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Two-nucleon system above pion threshold: Quark model study
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We present a study of tHeN system above pion threshold fully based on a constituent quark model. The
calculation is performed in the framework of the coupled-channel methadNA vertex has been derived
from the basicrqq vertex and it is probed in thBs3 7N partial wave. Taking into account the fact that this
is a parameter-free calculation, the phase shifts and inelasticities are reasonably well reproduced.
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I. INTRODUCTION (CCM), which describes the physics above the pion thresh-
old by means of two-body coupled-channel equations linking
Constituent quark models have been used for a long timghe NN state toNB andBB’ channels, wher&(B’) repre-
to investigate the nucleon-nucleol ) system. The first ~sents nucleon resonances. Once the decay width of the reso-
reliable explanation of the short-range part of M inter- ~ hances is incorporated in the propagators, the equations are
action was provided by the Fermi-Breit form of the one-2able to properly couple physical twé(N) and three N N)
gluon exchang§l]. Later on, the quark-quarkgg) interac- particle states. Though originating from distinct motivations,
tion got supplemented by the exchange of Goldstone bosorjfEfe final equations look quite similar. With a comparable set

when constituent quark masses were related to the spontan%-r:]nplit ign(r:i]tlrlntlemgtlcatl ?ﬁsgﬁpﬂrg’nsttg%mvo aprr)roa(r:]hestﬁre
ous chiral symmetry breakinf2]. Within this approach, a aimost identical except tha 0S approaches the

o . . intermediate state with an interacting nucleon pair and a
reasonable description of tiN phase shifts below the pion spectator pion is not included.

th_re_shold and the deuteron properties was obtained with & . J " quark-model point of view, the nucleon is a com-
minimal set of parametef8]. At the same time, the door to qite system and the resonances correspond to its excited
a coherent and simultaneous description of the baryon spegiates. Therefore the coupled-channel method seems to be a
tra was openef]. _ _ _ natural framework to study therNN system using quark
Above the pion threshold tha isobar is an important  degrees of freedom. Experimentally, it can be observed that
mode of nucleonic excitation. The interaction of thesobar  the inelasticity in two-nucleon scattering up to at least 500
with nucleons is experimentally unobservable and theoretiMeV in the c.m. system, i.e., far beyond the two-pion thresh-
cally unknown to a large extent. Thus theisobar’s effects old, is predominantly single-pion production and occurs es-
on nuclear observables have to be studied theoretically anskntially in the isospin-triplet partial waves. These experi-
are model dependent. Quark-model-based interactions haweental facts suggest pion production in intermediate-energy
been used to explore the two-nucleon system above the pidwo-nucleon scattering to proceed through singjlexcita-
threshold in their dependence on a chosen nucleq@oten-  tion. Processes like double-excitation with subsequent pro-
tial [5]. In this study the basic nucleon-nucleon interactionduction of two pions appear to be suppressed in the consid-
was taken to be the Paris potential. However, a fully quarkered energy region. The experimentally suggested restriction
model-based calculation of the two-nucleon system abové0 singleA excitation is an enormous technical simplifica-
the pion threshold has never been done. tion [7]. Only the interaction in the isospin-triplet two-
Apart from the fundamental theoretical interest of de-nucleon partial waves gets modified by the additional
scribing theN N interaction in terms of basic degrees of free- 2-iSobar and pion degrees of freedom, the isospin-singlet
dom, there are also several specific reasons to undertake suRfftial waves are described usually by a purely nucleonic
a project. First of all, quark antisymmetrization gives apotenna}l. .
mechanism to generate short-range repulsion even for the In th|§ work we will make use of the quark model pre-
less experimentally known systemdl&, AA) in a com- sented in Ref[3] to study theNN system above the pion

pletely parameter-free way. Second, quark degrees of freébresh_old using the coupled-channel _method._ The paper is
dom provide a unified way of treating consistently theor.gamzed as follows. In S_ec. I we briefly review the con-
nucleon and its resonances. These two aspects reduce {guent quark model. Sectlon_lll IS devotgd to the construc-
ambiguities with respect to the traditional meson—exchang«gOn of the 7NA vertex that. will be used in Sec. IV to cal-
approaches to study tieN system above the pion threshold. culate theP; 7N phase shift T_he coupled-ch:_:mnel r_nethoq
Theoretically, the NN system is usually studied by at the quark level is developed in Sec. V. Section VI is dedi-
means of two diﬁerent approachgB). The first one is the cated to presenting and discussing the results. Finally, we
coupled NN-NN approach(PNNA, where the necessary summarize the most important conclusions in Sec. VII.
ingredients to solve the equations are the off-shailatrices Il. THE CONSTITUENT QUARK MODEL
for the two-bodysN and NN scattering. For technical rea- '
sons these two-body inputs are assumed to take separable The constituent quark model used in this work has been
forms. The second one is the coupled-channel methodxtensively described elsewhdiz3] and therefore we will
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only summarize he.re_ its most relevant. aspects. The Chifa/{/hereﬁ is the momentum transfe&i (;i) are the spir(iso-
symmetry of the original QCD Lagrangian appears spontaspir) pauli matrices of quark, m, is the constituent quark
neously broken in nature and as a consequence light quarkgass, ananes (mg) is the mass, of the pseudoscalscalay
acquire a dynamical mass. The simplest Lagrangian invariarfgson.

under chiral rotations must therefore contain chiral fields, Bejow the chiral symmetry breaking scale quarks still in-

and can be expressed as teract through gluon exchanges. How to match this interac-
o tion with the constituent quark picture is still not clarified.
L=y[ib—M(g*)Us]4y, (1)  We shall assume that the gluon coupling freezes at some

small value below the chiral symmetry breaking scale result-
ing in an effective interaction between constituent quarks

v5— @l (\a/fr)d%ys i -
whereU e'lha is the Goldstone boson fields ma described by the Lagrangian

trix and M(g?) the dynamical(constituent mass. This La-
grangian has been derived in RE§] as the low-energy limit Ao T AR

in the instanton liquid model. In this model the dynamical Loaq=iN4mashy,Gekey, ®
mass vanishes at large momenta and it is frozen at low mQypere) . are the S\(B) color generators anG* the gluon
menta, for a value around 300 MeV. Similar results have alsgg4. Fr(C)m this Lagrangian, de Rua, Georgi ::md Glashow
been obtained in lattice calculatiof&. To simulate this ?e' [11] derived the one-gluon exchange in the nonrelativistic
havior we parametrize the dynamical mass <q°) limit. It reads in momentum space as

=myF(g?), wherem,= 300 MeV, and

- 1
1/2 Vi(J?GE(q): Z

2
@ (2m)?* 4

X

2, 2
AX+q

():I):j) 47Ta/5

F(g%)=

2 . .

: . . N SZ 3 1+§(Ui'01)
The cutoffA , fixes the chiral symmetry breaking scale. Fol- q°  4myg
lowing Manohar and Geordil0] and taking into account
that this scale is larger than the confinement scale, QCD s ) 2 2 2) 9
reduces to an effective low-energy theory of confined con- + am2 E[q®q] Loi@a ', (9

. . . . . q

stituent quarks interacting through elementary chiral fields.

If we restrict ourselves to SW), U”s can be written as \yherex. are the color Gell-Mann matrices of quaranda,
U7s=e'7s™ #/f=_ We will assume that the Goldstone boson of s the strong coupling constant.

the theory is the pion and therefore the expansior&f The other QCD nonperturbative effect corresponds to
provides a quark-quark interaction through virtual pion ex-confinement, which prevents having colored hadrons. It is
changes. Defining the auxiliary fields usually simulated by means of a phenomenological linear
o potential of the formv°N=a(X;-X;)r. Confinement influ-
7= ¢fsin(¢/f,), (3 ences the spectrum, but iks- X; structure avoids contribu-
tions to the baryon-baryon interaction.
o="f_[coqo/f)—1]. (4) Finally, we need an ansatz for the radial wave function of
the quarks. It will be taken, as usual, as a ground-state har-
one arrives at the interaction Hamiltonian monic oscillator wave function
_ L. . 3 1 o 2,02
Hen=9enF (9%) (o +iysm- 1) ¢, 5 w(ri)=i]_[l {W e /", (10

wheregc,=mg/f .. From this Hamiltonian one can obtain
the quark-quark interaction potentials due to the exchange of IIl. FROM THE @qq TO #BB’ VERTEX
a scalar and a pseudoscalar Goldstone boson. The scalar bo-
son exchange takes into account the most important part (sz
the two-pion exchange. The potentials are given in momen

tum space by

Within the constituent quark model, the decay of a baryon
) into a meson-baryon statd/(',B") is determined by the
matrix element

2 a2 e e - Lo s(K)= (¢ oM [Hu(K)[4®), (12)
1 Jecn Ay (oi-d)(0j-0Q)
(2m)® 4mi A2+q?  migto?

PS = — _)_ . _)_ ’ "
Vi) = (7 7). where /& (® is the baryon wave function artdy (k) is an
(6) appropriate operator describing how a medérwith mo-

mentumk is emitted by constituent quarks. A phenomeno-

) @2 A2 1 logical model forH, (k) was developed in the 1970s by Le
vﬁ(q)z - =¢ e X 5 55 (7) Yaouancet al. [12] assuming that strong decays proceed by
(2m)° Ay +q° mg+q simple emission of a meson through one of the quarks of the
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hadron, the so-called elementary emission model. The meson *-._

is not resolved into quarks and the pair creation that is, >s .t L2 Il,
strictly speaking, necessary, for such a decay is concealed by

the formalism. The main advantage of this model is simplic-
ity. Moreover, relativistic kinematics can be maintained for

the meson, while its resolution into quarks would naturally — ~._ et el e
restrict us to the nonrelativistic approximation. This model el g :‘::-:::'
has been widely applied to strong baryon decays.

As we have seen, our model includesraq vertex which © d

arises as a QCD nonperturbative effect. Then we consider FIG. 1. Contributions torN scattering.(a) and (b) correspond

that Hy(k) is a one-body operator which can be derivediy processes with orié intermediate state where&s and(d) have
directly from the effective Lagrangian of E€l). Following 3 A intermediate state.

Le Yaouancet al, we perform a nonrelativistic reduction of
the Feynmann amplitude for thg—~M’q’ transition up to  gnd
order @/c)?, obtaining

r [ 1 waA(k)
H=— 9 (k (2m)¥ 2w, Mx
(2m)3 2w, Mx "0 o
X (Tna)aona-K 6F(P'+Kk), (16)
S o W, 5 5 s N N
X e ™ = + ’ + 3) " Kk—
AL qug (p+p )70 8P "+k=p), where oy (7na) are theN—A spin (isospin transition op-
(12) erators defined in the Appendix and

where f ,qq=gen(m,/2my), p (p’) is the initial (final) Fona(K)=242F gF (K)o e 1+€%). (17)
quark momentumk the pion momentumy = k*+ mzw the q

pion energy, andrF (k) the 7qq vertex form factor that fixes
the chiral symmetry breaking scale.

To obtain theB—M'B’ vertex function, one needs the
baryon and meson wave functions. To be consistent with the 72
resonating group method calculations, we assume that the ffTNA=2—5
spatial baryon wave function is given by E4.0) which, in
momentum space and removing the center of mass motion, is

For zero momentum transfer and neglecting relativistic
corrections we recover the usual relation

2N (18

expressed as IV. THE P33 #N PHASE SHIFT
o 2134 [3p2]34 s The P33 N partial wave is dominated by th& reso-
qﬁB(pgl,pgz):{— e b pgl[— e~ (3074p;, nance and, although it is not a very good test ground for
. (13) pion-baryon interaction models, its calculation provides an

excellent test of the expressions deduced in the previous sec-

The pion is considered as an elementary field. After integrattio"- _ _ _
ing the spatial coordinates, one obtains an operator in the At trée level themN potential should include all the dia-
quark spin-isospin space which should be transformed intg"@ms containing one intermedidteor A (Fig. 1). However
operators at the baryonic level to obtain th®B' vertex. Fig- 1@ only contributes to theé,, partial wave, whereas
Using the Appendix and summing in the recoupling coeffi-the crossedA, Fig. 1(d), has a negligible contribution.
cients, one arrives at the following expression for téN Therefore we will only include in our calculation Figs(bl

and thewNA vertex in the center of mass system: and Xc). _ _ _
Unitarity requires the scattering amplitufigto be a com-
i 1 fnk) plex quantity. However, the scattering amplitude turns out to
ZNN=— 7 NN be real in a tree level approximation. Since we work in this
(2m)* 2w, Mz approximation, we identify the scattering amplitude with the
o BNB Ll real K matrix, K, , from which anf, that recovers unitarity
X(1n) o on-k (P +kK), (14 is obtained by
whereP’ is the momentum of the final nucleomy (7) are K,
the nucleon spirisospin operators, and the effective cou- f“:—l—ilk K, (19
pling constant is given by 0l
5 wherek, denotes therN relative momentum in its center of
fan(k) = _quqF(k)e—bsz/G 1+ &) (15 ~ mass frame. At resonance the, matrix has a pole on the
3 6m real axis at thed bare mass.
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In the Smatrix, this pole is shifted into the complex plane
in such a way that the corresponding resonance width is i
accordance with the unitarity condition. Then, this approxi-
mation is consistent with our assumption that thenass is

the bare mass. In case we have fully solved the scattering
problem, the mass would change due to the renormalization

process. Under these assumptions Khmatrix can be writ-
ten in a Born approximation as

KP33(k k,): 1 1 fﬂrrNA(k)fﬂ'NA(k’)
N 2m)2 2Vw (K)o (k') m2
4 k'k
X?EWN_mA
1 1 f (k) foun(k’)
(2m)° 2V (K (k) m’,
><4me2 AQ(2) (20)
with
1 3
133
| 1 1 1\2 D11
A=(—-1)'36(21+1) 0 0 0 , (21
1 1
1 = =
2 2
2+ '2
mN+ z—rnN‘Fwﬂ.(k)‘l‘wﬂ.(k )_Eﬂ'N (22)
Z=—m s
N KK’
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FIG. 2. TheP33; 7N phase shift. Experimental data are taken
from the energy-independefdoty and energy-dependefdashed
line) analysis of Arndet al. (Ref.[20]). The dash-dotted line shows
the result including only Fig. (). The solid line corresponds to the
result, also considering Fig(H).

V. NN PHASE SHIFTS AND INELASTICITIES
IN THE CCM

As explained in the Introduction we will solve thé¢N
problem above pion threshold by means of the coupled-
channel method. The starting point of the method is closely
related to quark-model ideas, although it was developed at
the baryon level. It makes the assumption that the nucleon is
the ground state of a composite particle with excited states
clearly identifiable. When two nucleons interact, one of them
can be excited and decay into7a\ state. The three-body
problem is reduced to a two-body problem assuming that the
NN— 7NN transition only takes place through resonances.
The effect of the coupling to resonances mainly depends on
the strength and range of the transition potential. Therefore it
is important to use a consistent interaction for i and
NA channels, as is the case for the quark model used.

Other approaches appear in the literature and we will
mention some of them for later comparison. Earlier works

and Q, are the Legendre functions of the second kind. TheKloet and Tjon[15], VerWest[16]) performed coupled-

first term on the right-hand side of ERO) corresponds to
Fig. 1(c) whereas the second one corresponds to Fig). 1
The phase shift is calculated in terms of thematrix for an
initial and final on-shell momentum given by

k§=2mNE ,n—2myy2myE y—my+ M, (29

whereE . is the totalmN center of mass energy.
The calculatedP3; wN phase shift is compared to the

experimental data in Fig. 2. The parameters used are taken

from Ref.[3] and they are shown in Table |. They were fixed
on the study of theNN system below pion threshold. The

channel calculations usingN andNA separable potentials.
In this way they were able to solve analytically the
Lippmann-Schwinger equation. The first calculation with re-
alistic potentials was carried out by LEE7], using the Paris
potential with theNA box diagrams subtracted for tieN
interaction, whereas tHéN— NA transition was represented
by phenomenologicalr and p meson-exchange potentials.
The model was later improved by includingNa\ retarded
interaction. A similar model was developed by the Hannover

TABLE |. Quark-model parameters.

baryon spectrum has also been studied with these parameters mb ((,I;T;)V) 03'51;8
by means of a Faddeev calculati¢h3,14]. The results, i

which are shown in Fig. 1 of Ref14], give a reasonable A, (fm™) 4.2997
description of the experimental data. It is worthwhile to note Mps (fm™?) 0.7
that although no parameter is fitted to thBl data, the agree- mg (fm™) 3.513
ment with experiment is excellent. This gives us confidence g2, 6.6608
to use the expression deduced for A vertex to calcu- as 0.4977

late theNN phase shifts above the pion threshold.
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FIG. 3. (a) mNA vertex. (b) Retarded one-pion exchange dia- 30
gram.(c) A self-energy diagram. 251 (b) 1
K 3
~ 207 o]
g S
group also using the Paris potential for tNeN interaction T 157
and an instantaneous potential which includesr, p andw S 0t
mesons for théNA interaction[5,7,18. Slightly different is
the approach of Elstegt al. in the framework of the Bonn 51
potential mode[19,20. They used relativistic transition po- 0 .
tentials evaluating the box diagram$A and AA with 0 200
pm, wm, andpp exchanges using time ordered perturbation Tiap (MeV)

theory. The self-energy diagrams of the nucleon and delta
FIG. 5. Same as Fig. 4 for thtD, NN partial wave.

%0 were the sources of inelasticity.

60 As has been previously discussed, the inelasticity is pre-
40 dominantly single-pion production and occurs essentially in
é" 20 the isospin-triplet partial waves, therefore we will perform a
= NN-NA coupled-channel calculation. We start from the

0+ coupled set of Lippmann-Schwinger equations for the

20 NN-NA system,

40 0 200 400 600 Taun= VNt VNGN TN T VnaGaTan. (24)

Tiap (MeV) Tan=Van+ VanGnTant Vas GaT
ANT VAN ANSN NN AASPA AN
12 : : (25)
10+ (B
whereVy represents th&N— NN potential,Vy, the NN
I~ 8 . —NA transition, andV,, the NA—NA interaction. The
g 6F "1 main process for pion production is given by th&lA ver-
| tex depicted in Fig. &), in which theA couples to arN
state. The introduction of this diagram has two conse-
2 ¢ guences. The first one is that tthNA—NA one-pion ex-
0 . change potential has now a retarded interaction, shown in
0 200 Fig. 3(b). As a consequence thé,, interaction would get

Ty MeV) modified. However, the diagon&l,, potential has a minor
influence on thé&d N channels and we will not take this modi-
FIG. 4. (a) NN phase shift an¢b) inelasticity for the'S, partial ~ fication into account. The second one is the appearance of
wave. The experimental data correspond to the phase shift analysike delta self-energy diagram in the presence of a spectator
of Arndt et al. (Ref. [20]). In (a), the dashed line shows the phase nucleon shown in Fig. &), which has a contribution to the
shift including only theNN channel. Solid and dash-dotted lines width and has to be added to the interaction. We denote by
show the results includinyA andAA states for calculations 1 and ;,3¢(q) the A self-energy interaction,
2, respectively. In(b), the dash-dotted line shows the inelasticity
including the energy as well as the momentum dependence an the
width, whereas the solid line shows the result considering only the S€ ) —
vA(d)=1{ 7a
energy dependence.

1
Ea(d) —w,~oytie

7A> ' (26)
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FIG. 6. Same as Fig. 4 for thbG, NN partial wave.

wherey, is the structure function of theNA vertex. Thus,
the coupled-channel problem now becomes

T=V+Vset+ (V+V*9GT, (27)

where T, V, V¢ and G are two by two matrices corre-

sponding to
_ [T T Y Vv
:( NN NA), VZ( NN NA), (28)
TAN TAA VAN VAA
vee [0 0] & (GN 0 ) 29
o ot T Lo Gy 29
Equation(27) can now be written as
TP=V+VGPTP, (30)
where
T=G 4YG°+BOTOBPIG -G (3
with
. Gy O
G”= 32
0 GY, (32
and GE(E) is the dressed propagator,
b 1
Ga(B)= P . (33
E—(my—my)— 5——0v34q) +ie
(my n) 204 A (0)
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The NN phase shifts and inelasticities are obtained by
solving the Lippmann-Schwinger equation with the renor-
malized A propagator. Since the vertex used in theself-
energy diagram is the one useds scattering, the value of
the A width comes out consistent with experiment because
we describe properly thBs; 7N partial wave.

In Eq. (33) we use only the imaginary part of the self-
energy diagram which gives the width. This is the reason,
as in the case of theN scattering, to use fam, the physi-
cal mass. Th& width is given by

_E f2na (ko) My
23 an m2 @4(Kg) +my

k3 (34)

with wﬁ=\/m27,+ ko2 the pion energy in therN center of
mass system ankl, the relative momentum of theN sys-
tem given in terms of the center of mass enegy; by Eq.
(23). This is related with thé\N center of mass energy by

SWN:(\/§_ VmN+ p2)2_ p21

whereS,TN=EfTN is the invariant mass of theN system,ﬁ
is the relative momentum of tHeA [N(7N)] system, ancs
the invariant mass,

(35

S=(2my+Ecm)?, (36)
with E. |, the kinetic center of mass energy of tNN sys-
tem.

VI. RESULTS AND DISCUSSION

In this section we present the results obtained forNine
phase shifts and inelasticities with the model described
above. The partial wave scattering amplitudes are related to
the partial waveS, matrix elements by

S,(E)=1+2iT(E). (37
We will use forS, the parametrization of Arndt and Roper
[21]1

S,=cogp, e %, (39

and, therefore,

K,=tans,+itarfp, (39
with §, and p, the phase shift and the inelasticity, respec-
tively, in the NN partial wavea.

The starting point of our calculation is theq potential
used previously to describe tie¢N phenomenology below
the pion threshold. As already mentioned, we do not fit any
parameter to data above the pion threshold. Since we only
include the inelasticity due to th® self-energy only isospin-
triplet partial waves are presented.

The results for theNN phase shifts and inelasticities are
shown in Figs. 4-11 and compared to results from the
energy-dependent and energy-independent partial wave
analysis of Arndtet al. [22]. The experimental data, shown
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FIG. 7. Same as Fig. 4 for thH ¢ NN partial wave. FIG. 9. Same as Fig. 4 for the, NN partial wave.

by points, have been obtained from the interactive progranincluding the energy dependeatwidth whereas dash-dotted
SAID [23]. For the phase shifts, the solid line shows resultdines include the energy and momentum dependence. The
for the coupled-channel calculation includitdd and AA difference between these two approximations will be dis-
intermediate stategalthough, as has been previously ex-cussed later.

plained, the inelasticity is only included through th&\ As a general trend the experimental phase shifts are rea-
channel. Dashed lines refer to results including only tiél  sonably well reproduced by our calculation except for fhe
channel. For the inelasticities, the solid line shows the result

6
60
wl @
o i
o) )
) o
w0
0 200 400 600
Ty MeV)
20 . . 20
b)
(b) (
15 | 16 ¢
_ “ab
£ 10} 3 107
= a
5¢ 5
0 + 0 N
0 200 0 200
Tlab (MCV) Tlab (MeV)
FIG. 8. Same as Fig. 4 for th#P, NN partial wave. FIG. 10. Same as Fig. 4 for th#F; NN partial wave.
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FIG. 11. Same as Fig. 4 for thtHs NN partial wave. i et l/,_.:;i':——
waves, which due to the lack of spin-orbit interaction are 0.1 0 0.1
overestimated, as is the case below the pion threshold. The Re[T]
influence of theNA channel is more important for the low
angular momentum partial waves. FIG. 12. Argand diagram of th&matrix amplitudes for théa)

The most interesting isospin-triplet partial waves are the'D2 and (b) °F3 NN partial waves. We show by squares the ex-
D, and 3F 5, because th&lN—NA coupling is very impor- perimental data ot_‘ Arndét al. (Ref.[20]). The sqlid line shows the
tant. The Argand plot for both cases, Fig. 12, presents Lesult for calqulatlon 1 and the da§h-t10tted line for calculation 2.
counterclockwise behavior with increasing energy, which isThe dashed line represents the unit circle.
considered to be a signal of a possible resonance. As seen in )

Figs. 5 and 10, the resonant behavior observed in the expef@€rgy and momentum dependence, being referred to as cal-
mental data only appears when the coupling toNdechan- culation 2. This different treatment of tht_eW|dth has avery

nel is considered. In both cases our calculation overestimatédnall effect on the phase shifts but it is very important for
the phase shifts which is already known for models includinghe inelasticities as seen in the figures. This can be under-
only NA channels. stood in the_followmg way. When the_momentum depen-

The resonant behavior of these two partial waves has bee#ence is not included the value of thewidth for zero rela-
extensively discussed in the literature. The first interpretatiofive momentum is taken for all relative momenta. This is its
in terms of dibaryon resonances was given by Hoshigz&j ~ maximum value, as shown in Fig. 13, whdtg is plotted as
who parametrized theés matrix including a Breit-Wigner & function of the energy of theiN system and the momen-

resonance part. He obtained 2.17 GeV and 2.22 GeV for the

masses of théD, and 3F dibaryons, respectively. Later on LMy &

it was shown that the resonant behavior could also be ex- gﬁe‘}‘::e:;l;\\

plained as an effect of the opening of tN& threshold. In 300 ﬁ%{e}%&g

our case thé'D, NN partial wave is coupled to thes, NA 250 |- ,@m&%&s

partial wave, which in our model has a very weak bound 200 - M}%ﬁs}fgg

state[25]. The energy of the bound state is 0.141 MeV below o | Wi{%{i{{,

the NA threshold which gives a mass of 2.17 GeV for this R

state, in agreement with the value obtained by Hoshizaki. 100 ";'_."i.."":i'""'

Since the effect of the threshold is always present, one %0 75

should conclude that in our model the resonant behavior of 0

the 1D, partial wave is a combined effect. 1 Pa (GeV)
As mentioned before, we performed two different calcu- Tlab.(Gev). 02 g

lations. In the first one, we only introduced the energy de-

pendence when we calculated thewidth, which we will FIG. 13. A width as a function of thé&IN energy in the labora-

call calculation 1, whereas in the other we considered théory system and the momentum of the
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tum of the A. Therefore, for a fixed\N energy if we in-  multiply by 3. For the spatial part we use the wave function
crease the momentum, the energy available for the decayiven in Eq.(13). In this way we get the following operator
(energy in thewN center of mass systendecreases and in the spin-isospin-color space of quark three:
consequently so does tiewidth. This is why the inelastic-

ity is always smaller for calculation 2. Similar results were .

already obtained by Kloet and Tjofi5] and Elsteret al. Ho_ 3i 1 fogg -
[20]. The inelasticity in the'S, channel decreases too much B (2m)%2 2w, My 73
when the momentum dependence onhwidth is included

whereas for the other partial waves the experimental data lie  x(r,,)"e" b%I6 53)(B’ — P+K). (A1)
between the two calculations.

IZ(1+ “’”) O 5
6m, 3mg

The vertices at baryon level are obtained relating the expec-

tation value of the quark operators with those at baryon level.
We have performed a calculation of theN phase shifts We finally get for themNN vertex

and inelasticities above the pion threshold within a chiral

guark model in the framework of the CCM. The only source

VIl. SUMMARY

of inelasticity considered has been theself-energy diagram o= 3i 1 frgq
that provides the\ width. This is the main inelastic contri- ™ 2m)R 26, My,

bution found in other models at baryon level and no impor-
tant differences should be expected if other contributions are
included.

The phase shifts are reasonably well reproduced, although
the coupling toNA andAA states gives in general too much
attraction. The effect of th& A channel is more important O,
than the one from thé\A channel. This was already ob- X §G)(P’~P+Kk) 2|701
served in our calculation below the pion threshold. The in- o I
elasticities obtained are small when the momentum depen-
dence of theA width is included. (A2)

Although the quantitative description of the phase shifts is
not as good as in other models at baryon level, we want to
emphasize that our calculation above pion threshold i&nd for themNA one,
parameter-free in the sense that all the parameters of the
model are fixed from the study of data below pion threshold.

w
1+ ——

722 - -
x DA K ~ g
Mg

TaN) JrO-N '

[y
NI, N —

The 7NA vertex as well as the potentials including reso- 1 =— 3i L Toag

nances are calculated from the same model adltig@oten- (2m)3% 20, M;

tial. To our knowledge this is the first calculation of tNéN

system above the pion threshold making use only of interac- x e DK ) s | K| 1+ ﬁ)

tions derived from a quark model. “ 6my

We have studied the isospin-triplet partial waves. For

isospin-singlet partial waved A states would be a source of — ﬁﬁ} SB(P' —P+Kk)

inelasticity, however, for these channels the coupling to the 3mg

Roper resonance is more important because its pion produc- 1 3) 2

tion threshold is at lower energy. Work with the inclusion of B —

NN*(1440) intermediate states is now in progress. %2 E o } } - } 2 2

211732/ \ 2] ™3| 2 1 1"
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p ; X where we use th&IN to NA spin transition operator defined
by the Rama Areces FoundatiofSpair). P P

by

APPENDIX: EFFECTIVE COUPLING CONSTANTS
<msA|0'lNLA|msN>: V25,1

In this appendix we deduce the effectiv®N and 7NA

coupling constants from theqq vertex. We start from the R sy 1 Sa
Hamiltonian of Eqg.(12) and we take the expectation value X(=1)7 5Ny Mg u —mMg
between baryon wave functions. Since the contributions of N A

the three quarks are equal, we calculate for quark three and (A4)

014001-9
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and analogously for the isospin operator. Therefore the effec-

tive coupling constants are given by

&)2

_ —b2k%/6
fann(K) =6 7qqe (1+ 6m, /1531

N~ N
N~ NP

PHYSICAL REVIEW C 67, 014001 (2003

®, 1‘ 1
omg\2]72|2

2

f_a(k)=32f que—bzk%( 1+

1 1

73

N = N| -
N~ N W
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