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Density dependent hadron field theory for neutron stars with antikaon condensates
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We investigateK™ and K° condensation inB3-equilibrated hyperonic matter within a density dependent
hadron field theoretical model. In this model, baryon-baryon @mdkaon-baryon interactions are mediated
by the exchange of mesons. Density dependent meson-baryon coupling constants are obtained from micro-
scopic Dirac-Brueckner calculations using Groningen and Bonn A nucleon-nucleon potentials. It is found that
the threshold of antikaon condensation is not only sensitive to the equation of state but also to antikaon optical
potential depth. Only for large values of antikaon optical potential depth il0esondensation set in even in
the presence of negatively charged hyperons. The threshdtd ebndensation is always reached afier
condensation. Antikaon condensation makes the equation of state softer thus resulting in smaller maximum
mass stars compared with the case without any condensate.
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. INTRODUCTION structure of neutron staf8,9]. The threshold density df°
condensation is always higher than thakof condensation.
The composition and structure of neutron stars depend OAntikaon condensate makes the equation of s(&eS
the nature Of Strong interaction. Neutron star matter enconlsoﬂer’ thus resumng in Sma”er maximum mass stars com-
passes a wide range of densities, from the density of iropared with the case without any condensate. Employing the

nuclei at the surface of the star to several times the normaéoS including bott ~ andK® condensates. it was predicted
W“C'ear matter density in the core. Since the ch¢m|cal pptg 9] that a stable sequence of superdense stars called the third
tials of nucleons and leptons increase rapidly with density i amily branch [10] might exist beyond the neutron star
the interior of neutron stars, several novel phases of matt§f - nch. The compact stars in the third family branch have
with a large strangeness fraction, such as hyperonic mattel, -~ iler radii than those of the neutron star braf@h
condensates of strange mesons and quark matter, may apPeaigesides the EoS and antikaon optical potential depth, the
there[1], ' ... _threshold density of antikaon condensation is very much sen-
It was first demonstrated by Kaplan and Nelson within a,

hiral del thaik q sitive to the behavior of antikaon energy and electron chemi-
chiral SU(3). X SU(3)r model tha mesons may undergo . potential at high density. The role of nucleon-nucleon and

Bose-Einstein condensation in dense matter formed in heavynt1aon-nucleon correlation in antikaon condensation was
ion collisions[2]. In this model baryons directly couple with investigated by Pandharipande and collaborafdrs,12.
(anthkaons. The effective mass of antikaons decreases wit hey found that strong nucleon-nucleon arehtjkaon-
Increasing _densny b_ecause of the strongly attractive,  cieon correlation raised the critical density for antikaon
K™ -baryon interaction in dense matter. Consequently, the inzonqensation to higher densities and predicted that antikaon
medium energy oK~ mesons in the zero-momentum state ¢ondensation might not be a possibility in neutron sfag.

also decreases with density. Thavave K~ condensation e glectron chemical potential used in the above mentioned

sets in when the energy &t~ mesons equals its chemical cgjcylations was obtained from modern realistic nucleon-
potential. LaterK ™ condensation in the core of neutron stars, ;cleon interaction§l3,14.

was studied by other groups using chiral modals _ In this work, we are interested in finding out how many
Also, Bose-Einstein condensation kif mesons was in-  poqy correlations may be taken into account by density de-
vestigated in the traditional meson exchange picture knowRengent meson-baryon couplings in a relativistic field theo-
as the relativistic mean fiel(RMF) model [4—6]. Within  retical model, and the effect of the threshold of antikoan
the framework of the RMF model, baryon-baryon andcongensation on neutron star matter. There is a growing in-
(ant)kaon-baryon interactions are treated on the same footg(est to derive a quantum hadron field theory from a micro-
ing, i.e., they are mediated by the exchange of mefbAS].  scopic approach to nuclear interactions. The motivation for
It was noted in all these calculations that the typical threshych an approach is not only to retain the essential features
old density of K™ condensation in nuqleons—only neutron f guantum hadrodynamidd5], but also to deal with the
star matter was aboutng—4n,, wheren, is normal nuclear  complicated many body dynamics of strong interactions
matter density. However, the threshold of antikaon condentl6_1a_ An appropriate and successful microscopic ap-
sation is sensitive to the antikaon optical potential and deproach to in-medium nuclear interactions follows from
pends more strongly on the equation of state. With furtheyjrac-Brueckner (DB) calculations. Various groups per-
inclusion of hyperonsiK™ condensation was found to occur formed DB calculations with realistic nucleon-nucleon inter-
at higher densitief4—6,8,9. Recently, we have studied®  actions and reproduced empirical saturation properties of
condensation along witl™ condensation in neutron stars symmetric nuclear matter reasonably wgll9—-2§. Also
using a relativistic mean field model and its influence on thenucleons-only neutron star matter was calculated in Dirac-
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Brueckner theory27-29. It is worth mentioning here that The field strength tensors for vector mesons are given by
the bulk of the screening of nucleon-nucleon interaction in

medium is taken into account by the local baryon density o*’=0*w”— 9" w",
dependent DB self-energidd7]. This makes relativistic
many body dynamics to be approximated by a density de- prr=gkp"— 3 pt. 3)

pendent relativistic hadrotDDRH) field theory[17,18. A

covariant and_ thermodynamicglly con_sistent DDRH field Here W5 denotes the isospin multiplets for baryons and
theory is obtained by making interaction vertices Lorentziha sum goes over baryon multipleBs=N, A, S, and =:
scalar functionals of baryon field operators. In the mean field; “(|Z¢ ) is a lepton Spinor andy an iSospin operator.

approximation this model reduces to the relativistic Hartreerha interactions among baryons are mediated by the ex-

description with density dependent meson-nucleon COUghange ofr, w andp mesons. In addition to these mesons the
plings. The density dependent meson-nucleon couplings atg 5 |ar.jsovector mesadis also included. And this is impor-

obtained from Dirac-Brueckner self-energies calculated With, ¢ for an asymmetric system. Though the structure of

Bonn, Groningen, and phenomenological density dependepry | agrangian density closely follows that of the RMF

potentials[30—-33. The variational derivatives of vertices 14| there are important differences between those mod-
with respect to baryon fields give rise to rearrangement termgis. |n RMF calculations with density independent meson-

in baryon field equationkl8]. Brockmann and ToKi16] first baryon coupling constants, nonlinear self-interaction terms

applied the DDRH model without rearrangement terms tQ, seajar and vector fields are inserted to account for higher

study finite nuclei. Recently, the DDRH model with rear- , je density dependent contributions. But this is not needed
rangement terms has been exploited to investigate deform re as meson-baryon vertiags; , wherea denotesr, o, p

nuclei[31], hypernucle[33], asymmetric nuclear matter, and and ¢ fields, are dependent on Lorentz scalar functionals of

exotic nuclei[34,39 and neutron star properti¢86. 5 0n field operators and adjusted to the Dirac-Brueckner-
In this paper, we investigate antikaon condensation IMNHartree-Fock calculation84,36.

beta-equilibrated hyperon matter relevant to neutron stars There are two choices for the density dependence of

and its role in the composition and struc_ture of the Co,mpaCFneson-baryon couplings. One is the scalar density depen-
stars in the DDRH model. The paper is structured in theyence and the other one is the vector density dependence

fqllowing way. In Sec. Il, we describe the DDRH model and_ (VDD) [34]. Here we consider meson-baryon couplings
different phases of matter. Parameters of the model are dis- 5(p) to depend on vector density because it gives a more
cussed in Sec. Ill. Results of our calculation are explained irp 2

: ! ; atural connection to the parametrization of DB vertices. For

Sec. IV. Section V provides a summary and conclusions. .~ vpp case. the density operatgr has the formp
=] ,j*, where], =Wy, V.

Since verticesg,g's are Lorentz scalar functionals of

Here, we discuss a phase transition from hadronic mattegaryon field operators, the variation Gfwith respect to¥'g
to an antikaon condensed phase in compact stars. The hagyes
ronic phase is described within the framework of the DDRH
model. This phase is composed of all species of the baryon SC oL 9L S
octet, electrons, and muons. Therefore, the total Lagrangian = 4+ = P8

Il. FORMALISM

4

density in the hadronic phase is written s Lg+ £, . In 5\55 - (9\55 a,}B 8‘17,3'
the DDRH model, baryon-baryon interaction is given by the
Lagrangian density£g) [36], The rearrangement termx“(N=3,(aL/dpg)(Spg!SVg)
o which originates from the second term of Ed), naturally
EBZE Vgl iy,d"—Mg+0,0—0,5Y,0" introduces an additional contribution to the vector self-
B

energy[17,18,34,3% This is an important difference be-
1 1 tween RMF and DDRH theories. o .
— 50,87, P+ 59T 6| Vs Here, we perform our calculation in the mean field ap-
2 2 proximation(MFA). In this approximation vertex functionals
are reduced to simpler forms using Wick's theorg3#,37).

1 » o 1 20 h g laced by i d :
+ E(aﬂgaug_mga )+ E((gﬂg,gua_ m36°) The ope_rator,z is replaced by its ground state expectation
valuep, i.e.,{p)=p. Hence meson-baryon vertices become
1 1, 1 1, functions of total baryon density in the hadronic phase,
_Zwﬂyw’uy'f' Emwwﬂw"— Zp,u,,'pp'v"r‘ Emppﬂ~[)lt, . .
(1) <gaB(p)>:gaB(<p>):gaB(p) (5)
This is known as vector density dependence of vertices
and [17,34,36. In the MFA adopted here, meson fields are re-
placed by their expectation values. Only the timelike compo-
L= 2 %(i ¥, 04— M) . ) nents of vector fields, and isospin-3 componentg aihd &
[

fields have nonvanishing values in uniform and static matter.
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The mean meson fields are denoteddyywq, poz, andé.
Therefore, the meson field equations in the hadrdhic
phase are given by

mio=2 Gooly*, (6)
m;00= 2% Gupng, @)
m§p03=% % 9pbTabNp s 8
m3é= % 2 9onTanny”, 9

where 73, is the isospin projection of baryob=n, p, A,

37,39 37, 57, andE° and scalar and vector densities of

baryonb in the hadronic phase are

Np°= (i)
20+ 1Jth m

k2dk
27 Jo (K2+mp?)t?

2 * 2
_m | m_m*zlrka“LVka My
272 Fp VOFy b b me J
b
(10
k3
h o o
Np={¥uYotbp) = 3.2 (11

Here J,, is the spin projection of baryoh. The rearrange-
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Similarly, the expression of scalar self-energy for barpas
given by

1
3P h=0p0+ 595b7'3b5- (16)

One can immediately define effective baryon massmgs
=m,—23 . And this differs for members of isospin mul-
tiplets due to theS meson.

To obtain the EoSpressure versus energy dengsity the
pure hadronic phase, the equations of motion for mesons and
baryons [Egs. (6)—(9) and Eq. (12)] are solved self-
consistently along with effective baryon mass in the mean
field approximation taking into consideration other con-
straints such as baryon number conservation, charge neutral-
ity, and beta equilibrium. The system is charge neutral and
the condition of 8 equilibrium is maintained. The charge
neutrality condition is

Q“=§ gpnp—Ne—n,=0, (17)

where g, and nf) are the electric charge and the number
density of baryorb in the pure hadronic phase, respectively,
andn, andn, are number densities of electrons and muons,
respectively. In the compact star interior, chemical equilib-
rium is maintained through weak interactions suchBgs
—By+1+7, andB,+1—B;+ v, whereB; andB, are bary-
ons and stands for leptons. Therefore the generic equation
relating chemical potentials for the above mentioned gener-
alized B-decay processes is
Hi=Dipwn—diste. (18)
Here b; and q; are the baryon number and chargeitf
baryon, andu,, and u. are the chemical potentials of neu-

ment self-energy modifies the baryon field equation comirons and electrons, respectively. The chemical potential of

pared to the RMF cagdd 5],

[y, (i0* =30 ) —(my—35 ) 14y =0. (12)

Here ¢, is the Dirac spinor for baryoib. The total vector

self-energy for baryot in the hadronic phase is

S0 n=3p+300 (13)
Now the usual vector self-energy is
0(0) 1
Sph =0wb®ot 59bT3bP03- (14

baryonb in the hadronic phase is expressed as

po= kg, +m3 2+ 3+ 3000,

It is noted that unlike the RMF model, the rearrangement
term appears in the expression of baryon chemical potential
in the DDRH model. In neutron stars, electrons are converted
to muons bye” —u~ +v,+ v, when the electron chemical
potential becomes equal to the muon mass. Therefore, we
have w.=u, in compact stars. Equatiofi8) implies that
there are two independent chemical potentials and we
corresponding to two conserved charges, i.e., baryon number
and electric charge. The energy densi)(is related to the

(19

_pressure P") in this phase through the Gibbs-Duhem rela-

Also, the rearrangement term, which is the second term igo,

Eq. (4), simplifies to[34]

95 9wb 149,
Eo(r)= [— 2 onlS+ won+ = —= 1 nf
h % app b app 0b ™ 5 9Py 3bPo3'lp

10
D Taponp’®

2 7o (15)

PP=2 win—g". (20)

Hereu; andn,; are chemical potential and number density for
ith species. The expression of energy density in the hadronic
phase i 36]
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h 1 2 2 1 2 2 1 2 2 1 2 o2 — — 1 Wl * 1|
e =§mgcr +§mwwo+ Emppo3+§m56 Nk- ko=2 wK—'Ko+ngw0i§ngp03 KK=2mgKK.
(25)
2Jp+1 (ke
+> > J "(k?+m} 3 Yk2dk In the mean field approximation, the meson field equa-
b 2m" Jo tions in the presence of antikaon condensates are given by
+> L KF'(k2+ m?)Y22d k (21) 2 K.s _
| 77'2 0 ! ' moo-:% gobnb’ +90K% Nk, (26)

The rearrangement term does not contribute to the energy _
density explicitly, whereas it occurs in the pressure through M2 wo= >, Gk —Juk>s NK, (27)
baryon chemical potential. It is the rearrangement term that b K

accounts for the energy-momentum conservation and ther-
modynamic consistency of the syst¢@8].

The pure antikaonK) condensed phase is composed of
baryons, leptons, and antikaons which are in chemical equi-
librium under weak interactions and maintain local charge 2o 1 Ks, L _
neutrality. The baryon-baryon interactions here are described mso= 3 Eb: Yoo TapNp"™ T EgﬁK% T3kNk, (29
by the Lagrangian density of the DDRH model. It is worth - -
mentioning here that the meson-baryon couplings depend Qfjherenks andn are scalar and vector densities of baryon

the total baryon density in this phase. In this phase, baryon: the antikaon condensed phase and have the same forms as

are embedded in antikaon condensates. Earlier it was note, Egs.(10) and(L1). The meson field equations here remain
that baryons in the pure hadronic and antikaon condensegl, Sa'me in structﬁre as the RMF oj@s-9], but the con-

phases behaved differently because of their dynamical natu ) ; ; ;
[7-9]. It was attributed to different mean fields which bary- ?:;;nn(;grs]?got;anréc:g;gpImgs are replaced by their density
ons experienced in those pure phases. We adopt here a rela-1q o1 energy density and pressure in the antikaon con-
tivistic field theoretical approach for the description of densed phase are given [8,9]

(antikaon-baryon interactiof7,9]. In this model(antikaon- '
baryon interactions are mediated by w, p, and§ mesons. -1 1 1 1

The Lagrangian density fofantikaon interaction in the ussz,aer Emf,wtzﬁ §m§p§3+§m§52
minimal coupling scheme is

1 - 1
miposzz % gprsbnE"' EngZ TNk, (28
K

2J,+1

272

L=D%KD*K—mi*KK, (22) +§ fokF"(k% mi %) Y32dk
where the covariant derivative D,=d,+ig ko,

+i9,k 7« p,/2. The isospin doublet fgr kaons_is denoted by +Z
K=(K™",K% and that for antikaons iK=(K,K°). It is to T
be noted that the coupling constants (ahti)kaon-baryon

interactions are considered to be density independent. The

effective mass of(antikaons in this minimal coupling and
scheme is given by

1 (Ke
?fo (K24 mP) YA2dk+ mig (N -+ nico),

(30

— 1 1 1 1
PK— T m2o?4 —ml w4 —mlola —m2s2
Mg =M —gyk0T— 595K7'3E5, (23 2 M7 T 3 Mo@o™ 5 MyPos™ 5 M5
_ K 4
wheremy is the bare kaon mass. Here also the effective mass +2%(f)2 nk+ 1 > Zjbtlf Fo 2 K dk2 —
T ( *
of K~ and K° differ due to the inclusion of the scalar- b 3%  2m% Jo (K*+m}?)

isovector§ meson. The dispersion relation representing the 4
. . sy 1 1 (ke  kdk
in-medium energies dk=(K~,K") for swave k=0) con- + = E _J _ (31)
densation is given by 3T w?lo (K+mpr?

O To=ME — . w0 13 (24) whereE%(r) is the rearrangement term in the antikaon con-

K= KO= Mk ™ Gk @o+75 GpkPos: densed phase and has the same form as in(Es, but all
quantities in the equation are replaced by the corresponding

where the isospin projectiomgx=+1 for the mesonK™  quantities of the antikaon condensed phase. Since antikaons
(minus sign andK° (plus sign are explicitly written in the  form s-wave condensates, they do not contribute to the pres-
expression. Fos-wave condensation, densities of antikaonssure directly. Actually the effect of antikaons in the pressure
are given by term comes through the meson fields.
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In the core of neutron stars, various strangeness changinghere ¢, represents the field for the meson. Putting the

processes such &—=N+K and e =K +v, may occur Value of ¢, as given by the meson field equations in the
[4,8,9. HereN=(n,p) andK=(K,K°) denote the isospin Presence of nucleons, the above relation simplifies to
doublets for nucleons and antikaons, respectively. From the 2 DB_ 2
. ) . o . mx°®=g:n,, (41)
above reactions in chemical equilibrium, we obtain the con-
ditions for antikaon condensatig#,8,9 to be wheren,, is the density corresponding ), field. Scalar and
o _ 32 vector self-energies for neutrons and protons were obtained
Kn™ Hp™= HK== He, in DB calculations of asymmetric nuclear matter using the
Lico=0 33) Groningen potential26,39,4Q. Using these values &t P8,
' one immediately obtains the density dependent meson-
whereu - anduio are, respectively, the chemical potentials baryon coupling$34]. A suitable parametrization for density
of K~ andK®. The charge neutrality condition in the anti- dependent couplings was made in R&]. It has the form

kaon condensed phase is 1+b,(plpe+d,)?

du(p)=2a (42)

K K “1+ +e,)?’
QK=% QN — Nk~ —Ne—n,=0. (34 1+ Calplpoteq)

wherep,=0.16 fm 2 and parameters of the fit are listed in
It was noted in RMF model calculations that antikaonTable | of Ref.[34]. However, the results of infinite nuclear
condensation could be either a first order or second ordenatter calculations in the DDRH model, using the above
phase transition depending on the parameter set of the modeientioned parametrization, deviated from those of DB cal-
and antikaon optical potential degth—9]. If the phase tran- culations [34] because momentum dependent DB self-
sition is of first order, the mixed phase is to be determined byenergies were mapped onto the momentum independent
the Gibbs conditions and global baryon and electric chargDRH self-energies. Therefore, momentum dependent verti-
conversation laws because we have conserved baryon agés with the additional constraint that the energy density in

electric charges represented by two chemical potentigls DB and DDRH models are same, i.e?®=¢PPR", was
and u. [38]. The Gibbs phase rules read proposed 34]. Momentum corrected meson-nucleon vertices
_ are given by
Ph=PpPX, (35) -
_ @a(kF):ga(kF) Vl_’_é,aklzzzga(kF)ga(kF)' (43)
mp= b (36)

Momentum  corrections (,=0.00804 f\¥ and ¢,

where,u{‘, and,ug_ are chemical potentials of barydnin the =0.001 03 fnf to o nuclei andw nuclei were obtained from
pure hadronic an&~ condensed phases, respectively. TheDB calculations of symmetric nuclear mat{&#]. Using the

conditions of global charge neutrality and baryon numbe|ISn?nmrsen:ﬁénrﬁ:trtfrc\tsgsvgt'foe;zl523 V%ﬁBsriurﬁﬁgnerrﬁg.s for
conservation are imposed through the relations y P ) Y

mentum correctiorf, to thep-nucleon vertex was calculated
37) from DB calculations of neutron mattg84]. This correction

was inserted into the DB self-energies and the momentum
correctedp-nucleon vertex was calculated. Later the density
dependence of the momentum correciediucleon vertex
was parametrized using E42). The parameters of this fit
are given in Table Il of Ref[34]. We adopt this parametri-
Zation of density dependent couplings and the momentum
correction prescription in our calculations. Also, we denote
this as Groningen parameter set. In Table I, we show meson-

(1) Q"+ xQ"=0,
ne=(1— y)n+ ynk, (38)
wherey is the volume fraction of th& ™ condensed phase in

the mixed phase. The total energy density in the mixed pha
is

=(1—y) e+ yeX. : : . ;
e=(1=x)et xe (39 baryon couplings for the Groningen set at saturation density
(no=0.18 fm 3). The momentum correction modifies the
lll. PARAMETERS rearrangement term sincég,g/dp is to be replaced by
A. Meson-nucleon couplings 9./ dp; this is given by[34]
In the DDRH model, the dependence of meson-nucleon ~ 2
vertices on total baryon density is obtained from microscopic M:ZQ(kF)agaB(kF) " {okrap(Ke) (44)

DB calculations of symmetric and asymmetric nuclear mat- ap ap 3pl ,6(ke)
ter. The density dependent vertices in the RMF model are . _ _ _
related to DB self-energies in the local density approxima- In this calculation, we also exploit density dependent
tion [16,30. Equating self-energies of infinite nuclear matter Meson-nucleon vertices obtained from DB calculations using

in RMF and DB calculations, we obtain a Bonn A potential. The parametrization of vertices is taken
from Ref.[30]. This parameter set is denoted as the Bonn A
SRMF=g ¢,=3DB, (400  parameter set. For the Bonn A sptneson-nucleon coupling
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TABLE |. Density dependent meson-nucleon couplings at satu- TABLE Il. Scaling factor foro and o meson-hyperon vertices
ration density are obtained from DB calculations using Groningerfor Groningen and Bonn A nucleon-nucleon potentials.
nucleon-nucleon potential in Ref34]. Infinite nuclear matter prop-
erties calculated with momentum corrected meson-nucleon vertices RoA Roa Ry= R,
are binding energyE/A=—15.6 MeV, saturation densityn, )
=0.18 fm 3, asymmetry energy coefficierst,s,=26.1 MeV, in- Groningen 0.5218 0.49 0.3104 13
compressibilityk =282 MeV, and effective nucleon massg/my Bonn A 0.4911 0.49 0.3343 173
=0.554. Masses for nucleons and mesons m@ke=939 MeV,
m, =550 MeV, m,=783 MeV andm,=770 MeV. The paramet- . .
rization of density dependent- and w-nucleon couplings for the We obtaing,,, and scalar meson couplings to other hy-

Bonn A potential is taken from Ref$30,31 The nuclear matter Perons from the potential depths of hyperons in normal
properties in the Bonn A potential afe/A=—15.75 MeV, n, nuclear matter. The hyperon potentials in saturated nuclear

=0.159 fm 3, Aasy=34.3 MeV, K=151.3 MeV, and my/my matter are obtained from the experimental data for the single
=0.642. All hadronic masses for the Bonn A case are same as in tHearticle spectra of hypernuclei. In the DDRH model, the po-
Groningen case. The meson-nucleon coupling is density indepen- tential depth of a hyperofY) in saturated nuclear matter is
dent and nos meson is present in the Bonn A case. All parametersgiven by

are dimensionless.

it

N_50(0), 50
UYZEY( )+EN(f)_237 (47)
gon JuN 9N gsN .
_ ‘ where 3%%=g vwo, 33=g,yo, and 3% is the rear-
Groningen 9.9323 12.1872 5.6200 7.6276  rangement contribution of nucleons. In this calculation, the
Bonn A 9.5105 11.5401 8.0758 value of A potential in normal nuclear matter is taken-a30

MeV [41,43 and that ofZ is —18 MeV [44,45. The most

, ) , updated analysis of ~ atomic data[46] and other experi-

is chosen as a constant. Also, theneson is not taken iNto  anial data[47] predict a repulsiveS-nucleus potential

cqn5|derat|0n for the Bonn A potentlgl. Meson-nuclgeon COUgepth. Therefore, we adoptawell depth of 30 MeV in this

pling constants at saturation densityy=0.159 fm~ are  gjcylation[47]. We find thatS, hyperons are excluded from

listed in Table I. the system because of this repulsive potential. The scaling
factors of A andE for Groningen and Bonn A potentials are

B. Meson-hyperon couplings listed in Table II.

In the absence of DB calculations including hyperons, the From Table II, we observe th&,,, is 0.4911 correspond-
density dependence of meson-hyperon vertices are obtaind?d t0 R,y =0.49 for the Bonn A set. In this casg,,, is
from density dependent meson-nucleon couplings using hyobtained from theA potential depth (}) as discussed
pernuclei datd5] and the scaling la33]. This scaling law above. On the other hand, Keit al.[33] obtained a value of
states that the self-energies and vertices of hyperons arfl,»=0.553 for the same value &, , from the y* distribu-

nucleons are related to each other by their free space cotion for the deviation of DDRHA single particle energies
pling constantg),y andg, [33,36], and hypernuclear data. We performed calculations for both

the values oR,, for the Bonn A set.

a za _a
RaY:&: YNQ.

Oun San gun (45 C. Meson{anti)kaon coupling constants

Finally, we need to determine the parameter set for
In the RMF model, vector meson-hyperon coupling con-meson¢antikaon interactions. Here, we do not attribute any
stants were determined from scaling factors obtained frongensity dependence to the vertices of megatjkaons. The
SU(6) symmetry relations of the quark modg,41]. An-  vector coupling constants are derived from the quark model
other possibility is to exploit scaling factors calculated inand isospin counting rule so that

microscopic calculations. However, there is only one micro-

scopically derived free space scaling fad®yr, =0.49 in the 1
literature[42]. We use this value in our calculation. Also, we Yok =390N,  Gpk=pN- (48)
obtain the scaling factors for vector and isovector mesons
from SU6) symmetry relation$5], The values of meson-nucleon coupling constants are taken at
normal nuclear matter density and those are given in Table I.
11 The scalar coupling constant is obtained from the real part of
ngz_gw5_§g“’“’ the K™ optical potential at normal nuclear matter density,
1 Uk(Ng) = = Juk@o— Jorx o+ SR (49

59ps=9,2=09n: 9pa=0, ) .
2°° g g ? The scalar-isovectof meson also couples witfant)kaons.

The coupling ofé mesons withlantjkaons is obtained from
1 o — -0 (46) a simple quark model and this is given byx=gsy. The
292790y Gaa =0 value ofgsz, may be seen in Table I.
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TABLE llI. The coupling constants for antikaonK) to o me- K~ andK° condensation are second order phase transitions
song, for various values oK optical potential depthtli(ng) (in in this calculation. In this situation, the conditions of anti-
MeV) at saturation density. The results are for Groningen and Bonikaon condensation are given by E(32) and(33). Earlier it

A nucleon-nucleon potentials. was found in RMF calculations that antikaon condensation
could be a second order phase transition depending on the
Ui(no) -120 —140 —160 —180 antikoan optical potential and coupling constants of the mod-
Groningen 0.1993 0.6738 1.1483 16228 els[7-9]. The threshold densities &~ andK°® condensa-
Bonn A 1.1121 1.6609 2.2097 27585 tion in B-equilibrated matter containing, p, A, and leptons

for Ux(ng)=—120 to —180 MeV are recorded in Table IV.
BesidesA hyperons, we also include other species of hyper-

There are experimental evidence that antikaons experPns in our calculation. Howevek, hyperons do not appear
ence an attractive interaction whereas kaons feel a repulsiecause of a repulsiz-baryon interaction. In Table 1V, the
interaction in nuclear mattg#8,49. It is the depth of anti- critical densities oK condensation irg-equilibratedn, p, A,
kaon optical potential which is an important factor in our £, and lepton matter are given in parentheses. The early
calculation. The real part of antikaon optical potential at nor-appearance of hyperons might have important effects on the

mal nuclear matter density was evaluated in a coupled chafnreshold densities oK condensation because hyperons
nel model[50,51] and self-consistent calculatiof§2-54.  make the equation of state soft. It was shown in RMF model

These model calculations give a wide range of values frorQ: . P :

- . alculations that the onset 8f condensation was delayed to
_h%z? Me\ll t(_)—4'(<)_MetV fquK(‘;‘gr_]O' Re(t:ten_tly, 30’{on|1b|r(1jetd higher densities due to hyperof%—-6,8,9. Also, negatively
chiral analysis ox aiom|c an p scattering data [ead o charged hyperons diminish the electron chemical potential
a shallow attraCt'\./éJK(QO) of _.55 Me\_/ [55]. On the other delaying the onset dk~ condensation. In this DDRH model
hand, the analysis ok~ atomic data in the hybrid model calculation with the Groningen sek, hyperons appear first.

[56] yielded Uy(ng) = —180+20 MeV. Therefore, there is L — .
no consensus among the phenomenological and microscopt onsequently, the threshold densitieskotondensation are

potentials both in terms of depth and values from the fits shifted to highgr densities compared with thosg in nucleons-
to kaonic atom data. The coupling constants for kaons with only matter. With further appearance of negatively charged

mesong,x for a set of values obi from —120 MeV to =~ hyperons,K~ condensation occurs at higher densities

—180 MeV at saturation density for Groningen and Bonn A8S is fvident from the values in parenthesean Table IV.

potentials are listed in Table IIl. The-K coupling constants T °F Uk(No) = =120 MeV, the early appearance’sf- com-

for the Bonn A set are found to be larger than that of thePletely blocks the onset of bot~ and K° condensation

Groningen set. This stems mainly from the smatiekw, €ven in the highest density (48) considered in this calcula-

value for the Bonn A set compared with that of the Gronin-tion. On the other hand, the impact &f" hyperons on the

gen set. threshold densities ofK® condensation for |Ug(no)|
=160 MeV is negligible. This may be attributed to the fact
that the density oE ~ hyperons falls after the onset &f~

IV RESULTS AND DISCUSSION condensation. This becomes evident when we discuss the

Here we report the results of our calculation in the DDRHParticle density graphs in the following paragraphs. From
model using the Groningen set. We perform this calculatiorTable 1V, we note that the threshold densitykofcondensa-
for antikaon optical potentidl(ny) = — 120 to—180 MeV. tion shifts towards lower density as the strengthlg(n,)|
There is noK condensation as a first order phase transitiorincreases. This indicates that the threshol& afondensation
for the Groningen set and various valuedgf(ngy). Rather, is not only dependent on the EoS, but also sensitive to anti-

TABLE IV. The maximum masseM .., and their corresponding central densiti€g = N¢ent/No fOr
nucleon-only @, p) star matter and for stars with further inclusion of hyperpns p, A (£)] are given
below. The results are for the Groningen set. The threshold densiti&s fandK® condensationy, (K ™),
and u,,(K° whereu=ng/ng, and alsoM ., and u.en; for neutron star matter including hyperons at
different values of antikaon optical potential depiz(ny) (in MeV) at saturation density are given. The
values in parentheses are those of neutron star matter incliling

Uﬂno) ucr(Ki) Ucr(EO) Ucent Mmax/MO
nop 5.11 2.313
n, p A () 5.13(4.89 1.708(1.620
—120 3.83 4.844.89 1.697(1.620
n, p K, A () —140 3.17(5.74 7.27(7.39 4.56(4.89 1.665(1.620
—160 2.65(3.20 6.16(6.16 4.38(4.49 1.602(1.599
—180 2.28(2.29 5.16(5.16 5.16(5.16 1.497(1.499
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FIG. 1. Number densities n{) of various particles in FIG. 2. Number densities n{) of various particles in

B-equilibratedn, p, A, E and lepton matter including~ and K° B-equilibratedn, p, A, E, and lepton matter including~ andK°
condensates for the Groningen set and antikaon optical potenti@ondensates for the Groningen set and antikaon optical potential
depth at normal nuclear matter densig(ny)=—160 MeV as a  depth at normal nuclear matter densidy(ny,) = —160 MeV as a
function of normalized baryon density. function of normalized baryon density.

kaon optical potential depth. For all values Wf(no), we  appearance ok. This further postponeis = condensation to
observek ~ condensation occurs befok® condensation.  3-20Mo- Lepton fractions begin to fall with the onset of nega-

The composition of neutron star matter containing nuclefiVely charged=". This is quite expected because it is en-
ons (, p), A hyperon, electrong"), muon («~), K~ and ergetically favorable to achieve charge neutrality among par-
KO mesons for the Groningen set, ang(ng) ticles carrying conserved baryon numbdrs. No such

— _160 MeV is presented in Fig. 1. Before the onseKof conservation law is followed by leptons or mesons. But as

. L o soon aK ™~ condensation sets in, lepton fractions as well as
condensation, the charge neutrality is maintained by protons, - fractions drop. It indicates that the EoS is now mainly

electrons, and muons in the hadronic phase. We see that tﬁ%ftened by the presence afhvoerons and — condensate
A hyperon is the first strange baryon to appear in the ha y P yp '

ronic phase at 1.9§, where no=0.18 fm 2. Its density 'hiiohas an inte.resting implication on the threshold density
rises fast at the cost of neutrons. In this calculatign, ~ ©f K condensation. It is evident from Table IV thigf con-
condensation sets in at 2165 As soon ask ~ condensate deénsation occurs at the same density point i, 16ith and
appears, it rapidly grows and readily replaees and u . without the inclusion ofZ ™ in our_calculatlon. Also, sym-
This behavior is quite expected, sinée€ mesons, being Metric matter ofn, p, andK~, andK® condensates emerges
bosons, condense in the lowest energy state and are therefdrere after the onset df® condensation. At a much higher
energetically favorable to maintain charge neutrality of thedensity 6.%,, Z° appears in the system.

system. The electron fraction depletes arounchgland the PressurdP) is plotted against energy density) for vari-
proton density becomes equal to thatof condensate. The ous compositions of neutron star matter in Fig. 3. Here equa-
appearance dk° condensate is delayed to 6ri6 With the  tions of state are calculated with the Groningen set. The dot-
onset ofK® condensation the abundancesnofp, K-, and ted line stands for nucleons-only matter, while the dash-

K® become identical leading to an isospin saturated symmegmted line containg. hyperons in addition to nucleons. The
ric matter[7—9]. This may be attributed to the fact that there resence of an additional degree of freedom softens the EoS

_ T _ N . appreciably. The solid lines correspondAohyperon matter
IS a c.omp.etmon n th.e production ¢i-K™ and n-K pairs includingK ~ andK® condensates for antikaon optical poten-
resulting in symmetric matter of nucleons and antikaon

[7,8]. Here the system is dominated By hyperons at high Stfals Uk(ng) =120 to ~180 MeV. The kln.ks in the equa-
density. It is worth mentioning here that the results of DDRHUONS 0f state mark the onsetsifcondensation. Already, we

model for Groningen set arldi(ny) = — 160 MeV resemble have noted thaK™ and K° condensation are second order
those of the RMF model for GM1 set antli(n) phase transitions for all values bfc(ng) in our calculation.
=—160 MeV. However, antikaon condensation in the latterFrom Fig. 3, we find pressure increases with energy density
case was a first order phase transition. even after the onset of antikaon condensation. The appear-
BesidesA hyperon formation, we also consider the role ance ofK™ condensate makes equations of state softer in all
of other hyperons, such &° and= ~, on antikaon conden- cases. The kinks at higher densities correspont %aon-
sation. In Fig. 2, we note that negatively charged hyper-  densation which further softens the EoS. Also, the softness in
ons start populating the system at Zgd soon after the the EoS is very sensitive to antikaon optical potential depth.
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3 FIG. 4. The compact star mass sequences are plotted with cen-
¢ (MeVim”) tral energy density for the Groningen set and antikaon optical po-
tential depth olUx(ngy) =—120, —140,—160, and—180 MeV. The
star masses af, p, A, and lepton matter witik = andK° conden-
sates are shown.

FIG. 3. The equation of state, pressitess energy density,
for the Groningen set. The results are forp, and lepton matter
(dotted ling; n, p, A, and lepton mattefdash-dotted ling andn, p,
A, and lepton matter includink§ ~ andK® condensatesolid lineg
calculated with antikaon optical potential depth at normal nuclealowering in the limiting masses of neutron stars that too at-
matter density oty (ng) =—120, —140, —160, and—180 MeV. tained at much earlier central densities as is evident from

Table IV. The maximum mass of the star varies from
The stronger the attractive antikaon interaction, the softer thd.69M™¢ [for Ui(ng)=—120 MeV] to 1.49M¢ ([for
corresponding EoS. Uk(ng) = —180 MeV] because strong attractive antikaon in-

The results of static structures of spherically symmetricteraction in medium produces more softening in the EoS. For

neutron stars calculated using Tolman-Oppenheimer-Volkoffy, p, A, lepton, andK condensate matter compositidf,”
(TOV) equationd1] and the above mentioned equations of condensation thresholds occur well inside the maximum
state are now presented here. We have used the results @hss stars for all values ddi(ny). So the star is mainly

Baym, Pethick and Sutherlaifi7] to describe the crust of 8 composed of nucleong, hyperons, an& ~ condensate. On
compact star composed of leptons and nuclei for the lo —

0 . o .
density f15<0.001 fr %) EoS. In the mid-density regime “he other hand* condensation along witk~ condensation

(0.001=n5<0.08 fm 3) the results of Negele and Vautherin might be a possibility in maximum mass neutron stars for

[58] are taken into account. Above this density, an EoS callYk(No)|=180 MeV.

culated in the DDRH model has been adopted. The maxi- We also inspect the effect & hyperons on the compact
mum neutron star masseM (,,,/M ) and their central den- star mass sequence. Already we have dlscu_ssed that the ap-
sities (Ugen= Ncent/No) for various compositions of matter pearance oE ~ hyperons prevents the onsettofcondensa-

are listed in Table IV. The values recorded within parenthetion for Ux(ng) = —120 MeV. From Table IV, we find that
ses correspond to the calculations includifighyperons in - no K condensation occurs inside the limiting mass neutron
addition toA hyperons. The maximum mass of the nucleonstars for|Ui(ng)|< 140 MeV. For these values &fi(n,),

only star is 2.31Bl . The inclusion ofA hyperons softens  the maximum star mass is the same as that of the case with-
the EoS, lowering this value to 1.708; . Because of further oyt any antikaon condensate. On the other hindconden-
soften!ng due to the inclusion @& hyperons the_maX|mum sate is formed inside maximum mass stars [floi(no)|
mass is reduced to a value of 1.829. The static neutron  _ 154 \ey, hutk® condensation in neutron stars is ruled
star sequences representing the stellllar madsdo .apd th_e out for all values ofUx(ng) except for antikaon potential
corresponding central energy densitieg @re exh|_b|ted in depth of —180 MeV. For|Ux(no)|=160 MeV, we observe
Fig. 4 forn, p, A, and lepton matter with~ andK® con-  there is hardly any change in the maximum masses of neu-
densates and different values 0k(no). The softening in  tron stars compared with the cases excludBdyperons.

the EoS due to the presencekotondensates leads to further Already we have noted in the discussion of Fig. 2 that the

065801-9



S. BANIK AND D. BANDYOPADHYAY PHYSICAL REVIEW C 66, 065801 (2002

250

Groningen
U ¢ =-160MeV

200

~ 150
o ®
o =
Y ——
> =
V
2
* 100
50
9 10 11 12 13 14 15
0 Radius (km)
0 500 1000 1500

FIG. 6. The mass-radius relationship for compact star sequences
for n, p, A, and lepton matter witi = andK° condensates for the
. — va Groningen set and antikaon optical potential depthUgf(ng)
FIG. 5. The equation of state far, p, A, =, lepton, andK . ’
d P P =—120, —140, —160, and—180 MeV. The mass-radius relation-

matter(solid ling) andn, p, A, lepton, and< matter(dashed lines hip for the compact star sequence for hyperon matter inclugding
calculated with the Groningen set and antikaon optical pOtent'anndensate in the RMF model calculatigef. [9]) is also shown
depth at normal nuclear matter densitylg(ny) = —160 MeV. ' '

& (MeV fm®)

. —_ L . Table | and antikaon optical potential depth at normal

denslty of theE hypertjn diminishes with the appearance . clear matter densitYic(ng) = — 160 MeV. For the Bonn
of K cor)densate fofUi(no)|= 160 MeV. Now we ShOW, A set, o-nucleon andv-nucleon couplings are density depen-
the Squatlons of state for neutron star .mat.ter with and Wlthaent, whereag-nucleon coupling is a constant one. Here we
out = hyperons folUx(no) = —160 MeV in Fig. 5. The solid 54,4y the EoS and structure of neutron stars. Unlike the situ-
and:iashed lines represent neutron star matter with and withgion with the Groningen set, antikaon condensation in this
out = hyperons, respectively. The EoS becomes softer in th@age is a first order phase transition which is governed by
presence oE ~ hyperons, but there is no difference betweengipps phase rules and global conservation laws as given by
thg equatlons of state Jus_t after the qnselt(ofcondensanon. Egs. (35)—(39). The EoS for nucleons-only matter with and
This feature is reflected in the maximum masses of neutroithout K ~ condensate are denoted by dotted and solid lines
stars, as is evident from Table IV. o and those ofn, p, and A matter are shown by solid and

In Fig. 6, we draw the mass-radius relationship @op,  gashed lines in Fig. 7, respectively. For nucleons-only mat-
and A, lepton matter with and withol condensate in the ter, antikaon condensation occurs at energy density
DDRH model using the Groningen set and different antikaorgg7.6 MeVfm 3. And the phase transition is over at
optical potential depths and compare it with our previous570.3 MeV fm 3. Those two points give the extent of the
result for hyperonic matter includin~ condensate calcu- mixed phase. We have a pure hadronic phase below the
lated in the RMF modef9] using GM1 model andJi(ng)  lower boundary and an antikaon condensed phase above the
=—160 MeV. The filled circles correspond to the maximumupper boundary. On the other hand, the lower and upper
masses of compact stars. In case of Kaaondensate, the boundaries of the first order phase transitiorkto conden-
maximum mass star has a radius 11.54 km. Bq(n,)  sate inn, p, and A matter forR,,=0.49 andR,, =0.4911
=—120 MeV, the maximum mass star has a radius 11.76écase ] are shifted to higher energy densities 415.0 and
km, whereas it is 11.39 km fddi(ny) = —180 MeV in the  613.2 MeV fm 3, respectively, because of the early appear-
DDRH model. The smaller radius in the latter case may beance ofA hyperons. We find that the effective nucleon mass
attributed to more softening in the EoS due to strong attracbecomes negative im, p, andA matter with and withoukK ™
tive antikaon potential. The curve corresponding to the RMFcondensate, respectively, at Gg0and 6.55,, where ng
calculation[9] has the smallest radius of 10.9 km among all=0.159 fm 3. We also perform calculations for, p, and A
the cases considered here. matter with and withoutK™ condensate using,,=0.49

We also investigateK ™ condensation in nucleons-only andR,,=0.553(case I). In this caseK™ condensation be-
andn, p, and A matter using the Bonn A set as given by gins at 397.6 MeVfm?® and the phase transition ends at
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1000 V. SUMMARY AND CONCLUSIONS
Bonn A N
U  =-160 MeV . .
ApE i We. _ have studied.K* and _K‘? condeqsation in
npKey . ,B—equ|l|b_rated hype_romc matter wnhln a density dependent
——— npAe ¢ hadron field theoretlca! model.' In this mode!, baryon-baryon
npA Ke i N and (antijkaon-baryon interactions are mediated by the ex-
. R,,=0.553 change ofo, o, p and § mesons. Density dependent meson-
N baryon coupling constants are obtained from microscopic

Dirac-Brueckner calculations using Groningen and Bonn A
nucleon-nucleon potentials. On the other hand, we have con-

P (MeV fm")
i
.
()
T

/ sidered constant mesdant)kaon couplings in this calcula-
W tion.
,/ , For the Groningen set and the values of antikaon optical
7, potential Ux(ng) = —120 to —180 MeV, bothK~ and K°
/'R, ,=0.4911 condensation are found to be second order phase transitions.

The early appearance of hyperons delayi? condensation
to a higher density for all values &fx(ny) considered here.

With further inclusion of 2 hyperons,K~ as well asK®
condensation do not occur at all fidi|(ny) <120 MeV,

_ wherea condensate appears after being delaye@Hhbyy-
0 500 1000 1500 perons forlUi]|(ny)=140 MeV. It is interesting to note that
as soon a¥~ condensate appears in the system, the density
of £~ drops. It is found that antikaon condensation is not
FIG. 7. The equation of state for, p, and lepton mattefsolid only sensitivg to the equation of state but also to antikaon
line) andn, p, lepton, and<~ matter(dotted ling calculated with ~ optical potential depth.
the Groningen set and antikaon optical potential depth at normal The equations of state for different neutron star matter
nuclear matter density ollic(no)=—160 MeV. The equation of .o mpositions including< condensate have been studied in
state forn, p, and A matter with and withouK = condensate for o HpRH model. The appearance of antikaon condensation
different values oR,, are also plotted. makes the corresponding EoS softer. This softening leads to
588.4 MeV fmi 3. Here A hyperons appear in the mixed the reduction m_dmax(ljrr;]um massgifof neutron sta_rg for d]:ffer—
phase. We note that the EoSs with and withkiat conden- €Nt cases considered here. For different compositions of neu-
sate for case Il are stiffer compared with those of case |, ThiffOn star matter, it is observed thit™ condensation may
may be attributed to the stronger repulsion due to the largepccur in maximum mass stars but the appearanck ofs
value ofR,,, in case Il. For case Il, we also get a negativeruled out except fofUx(ng)|=180 MeV. The neutron star
effective nucleon mass in, p, andA matter with and with-  with the smallest maximum mass and radius is obtained for
outK™ condensate at 6.3 and 6.60, respectively. It fol-  Uy(ng)=—180 MeV in the DDRH model with the Gronin-
lows from the structure calculation using TOV equations thagen set. We also studied the structure of neutron stars for
the maximum masses of nucleons-only stars with and withnucleons-only matter with and witholt™ condensate in the
out K™ condensate for the Bonn A set are M5 and  DDRH model using the Bonn A set. In this case, the EoS
2.3M, having central densities 5.64 and 6.841, respec- including K~ condensate results in a neutron star having
tively. In this case, we find the radii for neutron stars with 3dius<10 km.
and W'thOUtK condensate are_10.88 km and 9.91 km! '€~ We have compared the results of the DDRH model with
spectively. These values of maximum masses and radii in thﬁwose of the RMF model with the GM1 sga]. The qualita-
Bonn A set are smaller than those of the Groningen set. Fqﬁve agreement between the results of these two models is

n, p, and A matter with and withouk ™ condensate in both o4 “r - e it was argued that many body correlations ma
case | and case Il we find that the effective nucleon masg ) ' 9 y y y

becomes negative before the maximum masses are reachfﬁvle nt Oan'ilrI](aon (t:ondetr;]satl?n q to focctl_Jkr in neu(tjron styars
This feature was earlier found by others for p, and A 12. On the contrary, the study of antikaon condensation

matter without antikaon condensd@6]. Because of the be- N the DDRH model with density dependent meson-baryon
havior of the parametrization of the couplings in the high€UPlings, which take into account many body correlations,
density regime for the Bonn A set, the repulsion duewto shows that it is a possibility in neutron stars. In this calcula-
field becomes larger than the attraction effield. Conse- tion, we have treated mesdant)kaon couplings as con-
quently, the EoS in the Bonn A set is stiffer than that of thestant. In principle, one may consider density dependent
Groningen set. A close inspection of the parametrization ofnesontantjkaon couplings. This will introduce an addi-
couplings in the Bonn A set has been already suggested iional rearrangement term in the antikaon sector. It will be
Ref. [31]. reported in a future publication.

e (MeV fm*)
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