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Two-nucleon system above pion threshold: Quark model study
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We present a study of theNN system above pion threshold fully based on a constituent quark model. The
calculation is performed in the framework of the coupled-channel method. ApND vertex has been derived
from the basicpqq vertex and it is probed in theP33 pN partial wave. Taking into account the fact that this
is a parameter-free calculation, the phase shifts and inelasticities are reasonably well reproduced.

DOI: 10.1103/PhysRevC.67.014001 PACS number~s!: 12.39.Jh, 13.75.Cs, 14.20.Gk, 24.85.1p
im

e-

o
ta

n
th
o
pe

t

et

a
ha
pi

on
rk
ov

e
e-
s
a
t

re
he
e
ng
d.
y

y

-
ra
ho

sh-
ing

eso-
are

s,
set
are

the
a

m-
cited
be a

that
00

sh-
es-
ri-
rgy

-
sid-
tion
a-
-
al

glet
nic

e-

r is
n-
uc-
-
od
di-
we

en
I. INTRODUCTION

Constituent quark models have been used for a long t
to investigate the nucleon-nucleon (NN) system. The first
reliable explanation of the short-range part of theNN inter-
action was provided by the Fermi-Breit form of the on
gluon exchange@1#. Later on, the quark-quark (qq) interac-
tion got supplemented by the exchange of Goldstone bos
when constituent quark masses were related to the spon
ous chiral symmetry breaking@2#. Within this approach, a
reasonable description of theNN phase shifts below the pio
threshold and the deuteron properties was obtained wi
minimal set of parameters@3#. At the same time, the door t
a coherent and simultaneous description of the baryon s
tra was opened@4#.

Above the pion threshold theD isobar is an importan
mode of nucleonic excitation. The interaction of theD isobar
with nucleons is experimentally unobservable and theor
cally unknown to a large extent. Thus theD isobar’s effects
on nuclear observables have to be studied theoretically
are model dependent. Quark-model-based interactions
been used to explore the two-nucleon system above the
threshold in their dependence on a chosen nucleon-D poten-
tial @5#. In this study the basic nucleon-nucleon interacti
was taken to be the Paris potential. However, a fully qua
model-based calculation of the two-nucleon system ab
the pion threshold has never been done.

Apart from the fundamental theoretical interest of d
scribing theNN interaction in terms of basic degrees of fre
dom, there are also several specific reasons to undertake
a project. First of all, quark antisymmetrization gives
mechanism to generate short-range repulsion even for
less experimentally known systems (ND, DD) in a com-
pletely parameter-free way. Second, quark degrees of f
dom provide a unified way of treating consistently t
nucleon and its resonances. These two aspects reduc
ambiguities with respect to the traditional meson-excha
approaches to study theNN system above the pion threshol

Theoretically, thepNN system is usually studied b
means of two different approaches@6#. The first one is the
coupledpNN-NN approach~PNNA!, where the necessar
ingredients to solve the equations are the off-shellt matrices
for the two-bodypN andNN scattering. For technical rea
sons these two-body inputs are assumed to take sepa
forms. The second one is the coupled-channel met
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~CCM!, which describes the physics above the pion thre
old by means of two-body coupled-channel equations link
the NN state toNB andBB8 channels, whereB(B8) repre-
sents nucleon resonances. Once the decay width of the r
nances is incorporated in the propagators, the equations
able to properly couple physical two (NN) and three (pNN)
particle states. Though originating from distinct motivation
the final equations look quite similar. With a comparable
of input and kinematical assumptions the two approaches
almost identical except that in most CCM approaches
intermediate state with an interacting nucleon pair and
spectator pion is not included.

From a quark-model point of view, the nucleon is a co
posite system and the resonances correspond to its ex
states. Therefore the coupled-channel method seems to
natural framework to study thepNN system using quark
degrees of freedom. Experimentally, it can be observed
the inelasticity in two-nucleon scattering up to at least 5
MeV in the c.m. system, i.e., far beyond the two-pion thre
old, is predominantly single-pion production and occurs
sentially in the isospin-triplet partial waves. These expe
mental facts suggest pion production in intermediate-ene
two-nucleon scattering to proceed through single-D excita-
tion. Processes like double-D excitation with subsequent pro
duction of two pions appear to be suppressed in the con
ered energy region. The experimentally suggested restric
to single-D excitation is an enormous technical simplific
tion @7#. Only the interaction in the isospin-triplet two
nucleon partial waves gets modified by the addition
D-isobar and pion degrees of freedom, the isospin-sin
partial waves are described usually by a purely nucleo
potential.

In this work we will make use of the quark model pr
sented in Ref.@3# to study theNN system above the pion
threshold using the coupled-channel method. The pape
organized as follows. In Sec. II we briefly review the co
stituent quark model. Section III is devoted to the constr
tion of thepND vertex that will be used in Sec. IV to cal
culate theP33 pN phase shift. The coupled-channel meth
at the quark level is developed in Sec. V. Section VI is de
cated to presenting and discussing the results. Finally,
summarize the most important conclusions in Sec. VII.

II. THE CONSTITUENT QUARK MODEL

The constituent quark model used in this work has be
extensively described elsewhere@2,3# and therefore we will
©2003 The American Physical Society01-1
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only summarize here its most relevant aspects. The ch
symmetry of the original QCD Lagrangian appears spon
neously broken in nature and as a consequence light qu
acquire a dynamical mass. The simplest Lagrangian invar
under chiral rotations must therefore contain chiral fiel
and can be expressed as

L5c̄@ i ]”2M ~q2!Ug5#c, ~1!

whereUg55ei (la / f p)fag5 is the Goldstone boson fields ma
trix and M (q2) the dynamical~constituent! mass. This La-
grangian has been derived in Ref.@8# as the low-energy limit
in the instanton liquid model. In this model the dynamic
mass vanishes at large momenta and it is frozen at low
menta, for a value around 300 MeV. Similar results have a
been obtained in lattice calculations@9#. To simulate this be-
havior we parametrize the dynamical mass asM (q2)
5mqF(q2), wheremq. 300 MeV, and

F~q2!5F Lx
2

Lx
21q2G 1/2

. ~2!

The cutoffLx fixes the chiral symmetry breaking scale. Fo
lowing Manohar and Georgi@10# and taking into accoun
that this scale is larger than the confinement scale, Q
reduces to an effective low-energy theory of confined c
stituent quarks interacting through elementary chiral field

If we restrict ourselves to SU~2!, Ug5 can be written as
Ug55eig5tW•fW / f p. We will assume that the Goldstone boson
the theory is the pion and therefore the expansion ofUg5

provides a quark-quark interaction through virtual pion e
changes. Defining the auxiliary fields

pW 5fW f psin~f/ f p!, ~3!

s5 f p@cos~f/ f p!21#. ~4!

one arrives at the interaction Hamiltonian

Hch5gchF~q2!c̄~s1 ig5pW •tW !c, ~5!

wheregch5mq / f p . From this Hamiltonian one can obtai
the quark-quark interaction potentials due to the exchang
a scalar and a pseudoscalar Goldstone boson. The scala
son exchange takes into account the most important pa
the two-pion exchange. The potentials are given in mom
tum space by

Vi j
PS~qW !52

1

~2p!3

gch
2

4mq
2

Lx
2

Lx
21q2

~sW i•qW !~sW j•qW !

mPS
2 1q2

~tW i•tW j !,

~6!

Vi j
S~qW !52

gch
2

~2p!3

Lx
2

Lx
21q2

1

mS
21q2

, ~7!
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whereqW is the momentum transfer,sW i (tW i) are the spin~iso-
spin! Pauli matrices of quarki , mq is the constituent quark
mass, andmPS (mS) is the mass, of the pseudoscalar~scalar!
boson.

Below the chiral symmetry breaking scale quarks still
teract through gluon exchanges. How to match this inter
tion with the constituent quark picture is still not clarifie
We shall assume that the gluon coupling freezes at so
small value below the chiral symmetry breaking scale res
ing in an effective interaction between constituent qua
described by the Lagrangian

Lgqq5 iA4pasc̄gmGc
mlcc, ~8!

wherelc are the SU~3! color generators andGc
m the gluon

field. From this Lagrangian, de Ru´jula, Georgi, and Glashow
@11# derived the one-gluon exchange in the nonrelativis
limit. It reads in momentum space as

Vi j
OGE~qW !5

1

~2p!3

1

4
~lW i•lW j ! 4pas

3H 1

q2
2

1

4mq
2 F11

2

3
~sW i•sW j !G

1
1

4mq
2

1

q2
@qW ^ qW # (2)

•@sW i ^ sW j #
(2)J , ~9!

wherelW i are the color Gell-Mann matrices of quarki andas
is the strong coupling constant.

The other QCD nonperturbative effect corresponds
confinement, which prevents having colored hadrons. I
usually simulated by means of a phenomenological lin
potential of the formVi j

CON5a(lW i•lW j )r . Confinement influ-

ences the spectrum, but itslW i•lW j structure avoids contribu
tions to the baryon-baryon interaction.

Finally, we need an ansatz for the radial wave function
the quarks. It will be taken, as usual, as a ground-state
monic oscillator wave function

c~rW i !5)
i 51

3 F 1

pb2G 3/4

e2r i
2/2b2

. ~10!

III. FROM THE pqq TO pBB8 VERTEX

Within the constituent quark model, the decay of a bary
(B) into a meson-baryon state (M 8,B8) is determined by the
matrix element

GB8M8,B~kW !5^cB8,cM8uHM~kW !ucB&, ~11!

wherecB8(B) is the baryon wave function andHM(kW ) is an
appropriate operator describing how a mesonM with mo-
mentumkW is emitted by constituent quarks. A phenomen
logical model forHM(kW ) was developed in the 1970s by L
Yaouancet al. @12# assuming that strong decays proceed
simple emission of a meson through one of the quarks of
1-2



s
is

d
lic
fo
lly
e

id
ed

f

e
th
t

n,

ra
th

in

ffi

-

tic

for
an
sec-

-

.

t to
is

he

f

TWO-NUCLEON SYSTEM ABOVE PION THRESHOLD: . . . PHYSICAL REVIEW C 67, 014001 ~2003!
hadron, the so-called elementary emission model. The me
is not resolved into quarks and the pair creation that
strictly speaking, necessary, for such a decay is conceale
the formalism. The main advantage of this model is simp
ity. Moreover, relativistic kinematics can be maintained
the meson, while its resolution into quarks would natura
restrict us to the nonrelativistic approximation. This mod
has been widely applied to strong baryon decays.

As we have seen, our model includes apqq vertex which
arises as a QCD nonperturbative effect. Then we cons
that HM(kW ) is a one-body operator which can be deriv
directly from the effective Lagrangian of Eq.~1!. Following
Le Yaouancet al., we perform a nonrelativistic reduction o
the Feynmann amplitude for theq→M 8q8 transition up to
order (v/c)2, obtaining

H52
i

~2p!3/2

1

A2vp

f pqq

mp
F~k!

3FsW •kW2
vp

2mq
sW •~pW 1pW 8!Gta

1 d (3)~pW 81kW2pW !,

~12!

where f pqq5gch(mp/2mq), pW (pW 8) is the initial ~final!
quark momentum,kW the pion momentum,vp5Ak21mp

2 the
pion energy, andF(k) the pqq vertex form factor that fixes
the chiral symmetry breaking scale.

To obtain theB→M 8B8 vertex function, one needs th
baryon and meson wave functions. To be consistent with
resonating group method calculations, we assume that
spatial baryon wave function is given by Eq.~10! which, in
momentum space and removing the center of mass motio
expressed as

fB~pW j1
,pW j2

!5F2b2

p G3/4

e2b2pj1

2 F3b2

2p G3/4

e2(3b2/4)pj2

2
.

~13!

The pion is considered as an elementary field. After integ
ing the spatial coordinates, one obtains an operator in
quark spin-isospin space which should be transformed
operators at the baryonic level to obtain thepBB8 vertex.
Using the Appendix and summing in the recoupling coe
cients, one arrives at the following expression for thepNN
and thepND vertex in the center of mass system:

GpNN52
i

~2p!3/2

1

A2vp

f pNN~k!

mp

3~tN!a
1 sW N•kW d (3)~PW 81kW !, ~14!

wherePW 8 is the momentum of the final nucleon,sN (tN) are
the nucleon spin~isospin! operators, and the effective cou
pling constant is given by

f pNN~k!5
5

3
f pqqF~k!e2b2k2/6S 11

vp

6mq
D ~15!
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GpND52
i

~2p!3/2

1

A2vp

f pND~k!

mp

3~tND!a
1sW ND•kW d (3)~P81k!, ~16!

wheresND(tND) are theN2D spin ~isospin! transition op-
erators defined in the Appendix and

f pND~k!52A2 f pqqF~k!e2b2k2/6S 11
vp

6mq
D . ~17!

For zero momentum transfer and neglecting relativis
corrections we recover the usual relation

f pND
2 5

72

25
f pNN

2 . ~18!

IV. THE P33 pN PHASE SHIFT

The P33 pN partial wave is dominated by theD reso-
nance and, although it is not a very good test ground
pion-baryon interaction models, its calculation provides
excellent test of the expressions deduced in the previous
tion.

At tree level thepN potential should include all the dia
grams containing one intermediateN or D ~Fig. 1!. However
Fig. 1~a! only contributes to theP11 partial wave, whereas
the crossedD, Fig. 1~d!, has a negligible contribution
Therefore we will only include in our calculation Figs. 1~b!
and 1~c!.

Unitarity requires the scattering amplitudef a to be a com-
plex quantity. However, the scattering amplitude turns ou
be real in a tree level approximation. Since we work in th
approximation, we identify the scattering amplitude with t
real K matrix, Ka , from which anf a that recovers unitarity
is obtained by

f a5
Ka

12 i uk0uKa
, ~19!

wherek0 denotes thepN relative momentum in its center o
mass frame. At resonance theKa matrix has a pole on the
real axis at theD bare mass.

FIG. 1. Contributions topN scattering.~a! and ~b! correspond
to processes with oneN intermediate state whereas~c! and~d! have
a D intermediate state.
1-3
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In theSmatrix, this pole is shifted into the complex plan
in such a way that the corresponding resonance width i
accordance with the unitarity condition. Then, this appro
mation is consistent with our assumption that theD mass is
the bare mass. In case we have fully solved the scatte
problem, the mass would change due to the renormaliza
process. Under these assumptions theK matrix can be writ-
ten in a Born approximation as

KpN
P33~k,k8!5

1

~2p!3

1

2Avp~k!vp~k8!

f pND~k! f pND~k8!

mp
2

3
4p

3

k8k

EpN2mD

2
1

~2p!3

1

2Avp~k!vp~k8!

f pNN~k! f pNN~k8!

mp
2

34pmN(
l

AlQl~z! ~20!

with

Al5~21! l36~2l 11!S 1 l 1

0 0 0D
25

1
1

2

3

2

l 1 1

1
1

2

1

2
6 , ~21!

z5mN

mN1
k21k82

2mN
1vp~k!1vp~k8!2EpN

kk8
, ~22!

and Ql are the Legendre functions of the second kind. T
first term on the right-hand side of Eq.~20! corresponds to
Fig. 1~c! whereas the second one corresponds to Fig. 1~b!.
The phase shift is calculated in terms of theK matrix for an
initial and final on-shell momentum given by

k0
252mNEpN22mNA2mNEpN2mN

2 1mp
2 , ~23!

whereEpN is the totalpN center of mass energy.
The calculatedP33 pN phase shift is compared to th

experimental data in Fig. 2. The parameters used are ta
from Ref.@3# and they are shown in Table I. They were fixe
on the study of theNN system below pion threshold. Th
baryon spectrum has also been studied with these param
by means of a Faddeev calculation@13,14#. The results,
which are shown in Fig. 1 of Ref.@14#, give a reasonable
description of the experimental data. It is worthwhile to no
that although no parameter is fitted to thepN data, the agree
ment with experiment is excellent. This gives us confiden
to use the expression deduced for thepND vertex to calcu-
late theNN phase shifts above the pion threshold.
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V. NN PHASE SHIFTS AND INELASTICITIES
IN THE CCM

As explained in the Introduction we will solve theNN
problem above pion threshold by means of the coupl
channel method. The starting point of the method is clos
related to quark-model ideas, although it was developed
the baryon level. It makes the assumption that the nucleo
the ground state of a composite particle with excited sta
clearly identifiable. When two nucleons interact, one of th
can be excited and decay into apN state. The three-body
problem is reduced to a two-body problem assuming that
NN→pNN transition only takes place through resonanc
The effect of the coupling to resonances mainly depends
the strength and range of the transition potential. Therefo
is important to use a consistent interaction for theNN and
ND channels, as is the case for the quark model used.

Other approaches appear in the literature and we
mention some of them for later comparison. Earlier wor
~Kloet and Tjon @15#, VerWest @16#! performed coupled-
channel calculations usingNN andND separable potentials
In this way they were able to solve analytically th
Lippmann-Schwinger equation. The first calculation with r
alistic potentials was carried out by Lee@17#, using the Paris
potential with theND box diagrams subtracted for theNN
interaction, whereas theNN→ND transition was represente
by phenomenologicalp and r meson-exchange potential
The model was later improved by including aND retarded
interaction. A similar model was developed by the Hanno

FIG. 2. TheP33 pN phase shift. Experimental data are tak
from the energy-independent~dots! and energy-dependent~dashed
line! analysis of Arndtet al. ~Ref. @20#!. The dash-dotted line show
the result including only Fig. 1~c!. The solid line corresponds to th
result, also considering Fig. 1~b!.

TABLE I. Quark-model parameters.

b ~fm! 0.518
mq ~MeV! 313

Lx (fm-1) 4.2997
mPS (fm-1) 0.7
mS (fm-1) 3.513

gch
2 6.6608

as 0.4977
1-4
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group also using the Paris potential for theNN interaction
and an instantaneous potential which includess, p, r andv
mesons for theND interaction@5,7,18#. Slightly different is
the approach of Elsteret al. in the framework of the Bonn
potential model@19,20#. They used relativistic transition po
tentials evaluating the box diagramsND and DD with
rp, pp, andrr exchanges using time ordered perturbat
theory. The self-energy diagrams of the nucleon and d

FIG. 3. ~a! pND vertex. ~b! Retarded one-pion exchange di
gram.~c! D self-energy diagram.

FIG. 4. ~a! NN phase shift and~b! inelasticity for the1S0 partial
wave. The experimental data correspond to the phase shift ana
of Arndt et al. ~Ref. @20#!. In ~a!, the dashed line shows the pha
shift including only theNN channel. Solid and dash-dotted line
show the results includingND andDD states for calculations 1 an
2, respectively. In~b!, the dash-dotted line shows the inelastic
including the energy as well as the momentum dependence on tD
width, whereas the solid line shows the result considering only
energy dependence.
01400
ta

were the sources of inelasticity.
As has been previously discussed, the inelasticity is p

dominantly single-pion production and occurs essentially
the isospin-triplet partial waves, therefore we will perform
NN-ND coupled-channel calculation. We start from th
coupled set of Lippmann-Schwinger equations for t
NN-ND system,

TNN5VNN1VNNGNTNN1VNDGDTDN , ~24!

TDN5VDN1VDNGNTNN1VDDGDTDN ,
~25!

whereVNN represents theNN→NN potential,VND the NN
→ND transition, andVDD the ND→ND interaction. The
main process for pion production is given by thepND ver-
tex depicted in Fig. 3~a!, in which theD couples to apN
state. The introduction of this diagram has two con
quences. The first one is that theND→ND one-pion ex-
change potential has now a retarded interaction, shown
Fig. 3~b!. As a consequence theVDD interaction would get
modified. However, the diagonalVDD potential has a minor
influence on theNN channels and we will not take this mod
fication into account. The second one is the appearanc
the delta self-energy diagram in the presence of a spec
nucleon shown in Fig. 3~c!, which has a contribution to theD
width and has to be added to the interaction. We denote
vD

se(q) the D self-energy interaction,

vD
se~q!5 K gDU 1

ED~q!2vp2vN1 i« UgDL , ~26!

sis

e

FIG. 5. Same as Fig. 4 for the1D2 NN partial wave.
1-5
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wheregD is the structure function of thepND vertex. Thus,
the coupled-channel problem now becomes

T̃5Ṽ1Ṽse1~Ṽ1Ṽse!G̃T̃, ~27!

where T̃, Ṽ, Ṽse, and G̃ are two by two matrices corre
sponding to

T̃5S TNN TND

TDN TDD
D , Ṽ5S VNN VND

VDN VDD
D , ~28!

Ṽse5S 0 0

0 vD
seD , G̃5S GN 0

0 GD
D . ~29!

Equation~27! can now be written as

T̃D5Ṽ1ṼG̃DT̃D, ~30!

where

T̃5G̃21@G̃D1G̃DT̃DG̃D#G̃212G̃21 ~31!

with

G̃D5S GN 0

0 GD
D ,D ~32!

andGD
D(E) is the dressedD propagator,

GD
D~E!5

1

E2~mD2mN!2
q2

2mD
2vD

se~q!1 i«

. ~33!

FIG. 6. Same as Fig. 4 for the1G4 NN partial wave.
01400
The NN phase shifts and inelasticities are obtained
solving the Lippmann-Schwinger equation with the ren
malizedD propagator. Since the vertex used in theD self-
energy diagram is the one used inpN scattering, the value o
the D width comes out consistent with experiment becau
we describe properly theP33 pN partial wave.

In Eq. ~33! we use only the imaginary part of theD self-
energy diagram which gives theD width. This is the reason
as in the case of thepN scattering, to use formD the physi-
cal mass. TheD width is given by

GD5
2

3

f pND
2 ~k0!

4p mp
2

mN

vp~k0!1mN
k0

3 ~34!

with vp5Amp
2 1k0

2 the pion energy in thepN center of
mass system andk0 the relative momentum of thepN sys-
tem given in terms of the center of mass energyEpN by Eq.
~23!. This is related with theNN center of mass energy by

SpN5~AS2AmN
2 1p2!22p2, ~35!

whereSpN5EpN
2 is the invariant mass of thepN system,pW

is the relative momentum of theND @N(pN)# system, andS
the invariant mass,

S5~2mN1Ec.m.!
2, ~36!

with Ec.m. the kinetic center of mass energy of theNN sys-
tem.

VI. RESULTS AND DISCUSSION

In this section we present the results obtained for theNN
phase shifts and inelasticities with the model describ
above. The partial wave scattering amplitudes are relate
the partial waveSa matrix elements by

Sa~E!5112iTa~E!. ~37!

We will use for Sa the parametrization of Arndt and Rope
@21#,

Sa5cos2rae2ida, ~38!

and, therefore,

Ka5tanda1 i tan2ra ~39!

with da and ra the phase shift and the inelasticity, respe
tively, in theNN partial wavea.

The starting point of our calculation is theqq potential
used previously to describe theNN phenomenology below
the pion threshold. As already mentioned, we do not fit a
parameter to data above the pion threshold. Since we o
include the inelasticity due to theD self-energy only isospin-
triplet partial waves are presented.

The results for theNN phase shifts and inelasticities a
shown in Figs. 4–11 and compared to results from
energy-dependent and energy-independent partial w
analysis of Arndtet al. @22#. The experimental data, show
1-6
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by points, have been obtained from the interactive progr
SAID @23#. For the phase shifts, the solid line shows resu
for the coupled-channel calculation includingND and DD
intermediate states~although, as has been previously e
plained, the inelasticity is only included through theND
channel!. Dashed lines refer to results including only theNN
channel. For the inelasticities, the solid line shows the re

FIG. 7. Same as Fig. 4 for the1I 6 NN partial wave.

FIG. 8. Same as Fig. 4 for the3P0 NN partial wave.
01400
m
s

lt

including the energy dependentD width whereas dash-dotte
lines include the energy and momentum dependence.
difference between these two approximations will be d
cussed later.

As a general trend the experimental phase shifts are
sonably well reproduced by our calculation except for theP

FIG. 9. Same as Fig. 4 for the3P1 NN partial wave.

FIG. 10. Same as Fig. 4 for the3F3 NN partial wave.
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waves, which due to the lack of spin-orbit interaction a
overestimated, as is the case below the pion threshold.
influence of theND channel is more important for the low
angular momentum partial waves.

The most interesting isospin-triplet partial waves are
1D2 and 3F3, because theNN2ND coupling is very impor-
tant. The Argand plot for both cases, Fig. 12, present
counterclockwise behavior with increasing energy, which
considered to be a signal of a possible resonance. As se
Figs. 5 and 10, the resonant behavior observed in the ex
mental data only appears when the coupling to theND chan-
nel is considered. In both cases our calculation overestim
the phase shifts which is already known for models includ
only ND channels.

The resonant behavior of these two partial waves has b
extensively discussed in the literature. The first interpreta
in terms of dibaryon resonances was given by Hoshizaki@24#
who parametrized theS matrix including a Breit-Wigner
resonance part. He obtained 2.17 GeV and 2.22 GeV for
masses of the1D2 and 3F3 dibaryons, respectively. Later o
it was shown that the resonant behavior could also be
plained as an effect of the opening of theND threshold. In
our case the1D2 NN partial wave is coupled to the5S2 ND
partial wave, which in our model has a very weak bou
state@25#. The energy of the bound state is 0.141 MeV bel
the ND threshold which gives a mass of 2.17 GeV for th
state, in agreement with the value obtained by Hoshiz
Since the effect of the threshold is always present,
should conclude that in our model the resonant behavio
the 1D2 partial wave is a combined effect.

As mentioned before, we performed two different calc
lations. In the first one, we only introduced the energy
pendence when we calculated theD width, which we will
call calculation 1, whereas in the other we considered

FIG. 11. Same as Fig. 4 for the3H5 NN partial wave.
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e

energy and momentum dependence, being referred to as
culation 2. This different treatment of theD width has a very
small effect on the phase shifts but it is very important
the inelasticities as seen in the figures. This can be un
stood in the following way. When the momentum depe
dence is not included the value of theD width for zero rela-
tive momentum is taken for all relative momenta. This is
maximum value, as shown in Fig. 13, whereGD is plotted as
a function of the energy of theNN system and the momen

FIG. 12. Argand diagram of theT-matrix amplitudes for the~a!
1D2 and ~b! 3F3 NN partial waves. We show by squares the e
perimental data of Arndtet al. ~Ref. @20#!. The solid line shows the
result for calculation 1 and the dash-dotted line for calculation
The dashed line represents the unit circle.

FIG. 13. D width as a function of theNN energy in the labora-
tory system and the momentum of theD.
1-8
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tum of the D. Therefore, for a fixedNN energy if we in-
crease the momentum, the energy available for the de
~energy in thepN center of mass system! decreases and
consequently so does theD width. This is why the inelastic-
ity is always smaller for calculation 2. Similar results we
already obtained by Kloet and Tjon@15# and Elsteret al.
@20#. The inelasticity in the1S0 channel decreases too muc
when the momentum dependence on theD width is included
whereas for the other partial waves the experimental data
between the two calculations.

VII. SUMMARY

We have performed a calculation of theNN phase shifts
and inelasticities above the pion threshold within a ch
quark model in the framework of the CCM. The only sour
of inelasticity considered has been theD self-energy diagram
that provides theD width. This is the main inelastic contri
bution found in other models at baryon level and no imp
tant differences should be expected if other contributions
included.

The phase shifts are reasonably well reproduced, altho
the coupling toND andDD states gives in general too muc
attraction. The effect of theND channel is more importan
than the one from theDD channel. This was already ob
served in our calculation below the pion threshold. The
elasticities obtained are small when the momentum dep
dence of theD width is included.

Although the quantitative description of the phase shifts
not as good as in other models at baryon level, we wan
emphasize that our calculation above pion threshold
parameter-free in the sense that all the parameters of
model are fixed from the study of data below pion thresho
The pND vertex as well as the potentials including res
nances are calculated from the same model as theNN poten-
tial. To our knowledge this is the first calculation of theNN
system above the pion threshold making use only of inte
tions derived from a quark model.

We have studied the isospin-triplet partial waves. F
isospin-singlet partial waves,DD states would be a source o
inelasticity, however, for these channels the coupling to
Roper resonance is more important because its pion pro
tion threshold is at lower energy. Work with the inclusion
NN* (1440) intermediate states is now in progress.
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APPENDIX: EFFECTIVE COUPLING CONSTANTS

In this appendix we deduce the effectivepNN andpND
coupling constants from thepqq vertex. We start from the
Hamiltonian of Eq.~12! and we take the expectation valu
between baryon wave functions. Since the contributions
the three quarks are equal, we calculate for quark three
01400
ay

lie

l

-
re

gh

-
n-

s
to
is
he
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nd

multiply by 3. For the spatial part we use the wave functi
given in Eq.~13!. In this way we get the following operato
in the spin-isospin-color space of quark three:

H̃52
3i

~2p!3/2

1

A2vp

f pqq

mp
sW 3•FkW S 11

vp

6mq
D2

vp

3mq
PW G

3~ta3
!1e2b2k2/6 d (3)~PW 82PW 1kW !. ~A1!

The vertices at baryon level are obtained relating the exp
tation value of the quark operators with those at baryon le
We finally get for thepNN vertex

GpNN52
3i

~2p!3/2

1

A2vp

f pqq

mp

3e2b2k2/6~taN
!1sW N•FkW S 11

vp

6mq
D2

vp

3mq
PW G

3d (3)~PW 82PW 1kW ! 2 (
l 50,1 H 1

1

2

1

2

l
1

2

1

2

J 2

~A2!

and for thepND one,

GpND52
3i

~2p!3/2

1

A2vp

f pqq

mp

3e2b2k2/6~tND!a
1sW ND•FkW S 11

vp

6mq
D

2
vp

3mq
PW G d (3)~PW 82PW 1kW !

32K 1

2
UUs3UU 1

2L K 1

2
UUt3UU 1

2L H 1
1

2

3

2

l
1

2

1

2

J 2

,

~A3!

where we use theNN to ND spin transition operator define
by

^msD
usND

m umsN
&5A2sD11

3~21!12sN2msDS sN 1 sD

msN
m 2msD

D
~A4!
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and analogously for the isospin operator. Therefore the ef
tive coupling constants are given by

f pNN~k!56 f pqqe
2b2k2/6S 11

vp

6mq
D (

l 50,1 H 1
1

2

1

2

l
1

2

1

2

J 2

,

.

y

01400
c-
f pND~k!53A2 f pqqe

2b2k2/6S 11
vp

6mq
D K 1

2
UUs3UU 1

2L

3K 1

2
UUt3UU 1

2L H 1
1

2

3

2
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2

J 2

. ~A5!
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