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Breakup in nucleon-deuteron scattering with A-isobar excitation
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Breakup in nucleon-deuteron scattering is described. The description is based on a coupled-channel two-
baryon potential that allows for the virtual excitation of a nucleon foiaobar. The Coulomb interaction is not
included. Channel coupling gives rise to an effective three-nucleon force. The three-particle scattering equa-
tions are solved by real-axis integration using a separable expansion of the two-baryon transition matrix.
Examples for spin-averaged and spin-dependent observables are calculated and compared with experimental
data.
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[. INTRODUCTION energies. Referendé] finds a beneficialA-isobar effect on
the Sagara discrepancy. Theisobar is not helpful for the

This paper is the third in a series on nucleon-deuterorspin observables,(n) andiT,; around 10 MeV neutron lab
scattering. The first on¢l], called paper I, establishes a energy.
separable expansion for the underlying two-baryon interac- This paper extends the description to spin-averaged and
tion [2], which explicitly allows forA-isobar excitation. The spin-dependent observables of breakup in nucleon-deuteron
second on¢3], called paper Il, uses that separable expansiomscattering. Experimental data for breakup are much scarcer
of the coupled-channel transition matrix for the calculationthan for elastic scattering. Kinematical regimes in which the
of elastic nucleon-deuteron scattering, below and abovéhree-nucleon force mediated by the isobar may play a
three-nucleon breakup. This paper does so for inelastidetermining role are searched for. The theoretical description
nucleon-deuteron scattering, i.e., for three-nucleon breakupequires a change of techniqgue when solving the three-
The A isobar gives rise to an effective three-nucleon forceparticle scattering equations compared with paper Il, which
The calculation is without Coulomb interaction. Thus, it re-employed a contour deformation technigue. Real-axis inte-
fers to breakup in neutron-deuteron scattering, though thgration is used instead. The technique is developed in the
comparison is mostly with data of proton-deuteron scatterpresent context.
ing. In Sec. Il basic features of the calculation are described,;

The theoretical description of elastic nucleon-deuterorhowever, the important technical details are deferred to the
scattering up to about 150 MeV nucleon lab energy in term#&ppendix. Section Il presents our results for spin-averaged
of realistic two-nucleon potentials has been generally quitéind spin-dependent observables of breakup in inelastic
successfu[4,5] with the following exceptions. nucleon-deuteron scattering. The conclusions are given in

(1) At low energies the description of scattering observ-Sec. V.
ables and of bound-state properties are correlated. An appro-
priate three-nucleon force has to be added to account for Il. BASIC FEATURES OF THE CALCULATION
trinucleon binding in full. o )

(2) The description of proton-deuteron scattering at very 1he notation is taken over from paper | and is assumed to
low energies for most angles and at higher energies predomie self-evident; explanations of the notation are kept to a
nantly in forward direction requires the inclusion of the Cou-Minimum.
lomb interaction between the protons.

(3) There are long-standing discrepancies in the spin ob-  A. Alt-Grassberger-Sandhas(AGS) breakup equation
servabledA,(n) andiT,; around 10 MeV neutron lab energy.
Furthermore, without a three-nucleon force, the minimum of;,
the unpolarized differential cross section beyond 65 MeV
nucleon lab energy cannot be accounted for; this fact is Uo(Z)=Go A 2)+[1+T,(2)Go(2)IU(Z). (1a)
called Sagara discrepancy.

Paper Il and Refl6] study the effect of the\ isobar on |t is obtained from the symmetrized multichannel transition
elastic nucleon-deuteron scattering. The effect is usuallynatrix U(Z),
small; at most, modest for some spin observables at higher

The symmetrized break-up transition matdxy(Z) is de-
ed in Eq.(2.13 of paper | according to

U(2)=PGy X (Z)+PT,(2)Go(Z)U(2), (1b)
*Electronic address: Karsten.Chmielewski@itp.uni-hannover.de given in Eq.(2.12 of the same paper. Using E@Lb) once
TOn leave from Institute of Theoretical Physics and Astronomy,more, we rewrite the standard quadrature for the breakup
Vilnius University, Vilnius 2600, Lithuania. transition matrix as follows:
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Uo(Z)=(1+ P)Ggl(Z)+(1+ P)T(Z)Go(Z2)U(Z), are sets of discrete quantum numbers determining the chan-
2 nel states in full. Both channel states are antisymmetrized

with respect to the pair £y). |¢,(q) v, ) is the initial
where Gy(Z) is the free resolvent? =P .5+ P35, the per- | ' '>

mutation operator, andr,(Z) the two-baryon coupled- nuczleon—deuteron .statehwnh the |n|t|al.c.r.n. enelgy= ey
channel transition matrix between the baryghandy in the +qi/2M,, ey being the deuteron binding energi,
three-particle spacea(8y) cyclic. The free Hamiltonian in  — 2Mx/3 the reduced spectator mass, ang the nucleon
Go(Z) does not contain center of magsm) motion, but €St mass.|¢o(pa) o) is the final three-nucleon breakup
baryon rest masses, normalized to zero for three nucleon§tate. Itis given in paper | as a coupled state with respect to
The channel statdsh,(q) v, and| ¢o(pq) vo) are defined in  P&Ir Spin and isospin. However, the final state is measured in
paper I,p andq are the internal Jacobi moments, andy, the uncoupled form, i.e.,

1-P
| ¢0( prf) VO( mf)> = \/Eﬂy | prf>a|Samsaftamtafbaf>|SBmsﬁftﬁmtﬂfbﬁfHSymsﬁt 7mt7fbyf>! (3a)
| po(Peas) vo(my)) = < > |d’O(prf)V0f><SBmSst'ymSyf|SfMSf><tﬁmtﬁftymtyf|TfMTf>' (3b)
f St f T¢

The discrete quantum numbers of the final state are explained in Fig. 2 of paper I. Its c.m. elfefrg)pfﬁzﬂaJr q?/ZMa
with the reduced pair masgs,= my/2.
The S matrix for breakup is given by the symmetrized on-shell breakup transition mag(ix), i.e.,

(Do(Prr) vo(Mp)[S] () v4,) = — 271 S(E¢— Ei){ o(Psds) vo(My) | Uo(E; +10)| daldi) v, )- (4)

When determining th& matrix the initial and final states are |¢,(q) v, )

fully antisymmetrized and normalized through{P)/+/3; ' _

however, those symmetrization operators are incorporated =Go(Ei+i0)|9('°ﬁ°|°T°)M|MT Y diSoms tom; bo), -
into the definition of the symmetrized breakup transition ma- ¢ b ' °

trix Ug(Z) of paper I. The on-shell transition matrix,(Z) (6)

's calculated according to E(R). Thus, the breaku® matrix (4) based on the breakup transi-

tion matrixUy(Z) in the form(2) needs the matrix elements
B. Separable expansion of coupled-channel interaction and  of the operatorg,|Go(Z)U(Z)Go(Z)|g,) half-shell. Paper
AGS breakup equation Il calculated the same operator on shell for the description of

The form (2) of the breakup transition matriidy(2) is elastic nucleon-deuteron scattering.

especially convenient, when the two-baryon transition matrix ) _ )
T,(Z) is separably expanded according to our general strat- C. Solution of the integral equation for the half-shell

egy for solving the AGS three-particle scattering equations. transition matrix (gl Go(2)U(Z) Go(2)|ga)
The separable expansion The transition matrix(g,|Go(E;+i0)U(E;+i0)Gy(E;
_ +i0)|g,) is required half-shell for the on-shell breakup am-
To(2)=19.)Ta(2)(g.l 8 plitude Uo(E;+i0)| ba(a) v,) according to Egs(sb) and

(6). It is obtained by solving the integral equation

yields forUo(2). (0 Go(2)U(2)Go(2)]80) = (0] P Go(2) |0

_ +(g,|PGo(2)|9,)T.(Z
Uo(2)=(1+P)Gy H(2) + (1+P) ) Tu(2) (0l PCo(D)] g Tal2)
X(9.|Go(Z)U(Z)Go(Z)|g,).
X(9al Go(2)U(2). (5b) (9alGo(2)U(2)Go(2)]0a)
()
Since the deuteron state defines one element, labbgleéd  The kernel(g,|PGy(Z)|g,)T.(Z) of the integral equation
the form factor|g,) of the separable expansi¢sa), T,(Z) (7) contains singularities{g,|PGy(Z)|g,) develops so-

being the corresponding propagator, the initial nucleoncalled movingsingularities of kinematical origin above the
deuteron state can be rewritten as breakup threshold, whereas the propagdtQ(Z) contains
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the deuteron bound-state pole. The arising of these singulari- We use the cross sectiddg) in the lab system. The target
ties was discussed in depth in paper Il which employed theleuteron is at rest, i.eky=0, the impinging nucleon has
method of contour deformation for dealing with them. Thatmomentumkai, which defines the direction. The changes

method was adequate for the calculation of on-shell matrixyat arise when the deuteron impinges on a nucleon target are
elements needed for the description of elastic scattering iBpyious. The matrix elemexif| M|i) of Eq. (8a) should be
paper II, but it was already tedious there. For breakup calCUgerived from a fully relativistic description of hadron dy-
lations that method gets even more tedious. It requires giamics. We are unable to give such a relativistic description.
least two distinct complex paths, and those paths have to behe nonrelativistic hadron dynamics employed is based on a
different for different available energids . Contour defor-  two-baryon potential, fitted to data with the nonrelativistic
mation for breakup has not been numerically successful ifgrm of the cross section in contrast to H@a), it connects

the past. It was also tried by us tentatively, but problems ofhe S matrix with the symmetrized on-shell breakup transi-
stability convinced us to develop the alternative technique ofjgn matrix Uo(E;+i0) in Eq. (4); it uses nonrelativistic en-
real-axis integration for solving Ed7). Its implementation ergies forE; andE;. When, nevertheless, that breakup tran-
rests on three technical pillars: spline interpolation, numerisition matrix is taken for an approximate construction of
cal evaluation of the singular integrals by specially calcu-<f|M|i>, ignoring the difference in kinetic energies for a

lated weights, and Padgpproximation. _ relativistic Smatrix and its nonrelativistic correspondence of
The details of the method are described in the Appendixiq, (4), the following identification is obtained:

all items have novel aspects. The reliability of the technique
is tested by comparing results for elastic nucleon-deuteron (| M|i)=(do(p:ds) vo(M;)|Uo(E;+i0)| b (i) v, )
scattering which were obtained with the contour-deformation '

technique in paper Il. In fact, all results given there in plots (27h)9"2 = —0—0

were recalculated using the real-axis technique. No differ- X V/2Kq c2ke2K,, c2Kp c2K c.
ences, visible in plots, could be found, except minute ones

for some spin observables of particularly small magnitude. (8b)

Hence, no samples of that comparison are shown in this par, . calculation of  (¢o(psas) vo(ms)|Uo(E;
|

per. The reliability check is an internal one for elastic+. . S
X . ; . i0 i uses the available initial c.m. ener
nucleon-deuteron scattering; the comparison is possible for )|(;b0‘(q')yai> &

the coupled-channel interaction withvisobar excitation em- &nd the Jacobi momenég, pr, andg ; their relations to the
ployed[2] and for its purely nucleonic reference potential, SiNdle particle lab momenta are
the Paris potentigl7]. The method of real-axis integration K2

can without technical change be carried over from elastic Ei—egt i (94

nucleon-deuteron scattering to breakup. Furthermore, in the 3my’

case of the purely nucleonic Paris potential, the comparison

is also possible with the breakup results of Ré]. This 2

comparison turned out to be quite satisfactory. Thus, we con- Gi=— §kai' (9b)

sider our technique of real-axis integration highly reliable,

and we employ it in this paper for calculating breakup in 1

nucleon-deuteron scattering and for studyifgisobar ef- pf=§(kﬁf—k7f), (90
fects in that process.

2
qf:(kﬁf+kyf)_§kai' (gd)

D. Observables of nucleon-deuteron breakup

Ne-\II—QI’GthCeEI‘[eCSuSIat\IISQSIiE; t?(')s rﬁgﬁ:r tﬂree Setgtlrilg ggggf\l/i[gsst'c'The employed nonrelativistic dynamics is Galilean invariant.
. ’ SO X les b implies that the matrix elemekf|M|i) is frame de-
starting out from the relativistic form of the cross section, pendent. The frame dependence of E8b) is due to the
energy factors/2K; c2kgc2k; c2k; c2k) c; they arise,
5 . (8a) rather artificially in Eq.(8b), since corresponding factors
4c \/(kai ~Kg)“—mymge have to be attached to the phase space part of the cross sec-
tion (8a). We note that already at 65 MeV nucleon lab energy
) ) _ the difference between lab and c.m. system amounts to a
The reason is that we carry out corresponding calculations gtame dependence of 2.5% fof| M|i). For the description
electromagnetic processes; for them the relativistic form ofy spin-averaged and spin-dependent cross sections the
the cross section has important conceptual advantages. In ElS#-eakup transition matrikl(E; +i0) is conveniently abbre-

(8a) <f|/\/l|i>_ is the Lorentz-invariant singularity-free matrix yiated by the scattering amplitudé (E;p;q),
eIement,dLlps(kaiJrkd ,kaf,kﬁf,kyf) the Lorentz-invariant

phase space element of the final state defined ir{Hg, and (Po(Psar) vo(Me)[Uo(Ei+i0)[do(d) vs,)
4% \/(kq, - kg)*—mymic® a Lorentz-invariant factor con-

taining the initial-state information.

dLipS(Ky, + Ko Ke, Kg Ky )

dUi—»f:|<f|M|i>|2

:<msa msB Mg |M(Eiprf)|MIimsi>- (10
t Bt v
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in which the dependence on the spin projections of the par- kg_ k,%' dkg

ticles in the initial and final states is made explicit. The neu—fpsz(zﬂ)%Z_'f d3k,, k27 dk, oo S(E, +Eg

tron and proton nature of the nucleonsf4y) in the final [kelc e ds b
state is notationally not indicated, but always determined by

experiment. +Ey —€m By OKa kg Ky —Ky). (13b)

In contrast to the matrix elemet| M|i) that carries the L . ,
dynamics, the kinematical factors in Eg8a, ie., the Here,E, andE,, are kinetic energies, defined correspond-

Lorentz-invariant phase-space element ingly to Eg andE,; (271-h)"°’|k0(i|c/k3i is the incoming
flux in the lab system; the energy factors contained in
(fM[i) of Eq. (80b) and ind Lips(kg, +kq,Ka,.Kg, K,,) Of

dLips(Kg, +Kq ,Kq . Kg K
Eqg. (11) cancel exactly, once both are assumed to be com-

7f)

=(27rﬁ)45(4)(kaf+ kﬁf+ kyf— kai— Kq) puted in the same frame. The cross sectitdg is still spin
dependent.
d®k,,d%kg,dk,, The spin-averaged fivefold differential cross section is

(11)

X
9591,0 0 0
(27h) 2kafc2k/3fc2kyfc o 1 a5,

T o~ o~ T A~ z 2 T o~ o~
dSdtkg d’k,, 6wy m g mg - dSEkg d%k,,

and the factor 4% /(k,, - kq)*—mymgc*, which contains the
incoming flux, the target density, and projectile and target
normalization factors, could, in principle, be calculated rela-
tivistically. We shall not use that option in this paper; we
believe that it is not justified; we discuss the reason in more
detarl]l in Sec. II Ef he initial and final . In the figures the spin-averaged fivefold differential cross
The momenta in the initial an inal states are constrainede oy i denoted bg°o/dSd),d(),, the traditional nota-
by energy and momentum conservation. For example, if th%on
momentumkand the directionk, were measured, all The spin dependence of the initially prepared states is
three nucleon momenta are determined in the final state, atlescribed by the Hermitian density matgix, normalized to
though not always uniquely. In practice, the two nucleonTr p;=1. The density matrixp; of the initially prepared
scattering angles with respect to the beam directin, ¢ ) states is the tensor product of density matrices for the
and (,,¢,), usually notationally shortened t@f,6,,¢,  nucleon and the deuterop? andpY, i.e.,
—¢p), and their kinetic energies without rest masdes, 0y
and E,. are meassured. Those energies are related by mo- pi=p ®p.
mentum and energy conservation and therefore lie on a fixegiejr individual spin dependence is carried by the spin-
kinematical curve. The observables are therefore given agperatorss®2 and the spin-1 operatoi®®s, defined in Sec.

functions of the arclengt along that curve, i.e., 3.2 of paper II. As in paper Il, the set of product operators
{S*}={S*2® S} is formed. They are normalized by

1
= gTr[M(Eiprf)M Y(Eiprar)] fps.

(14)

(15

S= f Sol S (12 T{SHS"]=65,p - (16)
0

With those product operatoi$® the initial density matrix
with dS= /d Eﬂ2f+dEzyf andE, being considered a function gets the concise form
of Ep, or vice versa depending on numerical convenience.

The arclength is always taken counterclockwise along the piZ% > T pSHSH. 7
kinematical curve. No confusion between the arcler@gmd 8
the Smatrix of Eq.(4) should arise. The normalization of the
arclength value zero is chosen differently in different kine-
matical situations.

The lab cross section therefore takes the compact for

The final-state polarization measurement is described by the
projection operatorp;, i.e., p?=pf, which is the tensor

m Product of corresponding projection operators for the three
nucleons, i.e.,

do—iﬂf:|<msafmsﬁfmsyf|M(Eipqu)|MlimSi>|2 pi=Nip"®p"®p", (18)

Xfpsdsdzlzﬁ d2k (139  With N;=2%"", A being the number of polarization mea-
o surementsp; is normalized to Tp;=N;. Equation(18) cor-
rects the imprecise description of this point in paper Il. The
with the abbreviation fps for the phase-space factor. Usin@peratorsp" are parametrized in the form of the nucleon
relativistic kinematics it takes the following form, i.e., density matrix. Their individual spin dependence is carried
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by the spins operatorsS?2. The set of product operators eratorp;, the spin-dependent differential cross section be-
{S*}={S%2® S™20 S*2} is formed, which are normalized by comes

TH{SSM]=86,p,- (19 do

—_——
With these product operato&f the projection operatop; dsoekﬁfd kw
gets the concise form (21

=Tr[M(E;ip;a) piM T (Eipsas) ps] fps.

1 Using the spin-averaged differential cross section
Pi=g ; Tr{ pS?]S™. (20) d*o/dSdk, d?k,, of Eq.(14) and the expansiond7) and
f (20) for the initial density matrixo; and the final-state pro-

In terms of the scattering amplitudd (E;p¢q;), of the jection operatorps, the spin-dependent differential cross
initial density matrixp; and of the final-state projection op- sections take the form

1 TrIM(E;pas) %M T(E;pay) S*]
= 2 T p;SH]Tr psS¥ : (22)
8 aa PSS T M(E;psar)M T (E;pay) ]

d®c d®c

SR, d%k,,  dSchky %k,

Characteristic for the experimental setup of the studiedivistic and nonrelativistic kinematics, but there are special
reaction are the parameters in the initial density magfix situations with dramatic differences. Figures 1 and 2 give
and in the final-state projection operajgrwhich determine examples for either case at 65 MeV nucleon lab energy and
the expansion coefficient [ls;S%]Tr[p¢S*] in Eq. (22).  at 52 MeV deuteron lab energy, respectively.

Characteristic for the spin dependence of the reaction mecha- Figure 1 refers to the space star configuration at 65 MeV
nism is the way in which the spin operat®$ of p; andS*  nucleon lab energy, which is realized for relativistic and non-
of p; weigh the spin matrix elements of the scattering am-elativistic kinematics at slightly different scattering angles.
plitude. The experiment therefore aims at determining ob-There are only minor differences between the relativistic and
servables of the type [WI(Epsqr)SiMT(Eipsar)S™]/  nonrelativistic kinematical curves corresponding to the same
T{M(Eipig;)MT(Eipsds)]. A particular choice of the spin  angles. However, the kinematical curves for slightly different
operatorsS* and S” defines particular spin observables; angles corresponding to the exact space star configuration
their notation is standardized in R¢8]. with relativistic and nonrelativistic kinematics are even al-
most identical. The right-hand side of Fig. 1 shows a sample
effect on observables, which arises from differences in the
kinematical curves. Correspondence is obtained by scaling
all considered kinematical curves to the length of the relativ-
The experimental setup for breakup usually works withistic arclength. The length of the kinematical curves before

two particle detectors at two fixed angles measuli'glgand scaling is recorded in the figure caption; the discrepancy be-
S . . . tween the results of different identification procedures is
k,, and determines cross sections as functions of the a Al

clengthSon the kinematical curve corresponding to the two  The example of Fig. 2 is more dramatic. It refers to the
kinetic energies€; andE, . A sound comparison requires quasi-free-scatteringQFS configuration for 52 MeV deu-
the same kinematical curve for the experimental interpretateron lab energy. Again, this special situation is with relativ-
tion of data and for the theoretical prediction. However, theistic and nonrelativistic kinematics realized only for slightly
experimental interpretation of data usually prefers relativistiadifferent scattering angles. However, in this case there are
kinematics, whereas theory prefers nonrelativistic kinematguite large differences between the relativistic and non-
ics, since the description of dynamics is nonrelativistic any—elativistic kinematical curves corresponding to the same
how. Without a relativistic treatment of the dynamics there isangles; the reason is that the critical situation
no fully consistent description of the experimental data anq42.26°,42.26°,180.°), atwhich the relativistic locus col-

of the theoretical prediction. Thus, approximative identifica-lapses to a point, is near and that in nonrelativistic kinemat-
tion procedures have to be applied; a discussion of this poirits that critical situation occurs at larger angles. In contrast,
and a suggestion for identification is given in REF]. We  the kinematical curves for slightly different angles corre
follow a somehow different procedure. At the rather low en-sponding to the exact QFS configuration with relativistic and
ergies considered in this paper the resulting kinematicahonrelativistic kinematics are quite close. The right-hand
curves, defined in Eq12), are often quite similar for rela- side of Fig. 1 shows a sample effect on observables, which

E. Problem in the comparison of theoretical predictions and
experimental data
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FIG. 1. Left side: kinematical curves for the relativistic space star configuration (53.5°,53.5°,120.0°) with reldteisiied curveand
nonrelativistic(dotted curve kinematics and for the nonrelativistic space star configuration (54.0°,54.0°,120.0°) with nonrelativistic kine-
matics(solid curve at 65 MeV nucleon lab energy. The total arclengths are 62.92, 63.64, and 63.04 MeV, respectively. The solid and dashed
curves are almost indistinguishable in the plot. The dot indicates the position of the exact space star point. Right side: differential cross
section as a function of the arclenddtalong the kinematical curve for the space star configurations of nucleon-deuteron breakup at 65 MeV
nucleon lab energy. As in all calculations of this paper, the results are obtained with a nonrelativistic aiglédeghlts for the nonrela-
tivistic space star configuration (54.0°,54.0°,120.059lid curve and for the relativistic space star configuration (53.5°,53.5°,120.0°)
(dotted curve are compared.

arises from differences in the kinematical curves. Corresponies throughout, i.e., we use the lab cross section as given in
dence is naturally achieved wihout scaling, since the experiEq. (13a, define the arclengtls with nonrelativistic ener-
mental data at this energy are given and will be given agjies, and use the nonrelativistic phase space factor
functions ofS/S;,ax, Smax P€ing the full arclength of the rela-
tivistic kinematical curve; we follow that procedure. The re-

2

spective length of the kinematical curves is recorded in the my kﬁfdkﬁf
- : i - ; fps=(27)*h%— | dk, k2 dk
figure caption. The sensitivity on the chosen kinematical K., | A AR TS
curve is alarmingly large. This observation also implies that !
the corrections arising from finite geometry can become siz- k2 k2 k2 k2

. . . . . N ag Bs Vs a;
able in this kinematical configuration. X 8 + —ey— !

2my  2my  2my 2my

With respect to the experimental data that this paper at-
tempts to describe or to predict, we therefore use the follow-

) ) A X (Ko, +Kg K, —Kg).
ing theoretical strategy. We employ nonrelativistic kinemat- f f f i

(23)

16 T . 0.10 .
14 R 0.05
3 5
= e
>
LIJ; <
12 + E 0.00
10 L 1 -0.05 1
10 12 14 16 0.0 0.5 1.0

Egs (MeV) S/Smax

FIG. 2. Left side: kinematical curves for the relativistic QFS configuration (42.16°,42.16°,180.0°) with relatidétied curyeand
nonrelativistic(dotted curve kinematics and for nonrelativistic QFS configuration (42.32°,42.32°,180.0°) with nonrelativistic kinematics
(solid curve at 52 MeV deuteron lab energy. Total arclengths are 9.22, 15.34, and 10.09 MeV, respectively. The dot indicates the position
of the exact QFS point. Right side: deuteron tensor analyzing péwgd) as a function of the fractional arcleng® S, along the
kinematical curve for QFS configurations of nucleon-deuteron breakup at 52 MeV deuteron lab energy. As in all calculations of this paper,
the results are obtained with a nonrelativistic arclergtResults for nonrelativistic QFS configuration (42.32°,42.32°,180(86ljd curve
and for relativistic QFS configuration (42.16°,42.16°,180.0f9tted curve are compared.
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FIG. 3. Differential cross section and nucleon analyzing pogn) as functions of the arclengtd along the kinematical curve for
various configurations of nucleon-deuteron breakup at 13 MeV nucleon lab ef@r¢y. space star configuration (50.5°,50.5°,120,
(c),(d) collinearity configuration (50.5°,62.5°,1&80.), (e),(f) FSI configuration (39.0°,62.5°,187.), and (g),(h) QFS configuration
(39.0°,39.0°,18@°). Results of the coupled-channel potential wikisobar excitatior{solid curve are compared with results of the Paris
potential (dashed curve The experimental data are from RgLO] referring to neutron-deuteron scatterifmrcles and from Ref.[11]
referring to proton-deuteron scatterifgrosses
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FIG. 4. Deuteron analyzing powers,(d), A,,(d), andA,,(d) as functions of the fractional arclengBiS,,, along the kinematical
curve for various configurations of nucleon-deuteron breakup at 52 MeV deuteron lab dagr€y). configuration (32.5°,32.5°,180.0°)
and(d)—(f) configuration (37.0°,37.0°,180°). Results of the coupled-channel potential withisobar excitatior{solid curve are compared
with results of the Paris potentiédashed curve Since the experimental analysis uses an arcleBdgtased on relativistic kinematics, the
theoretical nonrelativistic description resorts to the identification procedure of Sec. Il E. The following scattering angles were used for the
calculation (the ratio of the total relativistic over nonrelativistic arclengths is given simultaneously in square brackptfc)
(32.7°,32.7°,180.07)1.002 and (d)—(f) (37.2°,37.2°,180.0)L.002.

We also note that the fit of the underlying baryonic potentialskinematic configuration, we still change the scattering angles
to data is based on a corresponding entirely nonrelativistislightly till the agreement of relativistic and nonrelativistic
phase space factor. Thus, internal consistency requires thé@nematical curves is significantly improved.

use of the nonrelativistic phase space fad®). Further-

more, that form of description is natural for experimental

data that are derived from a nonrelativistic analysis. If, how- IIl. RESULTS

ever, the analysis of experimental data is relativistic, we meet

the chosen particular kinematic configurations of the experi- Observables of breakup in nucleon-deuteron scattering are
ment, such as space star, collinearity, final-state interactiopalculated for 13 MeV and 65 MeV nucleon lab energy and
(FSI), or QFS in nonrelativistic kinematics only by an appro- for 52 MeV deuteron lab energy. The calculations are based
priate change of scattering angles, thereby approximating then the coupled-channel two-baryon potenfa, defined in
relativistic kinematical curves nonrelativistically and scaling Ref. [2]; it allows for singleA-isobar excitation. Its nucle-
the resulting arclengths to the value of the relativistic lengthonic reference potential, being almost phase equivaleA2to

In case the experimental data do not refer to a particulaat low energies, is the Paris potenti@l. Both potentials are
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FIG. 5. Deuteron analyzing powers,(d), A, (d), andA,,(d) as functions of the fractional arclengBiS,,, along the kinematical
curve for various configurations of nucleon-deuteron breakup at 52 MeV deuteron lab dagr€y). configuration (38.7°,38.7°,180.0°)
and(d)—(f) configuration (41.0°,41.0°,180°). Results of the coupled-channel potential withisobar excitatior{solid curve are compared
with results of the Paris potentiédashed curve The experimental data are from REE3] and refer to proton-deuteron scattering; they are
given there as functions of the arclen@imeasured clockwise along the kinematical curve. Ajfg) data are therefore readjusted to match
our convention of a counterclockwi& Furthermore, since the experimental analysis uses an arcl8rggtbed on relativistic kinematics,
the theoretical nonrelativistic description resorts to the identification procedure of Sec. Il E. The following scattering angles were used for the
calculation (the ratio of the total relativistic over nonrelativistic arclengths is given simultaneously in square bracket$c)
(38.9°,38.9°,180.0)L.004] and (d)—(f) (41.2°,41.2°,180.07)L.002.

used in order to maintain consistency with papers | and llbreakup. Nevertheless, results are freely compared to proton-
Both potentials are taken into account in partial waves up taleuteron experiments. Kinematic regions, in which both pro-
two-baryon total angular momentuis= 4. Channel coupling tons in the final state have small relative momenta and which
to the A isobar is considered in all isospin triplet partial therefore could see the Coulomb repulsion between the pro-
waves up to =2. The symmetrized breakup transition ma-tons, do not occur in the presented plots.
trix (o(Prds) vo(Me)|[Uo(Ei+i0)|pa(ai) v,,) to be calcu- Results for spin-averaged and spin-dependent observables
lated is expanded into three-body partial waves; the exparat 13 MeV nucleon lab energy are given in Fig. 3. The ex-
sion is terminated at the three-body total angular momenturperimental data appear analyzed in R¢1€),11] nonrelativ-
J=3%. Any additional three-body partial wavg yields istically. The theoretical predictions of this paper do not need
changes not visible in plots. any readjustment of the nonrelativistic kinematical curves
The calculations are done without Coulomb interactionfor a sound comparison. Anyhow, at this energy the differ-
between protons, they therefore refer to neutron-deuteroance between the relativistic and the nonrelativistic kinemati-
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FIG. 6. Differential cross section and nucleon analyzing poygn) as functions of the arclengt along the kinematical curve for
various configurations of nucleon-deuteron breakup at 65 MeV nucleon lab e(@t@y. space star configuration (54.0°,54.0°,1P0,
(c),(d) coplanar star configuration (35.2°,35.2°,180.,, and(e),(f) QFS configuration (44.0°,44.0°,180). Results of the coupled-channel
potential withA-isobar excitation(solid curvg are compared with results of the Paris potenfiklshed curve The experimental data are
from Refs.[15,16 and refer to proton-deuteron scattering. Since the experimental analysis uses an ar8leagdd on relativistic
kinematics, the theoretical nonrelativistic description has to resort to the identification procedure of Sec. Il E. The following scattering angles
were used for the calculatiofthe ratio of the total relativistic over nonrelativistic arclengths is given simultaneously in square brackets
(a),(b) (54.5°,54.5°,120.010.999, (c),(d) (35.5°,35.5°,180.01)0.999, and(e),(f) (44.5°,44.5°,180.010.997|.

cal curves is extremely small. The disagreement between théat discrepancj12]. In the studied observables the effect of
theoretical predictions and the experimental data is moshe A isobar and of its mediated three-nucleon force is irrel-
striking for the differential cross section in the space starevant; there is a mild, but nonbeneficial, effect on the central
configuration of Fig. 89). The experimental data for proton- peak of the differential cross section in the QFS configura-
deuteron and neutron-deuteron breakup are surprisingly fdaion of Fig. 3g).

apart. Neither data set is accounted for by theory as has been Results for deuteron analyzing powers of deuteron-proton
already observed by oth€ls]. Furthermore, the calculations scattering at 52 MeV deuteron lab energy are given in Figs. 4
are unable to reproduce the height of the differential crosand 5. The experimental data in Figéas-5(c) are from Ref.
section peaks at arcleng8around 10 MeV in the collinear- [13]. There exist also new, but still preliminary, experimental
ity and in the FSI configurations of Figs(c3 and 3e). This  data[14] for all observables of Figs. 4 and 5. The agreement
fact is a particular feature of the chosen potentials; additionabetween our theoretical predictions and these new data ap-
calculations with more modern potentials are able to remov@ears by and large satisfactory. The new data are not ready-
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FIG. 7. Differential cross section and nucleon analyzing poygn) as functions of the arclengt along the kinematical curve for
various configurations of nucleon-deuteron breakup at 65 MeV nucleon lab ef@t@y. collinear configuration (30.0°,98.0°,180)),
(c),(d) collinear configuration (59.5°,59.5°,180), and (e),(f) nonspecific configuration (20.0°,45.0°,180). Results of the coupled-
channel potential with\-isobar excitation(solid curve are compared with results of the Paris potentifished curve The experimental
data are from Ref49,17] and refer to proton-deuteron scattering. Since the experimental analysis uses an a&hawgt on relativistic
kinematics, the theoretical nonrelativistic description has to resort to the identification procedure of Sec. Il E. The following scattering angles
were used for the calculatiofthe ratio of the total relativistic over nonrelativistic arclengths is given simultaneously in square brackets
(a),(b) (30.3°,98.9°,180.01L.000, (c),(d) (60.0°,60.0°,180.01)0.993, and(e),(f) (20.2°,45.5°,180.070.999.

yet for publication; our predictions are given for further ref- length S employed for presenting data is derived from rela-
erence. The experimental data of Rdfs3,14] are and will tivistic kinematics; thus, the identification procedure for the
be analyzed with relativistic kinematics; the identification arclength described in Sec. Il E has to be used. The agree-
procedure described in Sec. Il E is used. As discussed therment between theoretical predictions and experimental data
data and results for the configuration (41.0°,41.0°,180.0°)s satisfactory. The effects of theisobar and of its mediated
are most affected. On the other hand, thésobar effects on  three-nucleon force become more noticeable in some observ-
the considered observables remain small. ables, e.g., for the differential cross section in space star and
Results for spin-averaged and spin-dependent observablesllinear configurations. For some other observables, e.g.,
at 65 MeV nucleon lab energy are given in Figs. 6 and 7. Allfor the differential cross section in coplanar star and QFS
experimental data refer to proton-deuteron scattering. Theonfigurations, the totah-isobar effects are dominated by
experimental setup realizes the particular scattering configuthe dispersive two-body effect; that aspect is worrisome and
rations such as space star, coplanar star, QFS, and collineareeds further investigation. The-isobar effects are not al-
ity within nonrelativistic kinematics. In contrast, the arc- ways beneficial.
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IV. CONCLUSIONS a clear-cut discrepancy for a theoretical description without a

. . . three-nucleon force is not seen yet. But the search is still on.
The main purpose of the paper is the presentation of our

technique for calculating breakup observables in nucleon-
deuteron scattering; the paper also gives sample physics re- ACKNOWLEDGMENTS
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it is technically reliable, but fails in accounting for data. That

situation occurs in elastic nucleon-deuteron scattering with APPENDIX: TECHNICAL DETAILS OF THE

the neutron analyzing power at low energies and with the CALCULATION

Sagara discrepancy in the minima of the differential cross

section at higher energies. Whereas the latter discrepancy is The solution of the integral equatidi) for the half-shell

removed by a three-nucleon forf@], the disagreement for transition matrix (g,|Go(Z)U(Z)Go(Z2)|g,) with Z=E;

the low-energy neutron analyzing power, strongly dependent-i0 is the numerical basis for determining the breal&ip

on the two-nucleon interaction A waves, remains a puzzle. matrix (4). The quantities in Eq(7) are operators with

Observables of nucleon-deuteron breakup are studied witfespect to the spectator momentgnmand matrices with re-

the same motivation of finding disagreements through whiclspect to the rank labels determining the form factor states

one may be able to learn more about two-nucleon and thregg,) and{g,| and the discrete quantum numbers. The inte-

nucleon forces. Though some disagreement between theorefral equation (7) is solved in the nonorthogonal basis

ical predictions and experimental data is found in instancesiqx(1j)I1JM ;7M4), of paper I, i.e.,

[lax(IDIIMAMe= 2, 2, 1957 DM iM)|a(ls)jm;tmb)o(IMyjm)| TMa)(TMAm| TM7),  (Ala)

mj Mymy

|iqx<lj>HJMJTMT>a=L§B f p2dp|pal(LS)I(1)jITM AT TMBb)(pLSHgI ™), (A1b)

and for the initial nucleon-deuteron sta® which can be expanded in terms of those basis states, i.e.,

|alA)ve)=Go(Ei+i0) > 3 igGixi(loii) TTM T Mz) o oMy jimy, [ TM(limy somg [§imy )Y, (a)
HJMJTMT“thiij i

X(ToM TotomtolTMT). (A2a)
Thus, the matrix elementg(i’q’ x'(I'j")ILIM ;TM4Go(E; +i0)U(E; +i0)Go(E;+i0)|ioqi xi(l 0ji) [ITM ;TMy), are to
be calculated according to

170" X (1] ILIM FTMAGo(Ei +i10)U(E; +i0)Go(E; +i0) i o8 xi(1 0} ) ITTM 7 TM 1)
=179 x" ('] YILIM 7TMAP Go(E; +10) i i xi (1 0] ) TLTM 7TM7)
+E 9%dau(i’a’ x' (1"] VITIM sTM | P Go(E; +i0)[i"ax (1 TLTM ;7M7) o(i"| To(E; +i0,ax(1j))])
I”i)(

X (iax(1) ILTM 7TM 7 Go(E;+i10)U(E;+i0)Go(E; +i0)|ioGixi(1 o] ) ITLTM sTMz7),, - (A2b)

The final breakup statdgbo(psas) vo(m;)) of Egs.(3) are related to the three-particle basis stapes(1j)), of paper | by
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| do(prap vo(mp)= > > 2 P (LeS)l(1150) i ] IM A Tit,) TMBb),,
jM]TMT LfMLfoMSfIfleTfMTf Ifm|fjfmjf
X('fM|fjfmjf|n7MJ><|—fMLf5stf||fM|f>thMLf(E’f)<5ﬁmsﬁf57msyf|Sstf>
X (e s,ms [jem; )Y (ap){(TsM t,m, | TM 7 tgm; t,m I TiMr)V2. (A3a)
f g f (L f ag B Vs f

The factor2 arises in Eq(A3a), since the basis statésqv(lj)), are antisymmetrized by (2Pyg,)/2 in the pair By).
Thus, the on-shell breakup amplitude of Efb) has the following partial-wave projected form:

«PrAs v’ (1] )| Uo(Ei+i0)]ioqixi(1 o] ) ITLTM 7TM7) o
22 a%dg (psasv’ (1'j)[(1+P)|i"ax (1] ) IITM TM 7)o (i"| T (E; +i10,ax(1))]i)
i"ix

X Liax () ILIM ZTMAGo(Ei+10)U(E;+i0)Go(E; +i0)[io0 xi(lof i) ILTM 7 TM7) - (A3b)

All matrix elements of Eqs(A2b) and(A3b) are diagonal in  quadrature in Eq(A3b) for the breakup amplitude can be
the three-particle quantum numbers paiity total angular carried out without technical problems. The solution of the
momentumy, and its projectionM ; and total isospir?and  integral equatior{A2b) is more demanding. It is initiated by
its projectionM . Furthermore, they are independent of thedetermining the first terms of the corresponding, usually non-
projections M, and Mgz In each partial wave convergent, Neumann series up to a chosen oktlétera-
(ILJM sTM ) they are only required for at most three ini- tively and then constructing a converging approximation
tial states |ioqixi(loji) ITIM TMyp,, distinguished by for the partial-wave projected solutigfi’q’ x'(1"j")|K(x
xi(loji), but for a full set of final states =1)|igQixi(loji))a=&{i'd x' (1"j") ILIM TMGy(E;

L9 x (1] IIIM 4TM ] in case of the transition matrix +i0)U(E;+i0)Go(E;+i0)|ioq xi(loji)) ITTM ;TM7p), of
elementgA2b), and for the three-particle partial-wave statesthe integral equatior{A2b) from that series by the Pade
AP:gsv’'(1'j")| in case of the breakup elemerifs3b). The  method. The iteration proceeds as follows:

|
LA X (7 PO]Kolio@ixi(Toii))ai=afi"a’ x" (1" ] Y ITIM 7TIM P Go(E;+10)|io0li xi (1 0j ) ITTM 7TM 3, (Add)
L7 X () KmgalioGixi(loii)) oA ™t

=2 | 9’dau{i’a’x (1] TLIM IMHPGo(E; +i0)[i"ax (1) ITTM TMz),,

i"i)(

XN"[TH(Ei+10ax (1)) oiax (1) KplioGixi(Toji))ah™, (Adb)
M
KM= K™, (Adc)
m=0
|
\ is an artificial strength parameter; the powers\o€ount L9 x (1 JHITIM TMAPGy(E; +i0)
the number of times at which the two-baryon transition ma- i )
trix acts on the initial channel state. The following subsec- Xligx (1)) ITIM 7TM7) .

tions show how the Neumann seriés4c) is obtained and

how the solutiorK (\) of the integral equatiofA2b) is then , ) , . L
constructed. of the integrand in Eq(A4b) has moving singularities in its

dependence og. The nature of these singularities makes it
necessary to access the integrand at untabulated argugents
Therefore, an interpolation scheme becomes mandatory,
The Neumann serigg\4c) is to be calculated at predeter- which has to be accurate and efficient at the same time, since
mined mesh point$g’}. However, the part it will be used frequently for th& ,, in the step(A4b) during

1. Spline interpolation
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the buildup of the Neumann seriéd4c). We use cubic Our particular feature of interpolation is the choice of
spline interpolation to accomplish this task. different interpolation variablesin different intervals, i.e.q
The g integration with the domaifi0,») in Eq. (A4b) is in the vicinity of O, and\/qszg— g” in the vicinity of g4, the
carried out in two intervals[0,gsg] and [gs4,>), Osg  reason for the latter choice being the fact that the imaginary
= 4mE;/3 being the end point of the moving singularities. part of the propagatol',(E;+i0) behaves in that limit as
In the interval[gsg,) the fixed set of predetermined mesh consk/qszg— g°. Those special choices greatly enhance the
points{q'} is used, in the intervdl0,qsy the integrand, i.e., numerical accuracy. In the intermediate regime, interpolation
the partkK, of it, needs interpolation. For the description of in any of these variables works equally well.
the interpolation scheme we now return to a mathematical
language denoting the dependencé&gqfon q by the regular
function f(x). The functionf(x) needs interpolation, before
the integration of Eq(A4b) is carried out. In the interval ~ The iteration step(Adb) requires an integration on the

[0,0sg] We approximate the regular functidifx), tabulated ~Magnitudeg of the spectator momentum and a summation on
at the n+1 mesh points {xo=0<x;<---<x,_;<x, form factor labels and on discrete quantum numbers. This

2. Numerical integration

=qsg, by a set of piecewise cubic polynomials subsection describes that integrationgn _
In contrast to the contour-deformation technique of papers
S(x)=a;+bj(x—x;)+c;(x—x;) 2+ d;(x—%;)3, I and Il, this paper uses real-axis integration. The integration
has to deal with integrable singularities. The singularities
i=1,...n, (A5) arise in the kernel from the propagatBy(E; +i10) and from

the term(g,|PGy(E;+i0)|g,), whereas the driving term

whereS(x) is defined only within the intervdlx,_,,x;]. In  andKy, are regular in the integration variable. The propaga-
each interval f(x)~Si(x) is assumed. The coefficients tor T,(Ei+i0) has a dynamic singularity, the deuteron
{a;,b;,c;,d;} of the polynomialsS;(x) are obtained by de- bound-state pole in partial waves with the deuteron quantum
manding the interpolation property numbers; that pole is rewritten assefunction, immediately
integrable, and a principal-part singularity which is regular-
Vi:Si(xi—1)=f(xi_1)/\ Si(x)=F(x;), (AGa) ized in standard fashion. Thus, the deuteron pole in the
propagatorT ,(E;+i0) deserves no further discussion here.

and the continuity of derivatives The singularities in the terntg,|PGy(E;+i0)|g,) are also
rewritten as aé function, immediately integrable, and a
Vi(i<n):S (x)=S1(x)/\ S (x) =5 1(X). principal-part singularity; its regularization is more involved;

(A6b) it is given in detail in Appendix D of Ref[19]. After the
regularization of the angular integration arising from the ac-

Equations(A6) yield 2n+2(n—1)=4n—2 conditions for tion of the permutation operat®, singularities ing integra-
the 4n unknown coefficient$a; ,b; ,c; ,d;}. The two remain- tion remain; those singularities are dealt with in this subsec-
ing conditions have to be supplied manually. We chooseion. The singularities of(g,|PGy(E;+i0)|g,) are of
natural splines[18], i.e., we requireS;(xo) =Sy (x,)=0 or  kinematical origin; they depend on both the initial and final
often alternatively as an additional check for stabilign-  spectator momentaandq’, called therefore moving singu-
tinuous third derivatives atxand x,_;, i.e., in this case we larities, but they are independent of the form factor labels

requireS}'(x,) =S5 (x1) and Sy ;(Xn—1) =Sy (Xn—1)- and of discrete quantum numbers, except for baryonic con-
The coefficientga; ,b; ,c;,d;} depend linearly on the set tent. In subsection 1 the integrand is interpolated for mesh
of functions valuegf(xo), . ..,f(x,)} [18]. We can there- Points, which avoid the moving singularities. We therefore
fore write proceed as follows.
(1) The integrand in the iteration ste@\4b) is split up
(89,b0,Co,dg, - - - @n,bn,Cn.dn) =[F(Xg), - . . ,F(Xp) JAT into a sum of regular and singular functions. The integration

(A7) of the regular integrand is not further discussed here, how-

ever, the one on the singular integrand. That singular inte-

with a matrixAT that is solely determined by the mesh pointsgrand is factorized into a product of a regular function de-
x; . In practice, AT can easily be calculated, since E¢&6) pending on the momenta, the form factor labels and the

couple only neighboring splines. discrete quantum numbers, and a scalar function that carries
Given AT, the procedure of interpolating a particular all integrable singularitief19].

function f(x) to new arguments is as follows. (2) The method of product integratig@0—22 is used for
(1) Calculate the coefficients; ,b; ,c;,d;} from the lin-  the factorized integrand.

ear equationfA7). The employed real-axis integration technique is desribed

(2) When interpolating the functiofi(x) to the argument for an integral of the form
X, locate the particular intervék; _,X;] containingx. Since b
the mesh points; are kept in sorted order, binary search is |:J dxw(x)f(x), (A8a)
used to obtain that interval in onl®(In n) steps in contrast a
to the O(n) steps required by a linear search.
(3) EvaluateS;(x) and identifyf(x)=S;(x). where f:[a,b]—R is a regular test function and
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w:[a,b]—R is a function that carries the integrable singu- T?BLE . Comparison of integration techniques. The integral
larities in (a,b). Also here we use standard mathematics' =/od*Inxcosx is evaluated by the subtraction techniqu2)
notation, though we have thgintegration of Eq.(A4b) in anq the |ntegrat.|0n rul¢Al10) for dlﬁerent nL.mee.rsN.of mesh
mind. For that integralA8a) we seek a simple integration POINts. The relative erral =100[1 - Si(1))/Si(1) is given.

rule Gaul3-Legendre Special weights
N with subtraction according to EgA10)
l*JZl w;f (x;) (A8b) N Al Al
4 0.24961% 10 % 0.28769% 10 %2
involving a given finite sefx,, . .. x5} of mesh points with 7 0.10439% 10 0.456670< 10~ %7
weights v to be determined. Note that the presence of the 10 0.134596& 10 % 0.12791 10™ 11
singular functionw(x) will be completely hidden in the 13 0.29436% 10° % 0.11734% 1013

weights w; of the integration rule(A8b). Thus, once the
weights are calculated, all occurring singular integrals can be
as easily evaluated in the same way as the familiar Gaul3- 1 )
Legendre integration rule allows for regular functions. j dxlInx cosx=Si(1), (A11)

The weightsw; are determined by first calculating the

moments with Si(1)~—0.946 083070367 183014 941 353, the sine
. integral, as analytical result. We compare the integration rule
Msz dxW(x)hy(x) (A9) (A10) with the standard subtraction technique in Table
a The subtraction technique regularizes the inte¢#dll) and
evaluates it according to the Gaul3-Legendre integration rule
for a set of basis functionB={h(x), ... hy(x)}. The re- as follows:
quirement that the integration rul@8b) be exact for all
functionsh,(x) yields the linear system

0

1 1
jdxlnxcosx:f dxInx[cosx—cog0)]
0 0

N
> wihy(x)) = (A10) .
oy I R +coso)f dxInx
0
for the unknown weightsv; . The setB is chosen in such a N
way that typical regular function$(x), as arising in the - WELN xC(cosx® — 1) — 1
integration of Eq.(A4b), can be closely approximated by a 121 ! i y )

linear combination of thgge basis fungtidmg(x). Since by (A12)
construction all singularities are carried by(x) and the

functionf(x) is regular, the basis functioig(x) can simply  jith x®- and w®" denoting the GauB-Legendre quadrature
be chosen to be linearly independent polynomials of ordepgints’ and weights. The fast convergence of the integration
(k—1). The resulting integration rule is therefore exact for e (A10) is obvious from Table | and demonstrates its su-

all polynomials up to the degreé— 1, i.e., deviations from  periority over the standard GauB-Legendre quadrature with
exact integration are of the ordéx(x"). subtraction.

Practically, the family of polynomials used for calculation
of weightsw; from the linear systenfA10) has to be chosen
with care, in order to achieve numerical stability for the lin-
ear systemA10). For example if the polynomials are na-  In this subsection we carry out a construction of the solu-
ively selected as powers, i.eB={1x,x?, ... xN"1}, the tion K(\) of the integral equationA2b) by the Pade
resulting linear system involves a Vandermonde mg@i®  method. We assume that the first terms of the Neumann se-
and is ill conditioned. A much better conditioned linear sys-ries (A4c) of K(\) are known to us in the form

3. Padesummation

tem is obtained for a set of basis functions with an evenly M
distributed range of function values, e.g., the Chebyshev M)y — m
polynomials[20]. K ()‘)_mzzo Kmh ™, (AL3)

Note that we did not specify how to calculate the mo-
ments u, . The u, can be either obtained analytically or according to Eq(A4c). The Neumann series might not be
numerically, e.g., by using adaptive integration methodsylobally convergent. The Padeethod deals with the prob-
[24,25. lem of nonconvergence or slow convergence by generating
We close this subsection by giving an example. Since than approximating, better converging rational functR\)
singularities of the AGS equations are logarithmic we con-=P(\)/Q(\) from the coefficientdK,,} according to two
sider as examplev(x) =Inx and choose the limita=0, b conditions.
= +1 for the integration domain. We ugéx) =cosx as the (1) Improved convergence is achieved by requiring the
test function. The integral to be calculated is therefore order of the denominator polynomi&(\) to be equal or at
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least close to the order of the numerator polynonfiéh).  The iteration is started by putting@(\)=KM(\)—K,
The convergence of the Neumann series is spoiled by poleendq(®)(\)=1; that starting step yields;(\), p®™()), and
in the complex plane. By introducing a rational approxima-q(*(\) for the continued fractioi}(\) of lowest order. In

tion, which generates isolated poles in the complex plane, theach iteration stemg?)()\)zK(M)()\). The iteration termi-
behavior of the underlying function should be better approxinates after ® steps at most, i.e.p®(\)=0 and

mated, as by the Neumann series. , asv+1(\)=0. Since alsk Z™(\)=KM)()), the problem
(2) The rational functiorR(\) is required to be equivalent ot nonconvergence still persists.

to KM()) Up(bo) the order in\ to whichK™()) is defined, The exercise of continued fraction is only required to pro-

ie., [R(N)—KMO)[=0M"). vide the quantitiesa,(\) of Eq. (A15) for n=1,... M,

The reader has to keep in mind that all coefficiefls,}  which are needed for the lateecondstep of constructing the
are vectors with respect to their dependence on the disytional functionR()). Our algorithm for the coefficients,,

cretized se{q'} of the continuous spectator momentum, onin g () is derived from the continued fractiofA14) and
the rank labeli’ and on nonconserved discrete three-bodyyyns as follows. We assume that the coefficiefits|i

quantum numberg'(l'j’), the conserved three-body quan- =1~ m—1} are determined from the coefficienti;|i
tum numberd1 M ;7M1 being fixed. Thus, the numerator -1 m-—1}; the determination of,,,_; requires auxil-
and denominator polynomials are constructed separately fqgy quantities{ y;(m—1)|i=2, . .. m} which are saved for

each momentung’ and for each of the discrete labels and he determination ofx,,. The step from f1—1) to m has
quantum numbers. We assume that all coefficidits/m  three sequences.

=1,... M} are nonzero. In practice, this assumption is true )

except for the momentung’=0 and particular quantum

numbers. However, in this exceptional cade{K,} vanish Bi(m)=K,, (A17a)
due to geometric reasons; thus, there is no need for a Pade

resummation. In our use of the Pagethod, the approximat- Bi(m)=y(m=1), i=2,...m (Al7Db)

ing, better converging rational functidR(\) is obtained in
three steps.

The first step rewritesk ™) (\) in form of a continued
fraction K{P(\). Its definition is iterative, where theth y,(M)=0, (A170)
iteration is given by

(b) The auxiliary quantitied y;(m)|i=2, ... m+1} are
redefined by

i—1(m—=y(m)
KD = Ko 22N 82N an(A) ml(m):%, i=2,...m.

S S SR (A179)

(A14)

(©)
with

A= Bm(M) = Yms1(M). (Al17¢)

a,(\)=a,\' (™M (A15)

The algorithm does not need to determine the poviey of
being powers of ordet(n) in A and p™(r) andg™(x) A in ay(\) of Eqg. (A15), since the rational functiofR(\)
being polynomials in\. The notation for a continued frac- Will be considered only foh=1.

tion is a standard one, e.g., as given in R2#]. The quan- In the secondstep the rational functioR(\) is generated
tities a,, 1 (\), p™*D(\), andq("* (1) are obtained from by a recurrence relation for the polynomia®™(\) and
the corresponding quantities in the previous iteration stepQ(n)O\)
an.1(\) is the lowest order term gi™(x); p"*Y(\) and

(n) —p(h-1) (n—2)
g™ Y)(\) are obtained using the transformation of Viskova- PT(\)=P (M) +an(M)P (), (Alsa)

tov [26] QM) =Q"(N)+a,(M)QM"P(N),  (A18b)

pM(N) _ an+1(N) which is started by
a”) a®)an (NP (V)] PCD(\)=1, QCD(\)=0, (A18¢)
8n+1(M) PO =K,, QO()=1. (A180)

1+q™(\)[an (M) /p™(N)]-1
The recurrence relation®\18) were first derived by Wallis
an1(N) in 1655[27]. The recurrence uses the functiagg\) of the
- 1+ p™ D)/ DN (A16)  continued fractionK (P(\). It terminates an=n,,, When
anmaxﬂ()\)zo. However, if the natural termination of the
with g™ D(\)=p™(\)/a,,1(N) and p T D(\)=q™(N\)  continued fraction were used, i.@y,=2M (in exceptional
—q(™*D(\). The lowest-order term of ary™(\) is always  casesnm,<2M), nothing would be gained; in that case
1, the lowest-order term of amy™(\) is at least of power 1.  PCM(\)=KM)(x) andQ®M(\)=1. If, however, the con-
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tinued fraction is terminated at,,—=M putting ay,,(A\) small in successive orders, i.e.[[P™M(X)/QM(\)
=0, the rational functionR(\) satisfies the two desired —P™~Y(\)/QM~D(\)||,-1<e, € being our required ac-
properties, spelt out at the beginning of this subsection. Theuracy. Computer economy calls for as small a nunmers
construction of the rational functioR(\) in the second step reasonable. The numbbtf is found by starting the accuracy
appears awkward, since it is based on the continued fractiotheck already foM =1; the Neumann serig@\4c) is car-
of the first step. However, it is chosen, since it is numericallyried to a higher ordeM +1, requiring a repetition of the
stable, in contrast to other possible techniques. steps one to three only when that accuracy check fails. The
In the third step the convergence of the Pazlenmation  actual numbeM used depends on the scattering energy as
is checked. We are satisfied with the obtained approximatingvell as on the total three-body quantum numbers of
rational function R(\), if for a given orderM of the  ,(i'q'x(1']")ILIM ;TM4Go(E;+i0)U (E;+i0)Gy(E;
Neumann series the deviation of the complete vectors is-i0)|ioQixi(loji) IITM TM),.
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