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Asymptotic freedom for nonrelativistic confinement

David R. Harrington
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~Received 22 July 2002; published 23 December 2002!

Some aspects of asymptotic freedom are discussed in the context of a simple two-particle nonrelativistic
confining potential model. In this model, asymptotic freedom follows from the similarity of the free-particle
and bound state radial wave functions at small distances and for the same angular momentum and the same
large energy. This similarity, which can be understood using simple quantum mechanical arguments, can be
used to show that the exact response function approaches that obtained when final state interactions are
ignored. A method of calculating corrections to this limit is given, and explicit examples are given for the case
of a harmonic oscillator.
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I. INTRODUCTION

Asymptotic freedom was discovered to be a property
non-Abelian gauge theories nearly 30 years ago@1,2#, and
has been used to explain scaling in electroproduction@3#. A
version of asymptotic freedom also holds trivially in nonre
ativistic quantum mechanics since the Born series conve
more and more rapidly with increasing energy. In particu
final state interactions can be ignored in the response fu
tions for inclusive scattering from condensed matter syste
at large momentum transfer@4#. This result follows easily
from simple quantum mechanical arguments, although
calculation of corrections can be quite complicated@5#. The
case of confined systems is a bit more subtle, however, s
the particles in the final state are always in discrete exc
states of finite~possibly large! size, and thus never reall
free. The case of nonrelativistic confinement has been
cussed extensively, however, as a toy model for asympt
freedom and quark-hadron duality@6# in the structure func-
tion for electroproduction, where the production of res
nances at low energies and momentum transfers averag
the smooth scaling curve observed at large momentum tr
fers. This is now known to occur quite locally, essentially f
each resonance. An explanation in terms of a relativi
quark model has been given recently@7#, while Close and
Isgur @8# have used a simple nonrelativistic model to expla
one aspect of duality: how the square of a sum in the am
tude for production of resonances becomes approxima
the sum of squares required for duality. A similar nonrelat
istic model had been used earlier by Greenberg@9# to inves-
tigate the scaling limit in terms of the Bjorken scalin
variable.

In this paper we also use a two-body model to disc
nonrelativistic asymptotic freedom. Such a model provide
best an approximate description of mesons containing he
quarks@10,11#, but it is simple enough that some features
the large momentum transfer limit of the response funct
can be illustrated very concretely. In the context of t
model, asymptotic freedom follows because of a simple
lation between the radial wave functions describing bou
states in the confining potential and the spherical Be
functions that describe free particles of the same energy
angular momentum. Not only do these wave functions h
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the same shape for high enough energy and small eno
separation, their relative normalizations are such that a fo
of duality follows once one properly allows for the compa
son of a discrete sum with an integral.

The paper begins with the definition of the response fu
tions of the model, showing how they are related to integr
over the final state radial wave functions. Both the ex
case, where the final state wave functions are just the bo
state wave functions for the discrete final states, and the
proximate case using free-particle~plane-wave! wave func-
tions are considered. The close relation between the two
of wave functions for the same angular momentum, sim
large energies, and small radii are then described in Sec
for fairly general confining potentials, and the implicatio
of these results for local duality are discussed. A method
calculating corrections to this simple relation is also give
leading to a discussion of the conditions under wh
asymptotic freedom is a good approximation. The results
applied in Sec. IV to the case of the harmonic oscillat
where many of the expressions become simple analytic fu
tions. The results are summarized in Sec. V, which also c
tains suggestions for further work in this area.

II. STRUCTURE FUNCTIONS

We use the model of Ref.@8#, consisting of two particles
of equal massm and reduced massm5m/2 carrying charges
e1 ande2. This system is initially in its ground state in th
spherically symmetric confining potentialV(r ) and, after be-
ing hit by a ‘‘scalar photon,’’ transferring momentumq to
one of the particles, it makes the transition to an excited s
unr ,l ,m& with energyEnr ,l . The probability for this transi-
tion is proportional to the response or structure function

Fnr ,l ,m~q!5u^nr ,l ,mu@e1ei r•q/21e2e2 i r•q/2#u0,0,0&u2.
~1!

If the polarizationsm of the degenerate final states of a giv
nr and l are not measured, one needs only the sum

Fnr ,l~q!5 (
m52 l

l

Fnr ,l ,m~q!. ~2!
©2002 The American Physical Society05-1
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Using completeness it is easy to see that

(
nr ,l

Fnr ,l~q!5e1
21e2

212e1e2S~q!, ~3!

where

S~q!5^0,0,0uei r•qu0,0,0& ~4!

is the ground state form factor. Using standard manipu
tions, one can writeFnr ,l(q) in terms of the square of a
radial integral involving the bound state radial wave fun
tions unr ,l(r ):

Fnr ,l~q!5@e1
21e2

212e1e2~21! l #~2l 11!r nr ,l~q!2, ~5!

where

r nr ,l~q!5E
0

`

drunr ,l~r ! j l~qr/2!u0,0~r !, ~6!

with j l(x) a spherical Bessel function. The (21)l in 5 shows
that the interference terms will tend to cancel when state
adjacent values ofl are included in a sum@8#.

If the interaction of the two particles in the final state
completely ignored, as would follow from the assumption
asymptotic freedom, the final states can be labeled by ei
the relative momentumk of the two particles or its magni
tudek and the angular momentuml ,m. Both will be useful
below, so we define

F~k,q!5u^ku@e1ei r "q/21e2e2 i r•q/2#u0,0,0&u2 ~7!

and

Fl ,m~k,q!5u^k,l ,mu@e1ei r•q/21e2e2 i r•q/2#u0,0,0&u2. ~8!

With these definitions,

F~k,q!5e1
2f2~ uk2q/2u!1e2

2f2~ uk1q/2u!

12e1e2f~ uk2q/2u!f~ uk1q/2u!, ~9!

wheref(p) is the ground state momentum space wave fu
tion, which is large only whenp is less than 1/r 0, wherer 0
indicates the size of the ground state wave function, and

Fl~k,q!5 (
m52 l

l

Fl ,m~k,q!5@e1
21e2

212e1e2~21! l #

3~2l 11!r l~k,q!2, ~10!

with

r l~k,q!52E
0

`

dr ĵ l~kr ! j l~qr/2!u0,0~r !. ~11!

Here, to emphasize the similarity to the bound state case
have introduced the Ricatti-Bessel functionsĵ (x)5x j(x).
SummingFl(k,q) over l produces the same structure fun
tion obtained by integratingF(k,q) over all directions ofk:
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F~k,q!5(
l 50

`

Fl~k,q!5~k/2p!2E dVkF~k,q!. ~12!

The completeness relation now take the form

E
0

`

~dk/2p!F~k,q!5e1
21e2

212e1e2S~q!. ~13!

Several properties of the structure functions can be r
off from the expressions above. In the free case, the struc
function is large whenk'6q/2, and, for largeq, the inter-
ference term cannot be large. The corresponding result
Fl(k,q) can be seen in Eq.~11!, since here the two spherica
Bessel functions are exactly in phase only ifk'q/2, so that
r l(k,q) will be maximum here and begin to decrease sign
cantly whenuk2q/2ur 0>1, wherer 0 indicates the size of
the ground state wave function. Using Eq. 9, a simple cha
of variable in the integral over the direction ofk shows that,
in the largeq limit, F(k,q) is simply the ground state prob
ability distribution for the component ofk in the q direction
@12#. This means that, in this limit,F(k,q) depends only on
the scaling variablek2q/2'(k22q2/4)/q, which is the non-
relativistic version of Bjorken scaling@3#.

In the confinement case, the structure functionFnr ,l can
be large for largeq only if the oscillations of the radial wave
function unr ,l(r ) are in phase with those of the spheric

Bessel functionj l(qr/2), so that asymptotic freedom wil
hold only if these radial wave functions have a form simi
to that of ĵ (kr). In the following section this requiremen
will be studied in more detail and it will be shown that th
two radial wave functions have almost the same shapes
the same energy and angular momentum.

III. RADIAL WAVE FUNCTIONS

AssumingV(r )→0 smoothly asr→0, the bound state
radial wave function must have the same shape as the
particle radial wave functions for the samel and for high
enough energy and small enoughr since they satisfy ap-
proximately the same wave equation, and both vanishr
50. In this section we use the WKB approximation to d
cuss the normalization of the bound state radial wave fu
tion and show that the result obtained guarantees asymp
freedom.

In the WKB approximation, the radial wave function i
the classically allowed region is simply

unr ,l~r !'Nnr ,lcosF E
r 2

r

dr8knr ,l~r 8!2p/4G /Aknr ,l~r !,

~14!

where

knr ,l~r !5Aknr ,l
2 22mV~r !2@ l 1~1/2!#2/r 2 ~15!

is the classical radial wave number atr for a system with
energy
5-2
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Enr ,l5knr ,l
2 /2m, ~16!

with the usual replacementl ( l 11)→@ l 1(1/2)#2 @13#, and
the classical turning pointsr 2 andr 1 are determined by the
conditionknr ,l(r )50. The normalization constantNnr ,l can
be estimated by assuming that, for high energy bound sta
the average of the square of the cosine is close to 1/2,
that the contributions to the normalization integral from t
classically forbidden regions is negligible. Normalizatio
then requires

1'Nnr ,l
2 E

r 2

r 1

dr/@2knr ,l~r !#. ~17!

The integral is clearly proportional to the period of the cla
sical motion, and it is easy to show from the Boh
Sommerfeld condition that it is inversely proportional to t
level splitting. The final result can be written as

Nnr ,l
2 '2m~Enr11,l2Enr ,l !/p. ~18!

~Similar arguments can be used to derive the expression
the local electron density used in Thomas-Fermi the
@14#.!

From the discussion above, the shape ofunr ,l(r ) must

match that of the Ricatti-Bessel functionĵ l(knr ,l r ) at smallr.
If we assume that this match extends into the classic
allowed region and tokr@ l , so that the Ricatti-Bessel func
tion takes on its sinusoidal asymptotic form, it must be a
proximately true that

unr ,l~r !'Nnr ,l ĵ l~knr ,l r !/Aknr ,l . ~19!

This relation holds only for small enough radius since
local wave numberknr ,l(r ) appearing in the WKB approxi
mation will eventually begin to differ significantly from
knr ,l . The radial integrals Eqs.~6! and ~11!, required for
calculating the structure functions, however, involve on
values ofr such that the ground state radial wave functi
u0,0(r ) is large. As shown in Fig. 1, this can be much smal
than the size of higher energy excited states, and so it m
well be possible that the radial integrals in the bound a
free cases are essentially identical except for the norma
tion constantNnr ,l .

Using relation, Eq,~16!, betweenEnr ,l and knr ,l , it is
easy to show that

(
nr

→E kdk/~mDE!, ~20!

whereDE is the energy difference appearing in Eq~18! for
energies related tok by Eq. ~16!. Then, using Eqs.~6! and
~11!,

(
nr

Fnr ,l~q!'E dkFl~k,q!/~2p!. ~21!
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These approximate relations hold for any set ofnr ’s provided
the integral on the right is over the corresponding range
k’s, in the sense that the range of energies covered on the
sides is the same. This, of course, is just a statemen
asymptotic freedom. Note that it holds for groups of sta
with a single definite angular momentuml, so that the cor-
respondence is local in angular momentum as well as ene

It has been stated somewhat vaguely above that the a
results hold for small enoughr and high enough energy. I
would be useful to have a more quantitative estimate of
errors and a scheme for correcting them. One method
calculating corrections has been discussed by Gurvits
Rinat@5#. Another, of more direct application to the approa
here, using radial wave functions, can be obtained from
integral equation for the radial wave function@15#,

ûnr ,l~r !5 ĵ l~knr ,l r !2~1/knr ,l !E
0

r

dr8@ ĵ l~knr ,l r !n̂l~knr ,l r 8!

2 ĵ l~knr ,l r 8!n̂l~knr ,l r !#2mV~r 8!ûnr ,l~r 8!, ~22!

wheren̂l(x) is the Ricatti-Bessel function of the second kin
and ûnr ,l(r ) is an un-normalized version ofu, which equals

ĵ l(knr ,l r ) for very smallr. ~In this equation,û is normaliz-

able only ifknr ,l corresponds to an energy eigenvalue.! This
integral equation shows clearly that the error in the prop
tionality betweenu and ĵ l generally increases withr and the
strength ofV, but decreases asknr ,l increases. It can be use
to develop a perturbation expansion for the correction,
leading correction being simply the integral term in Eq.~22!

with ûnr ,l(r 8) replaced byĵ l(knr ,l r 8). This expansion must

FIG. 1. Oscillator bound state radial wave function fornr55
and l 52 ~solid! and the free particle radial wave function~dashed!
for the same energy and angular momentum, together with
ground state (nr50,l 50) radial wave function, plotted against th
dimensionless radial variablex5Aar . The heavy curve shows th
effective potential in the oscillator well for this angular momentu
5-3
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DAVID R. HARRINGTON PHYSICAL REVIEW C66, 065205 ~2002!
of course, diverge at larger, but it can be used to estimate th
accuracy of proportionality~19! and thus of local duality
itself. A simple change of variables, for example, shows t
for an r n potential the leading correction decreases
1/knr ,l

n12 .

IV. HARMONIC OSCILLATOR EXAMPLES

In the case of the harmonic oscillator potentialV(r )
5 1

2 Kr 2, there are analytic expressions for most of the qu
tities discussed above. It will be useful to define the us
parametersv5AK/m anda5mv, in terms of whichEnr ,l

5v(2nr1 l 13/2). The radial wave functions are then give
by

unr ,l~r !5Nnr ,la
1/4xl 11Lnr

l 11/2~x2!e2x2/2, ~23!

whereLnr

l 11/2 is an associated Laguerre polynomial, the

mensionless variablex5Aar and the normalization constan
is

Nnr ,l5@2nr !/G~nr1 l 13/2!#1/2. ~24!

Since in this caseknr ,l5A2a(2nr1 l 13/2), the relation be-
tween the bound and free radial wave functions in terms
dimensionless quantities is

unr ,l~r !/a1/4'2 ĵ l~A4nr12l 13x!/@Ap~4nr12l 13!1/4#.
~25!

An example of this relation is shown in Fig. 1, which show
that the normalized bound state and free-particle radial w
functions for the samel and energy are indeed almost ide
tical near the the origin, in the region where the ground s
radial wave function appearing in the radial integrals is lar

For the oscillator the radial integrals have simple analy
expression as:

r nr ,l~q!5A2nr1 l /@nr ! ~2nr12l 11!!! #~p/2!2nr1 le2p2/4,
~26!

and

r l~k,q!52A2k~p/a!1/4e2(k21p2)/2 i l~kp!, ~27!

where p5q/(2Aa) and k5k/Aa are dimensionless mo
menta andi l is a modified spherical Bessel function of th
first kind. These two functions are plotted in Fig. 2 for t
particular case ofnr55 andl 52.

With these expressions forr nr ,l(q) and r l(k,q), we can

use Eq.~5! and ~10! to obtain expressions forFnr ,l(q) and

Fl(k,q). These can be summed overl to obtain the structure
functions for transitions to all states at a definite energy:
06520
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Fn~q!5(
nr ,l

dn,2nr1 lFnr ,l

5@e1
21e2

212e1e2~21!n#~1/n! !~p2/2!ne2p2/2

~28!

and

F~k,q!5(
l 50

`

Fl~k,q!

5@e1
21e2

2#2Ap/a~k/p!@e2(k2p)2
2e2(k1p)2

#

12e1e28Ap/ak2e2p22k2
. ~29!

It should be noted that for large momentum transfers, thl
dependence of the terms in the sums above becomes G
ian: (2l 11)exp(2l2/2n) in Eq. ~28! and (2l 11)exp
(2l2/kp) in ~29!. This means that the number of terms th
contribute significantly to the sums is only a few timesA2n
or, equivalently,Akp, respectively, so that the difference b
tween the finite sum in Eq.~28! and the infinite sum in Eq.
~29! is not significant. This limit on the angular momenta
the internal states produced can be easily understood by
ing that the impact parameters involved cannot be gre
than the size of the initial bound state. The expression
Fn(q) shows how the contributions from alternate ener
levels tend to cancel for thee1e2 interference term. For
F(k,q), on the other hand, the interference term is alwa
small for large values of momentum transfer. Furthermo
for largep, only the exp@2(k2p)2# term can be large which
as will become clearer below, gives scaling of the struct
function. These structure functions, of course, satisfy
sum rules

FIG. 2. Radial integrals fornr55 and l 52 , computed using
bound state~solid! and free-particle~dashed! radial wave functions
for the same energy (k5A2nr1 l 13/25A27'5.2), as a function
of the dimensionless momentum transferp5q/(2Aa). Note that
both curves peak nearp55.2.
5-4
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(
n50

`

Fn~q!5E
0

`

dk/~2p!F~k,q!5e1
21e2

212e1e2S~q!,

~30!

where here the form factorS(q)5e2p2
, showing exactly

how the interference term vanishes asq increases@8#.
In comparing the two structure functionsFn(q) and

F(k,q), the fact that in the former the energy levels a
discrete, while in the latter they form a continuum, must
addressed. Here thenth excited discrete level is given a hal
width an being ine, the energy being in units ofv. This is
done by defining

F~a,e,q!5F0~q!d~e2e0!1 (
n51

`

Fn~q!dan
~e2en!,

~31!

where en5n13/2, andda is a finite-width version of the
Dirac delta functiond:

da~e2en!5~a/p!/@~e2en!21a2#. ~32!

In general, we expect the widthsan of the individual reso-
nance peaks to increases withn . Furthermore, if

F~e,q!5@a/~2pk!#F~k,q!, ~33!

wheree and k are related bye5k2/(2a), then the integral
over e from zero to infinity for bothF(a,e,q) and F(e,q)
equals the right-hand expression in Eq.~30!. @This equality is
approximate forF(a,e,q) because the tails of theF(a,e,q)
extend into the negativee region.# The twoF functions are

FIG. 3. Structure functions as a function of the dimensionl
energye5n13/25k2/2a for dimensionless momentum transfe
p5q/(2Aa) equal to 4 and 8. The smooth curves are for the f
caseF(e,q), while the curves with peaks are for the bound ca
F(a,e,q). In the latter cases, the sharp energy levels have b
given widths an that increase from 0.2 to 2 as their energy i
creases.
06520
e

plotted in Fig. 3 for the case wheree15e25e, for which the
square bracket in Eq.~28! is alternately 4e2 and 0: the con-
tributions from the two particles cancel or add coherently
odd and even parity states, respectively@8#. Note that the
peaks of the smooth~ed! curves appear approximately ate
5p2/2, and that the widths ine increase nearly linearly with
p. ~The heights of the curves therefore decrease inver

s

e
e
en

FIG. 4. Structure functionsF timesp as a function of the scaling
variabley for dimensionless momentum transfersp equal to 4~large
peaks!, 8 ~small peaks!, and 32~smooth curve!. The sharp energy
levels have been given a width that increases from 0.2 to 2 as
energy increases. The dashed curve is the Gaussian limit of

scaled free particlepF: (2/Ap)e2y2
.

FIG. 5. Un-normalized radial wave functions and corrections
nr55 andl 52 versus the dimensionless radiusx. The heavy solid
curve is the exact radial wave function, while the lighter solid a

dashed curve are 20 times the difference betweenĵ 2 and the exact
wave function, and the first-order estimate of this difference giv
by Eq. ~36!, respectively. The heavy dashed curve is the grou
state radial wave function.
5-5
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DAVID R. HARRINGTON PHYSICAL REVIEW C66, 065205 ~2002!
with p.! Thus plottingpF versus a scaling variabley5(e
2p2/2)/p gives curves of a nearly Gaussian shape alm
independent ofp asp→`, as shown in Fig. 4. This scalin
variable is, aside from a trivial factor, just they variable of
West @12#, and corresponds to the component of a parto
momentum in theq direction before the collision.

We can also calculate the first-order correction to the
proximations in which the bound state wave functions for
oscillator are proportional to spherical Bessel functions. T
first two terms in the expansion can be written as

vnr ,l~x!5vnr ,l
(0) ~x!1vnr ,l

(1) ~x!, ~34!

where

vnr ,l
(0) ~x!5 ĵ l~x! ~35!

and

vnr ,l
(1) ~x!52@1/~4nr12l 13!2#E

0

x

dx8@ ĵ l~x!n̂l~x8!

2 ĵ l~x8!n̂l~x!#x82 ĵ l~x8!, ~36!

with x5knr ,l r . An indication of the size of the errors and th

accuracy of the leading correction above for the casesnr
55 andl 52 are shown in Fig. 5. It is clear that the corre
tions are small in the region where the ground state w
function is large, but including them does improve the ac
racy of expression~19!, especially at larger values ofr. Note,
however, that the corrections diverge rapidly at very larger.
en

rt.
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V. CONCLUSION

In the nonrelativistic case, asymptotic freedom and sc
ing are automatic for high energy transfers, provided the c
fining potential approaches zero smoothly asr→0. This re-
sult is almost trivial since the system is effectively free
small separations. Only the relative normalizations of
terms in the sums for the bound states and the integrals in
free case require additional argument from the WKB a
proximation, or, equivalently, the correspondence princip

As is well known, the resulting structure functions a
essentially the same for the confined and free cases, ex
for the resonancelike bumps in the former, and for large m
mentum transfers depends only on the scaling variably
5(e2p2/2)/p'k2p, as shown in Fig. 3.

It would be of interest to extend these results to mo
general potentials and to semi-relativistic calculations@10#.
For example, how would the results be modified for the f
quently used Coulomb-plus-linear confining potential@16#,
or for various relativistic extensions@7,17–19#? Another pos-
sible extension would be to many-body systems, includ
the nucleon and nuclei@12#.
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