PHYSICAL REVIEW C 66, 065205 (2002

Asymptotic freedom for nonrelativistic confinement
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Some aspects of asymptotic freedom are discussed in the context of a simple two-particle nonrelativistic
confining potential model. In this model, asymptotic freedom follows from the similarity of the free-particle
and bound state radial wave functions at small distances and for the same angular momentum and the same
large energy. This similarity, which can be understood using simple quantum mechanical arguments, can be
used to show that the exact response function approaches that obtained when final state interactions are
ignored. A method of calculating corrections to this limit is given, and explicit examples are given for the case
of a harmonic oscillator.
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[. INTRODUCTION the same shape for high enough energy and small enough
separation, their relative normalizations are such that a form
Asymptotic freedom was discovered to be a property ofof duality follows once one properly allows for the compari-
non-Abelian gauge theories nearly 30 years @, and  son of a discrete sum with an integral.
has been used to explain scaling in electroprodudtginA The paper begins with the definition of the response func-
version of asymptotic freedom also holds trivially in nonrel- tions of the model, showing how they are related to integrals
ativistic quantum mechanics since the Born series converge®/er the final state radial wave functions. Both the exact
more and more rapidly with increasing energy. In particularcase, where the flnal state wave funct_|ons are just the bound
final state interactions can be ignored in the response fun&tate wave functions for the discrete final states, and the ap-
tions for inclusive scattering from condensed matter systemBroximate case using free-partigiglane-wave wave func-
at large momentum transf¢4]. This result follows easily tions are considered. The close relation between the two sets
from simple quantum mechanical arguments, although th@f wave functions for the same angular momentum, similar
calculation of corrections can be quite complicafsl The large energies, and small radii are then described in Sec. Il
case of confined systems is a bit more subtle, however, sinder fairly general confining potentials, and the implications
the particles in the final state are always in discrete excite@f these results for local duality are discussed. A method for
states of finite(possibly large size, and thus never really calculating corrections to this simple relation is also given,
free. The case of nonrelativistic confinement has been dideading to a discussion of the conditions under which
cussed extensively, however, as a toy model for asymptoti@Symptotic freedom is a good approximation. The results are
freedom and quark-hadron dualif§] in the structure func- applied in Sec. IV to the case of the harmonic oscillator,
tion for electroproduction, where the production of reso-where many of the expressions become simple analytic func-
nances at low energies and momentum transfers averagesti:@ns. The results are summarized in Sec. V, which also con-
the smooth scaling curve observed at large momentum tran&ins suggestions for further work in this area.
fers. This is now known to occur quite locally, essentially for
each resonance. An explanation in terms of a relativistic Il. STRUCTURE FUNCTIONS
guark model has been given recenit], while Close and
Isgur[8] have used a simple nonrelativistic model to explain We use the model of Ref8], consisting of two particles
one aspect of duality: how the square of a sum in the ampliof equal massn and reduced masgs=m/2 carrying charges
tude for production of resonances becomes approximatel§: ande,. This system is initially in its ground state in the
the sum of squares required for duality. A similar nonrelativ-Spherically symmetric confining potenti(r) and, after be-

istic model had been used earlier by Greenjiigo inves-  ing hit by a “scalar photon,” transferring momentutto
tigate the scaling limit in terms of the Bjorken scaling one of the particles, it makes the transition to an excited state

variable. In;,I,m) with energyEnr,,. The probability for this transi-

In this paper we also use a two-body model to discussion is proportional to the response or structure function
nonrelativistic asymptotic freedom. Such a model provides at
best an approximate description of mesons containing heavy F, | (q)=[(n,,I m|[e,e'" ¥+ e,e"92]|0,0,0)|2.
guarks[10,11], but it is simple enough that some features of ' (1)
the large momentum transfer limit of the response function
can be illustrated very concretely. In the context of the ihe polarizationsn of the degenerate final states of a given

m(_)del, asymptotic freeqlom follows b(_acause of a _S|mple rh andl are not measured, one needs only the sum
lation between the radial wave functions describing bound

states in the confining potential and the spherical Bessel |
functions that describe free particles of the same energy and Fo (q)= > F, (). )
angular momentum. Not only do these wave functions have r m=—1 '
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Using completeness it is easy to see that *

F(k,0|)=|§0 F|(k,q)=(k/27r)2f dOyF(k,g). (12
2, Fo () =€+ ef+2e.6,8(q), (3
" The completeness relation now take the form
where

S(@)=(0,0,0¢"%0,0,0 4) f:(dk/zw)F(k,q)=e§+e§+2e1e23(q). (13

is the ground state form factor. Using standard manipula-
tions, one can write=, |(q) in terms of the square of a

radial integral involving the bound state radial wave func-

Several properties of the structure functions can be read
off from the expressions above. In the free case, the structure
. function is large wherk~ *=q/2, and, for largey, the inter-
tionsuy (r): ference term cannot be large. The corresponding result for
F\(k,g) can be seen in Eq11), since here the two spherical
Fo () =[el+e+2e1e,(~1)'I(2+1)ry (D% (5 gegsel functions are exactly in phase onlkifg/2, so that
ri(k,q) will be maximum here and begin to decrease signifi-
where cantly when|k—q/2|r,=1, wherer, indicates the size of
- the ground state wave function. Using Eq. 9, a simple change
[ ’|(q):f dru, ((r)ji(qr/i2)ugdr), (6)  of variable in the integral over the direction lofshows that,
' 0 ' in the largeq limit, F(k,q) is simply the ground state prob-
ability distribution for the component & in the q direction

with j,(x) a spherical Bessel function. The-(L)" in 5 shows 2]. This means that, in this limi€(k,q) depends only on

that the interference terms will tend to cancel when states . . 2 9 N
. . ) e scaling variabl&— q/2~ (k“—q*/4)/q, which is the non-
adjacent values dfare included in a surfB]. ._relativistic version of Bjorken scalinfB].

If the interaction of the two particles in the final state is In the confinement case, the structure functign | can
completely ignored, as would follow from the assumption of ro

asymptotic freedom, the final states can be labeled by eithdi€ large for largeg only if the oscillations of the radial wave
the relative momenturk of the two particles or its magni- function u, (r) are in phase with those of the spherical
tudek and the angular momentulom. Both will be useful ~ Bessel functionj;(qr/2), so that asymptotic freedom will
below, so we define hold only if these radial wave functions have a form similar
B _— Cirq2 ) to that of j (kr). In the following section this requirement
F(k,a)=[(k|[ee" "+ ese 1/0,0,0| (7)  will be studied in more detail and it will be shown that the
two radial wave functions have almost the same shapes for

n
and the same energy and angular momentum.

Fim(k,a)=[(k,I,m|[e.e'" ¥*+e,e™'"9%)|0,0,0/% (8)
lll. RADIAL WAVE FUNCTIONS

With these definitions, )
AssumingV(r)—0 smoothly asr—0, the bound state

F(k,q)=e2¢?(|k—q/2)+e5¢?(|k+q/2)) radial wave function must have the same shape as the free-
particle radial wave functions for the sarhend for high
+2e16,¢(|k—0a/2) ¢(|k+a/2), (9 enough energy and small enoughsince they satisfy ap-

h is th d stat N ¢ proximately the same wave equation, and both vanish at
w ere¢(p) IS the ground stale momentum space Wave lUnc=_ 4 |, thig section we use the WKB approximation to dis-
tion, which is large only whep is less than 1, whererg

indicates the si fth d stat functi d cuss the normalization of the bound state radial wave func-
Indicates the size of Ine ground state wave tunction, and 4, and show that the result obtained guarantees asymptotic

[ freedom.
Fikag)= > Flvm(k,q):[eijL e2+2e.e,(—1)'] In the ‘WKB approximat_ion,_ the_ radial wave function in
m=—I the classically allowed region is simply
X (21+1)r (k,a)?, (10) r
ith Un (1) =N, Ico{f dr'k, I(r,)_ﬂ'/4}/\/kn (1),
Wi re re r re re
(14)
Nk =2 [ A 0i@2edD. D phere
Here, to emphasize the similarity to the bound state case, we knr a(r)= \/kﬁr 1= 2uV(r)—[l +(1/2)1%/r? (15

have introduced the Ricatti-Bessel functiopis<)=xj(x).
SummingF,(k,q) over| produces the same structure func- is the classical radial wave number rafor a system with
tion obtained by integrating (k,q) over all directions ok: energy
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En, 1=Ka 1120, (16) 0T
with the usual replacemenl+1)—[I+(1/2)]? [13], and " _
the classical turning points_ andr ., are determined by the £ 2001
condition knr 1(r)=0. The normalization constam’nr jcan *é [
be estimated by assuming that, for high energy bound statesZ 50 F
the average of the square of the cosine is close to 1/2, anig "~
that the contributions to the normalization integral from the§ L
classically forbidden regions is negligible. Normalization — [
then requires g 1001
y . n,=0,1=0

1= f dr/[ 2k, (1)) 17 so -
. L

The integral is clearly proportional to the period of the clas- TR

sical motion, and it is easy to show from the Bohr- 0 3 3 ” 3 S ¢ -
Sommerfeld condition that it is inversely proportional to the X ‘
level splitting. The final result can be written as
FIG. 1. Oscillator bound state radial wave function fg=5
Nﬁr ,|*2:“(Enr+1,l - Enr Dl (18 andl =2 (solid) and the free particle radial wave functi¢tashed
for the same energy and angular momentum, together with the
(Similar arguments can be used to derive the expression f(gfound .state f(r:():' =0) .radial wave function, plotted against the
the local electron density used in Thomas-Fermi theorylimensionless radial variable= Var. The heavy curve shows the
[14].) effective potential in the oscillator well for this angular momentum.
From the discussion above, the shapeugrf,,(r) must

match that of the Ricatti-Bessel functiq°)|r(knr ) atsmallr. These approximate relations hold for any sené provided

: ! ~the integral on the right is over the corresponding range of
If we assume that this match extends into the classicallyg i the sense that the range of energies covered on the two
allowed region and t&r>1, so that the Ricatti-Bessel func- gjjes is the same. This. of course. is just a statement of

tion takes on its sinusoidal asymptotic form, it must be ap-,gymptotic freedom. Note that it holds for groups of states

proximately true that with a single definite angular momentumso that the cor-
R respondence is local in angular momentum as well as energy.
Un 1(N~Ny ali(Kn i1 K - (19 It has been stated somewhat vaguely above that the above

results hold for small enough and high enough energy. It
This relation holds only for small enough radius since thewould be useful to have a more quantitative estimate of the
local wave numbek, (r) appearing in the WKB approxi- errors and a scheme for correcting them. One method of
mation will eventually begin to differ significantly from calculating corrections has been discussed by Gurvits and
kn, 1~ The radial integrals Eqs6) and (11), required for Rinat[5]. Another, of more direct application to the approach
calculating the structure functions, however, involve only"€ré: using radial wave functions, can be obtained from the

values ofr such that the ground state radial wave functionIntegral equation for the radial wave functipts],

Upo(r) is large. As shown in Fig. 1, this can be much smaller

than the size of higher energy excited states, and so it might;, (r)=] (K, F)— (1K )err’[i (Ko )Rk 1)
well be possible that the radial integrals in the bound and " "o "l o RN TR
free cases are essentially identical except for the normaliza-

tion constant\, . = J1(kn, a1 I (K 1020V (r YU, (1), (22)
Using relation, Eq,(16), betweenE, | andk, ,, it is
easy to show that wheren,(x) is the Ricatti-Bessel function of the second kind

and ﬂnr 1(r) is an un-normalized version ef which equals

> — | kdW/(nAE), (200 Ji(kn ) for very smallr. (In this equationg is normaliz-
A able only ifknr | corresponds to an energy eigenvalughis
whereAE is the energy difference appearing in Ei®) for ~ integral equation shows clearly that the error in the propor-

energies related ta by Eq. (16). Then, using Eqs(6) and tionality betweeru andj, generally increases withand the
(12), strength ofV, but decreases fkﬁr | increases. It can be used

to develop a perturbation expansion for the correction, the
2 = |(Q)’~Vj dkF,(k,q)/(27) 21) leading correction being simply the integral term in E2R)
n., ! b . ~ 2 . .
no with u, ((r") replaced byj;(k, r'). This expansion must,
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of course, diverge at large but it can be used to estimate the 0.10
accuracy of proportionality19) and thus of local duality
itself. A simple change of variables, for example, shows that
for an r" potential the leading correction decreases as
1/kn+2

n e

n,=5, 1=2

0.08

0.06

IV. HARMONIC OSCILLATOR EXAMPLES
0.04

Radial Integrals

In the case of the harmonic oscillator potenth(r)
=1Kr2, there are analytic expressions for most of the quan-
tities discussed above. It will be useful to define the usual
parametersv={K/u and a= pw, in terms of whichEnr |

=w(2n,+1+3/2). The radial wave functions are then given

T T | T T T [ T T T T T T 7T

0.00

by 1 5 3 4 5 6 7 8 9
p
_ 2
Un, ,|(f):Nn,,|a1/4xl+1|—|n:rl/2(xz)e X2, (23 FIG. 2. Radial integrals fon,=5 andl=2 , computed using

bound statdsolid) and free-particlddashed radial wave functions
for the same energyx(= \2n, + 1 +3/2= \27~5.2), as a function

where : .
i ) e of the dimensionless momentum transferq/(2+/a). Note that
mensionless variable= \/ar and the normalization constant poth curves peak negr=5.2.

L}"¥2is an associated Laguerre polynomial, the di-

is
N, =201/ (0, +1+3/2)]Y2 (24) Fa(@)=2 Snan, +iFo,

Since in this cas&, ;=\2a(2n,+1+3/2), the relation be- =[e?+e5+2e.e,(—1)"(1n! )(p2/2)”e’p2’2

tween the bound and free radial wave functions in terms of (28)

dimensionless quantities is

. d
Un, (1) a=~2],(4n, +21+3x)/[ Ja(4n,+21+3)%4]. o
(25)

F(k,a)=2, Fi(k,q)
An example of this relation is shown in Fig. 1, which shows 1=0

that the normalized bound state and free-particle radial wave a2 a2 —(k=p)?_ o (x+P)?
functions for the saméand energy are indeed almost iden- [e1+e;]2Vmla(k/p)e e ]
tical near the the origin, in the region where the ground state +2e1e28\/mf<2e’ p?-x? (29)

radial wave function appearing in the radial integrals is large.

For the oscillator the radial integrals have simple analytic
expression as: It should be noted that for large momentum transfers,|the
dependence of the terms in the sums above becomes Gauss-
ian: (2+1)exp1%2n) in Eq. (28) and (2+1)exp
(—1?/kp) in (29). This means that the number of terms that
contribute significantly to the sums is only a few tim¢an
or, equivalently/xp, respectively, so that the difference be-
and tween the finite sum in Eq28) and the infinite sum in Eq.

(29 is not significant. This limit on the angular momenta of
r(k,q)=2+2k(ml @)Y~ (*+PI2j (kp),  (27)  the internal states produced can be easily understood by not-

ing that the impact parameters involved cannot be greater
than the size of the initial bound state. The expression for
F.(q) shows how the contributions from alternate energy
levels tend to cancel for the;e, interference term. For
. F(k,q), on the other hand, the interference term is always
partlgular case oh,=5_and| =2. small for large values of momentum transfer. Furthermore,

With these expressions _f“"ﬁr 1(a) a_nd ri(k,g), we can for largep, only the exp—(x—p)?] term can be large which,
use Eq.(5) and(10) to obtain expressions fd¥, (q) and  as will become clearer below, gives scaling of the structure
Fi(k,q). These can be summed ovdp obtain the structure function. These structure functions, of course, satisfy the
functions for transitions to all states at a definite energy: sum rules

Fo Q)= V2" [0, (20, + 21+ 1)1 ](p/2) > e P,
(26)

where p=q/(2\a) and k=k/\/a are dimensionless mo-
menta and,; is a modified spherical Bessel function of the
first kind. These two functions are plotted in Fig. 2 for the
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FIG. 3. Structure functions as a function of the dimensionless

energy e=n+3/2=k?/2a for dimensionless momentum transfers ~ FIG. 4. Structure functions timesp as a function of the scaling
p=0q/(2Va) equal to 4 and 8. The smooth curves are for the freevariabley for dimensionless momentum transferequal to 4(large
caseF(e,q), while the curves with peaks are for the bound caseP€aks, 8 (small peaks and 32(smooth curve The sharp energy
F(a,e,q). In the latter cases, the sharp energy levels have beelgvels have been given a width that increases from 0.2 to 2 as their
given widthsa, that increase from 0.2 to 2 as their energy in- €nergy increases. The dashed curve is the Gaussian limit of the
creases. scaled free particlpF: (2/\m)e Y.

* % plotted in Fig. 3 for the case wheeg=e,= e, for which the
> Fn(q)zj dk/(2m7)F(k,q)=e5+e5+2e,e,5(q), square bracket in Eq28) is alternately 42 and 0: the con-
n=0 0 tributions from the two particles cancel or add coherently for
(30 odd and even parity states, respectiviy. Note that the
peaks of the smoothd) curves appear approximately at
=p?/2, and that the widths i increase nearly linearly with
p. (The heights of the curves therefore decrease inversely

where here the form factofﬁ(q):e*p2 , showing exactly
how the interference term vanishesaaicreaseg8].

In comparing the two structure functions,(q) and
F(k,q), the fact that in the former the energy levels are

discrete, while in the latter they form a continuum, must be 120 [
addressed. Here thrgh excited discrete level is given a half-
width a,, being ine, the energy being in units @b. This is w100
done by defining £
s E 0.80 [~
=
F(a,e,0)=Fo(0)8(e—€o) + 2, Fn(0)d, (e~ e€p), "
n=1 % 060
(31 =
where e,=n+3/2, and?, is a finite-width version of the % el
Dirac delta functions: =
0.20
S.(e—ey)=(alm)/[(e—€,)%+a?]. (32
0.00
In general, we expect the widttss, of the individual reso- 0 1 2 3 4 5 6 7
nance peaks to increases with Furthermore, if =
F(e,q)=[a/(27k)]F(k,Q), (33 FIG. 5. Un-normalized radial wave functions and corrections for

n,=5 andl =2 versus the dimensionless radisThe heavy solid
where e andk are related bye=k?/(2a), then the integral curve is the exact radial wave function, while the lighter solid and
over € from zero to infinity for bothF(a,e,q) andF(e,q)  dashed curve are 20 times the difference betwjgeand the exact
equals the right-hand expression in E8Q). [This equality is  wave function, and the first-order estimate of this difference given
approximate for-(a, €,q) because the tails of tHe(a, €,q) by Eg. (36), respectively. The heavy dashed curve is the ground
extend into the negative region] The twoF functions are  state radial wave function.
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with p.) Thus plottingpF versus a scaling variablg= (e V. CONCLUSION

—p2/2)/p gives curves of a nearly Gaussian shape almost In the nonrelativistic case, asymptotic freedom and scal-
independent op asp—o, as shown in Fig. 4. This scaling , asymp

variable is, aside from a trivial factor, just tlyevariable of ing are automatic for high energy transfers, provided the con-

West[12], and corresponds to the component of a parton'diNing potential approaches zero smoothlyras0. This re-
momentum in they direction before the collision. sult is almost_trlwal since the sys_tem is effe_ctlv_ely free at
We can also calculate the first-order correction to the apSmMall separations. Only the relative normalizations of the
proximations in which the bound state wave functions for thel€rms in the sums for the bound states and the integrals in the
oscillator are proportional to spherical Bessel functions. Thdree case require additional argument from the WKB ap-

first two terms in the expansion can be written as proximation, or, equivalently, the correspondence principle.
As is well known, the resulting structure functions are

Un, ,|(x)=vf1?)’|(x)+v$)’,(x), (34)  essentially the same for the confined and free cases, except
for the resonancelike bumps in the former, and for large mo-
where mentum transfers depends only on the scaling varigble
©) . =(e—p?/2)Ip~«k—p, as shown in Fig. 3.
vp, 1 (X)=]1(X) (39 It would be of interest to extend these results to more
general potentials and to semi-relativistic calculatiph@].
and For example, how would the results be modified for the fre-
. guently used Coulomb-plus-linear confining potenfia®],
v (x)=—[1/(4n, + 2l + 3)2]j dx'[J,(x)n(x") or for various relativistic extensiorig,17—19? Another pos-
r 0 sible extension would be to many-body systems, including

- R - the nucleon and nuclgiL2].
= 1)) X" (x7), (36)

with x=k, r. An indication of the size of the errors and the

accuracy of the leading correction above for the cases

=5 andl=2 are shown in Fig. 5. It is clear that the correc- The author would like to thank Professor Dieter Drechsel
tions are small in the region where the ground state wavand his colleagues in the Theory Group at the Instifut fu
function is large, but including them does improve the accuKernphysik at the UniveritaMainz, where this work was
racy of expressiofil9), especially at larger values ofNote,  done, for stimulating his interest in this topic and for their
however, that the corrections diverge rapidly at very large hospitality.
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