A16!

with q(n11)(l)5p(n)(l)/an11(l) and p(n11)(l)5q(n)(l)
2q(n11)(l). The lowest-order term of anyq(n)(l) is always
1, the lowest-order term of anyp(n)(l) is at least of power 1.
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The iteration is started by puttingp(0)(l)5K (M )(l)2K0
andq(0)(l)51; that starting step yieldsa1(l), p(1)(l), and
q(1)(l) for the continued fractionKcf

(1)(l) of lowest order. In
each iteration stepKcf

(n)(l)5K (M )(l). The iteration termi-
nates after 2M steps at most, i.e.,p(2M )(l)50 and
a2M11(l)50. Since alsoKcf

(2M )(l)5K (M )(l), the problem
of nonconvergence still persists.

The exercise of continued fraction is only required to p
vide the quantitiesan(l) of Eq. ~A15! for n51, . . . ,M ,
which are needed for the latersecondstep of constructing the
rational functionR(l). Our algorithm for the coefficientsan
in an(l) is derived from the continued fraction~A14! and
runs as follows. We assume that the coefficients$a i u i
51, . . . ,m21% are determined from the coefficients$Ki u i
51, . . . ,m21%; the determination ofam21 requires auxil-
iary quantities$g i(m21)u i 52, . . . ,m% which are saved for
the determination ofam . The step from (m21) to m has
three sequences.

~a!

b1~m!5Km , ~A17a!

b i~m!5g i~m21!, i 52, . . . ,m. ~A17b!

~b! The auxiliary quantities$g i(m)u i 52, . . . ,m11% are
redefined by

g2~m!50, ~A17c!

g i 11~m!5
b i 21~m!2g i~m!

a i 21
, i 52, . . . ,m.

~A17d!

~c!

am5bm~m!2gm11~m!. ~A17e!

The algorithm does not need to determine the powerl (n) of
l in an(l) of Eq. ~A15!, since the rational functionR(l)
will be considered only forl51.

In thesecondstep the rational functionR(l) is generated
by a recurrence relation for the polynomialsP(n)(l) and
Q(n)(l)

P(n)~l!5P(n21)~l!1an~l!P(n22)~l!, ~A18a!

Q(n)~l!5Q(n21)~l!1an~l!Q(n22)~l!, ~A18b!

which is started by

P(21)~l!51, Q(21)~l!50, ~A18c!

P(0)~l!5K0 , Q(0)~l!51. ~A18d!

The recurrence relations~A18! were first derived by Wallis
in 1655@27#. The recurrence uses the functionsan(l) of the
continued fractionKcf

(n)(l). It terminates atn5nmax when
anmax11(l)50. However, if the natural termination of th

continued fraction were used, i.e.,nmax52M ~in exceptional
casesnmax,2M), nothing would be gained; in that cas
P(2M )(l)5K (M )(l) andQ(2M )(l)51. If, however, the con-
2-16
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tinued fraction is terminated atnmax5M putting aM11(l)
50, the rational functionR(l) satisfies the two desire
properties, spelt out at the beginning of this subsection.
construction of the rational functionR(l) in the second step
appears awkward, since it is based on the continued frac
of the first step. However, it is chosen, since it is numerica
stable, in contrast to other possible techniques.

In the third step the convergence of the Pade´ summation
is checked. We are satisfied with the obtained approxima
rational function R(l), if for a given order M of the
Neumann series the deviation of the complete vectors
.U
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,
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-
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small in successive orders, i.e.,uuP(M )(l)/Q(M )(l)
2P(M21)(l)/Q(M21)(l)uul51,e, e being our required ac-
curacy. Computer economy calls for as small a numberM as
reasonable. The numberM is found by starting the accurac
check already forM51; the Neumann series~A4c! is car-
ried to a higher orderM11, requiring a repetition of the
steps one to three only when that accuracy check fails.
actual numberM used depends on the scattering energy
well as on the total three-body quantum numbers
a^ i 8q8x ( I 8 j 8 ) PJMJTMTuG0 ( Ei1 i0 )U ( Ei1 i0)G0(Ei
1 i0)u i 0qix i(I 0 j i)PJMJTMT&a .
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