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Dispersion relation analysis of neutral pion photoproduction and electroproduction at threshold

S. S. KamaloV, L. Tiator, and D. Drechsel
Institut fur Kernphysik, UniversitaMainz, D-55099 Mainz, Germany

R. A. Arndt, C. Bennhold, I. I. Strakovsky, and R. L. Workman
Center for Nuclear Studies, Department of Physics, The George Washington University, Washington D.C. 20052
(Received 12 July 2002; published 30 December 2002

Neutral pion photoproduction and electroproduction at threshold is analyzed in the framework of dispersion
relations. For this purpose, we evaluate the real threshold amplitudes in terms of Born contributions and
dispersion integrals determined by the imaginary parts of the multipoles of the unitary isobar(Madel)
and the phenomenological partial-wave analySi&8ID). The results show considerable cancellations between
Born terms and resonance contributions. Good agreement with the data is found for photoproduction. While
our dispersion analysis suggests considerable discrepancies for electroproduction, the present state of the
experimental multipole analysis at fini@? does not permit drawing conclusions at this time.
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I. INTRODUCTION scalar pion-nucleon coupling are identical. While the result
of the old LET was essentially equivalent to the use of
Electroproduction and photoproduction of neutral pionspseudovector coupling at threshold, the value of the multi-
near threshold have been a topic of many experimental angole at the pole position corresponds to pseudoscalar cou-
theoretical investigations over the past decade. Triggered byling. As a result the Born term to be used in dispersion
surprising results obtained at Sacldy, the Mainz[2] and  theory isEy+(pole)= —7.9x10"3/m_, and thus the disper-
Saskatoor[3] groups established that a formerly believedsjon integrals over the excited states have to cancel about
low-energy theoreniLET) [4,5] for Swave photoproduction  80% of the pole term in order to describe the data.
was at variance with nature. While the LET predicted a |n Ref.[10], the coupled-integral equations were solved
thresholdS-wave multipoleEy: = —2.4x 10 3/m,, the ex-  using the method of Omnes and Mushkashéuiti]. On the
periment yieldedEq+~—1.3x10 %/m_. The discrepancy condition that the complex phases of the multipoles are
between the theorem and the experimental data was finallynown and with given assumptions for their high-energy be-
explained by Bernardt al.[6] who showed that loop correc- havior, this method allows one to find unique solutions. In
tions provided nonanalytical terms in the pion massThe  practice, however, the phases are known only in the energy
flaw of the low-energy theorem was therefore the assumptioregion below the two-pion threshold due to the Watson theo-
that the amplitudes would be an analytical function in therem[12]. Extending these calculations to energies above the
pion massu, which could be expanded in a Taylor series insecond resonance region, which coincides with the onset of
the soft-pion limit. In the following years, these calculations two-pion production, requires modeling the phases by func-
were considerably refined by evaluating tBevave ampli-  tions which depend on the pion-nucleon phase shifts and
tude Eq+ to orderp* in the chiral expansion, and the three inelasticity parameters. The ansatz for the functional depen-
P-wave amplitudesE,+, M+, andM;-) up to orderp®. dence is based on unitarity but by no means unique, and in
While there appear three low-energy constants to that ordeprinciple has to be determined by a fit to the data. It is there-
two combinations ofP-wave amplitudes were found to be fore the aim of the present work to extend the energy range
independent of these constants. Further work has extended the dispersion analysis by use of the unitary isobar model
this approach to virtual photoig]. [13] (called MAID in the following as an input for the
Recently, a good description af® photoproduction and imaginary parts of the multipole amplitudes. At the same
electroproduction in the threshold region was also foundime, we want to compare the results obtained by use of
within a meson-exchange dynamical mofi&9]. In particu-  MAID with those with the SAID multipoled14,26. This
lar, the largest contributions to the final-state interaction wereallows us to present a qualitative “error band” for the dis-
shown to come from one-loop charge-exchange rescatterinpersion analysis, which often has been asked for.
which lead to a to good description of tBevave multipoles. Our paper is organized as follows. In Sec. Il, we briefly
The large reduction of th&wave threshold amplitude recall the ingredients of dispersion relations at fixedhe
was independently obtained using fixedispersion relations actual calculations are described in Sec. Ill. In particular, we
[10]. In this approach, the Born terms have to be evaluated axtend the energy range of the MAID model by including the
the nucleon pole where the pseudovector and the pseudeentributions from allS, P-, D-, and F-wave resonances
with four-star PDG statu§25]. As a particularly sensitive
test of the extended model, we present predictions of our
*Permanent address: Laboratory of Theoretical Physics, JINRalculation for threshold production of neutral pions in Sec.
Dubna, 141980 Moscow Region, Russia. IV.

0556-2813/2002/66)/0652068)/$20.00 66 065206-1 ©2002 The American Physical Society



S. S. KAMALQV et al.

II. DISPERSION RELATIONS FOR PION
ELECTROPRODUCTION

In the present work, we will use fixeddispersion rela-

tions (DR) to construct the pion electroproduction multipoles

(or partial waves .M,
ReM,(W,Q%)= M %(W,Q?)

P o
+_
™ Wihr.

Im M (W', Q2
W (W', Q%)
W' —W

1
+—

dW' > K, 5(W,W',Q3
= % A Q?

XIm Mg(W',Q?), 1)

wherea andg are the set of quantum numbevsjs the total
c.m. energy of therN system, andQ?=k?— w?>0 is the
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While the fixedt DR in the form of Eq.(1) are uniquely
defined, the separation into the principal value and regular
integral contributions is not unique and depends on the
choice of the kinematical factors in E(). Other kinemati-
cal factors, i.e., as used in Ref4.0,17,1§, will change the
relative contributions of these two integrals and the expres-
sions for the kernels. For example, if we introduce a new set
of the multipoles via the relatiod1/,(W) = M ,(W)/f (W)

with a certain factorf ,(W), we find the following relation
between the new and old kernels:

W) W)= (W)
’CQB(W,W )+ 5aﬁm.

3
The different expressions for the kernels given in the litera-

ture can be easily checked and compared by use of these
relations. For example, we find that @ =0, the kernels

fo(W)

KWW )=

four-momentum squared of the virtual photon with three-from Refs.[15] and[17] lead to the same result.

momentumk and energyw. The first term in Eq.(1),

/\~/lz°'e, comprises the explicitly known contributions from

the pole diagrams with pseudoscalaNN coupling. The

second and third terms are the principal value and regula

For future analysis, it is convenient to rewrite the DR of
Eq. (1) in terms of the CGLN multipoles M,
=(Ei= . M: L+ /o),

Re M, (W) = M POle(w) + M Diag(w)

parts of the dispersion integrals which contain the kernels

I~Ca3 and the imaginary parts of the multipoles. Both integrals 1 (e~ ) , ,

run only over the physical region starting at threshalg, T W dw g Kap(W, W) Im Mg(W'),
thr. @

=m+ u, wherem and p are the nucleon and pion masses,

respectively.

4

The detailed expressions for the kernels and the numerical
recipes for their numerical computation are given in RefWhere

[15] and in the Appendix. The multipolesM,,

=(7c"|t,/\~/l|:,z|i/w) are related to the standard Chew-

Goldberger-Low-Nambu (CGLN) [16] multipoles M,
=(E|+,M,~,L,+) by the following equations:

- o JELIE,

~ B VE 1€ 1 KPW

Ei1-=—87
I+1, (qk)|+1

v g VELIEW
(qk'

|+

I+1,—>

- JELIE, -

|+ =0T ——

(qk)'k2 I+
2

with & ()=E1(2)+m, whereE, , denotes the nucleon c.m.
energy in the initialfinal) state,q=|q| andk= k| the abso-

MW (W)

MW= [

™ J Wip, (W' =W)r (W)
1 0

= AWK (W, W) Im M (W),
™ Wihr.

(5

The kinematical factor ,(W) is defind by Eq.(2) with the
relation M (W)=r,(W)M,(W), and K,z(W,W")

=K ap(W, W )1 5(W")/1 ,(W). One of the advantages of
such a representation is that each term in @gis individu-

ally independent of the choice for the kinematical faatgr
This statement can be easily proved by use of @). Fur-
ther details about the construction of the kernels are given in
the Appendix.

IIl. CALCULATIONS OF THE DISPERSION INTEGRALS

One of the methods widely used to calculate the disper-
sion integrals in Eq(1) or Egs.(4) and (5) is based on the
Watson theorenj12], stating that the phase of pion photo-
production and electroproduction is equal to the phase shift
of pion-nucleon scatteringg,(W), below the two-pion
threshold. Below this threshold, we can therefore use the

lute values of the c.m. pion and photon momenta, respedellowing relation between the real and imaginary parts of

tively, andl the pion orbital momentum.

the amplitude:
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TABLE |. Model parameters of the nucleon resonances in the proton chafrestsance maslg,
width I'g, pion branching ratigd,;) and corresponding resonanee background values of the imaginary
parts of the electric {1g) and magnetic multipolest,,) at resonancéin units of 10 3/m_.) obtained
with the MAID2002 and SAIDSMO02) solutions. The partial branching ratios for t8g(1535) are assumed
to be 3,=0.40, 8,,=0.50, andg,,=0.10.

MAID SAID
N* Mg MeV] T'i[MeV] B. Me My Me My
P,y(1232) 1232 130 1.0 —081 3685 —054  36.01
P1,(1440) 1440 350 0.70 2.75 2.74
D15(1520) 1520 130 0.60 4.56 1.97 5.31 2.18
S,4(1535) 1520 80 0.40 3.83 3.77

S31(1620) 1620 150 025 —1.28 -0.79

S,4(1650) 1690 100 0.85 2.45 3.81

D,5(1675) 1675 150 0.45 0.10 0.32 0.03 0.25
F.,5(1680) 1680 135 0.70 1.77 1.23 1.80 1.20
D5(1700) 1740 450 0.15 —3.54 0.25 -2.83 0.72
P.14(1720) 1720 250 0.20 055 —0.07 0.58 0.02
F25(1905) 1905 350 0.10 0.45 0.32 0.40 0.29
P41(1910) 1910 200 0.25 0.52 0.83
F47(1950) 1950 300 0.20 0.02 1.45 0.04 1.36

Im M (W, Q%) =ReM_(W,Q?)tans,(W). (6) where the pion-nucleon scattering amplitu@é, = (1/2i)
X[ n,exp(d8,)—1]is given in terms of therN phase shifts

If we further make an assumption about the high-energy bed« and the inelasticity parameterg, , taken from the analy-
havior of the multipole phases, we obtain a system ofiS Of the SAID group24]. In accordance with Ref13] the
coupled integral equations for Rel,(W). This is the stan- backgroupq contribution dgpené:is on five parameters: The
dard method to apply fixet-dispersion relations to pion PV-PS mixing parametek, in V=°'" [see Eq(12) of Ref.
photoproduction at threshold and in thé1232) resonance L[13]] and four coupling constants . Note that in our
region, which was successfully used by many authorfresent work, we dp not include hadronic form factors at the
[10,17-19. The reliability of this method at low energies @®NN andpNN vertices. o _
(W< 1400 MeV) is mainly based on the finding that E§) Following Rgf.[l_?»] the resonance contributions are given
can be applied to the importaRt; multipole, dominated by 1" terms of Breit-Wigner amplitudes,
the A(1232) resonance contribution, with good accuracy up
to W=1600 MeV. fL,ROWTRMRf (W) |
Another method to calculate the dispersion integrals is M a(W,Q%)=AZ(Q?) VMZ—WZ—iM T e'’r
based on isobaric moddl20—23 which allow extending the R RER
use of fixedt DR to higher energies. Within these models the , o .
imaginary parts of the pion photoproduction and electropro¥Vhere f-g is the usual Breit-Wigner factor describing the

duction multipoles are expressed in terms of background€cay of a resonandewith total width I'g(W) and physical
(M®) and resonanceNR) contributions massMg. The main parameters in the resonance contribu-

tions are the strengths of the electromagnetic transitions de-

ImMa(W,Qz)zImMg(W,QZ)HmME(W,QZ). @) scribed by the reduced amplitudefﬁ,‘?(Qz), which have to
be extracted from the analysis of the experimental data. In

) . the present work, we extend the previously developed MAID
In the present work, both parts will be modeled similar to the,, 4e| by including contributions from a., P-, D-, and

recently developed unitary isobar modal3] MAID. The £\ ave resonances with four-star PDG stdi2s]. The ad-
imaginary parts from the background appear due to finalyition of new resonances requires performing a new fit. For

state interaction effects for the pions produced by nonresgy,ig purpose, we use the SAID data b#26] for pion pho-
nant mechanisms and contain contributions from both th"?oproduction,in the energy randy,, < W< 2000 MeV with

B ; - ;
Born terms ¥,°™) with an energy-dependent mixing of 15700 data points. The resonance parameters and values of

pseudovector-pseudoscaldPV-P§ 7NN coupling and m A4 at the resonance position obtained from the best fit are

(€)

t-channel vector-meson exchang&; (), listed in Table I. We note that in most cases the background
contributions to the imaginary parts are less than 10% at the
MB(W,Q%)=[VE°(W,Q?)+ V2 (W,Q)][1 resonance positions. The only exceptions are the channels

with the S3;(1620), S;1(1650), andP3;(1910) resonances,

+ITon(W)], (8 for which we find ImM B=2.50, 0.85, and- 1.45, respec-
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tively, in comparison to Im\ R_ _ 1.28, 2.45, and 0.52. TABLE II. Individual contributions of theD and F multipoles
Here and in the following, all multipoles are quoted in units (in units of 10°%/m,..) to the multipoleEg" (=°p) at threshold.
of 107%/m,_ . In the case of the overlapping resonances in
the Sy; proton channel, we find IgE*?(1535)=3.32 Eo- Mz Epe Mpe Bs- My Ege Mg,
+0.14+0.37 and IME"?(1650)=0.43+1.17+0.85, \MAID 016 —-0.16 0.06 0.04 0.34—-037 —0.01 0.34
where the first and second terms are the contributions frolgaip 028 —051 005 0.07 0.37-051 —002 0.40
the first and secon8,; resonance, respectively, and the last
terms come from the background contributions.

Alternatively, we calculate the dispersion integrals usin
the solution SMO02 of the SAID multipole analydis4]| (see
Table I). Concerning the integration up to infinity, we assume
that the multipoles have an asymptotic behavior [iRé&/ Tor
W=2300 MeV. This is the minimal power providing con-
vergence for the GDH sum ru[27]. In the threshold region,
we introduce the pion mass difference by assuming that th
imaginary part of theEy, multipoles is proportional to the
7 momentum beloww=1090 MeV. This assumption is
based on the fact that near threshold the main contribution t
the imaginary part comes from the coupling with thén
channel[9].

Y%ions from the coupling to th®- andF-wave multipoles are
presented in Table Il. Taken separately, they are not negli-
gible, but in the sum they nearly cancel and lead to a total
value very close to the extracted value of Ré¢RS],
EN(p7®) =—1.33+0.11.

Figure 1 compares the energy dependence oEtheam-
Slitude, as obtained, on the one hand, directly from the
MAID and SAID solutions(dash-dotted curvesind, on the
other hand, by use of the dispersion relations, @&g. with
M as input taken from the MAID and SAID solutions
(solid curves. We clearly see the Wigner cusp effect appear-
ing in the DR solutions due to the infinite derivative of
ImE,, (dashed curvesat the charged pion threshold. In the
IV. RESULTS AND DISCUSSIONS MAID solution (dash-dotted curve the cusp effect is the
result of the strong coupling to the™ channel taken into
account by thé<-matrix approximatiorf9]. The SAID solu-

The threshold region has traditionally posed a problem t@ijon does not include this effect.
the analysis of7® photoproduction within a dispersion-  Finally, Table Ill summarizes our results for the threshold
relation approacli17]. This is due mainly to considerable S andP-wave multipoles and compares them to the results
cancellations in the dispersion integrals of E@B.and (5). of the recent experimental analysis of RE28]. For the
As shown in Ref.[10], by solving the integral equations P-wave multipoles we list the values of the following linear
using the Watson theorem, the real part of &g, (7°p) combinations, P;=3E;, +M;,—M;_,P,=3E;, —M,
threshold multipole obtains surprisingly large contributions+M,_, andP;=2M;,+M;_. In general, the DR results
from the imaginary parts of higher multipoles which peak atare consistent with the corresponding MAID or SAID solu-
much larger energies. As a result, the high-energy regiofions and in good agreement with the results of ChPT and the
provides sufficiently large contributions to nearly cancel theexperimental values of Ref28]. A large discrepancy re-
nucleon pole term with pseudoscalaNN coupling, thus  mains for theP; amplitude, where the theoretical predictions
leading to agreement with the experimental threshold valuesyith and without the use of DR are considerably smaller than

Similar results are obtained in our present work usingthe experimental value. This may hint at problems in the
fixed4 DR and imaginary parts of the multipoles taken from
the MAID model and from the results of the SAID multipole 2
analysis,

A. 7° photoproduction at threshold

T LN B L L B 2 LA DL L B
E,, (M%)  MADD L E,, (m%) SAD
EN(pm®) = —7.89+ 2.84+ 4.09- 0.48— 0.25+ 0.40 g

=-1.29 DRMAID), (10)

ESY (pm®) = —7.89+2.83+4.23-0.51-0.14+0.13
=-1.35 DRSAID), (12)

where the contributions on the right-hand side are presentec s 150 155 160 145 150 155 160
in accordance with Eq4), in the following order: the pole E,{MeV) E,{MeV)

term, the dlagpndfw , the kern_el termM“ ' le  E1s FIG. 1. TheEy, multipole for the reactionyp— #%p. The

and the Com.blned kernel ‘:.O”t”bUt'onS of thg higberand dashed and dash-dotted curves show the imaginary and real parts,
F—waye mult|poles. Accordmg t.o Eq5), the d|agoano+ respectively, as obtained from the MAID20(&ft pane)} and SAID
contribution can be further divided into the principal-value go|ytion SM02 with a modified imaginary part as explained in the
integral and the regular integral, which contribute 1.23text (right pane). The solid curves are the predictions for the real
+1.61 using MAID and 1.3% 1.52 using SAID solutions. parts obtained with the dispersion relations. The data points are the
As discussed above, this sum does not depend on the choigssult of the multipole analyses from RE29] (A), Ref.[3] (@),

for the kinematical factor ,(W). The individual contribu- and Ref.[28] (O).
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TABLE lll. Eq. (in units of 10%/m_+) andP,, P,, andP; (in units of 103q/mi+) for photoproduc-
tion at threshold. The values extracted from the data are taken from the analysis [28Ref.

Solutions Eo+ P P, Py
MAID2002 —-1.23 9.07 —10.68 7.07
DR(MAID) —-1.29 9.64 —10.29 8.22
SAID SM02 8.79 —11.23 9.60
DR(SAID) —-1.35 9.70 —10.46 8.91
Analysis -1.33+0.11 9.47:0.33 —9.46+0.39 11.480.41

description of theM;_ multipole which appears more pro-
nounced inP3 than inP; andP,.

B. #° electroproduction at threshold

Dispersion relations for pion electroproduction are more
involved due to the more complicated structure of the kernel

Kaﬁ(W,W’,Qz). In addition, the transverse multipoles of

the virtual photons are also coupled with the longitudina
ones via the kernels. Moreover, we have very limited infor-

mation about the longitudinglCoulomb resonance excita-
tions at finiteQ?. In the following, we present first calcula-
tions for threshold#® electroproduction using dispersion
relations with the dispersion integrals determined by th
MAID model. The longitudinal excitation of thé (1232)

and P44(1440) resonances are described as shown in Re

[13]. For the other resonances we use the anﬁ?z

==+ (kl2w)(2]+ 1)|_|th as motivated by the pseudothres?hold

relation [30]. These assumptions lead to the following
threshold values for theSwave multipoles at Q?
=0.1 (GeVk)?:

EN(p70) = — 3.69+ 2.46+ 2.96- 0.08=1.55 DRMAID ),
(12

LI (p7®) = —3.76+0.54+1.82+0.01

—1.41 DRMAID).

13

The terms on the right-hand side correspond, in that order, tcy 5 |
the contributions of the pole term, the diagonal term, the &

coupling to theM ., and the coupling to the higher multi-

poles. As in the case of real photons, we find that the larges™

contributions come from the diagonal term and tkg .

multipole, which nearly cancel the large contribution of the 4|

pole term.

The threshold behavior of the,, andL,, multipoles at
Q?=0.1 (GeVk)? is shown in Fig. 2. We point out the
much smaller cusp effect in thiey, , as compared to the
Eo. multipole, due to the smaller imaginary part bof. .

e

Eo. multipole. For example, a@?=0.1 (GeVk)? the dif-
ferences in thé waves used by various groups lead to quite
different threshold values for thEy, , namely 1.96:0.33

[32], 2.28+0.36[9], and 0.58-0.18[31]. Clearly, these dif-
ferences in the analyses must be resolved before a compari-

son with theoretical predictions can be meaningful. Note that

we find significant dispersion corrections for both multipoles

jat finite Q2.

Figure 3 shows th&)? dependence for sever&wave
multipoles andP-wave multipole combinations and com-
pares our results with the results of the analyses of Refs.
[31,32. A number of interesting features emerge. In general,
the DR results for the transverse multipoles are consistent
with the corresponding MAID solution. For tHe,, multi-

Pole and the longitudinaP-wave combination$, and P,
strong dispersion corrections appear at Q& Our disper-
sion results are in agreement with the results from chiral
perturbation theoryChPT) below Q?<0.05(GeVk)? in the
case of thee,, multipole and theP?; combination but differ
significantly for theL,, multipole and the amplitude§§3
=(P3+P%)/2, P,=4L,, +L, , and Ps=L, —2L,,.
This may reflect the fact that some of the ChPT low-energy
constants where fitted to electroproduction threshold data
while the MAID solutions are constrained by data in the
resonance sector. Just as in Fig. 2, the experimental points

4

T
Q2=0.1 ]

5
2_

4 6 4 B
AW (MeV) AW (MeV)

FIG. 2. TheE,, (left pane) andL,, (right pane] multipoles

The fixedt DR results are in good agreement with the results;,, ep—e 7% at Q?=0.1 (GeVk)? as a function ofAW=W

of the analysis of Ref.32]. On the other hand, the real parts
of the Ey, and Ly, multipoles obtained from the MAID
solution, are closer to the results of Rgf,33]. However, as
discussed in Ref$9] and[31], the extracted results for ti®

—W,,, . The dashed and dash-dotted curves are the imaginary and
real parts, respectively, for the the MAID2002 solution. The solid
curves are the predictions for the real parts obtained with the dis-
persion relations. The dotted curves show the results of GART

waves at finiteQ? strongly depend on the assumptions usedThe data points are the result of the analyses from B&j. (O),

for the P-wave contributions. This is especially true for the

Ref.[32] (A), and Ref[9] (@).
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asymmetry, i.e.,.S~—AP3;. Recent measuremen{28]
yield a negative value for the\P3; at Q>=0 and E,
=160 MeV, in rough agreement with ChPT results. How-
ever, both the MAID and the DR results are positive at the
photon point and become more positive for higher photon
virtualities. In contrast, the ChPT results remain negative.
Clearly, a measurement of this observable at filg)Xe is
highly desirable.

_8.00 0.05 0.10 0.15 0.20 _8.00 0.05 0.10 0.15 0.20

20 e . 600 . 3
% pz 7
v B V. CONCLUSION
~
'g: Threshold pion photoproduction and electroproduction
- have been calculated with fixeéddispersion relations. Unlike
o previous work for photoproduction following the method of
B o e e 0 Omnes anq Mushkashevili_, we have used the imaginary parts
} . . . 5 . . . of the muItlpole_s of the'unltary isobar model MAID a}nd the
= =] phenomenological partial-wave analysis SAID as input to
o S S NS R calculate the dispersion integrals.
§ ............. T § ! f& Unitarity, crossing symmetry, Lorentz invariance and
T ! P 1% O z gauge invariance are all fulfilled by the dispersion relations.
5_2 LT = -1 1 Especially crossing symmetry can only be partially fulfilled
ar [ % ae-2F 2 1 in model calculations, even field-theoretical lagrangians vio-
"8.(30 005 010 01 020 500 005 010 015 020 late crossing symmeiry \_Nhen energy-dependent _vv_idths for
Q? (GeV/c)? Q2 (GeV/c)? nucleon resonances are introduced. Rather than fitting to the

threshold data, we prefer to use dispersion relations whose
FIG. 3. TheS andP-wave multipolesEo. , Lo+, P1=3E1.  input are models fitted to data in the resonance region, where
My —Mio, Py=4Ly,+Li, Ps=Li—2Ly,, and P3;  more data is available.
=(P3+ P§)/2 for the reactiorep—e’7°p at threshold as a func- — £qr pion photoproduction we obtain very good agreement
tion of Q% The dash-dotted and solid curves are the MAID2002,yity the threshold multipoles obtained from experimental
solution and the prediction of dispersion relations, respectively. Th%nalyses. Both the cusp effect and pion-loop effects are well
dotted curves show the results of ChPT. The data points are the described. The differences between the MAID and SAID in-
EZ]U ItiOf the analyses from R¢82] (A), Ref.[31] (), and Ref. puts play only a minor role, and reveal the small systematic
(®). uncertainties in such a dispersion approach. We also find
good agreement with the results of ChPT &andP waves,
shown have to be understood as the result of different mOdebxcept for the quantit}P%— P% This discrepancy was al-
dependent analyses techniques. ready observed in the previous dispersion analysis of Han-
Finally, we present in Fig. 4 predictions for the quantity stein et al. [10] and relates to a very delicate cancellation
AP§3=(P§— P%)/Z which determines the sign of the beam among two largeP-wave amplitudes.

The situation for pion electroproduction reflects a larger

50— uncertainty, both in theory and experiment. Much less data
[ AP2 1 are available which leads to model dependencies in the ex-
__________ - . . .. 2 .
00 | PR 1 traction of the multipoles at finit€~. Since the electropro-
~ - T ; duction coincidence cross section cannot be completely sepa-
« " [ ] rated, a model independent analysis as in the
S ‘ . . . .
~ 50 . § photoproduction case is not yet possible, making any com-
¢ ; parison with theory difficult. We emphasize that our disper-
e o L ] sion theoretical calculation has the advantage that most of
wm 6 . ] the input for the fixed- dispersion relation comes from the
P P . magnetic excitation of thé& resonance which is very well
-0 ] known even for pion electroproduction. Future experiments
[ .. ] will hopefully remove the model dependencies in the extrac-
-100 b—— 1 S tion of the multipole amplitudes and allow an unambiguous
0.00 005 o010 015 020 comparison with the predictions from dispersion relations.
Q2 (GeV/c)
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for the hospitality extended during his visit. Ref.[15] and €' is an isospin factor, see EfL3). Note that
in our definition of thek!, matrix we included the factor
2W' arising fromds’'=2W’'dW'. On the other hand, the
Kl matrix can also be obtained from Ed50) and (51) of
In this Appendix we give some expressions for the kerneRef. [15], where itst dependence is given explicitly. For
defined by our Egsi4) and(5). In the following we essen- checking we used both ways and obtained identical results. It
tially use the notations of Ref15], and all further equation follows from Eq.(50) of Ref. [15] that thek ], matrix con-
numbers refer to that reference. The starting point is the distains a kinematical singularity at= u? arising from theA,
persion relatior(d.r) for the 6 (=1, ... ,6) parity conserv-  andA; invariant amplitudes. This singularity appears only in
ing helicity amplitudes=|” [given by Eq.(83) of Ref.[15]],  pion electroproduction and in this case we modify our dis-
persion relation by adding the subtraction term of E¢62)
o m EB W Fw and (102 of Ref.[15] to th_eIC!k matrix. _
ReF ! (W)=F/(Polow) + — Y m F( : P (W) As a last step, we derive the dispersion relation for our
mJwy, (W' —W)fI (W) standard CGLN multipoled;, from our Eq.(A1) by use of
Egs.(25) and(33) of Ref.[15], i.e.,

APPENDIX

1 (= =0
+= | dW X KR (WWHImFZ (W),
Winr. J' k

(A1) Mi.]zg NiJij' FiJ:; (NJ)HlMJJ' (A4)

whereJ=I_=+1 and| are the total spin and isospin, respec-

tively. The kinematical factorf? is connected with our where we skipped the isospin indéxas in Ref.[15]. The
r.(a={i,J}) by the relationf(W)=1/r ,(W). Since the final result for the CGLN multipoles is the d.r.,
singularity proportional to\(V' —W) ! is already contained

in the second term on the right-hand side of E4l), the

kernelK!}?" is regular in the physical region. From E@S7) ReM (W)= M PoIe(W)+E ” dW,|mMa(W')fa(W’)
and(58) of Ref.[15] it can be expressed as “ “ T Jwy,, (W' —W)r (W)
A dW' Y, K g(W,W)Im M g(W')
=11/ 1 +1 ’ - af ’ m B 1]
K wwr) = 5 [ axS, Wh o0 (W 0V 06 S
B (A5)

Sk T (W) (A2)

W)W =W)’ with a(B)={iJ}({kJ'}), the kinematical factor ,=1/f},
and the regular kernel

where the matrice¥/;; and W} only depend on Legendre

polynomials and their derivatives as given by E)) and _ _

(28), respectively, of Ref[15]. In accordance with E¢(55) K ap(W,W')=2W' D} (W,W') + > Ni“‘jf}"f, (W,W")

of Ref.[15] the absolute value of the argumerit=ax+b i’

can be larger than unity f@=W?>s’'=W’2, which allows

us to continue the partial wave expansion into the unphysical

region. As discussed in Refl5] such a generalization

should work for photon lab energies up to about 900 MeV. _
The matrixk |, can be expressed directly via tBg, and  The matrixD?), is defined by Eqs(87) and(88) of Ref.[15].

Cix matrices, given in terms of the matrickk in Egs.(42) In the case of real photons we have numerically compared

and (43) of Ref.[15], which project the helicity amplitudes this kernel with the kernel of Ref17] using our Eq(3), and

on the invariant amplitudes. In this case we get found that both kernels are identical.

X(NT) (A6)
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