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Simon Capstick
Department of Physics, Florida State University, Tallahassee, Florida 32306-4350

Philip R. Pagé
Theoretical Division, MS B283, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
(Received 25 June 2002; published 12 December 002

Conventional and hybrid light quark baryons are constructed in the nonrelativistic flux-tube model of Isgur
and Paton, which is motivated by lattice QCD. The motion of the flux tube with the three quark positions fixed,
except for center-of-mass corrections, is discussed. It is shown that the problem can be reduced to the inde-
pendent motion of the junction and the strings connecting the junction to the quarks. The important role played
by quark-exchange symmetry in constraining the flavor structuréhglbrid) baryons is emphasized. The
flavor, quark spinS and J° of the seven low-lying hybrid baryons are found to bM,£)?S*1JP
=N23+ N23+ A%L+ A%3% A%3* where theN2:* andN22+ states are doublets. The motion of the three
quarks in an adiabatic potential derived from the flux-tube dynamics is considered. A mass of 1870
+100 MeV for the lightest nucleon hybrids is found by employing a variational method.
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[. INTRODUCTION QCD[5]. One approach to modeling the structure of hybrid
baryons(not taken hergis to view them as bound states of
Since all possible goodI{) quantum numbers of baryons three quarks and a “constituent” gluon. Hybrid baryons have
can be described by conventional excitations of three quark&een constructed in the MIT bag modél by combining a
the description of hybrid baryons, defined as bound statesonstituent gluon in the lowest energy transverse electric
containing explicit excitations of the gluon fields of QCD, is mode with three quarks in a color-octet state, to form a color-
necessarily model dependent. Nevertheless; model of  singlet state. With the assumption that the quarks are in an
QCD bound states which allows the gluon fields to be dy-Swave spatial ground state, and considering the mixed ex-
namical degrees of freedom, as opposed to simply generatimghange symmetry of the octet color wave functions of the
a potential(or surface in which the quarks move, will have quarks, bag-model constructions show that adding®a
additional states involving excitations of those degrees of=1" gluon to three light quarks with total quark spin 1/2
freedom. A description of the spectrum of hybrid baryons,yields bothN (I =3) andA (I =3) hybrids withJ"=3" and
the degree of mixing between them and conventiangt; 2. Quark spin 3/2 hybrids ard states withJP=3*, 2+
excitations, and their strong decays will therefore be necesand3*. Energies are estimated using the usual bag Hamil-
sary in order to describe the results of scattering experimentsnian plus gluon kinetic energy, additional color-Coulomb
that involve excited baryons. For example, such experimentsnergy, and one-gluon exchange plus gluon-Comft6a,)
make up the excited baryon resonanbi) program at Jef-  corrections. Mixings betweeq® andq®g states from gluon
ferson Laboratory, where many excited states of baryons anediation are evaluated. If the gluon self-energy is included,
produced electromagnetically. Hybrid baryons must play ahe lightestN hybrid state hagP=3* and a mass between
role in such experiments. In principle, their presence can behat of the Roper resonance and the next obsedfed: *
detected by finding more states than predicted in a particulastate,N(1710). A second®=2%"N hybrid and a)J°=2"N
partial wave by conventionadqg models. Doing so will hybrid are expected to be 250 MeV heavier, with théy-
require careful multichannel analysis of reactions involvingbrid states heavier still. A similar mass estimate of about
many different initial and final statd4]. Another possibility 1500 MeV for the lightest hybrid is attained in the QCD sum
is that such states will have characteristic electromagneticules calculation of Ref.4].
production amplitude$2]. If hybrid baryons obey similar For this reason, there has been considerable interest in the
decay selection rules to hybrid mesdB8$ they may be dis- presence or absence of light hybrid states in Fhe and
tinguishable based on their strong decays. This work concersther positive-parity partial waves N scattering. Interest-
trates on a determination of their masses and quantum nunngly, quark potential models that assumeastructure for
bers, in an approach where the physics of the confininghe Roper resonandé&,8] predict an energy that is roughly
interaction defines the relevant gluonic degrees of freedom100 MeV too high, and the same is true of th€1600), the
Hybrid baryons have been examined using QCD sunlightest radial recurrence of the ground stalf=3"*
rules[4] and in the large number of colofgrgeN,) limit of A(1232). Furthermore, models of the electromagnetic cou-
plings of baryons have difficulty accommodating the sub-
stantial Roper resonance photocoupling extracted from pion
*Electronic address: capstick@csit.fsu.edu photoproduction datg9]. Evidence for two resonances near
Electronic address: prp@lanl.gov 1440 MeV in theP,; partial wave inN scattering was cited
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. structure, theN,=3 case gives rise to states with different
------------------------- Qo guantum numbers than in our approach. It has been shown
by Swanson and Szczepanipk8] that a constituent-gluon
model is not able to reproduce lattice QCD dai®] for
----------------------------------------------- hybrid-meson potentials at large interquark seperations. In
_____________ addition, the flux-tube model hybrid-meson potential is con-
Eijk sistent at large interquark separations with that evaluated
"""""" from lattice QCD[13,20.
@ Hybrid baryons are constructed here in the adiabatic ap-
i proximation, where the quarks do not move in response to
the motion of the glue, apart from moving with fixed inter-
FIG. 1. A possible configuration of flux lines in a baryon on the quark distances in order to maintain the center-of-mass posi-
lattice. tion. The effect of the motion of the glue in hybrid baryons
(and the zero-point motion of the glue in conventional bary-
[10], which would indicate the presence of more states in thisng is to generate a confining potential in which the quarks
energy region than required by taé model. However, this are allowed to move. This differs from that found from mul-
has been interpreted as due to complications in the structutgplying the sum of the lengths of the string$riads” ) con-
of the P,; partial wave in this region, and not an additional necting the quarks to the junction by the string tension. The
qqqg excitation [11]. Recent calculations[12] of N  adiabatic approximation is exact only in the heavy-quark
— N7 reaction observables incorporating baryon-mesorimit, although the success of quark model phenomenology
dynamics are able to describe this reaction in the Roper res@f conventional mesons and baryons implies that there is a
nance region in the absence ofjgq excitation, and find a close relation between heavy-quark and light-quark physics.
dynamically generated pole at the mass of the Roper resgk modified adiabatic approximation is employed, which can
nance. Given this complicated structure, it is perhaps nadbe shown to give exact energies and wave functions for spe-
surprising that there are difficulties in describing the photo-cific dynamics even for light quark21]. Moreover, a modi-
couplings of this state within a simple three-quark picture. fied adiabatic approximation has been shown to be good for
The motivation of this work is to build a model consistent properties of light quark mesons in the flux-tube md@a.
with predictions from QCD lattice gauge theory, based on the The model is motivated from the strong coupling limit of
Isgur-Paton nonrelativistic flux-tube moddi3]. This model HLGT, where there are “flux lines” that play the role of
is motivated from the strong coupling limit of the Hamil- glue. In the adiabatic approximation, operators that make the
tonian lattice gauge theorfHLGT) formulation of QCD. quarks move are neglected. The plaquette operator corrects
This strong coupling limit predicts linear confinement in me-the strong coupling limit, and induces motion of the “flux
sons proportional to the expectation of the Casimir operatolines” between the quarks and the junction perpendicular to
for color charges, which has been verified in lattice QCDtheir rest positions. The flux lines are modeled by equally
[14]. In conventional baryons, in the limit of heavy quarks, spaced “beads” of identical mass, so that the energy of each
the static confining potential has been shown in lattice calflux line is proportional to the number of beads, and hence its
culations [15] to be consistent with that given by a length. The spacing of the beads along the rest positions of
minimum-length configuration of flux tubes meeting in athe flux lines can be thought of as a finite lattice spacing, and
Y-shaped configuration at a junctiqsee Fig. 1, andnot  the beads are allowed to move perpendicular to their rest
consistent with two-body confinement, where a triangle ofposition. The beads are attracted to each other by a linear
tubes would connect the quarks imaconfiguration[16]. It potential, and the resulting discretized flux lines vibrate in
is possible to experimentally examine this configuration invarious modes. Global color invariance requires that the
studies of baryon production in the central rapidity region ofthree flux lines emanating from the quarks meet at a junction,
ultrarelativistic nucleon and nuclear collisiofs7]. which is also modeled by a bead. It is shown in HLGT that a
This structure of the glue, where the gluon degrees obingle plaguette operator can move the junction and retain
freedom condense into flux tubes, is very different from thethe Y-shaped string with the links in their ground stétee
constituent-gluon picture of the bag model and laxgecon-  Fig. 2 and Appendix A so that the junction may have a
structions. Substantial progress has been made in recesimilar mass to the beads. However, for generality, we allow
years in understanding conventional baryons by studying théhe junction to have a different mass associated with it than
large N, limit of QCD. However, the larg&l, limit does not  that of the other beads.
necessarily provide model-independent results on hybrid The final picture of both conventional and hybrid baryons
baryons. Hybrid baryons in the lardé, limit consist of a is that of three quarks, connected via a line of beads to the
single gluon andN, quarks[5]. Even in the case of physical junction in a Y-shaped configuration. The potential between
interest,N.=3, this does not correspond to the descriptionneighboring beads is linear. The adiabatic approximation is
of hybrid baryons presented here, where it is argued that thesed, so that the string is assumed to adjust its state quickly
dynamics relevant to the structure of hybrids are that of conin response to motion of the quarks, thus generating a poten-
finement, where numerous gluons have collectively contial in which the quarks move, in both conventional and hy-
densed into flux tubes. Since the color structure of a hybridrid baryons. The motion of the quarks in these potentials is
baryon determinesthrough the Pauli principleits flavor  then solved for variationally. A brief outline of this approach
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TABLE |. Notations frequently used in the main text.

b
0,

i=1,2,3
____________ N;
k n=1N;

m=1,Ni

FIG. 2. Flux lines in a baryon on the lattice, illustrating the M
application of a pair of plaquette operators, the upper operator moVT™
ing one flux line perpendicular to its starting position, and the lower™s
attempting to move the junction. l;

I
is given in Ref[22]. The purpose of the present paper is to
describe the model and the calculation of hybrid baryor{
masses in much more detail, and to put this work in theflim
context of recent advances in lattice gauge theory.

The rest of the paper is organized as follows. Section 19} m
describes the dynamics of the flux tubes in various quark
configurations, with analytic solutions in special cases. Sec-=(x.y.2)
tion 11l discusses the quark-label exchange symmetry, parityp- , 7,
and chirality of the flux configuration. In Sec. 1V, the orbital
angular momentum and color of the flux, and the combinedv= ,®;
quark and flux wave function are constructed. Section V de-

String tension

Angle between triads suspended at the equilibrium
junction position

Quark or triad label

Number of beads on triad

Counts the beads on triadrom quarki to the
junction

Counts the modes of the triad

Mass of quark

Mass of the beads

Mass of the junction

Distance from the equilibrium junction position to
quarki

Direction from the equilibrium junction position to
quarki

Position of quark

Amplitude of modem on triadi in the QQQ plane,
but perpendicular td,

Amplitude of modem on triadi perpendicular to the
QQQ plane

Cartesian coordinates of the junction

Junction oscillation directions parallel and perpendic-
ular to theQQQ plane, respectively

Junction oscillation frequencies parallel and perpen-
dicular to theQQQ plane, respectively

scribes the potential in which the quarks move, which in-
cludes the energy of the flux. Numerical estimates of the
masses of hybrid baryons are given in Sec. VI. In Secs. VI
and VIII further discussions and conclusions are given.

Il. FLUX DYNAMICS

B olg+lqlg+yl,

@

The position vectors of the quarks relative to the junction

equilibrium position are;=r;—rg.

Denote by6; 3, the angle between the line from quark 1 to
3 and that from quark 2 to 3. I#,,3, 6135, and 6,3 are all
smaller than 120°, the flux is in its equilibriurflowest-

120°,

If one of 0,3, 013, and 6,43 is larger than or equal to
the equilibrium configuration of the flux is not this
Y-shaped configuration.

If9;;>120°, the lowest-energy

energy configuration when the junction is located such thatconfiguration has the Junct|on at the position of quptkee
there are angles of 120° between each of the triads that cofg. 4). This situation is denoted b§;>120°. In what fol-
nect the quarks to the junction, and the beads all lie on théows, the case wheré;;,>120° is analyzed, but the formu-
triads. In this lowest-energy configuration, the string lies inlas for the other cases follow by the appropriate label ex-

the plane defined by the three quarks, denoted byQRQ change.

plane. The angle between the line from any two quarks to the An axis system is chosen as indicated in Fig. 5. This
junction equilibrium positiorr ¢q is 120°, which is denoted gefines normalized andy, which can also be written in the

by 6;=
[, of the lines from theith quark to the junction, and the
quark positions;, the equilibrium junction position is

FIG. 3. Flux configuration when none of the angles in the tri-
angle joining the quarks are larger than 120°.
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120° (see Fig. 3 and Tablg.lIn terms of the lengths  y,—120° case as
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FIG. 4. Flux configuration when one of the angles in the triangle
joining the quarks, herd,s,, is larger than 120°.
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FIG. 6. Motion of the flux configuration decomposed into
“junction motion” and “bead motion.”

FIG. 5. Coordinate system used to describe motion of the flux in

the QQQ plane, for configurations witlia) all of 6153, 613,, and
0,13 less than 120° antb) with 6;= 6,5, larger than 120°.

where thefi are unit vectors along the triads, alﬁpﬂz
+13=0, so thaty equalsi; andx is perpendicular td;. The
third triad lies on the positivg axis and the other two triads
are 120° on either side of theaxis: triad one on the left-
hand side and triad two on the right-hand side. It is assume
that the sum of the masses of the beads and the junction
the energy of the flux configuration in its equilibrium posi-
tion, so that

3 3
mbizzl Ni+m3=bi21|i, (3)

which implies

(4)

mb:

3
>N
i=1

whereN; is the number of beads on triad Note from the
above that the bead mass, is determined by the string
tensionb, the triad lengthd;, and the ratian;/m,, and so
should not be regarded as an independent parameter.

my

A. Hamiltonian for #;=120° case

The flux configuration is made dynamical by allowing the
junction and the beads to vibrate with respect to their equi

librium configuration. There are two important motions that
are expected to have physical significande:the motion of
the junction perpendicular to and within the plane relative to
its rest position, denoted “junction motion,” an@&) the mo-
tion of the beads in the two directions perpendicular to the
line connecting the quark to the junction, called “bead mo-
tion,” as illustrated in Fig. 6. The bead motion coordinates
ére not their positions, but the oscillating-wave amplitudes
ldefined in Appendix B of the beads relative to their rest
positions on the triads. It is important for what follows that
the bead position coordinates are defined relative to their rest
positions on the triads between the quarks and junction,
which have followed the junction motiofsee Fig. 7. The
Hamiltonian is written in terms of the junction and bead
motion coordinates. In what follows, the small-oscillations
approximation is used, where the beads and junction remain
close to their positions in the equilibrium configuration. This
approximation is used to motivate the basis of the subsequent
numerical treatment, which is that it is a reasonable approxi-
mation to treat the flux motion as that of the junction, with an
effective mass that depends on the equilibrium lengths of the
triads, among other quantities. In the numerical treatment
that follows, the restriction to small oscillations is removed.

As the string moves, the quarks are allowed to move with
fixed positions relative to each other, in order to keep the
center of mass fixed. This is called the “redefined adiabatic”
approximation. By working in this approximation, some but
not all nonadiabatic effects are incorporated.

The flux Hamiltonian for the#;=120° case in the rede-
fined adiabatic approximation isee Appendix B

1 2 Sm.osc. : N+1 S 2 2 b : 3 1 i 2 i 2
Hflux:EMeffr +V; + meffz 2 [( q||m) +(qu) 1+ EE 2 E [(qu) (ALl
==
m
> Ng+2—
3 Ni — k 2 3 Ni
eSS i Mp k=1 My (egh eql g )__b 1 s Ll (g
of - 24 2 Bm > 3 @m | (&jm €&y Gim Gim) = " 3 24 2 @nd qjndjm
> (bl+ M) > (bl+M)
k=1 i=1
3 SN . N+1] . .
+qmqm>+§ 21 21 apah[ € €00l n+ ) 10l m]+ El El (apm)?— '—}[(q'm>2+<qlm)2]}. )
i#jn m =1 m=
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In terms of the amplitudeg;,, of the mth normal mode on the

ith triad, where displacements of the beads along the triads
are not allowed, the coordmatq# =d. g, are the projec-
tions in theQQQ plane, and the coordlnateqim are the
projections of these amplitudes out of tRQ plane. Fi-
nally, the 8;,, and a,, are the sums

i Moop mp77 C(—ymt mar
FIG. 7. Coordinates used to describe the motion of the beads in Bmngl N+ 1S N 11 > COIZ(Ni 1)
the presence of a displaced junction.
11y
The first term in Eq(5) is the kinetic energy of the junction, and
with an effective mass of
0, m=even
m (i N +2mJ)2 % i PT m (12)
. e E a
3 ON(2N+1) m, Pl T, & N1 ot m=odd.
Meg=mp| > ————+ —~— 3 : 2(N;+1)

i=1 6(N;+1) my, >
4 = (bli+M;) The above demonstrates that the Hamiltonian can be sepa-

(6) rated into three parts. The firfghe first two terms in Eq(5)]
corresponds to the motion of the junction in the absence of
where the last term in Edq6) arises from the center-of-mass beads, with an effective junction mass related to its own
correction, and the first from the trivial motion of the beadsmass and the bead mass, with a center-of-mass correction for
which accompanies motion of the junction. The second ternfinite quark masses. The second péetms three and foliis
in Eq. (5) is the potential energy of the junction in the small- the independent motion of the beads on the three triads with
oscillations approximation, given in terms of the coordinatesespect to a fixed junction, with a bead mass also corrected

r=(x,y,z) defined in Fig. 5 by for center-of-mass motion for finite quark masses. There is
also an “interaction” part where the junction interacts with
Vsm'°5°=bi |4 E[X (i+ i+ 1) N 3 2(14_ i) the various bead moddgerm five, where the bead modes
J et 2 l, 41, Ij 4y I l, associated with the same quark interact with each other, and

where the modes on triads corresponding to different quarks
3 « ( 1 1 ) ( 1.1, 1” (7  interact with each otheterm si¥. Note that these bead self-
2 P PY [ PR PN interactions(term si¥ vanish for infinite quark masses.
Because the quarks move with fixed relative positions
The third and fourth terms in Eq5) are the kinetic and only to maintain the center-of-mass position in the presence
potential energies of the beads, respectively, written in termgf a moving junction and beads, there are no quark kinetic
of the effective mass of the beads, including a center-of-masgrms in this string Hamiltonian, and there is no sense in

correction, which the quarks acquire mass from the beads, i.e., constitu-
ent quark masses are not derived from current quark masses.
moe=m.| 1— My ®) Note that the model predicts that for bead motion in the
eff— b 3 ' small-oscillations approximation the potential has the cus-
i21 (bl;+M;) tomary, and phenomenologically importd8, linear poten-

tial termb=2_,1; [see Eq(7)]. For largel; , where the small-
oscillations approximation becomes exact, the potential is
just the linear term expected in any string model. This po-
_ tential is a prediction of the model, not an ansatz. In the
2(Nj+1) . mm . s .
sin ) (99  numerical work that follows, the small-oscillations approxi-
l 2(Ni+1) mation for the junction will be removed to yield the potential
energy in the absence of beads, i.e.,

and the frequency of theth normal mode on théth triad,

1
wm

The fifth and sixth terms in Eq5) represent interactions
between the junction and the beads, and interactions among

; 2

the beads, respectively. In these terms, the veotbrare . \/§ 1y 2 2
. . ~ VJ=b _|1+X + —+y +Z

defined to be perpendicular tp, so that 2

13 1 43 V3 2 2
elz(—i,7,0), ezz(—z,—7,0), +\/ 7'2_)() + —2+y +22
e=(1,00, €-é= ! (10)
o 2 + X+ (I3-y)2+ 2. (13)
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B. Hamiltonian for #;>120° case Parallel 0.607 0.607 0.924 1.08 1.08

The correct expression in the small-oscillations approxi-€"Pendicular  0.828 0924 0924 137

mation for the flux Hamiltonian for the cagg>120° canbe  \yhere the lowest frequencies have been identified in bold
obtained(see Appendix B by settingl;=N3=0 in Hu,,  face. If the interaction Hamiltonian is set to zero, the number
Meg. andmeg in Egs.(5), (6), and(8), andgj,, q7,,=0 in  of modes does not change, as the number of degrees of free-
Haux in EQ. (5), and changing the junction potential energy in dom (three junction coordinates and two transverse bead co-

Eq.(7) to ordinates per beads unchanged. Since the junction and
5 ) bead degrees of freedom become uncoupled, it is possible to
SM.0SC.__ J 55 identify modes involving junction motion and those involv-
Vi =b§1 Ii+2byc035+b Xytrz ing bead motion. The mode frequenciéa GeV) corre-
sponding to the junction motioftbold) and bead vibrations
b 2 52 63 2 n2 93 2 1 1 are
R R A L T | TP Parallel 0.614 0614 100 100  1.00
Perpendicular  0.869 1.00 1.00 1.00
6y 6,1 1
—2Xy sin>-cos; [E - E} . (14 The similarity of the frequencies of the lowest-energy modes

in this approximation to those arising from the full Hamil-
tonian (a deviation of 1% in the case of the modes with
otion parallel to theQQQ plane, and 5% for the mode
a]erpendicular to the plameshows that for these lowest-
energy modes the interaction Hamiltonian can be safely ne-

Note that the third term above, which is the length of the
third triad when the junction has moved, cannot be expande
in the small-oscillations approximation. The vect@&sbe-

come glected. In retrospect, the reason for this is because of the
choice of physically appropriate coordinates for the problem,
oo ( _Cosﬁ_J sinﬁ 0) e2=( —cos@ —sin@ O) 15 i.e., the junction coordinates and the coordinates of the beads
272 2’ 2 transverse to the triads joining the junction to the quésk®

Fig. 7).
In the numerical work that follows, the small-oscillations To ensure.that t,h's result is not deper_ldent on th!s Cho'ce
approximation for the junction will be removed to yield the °f QQQ configuration or the parameters in the Hamiltonian,

potential energy in the absence of beads, the parameters were varied independently around the central
values used above. Quark masses up to the charm quark

~ > mass of 1.5 GeV were used, the ratio of the junction to the
V,=b \/(Ilsinﬁﬂ) n Ilcosﬁer 422 bead mass was taken up to 10, and the triads were given

2 2 lengths from 0.5—-5 GeV}, and cases with unequal lengths

5 5 were tested. The percentage difference between all nine

+ \/ Izsin@—x + Izcos@+y +72 mode frequencies calculated with the full Hamiltonian and

2 2 with the interaction terms neglected is shown for selected

parameters in Table Il. The largest error for the two lightest

222 parallel modes and the lightest perpendicular mode, shown in
xRy, (16 bold face, is 7%. This demonstrates that, to a good approxi-

mation, the dynamics of the three lowest frequency modes
can be simplified to junction and bead motion, which are
independent of one another. The bead motion on various tri-
It will now be demonstrated that the interaction terms inads, and bead motion in various modes on the same triad are
Eq. (5) (terms five and sixgive a minor contribution in the to a good approximation independent of each other.
small-oscillations approximation. The free parameters in the The frequencies can be followed from the noninteracting
model (and the values initially used for the numerical simu- case as interactions are turned on, and level crossing does not
lation) are the string tension (0.18 G&V the ratio of the occur. Hence mode frequencies for the fully interacting
junction and bead massé¢$), and the quark massé6.33  Hamiltonian can be uniquely associated with modes frequen-
GeV). The simulation is performed with one bead betweencies obtained with interactions neglected. The lowest fre-
each quark and the junction, and the quarks at first form aquency isalwaysassociated with the lowest junction excita-
equilateral triangle with the lengths of the triads given a typi-tion. However, the next lowest frequency can be associated
cal value of 2.5 GeV™. with the second junction excitation or with a bead excitation
For the purposes of this demonstration, the problem islong a triad when th€@QQ configuration is asymmetric.
first solved numerically without approximations, by solving This work focuses on the lowest-lying excitation of the flux
the classical Euler-Lagrange equations of motion rather thanonfiguration, always corresponding to junction motion, but
using quantum mechanics. This solution should provide at should be kept in mind that the next lowest hybrid baryon
good indicator of how the mode frequencies with and with-may involve bead excitation.
out the interaction Hamiltonian compare. The mode frequen- The equal-mass three-bead model is unrealistic when one
cies parallel and perpendicular to the plane @meGeV) of the triads is short, since the mass of the bead on the short

C. Approximate flux Hamiltonian
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triad is not representative of the energy stored in the triad on TABLE Il. Percentage differences between all nine mode fre-
which it lies. An alternative model has been consideredjuencies obtained in the one bead per triad problem for the full
where the bead mass is taken to be proportional to the lengttamiltonian [Eq. (5)] and the Hamiltonian with the interaction

of the triad, but the sum of the bead masses and junctiofrms[the last two terms in Eq5)] neglected, for selected param-
mass still equals the energy stored in the Y-shaped strin§ters The flrst_group of five percentage dl_fferences is for paral_lel
configuration[Eq. (3) with N;=1]. In this model it is found mpdg frequencies, the last four for per_pendlcular modt_e frequencies.
that the low-lying frequencies for the full Hamiltonian are Within each group, the percentage differences are displayed from
very similar to the former model, with similar small errors '€ft tO right in ascending order of mode frequency. Quark masses
induced by neglecting the interaction terms in the Hamil-2"¢ " GeV and triad lengths in GeV.

tonian of Eq.(5).

M; M, Mz my I; 1, I3 Percentage differeno@o)
My

D. Analytical solution of the flux Hamiltonian

. . . o 033 033 033 1 252523 18 8 858 8 37
st o terms have been shown (o be pegigible or he low?S. 033 033 1 2625 28 25 111175 5 40
est frequency in the small-oscillations approximation, in the0'3§ 8'23 8'§§ 110 (2):_;) 5: S'g g 5 ; ‘11 3 5 120 fl
case where there is one bead on each triad, and these ter%%3 0'33 0'33 1 5 2'5 2.5L 102 732 8 28
are neglected in what follows. What follows is, therefore, ™ ' ' e
based on the approximatg=120° Hamiltonian, 0.8350.83 1088 F1H0.5 28 sl 2 1S 0 d 10
1 3SON+1
oo "2 i - . .
Hiux=5 Menl =+ Vy+ 5 Merr T2 when N;—oe. This is consistent with the flux-tube model
i<

philosophy thata cannot be chosen arbitrarily small, since
Ni . . that would lead to the breakdown of the strong coupling
X Z [(Q)) >+ (AL )] expansion of the Hamiltonian formulation of QCD, from
m=1 " which the model is motivatel13]. Taking N;—, while
3 i . . 4 keepinga fixed, the Hamiltonian becomg43
SO S H @ (@, an sl
=1 m=1
o e 1o Sla, 1 0=
with V; given by Eq.(13). Note that since theyj,,d) , are Hiux=75 Mer +VJ+i:1 -a? a 12,
defined with respect to the line from the junction to the (20)
quarks, they depend implicitty om. The corresponding
Hamiltonian for8;>120° is obtained by settingg=N3z=0 with

in Mot andmgg in Egs. (6) and(8), and restricting the sum-

+O(a2)+~-~},

mation in Eq.(17) to i=1,2, withV; given by Eq.(16). 3
Since Eq.(17) is diagonal in the coordinates of the beads, 3 1 bz I
the last two terms in Eq(l7), corresponding to the bead M= b I, __3; , (21)
energies, can be replaced by their ground-state harmonic os- i=1 3 42 (bli+M))
cillator energies, =
~ 1 - 3 bl; % i where H;,, is now independent of théunknown ratio
=5 Mer“+ Vot 2, Mer(N;+ 1) = “m m;/m,. SinceN;—= with a fixed, the part of the Hamil-
(18)  tonian in Eq.(20) arising from the beads is valid only in the
limit |;—o0.
which is summed over the two polarizations possible for The part of the Hamiltonian in Eq20) arising from the
each bead vibration. The sum of the frequencies is beads contains a linear term;4wa? and a constant term
—1/a, which are regularization-scheme dependent terms in
~ Njm the “self-energy” of the string system. As explained in Ref.
N N +1 Smm [13], the linear term should be regarded as a contribution that
i i . . . . .
> wl=2 . (190  renormalizes the bare string tensibrio its physical value.
m=1 I sin 77 The constant term is three times larger than the constant term
4(N;+1) found for mesong13]. The Luschef24] term — 7/12l; is

regularization-scheme independent and finite, and can be re-
If the number of beads is taken to infinity, the dependence ofarded as a prediction of the flux-tube model, although it is
the Hamiltonian on théunphysical number of beads can be insignificant at largd;, where its derivation is valid. The
removed. The part of the Hamiltonian in E(L8) arising  Luscher term arises in relativistic string theor[@4] in the
from the beads becomes infinite whBii—. To avoid in-  limit |;—<. In this limit, the string excitations in our model
finite energies, the bead separation regularization parameteoincide with relativistic string theories. There exists strong
(analogous to the lattice spacing=I;/(N;+1) is fixed lattice-QCD evidence, through the study of “torelons,” of
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pe 3 .
the Luscher term should be contrasted with that of a Cou- — =+ =\%+p\sin O\

the existence of the Luscher term in QCE5|. The form of % 2
|3_
. S ! 2 2
lomb term, with the former depending inversely on the triad

lengths, and the latter inversely on the distance between two 3
quarks. _ , N1= \/—(p2+)\2)+3p)\ SinG,,. (24)
The Hamiltonian for thed;>120° case is obtained by 2 P
settingl ;=0 in M in Eq. (21), and restricting the summa- ) . o o
tion in Eqg. (20) to i = 1,2 with VV; from Eq. (16). In the remainder of this section junction motion is treated
If the redefined adiabatic approximation was not madein the small-oscillations approximation for theé,=120°
i.e., if the calculation was not performed in the center-of-case. The junction Hamiltonian &M ger %+ V™% where
mass(c m) frame of the entire system with the distancesthe potential is from Eq(7). Junction motion in X,y) and
between the quarks fixed, théMg;=b=1;/3. The correction out (2) of the QQQ plane are not coupled W™ so
from center-of-mass motion in E(R1) substantially reduces motion along thez direction is one of the vibrational modes
the effective mass of the junction. It is shown below that theof the junction. One way to define tlzedirection in terms of
excitation energies of the junction are proportional tothe positions of the quarks is by the normalized vector
(MZp) ~Y2[see Egs(30) and(31)], and so with typicaQQQ

configurations the junction excitation energies are 1 to 2 - PXN
times larger in the redefined adiabatic approximation than in T T2 N (25)
the adiabatic approximation. This underlines the importance
of working in the c.m. frame. whereo, denotes a sign that will be specified later. Note that
The ground-state bead configuration that solves the motion of the junction motion occurs along the direction of
Hamiltonian of Eq.(17) is the vectorpX \, but there is no physical reason to prefer one
N sign o, over the other.
N2 ! va. @ The in-plane part of the Hamiltonian can be diagonalized
‘I’—,JITOCIH ™ H [Mer bI(N;+1)] \/ 2 in terms of the normalized eigenvectd®s],
3 N i
><exp{—l S S Jmegbli(N+1) 2o ;,+=U—+[ i—E(LLi +s(I1,15,15) X
2 =1 m=1 2 N(l1,02,09) [[1z 2111 12
) ) 3(1 1.
X[(qlm)2+(Q'lm)2]], (22) +\/7—(E_dy] (26)

in the limit N;—« (with a fixed) that is used to express the where
Hamiltonian in Eq.(20). The corresponding wave function
for #;>120° is obtained by restricting the products in Eg. 1

1
(22 toi=1,2, and setting;=0 in My in Eq. (8). s(l1,12,13)= +t=— 7 5 >0, (27

[ E1 P 1 P PP

E. Analytic small-oscillations solution to the junction

and
Hamiltonian for @;=120°
Define N(l,15,13)
_ +r.—2 ‘A 1 1/1 1
p= 2\ gy P Eﬁ\/s<ll.|2,|3>t[|——§ T ] Vs(aTa0),
\/E ) \/6 ’ [N p)\ 3 1 2
(23 (28)

The six Jacobi variableg,\ consist of(1) four variables that and a signr-. is included for the same reasons as above. The

specify the positions of the quarks in tI@QQ plane,p  vectorsy,, 7., and7_ can be verified to be orthonormal

=[p[, A=|A[, and g, (the angle betweep and)) and$,  vectors. The junction Hamiltonian can now be written as

(the angle betweep and the space-fixeddirection, and(2)

two polar angle® and ¢ that specify the orientation of the 1 3 1

vector pX X that lies perpendicular to the plane. The vari- EMeﬁr2+VSm OSC*bE L+ = Meﬂ[(rpr r)?

ablesp, \, and¢,, are rotational scalars. They are related

to the triad lengths$,, 1,, andl by the relations ~ A -
M 0P (1) 0 (1)

1= Mp?+ pAsin g, + 3p) cOS,), +ol (020212, (29)
l,=Mp?+ p\ sin O — NETN CoS6,)), where the vibrational frequencies are given by
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b (1 1 1 where the bead wave functiah in Eg. (22) has been incor-
wi= ~ (I—+I—+I (300  porated. For theH,, H,, andH3 hybrid baryons, respec-
Meglls 12 13 tively, the normalized flux wave functions ae, (r),
and —. —.
2Mggw_m--tWg(r), V2Mego . m.-r¥p(r),
w2 = b (i—l—i—l—it s(11,1, |3))_ (31) ZMZﬁwZ;,[r\I'B(r)_ (39
To2Mg\ e g n

_ ~ F. Junction motion away from the small-oscillations limit
Note that the out-of-plane mode is always more energetic

than the in-plane modes, sinee,>w- , and that the in- it hation to the iuncti tion. Without
plane modes have <, , with degeneracy only wheh oscillations approximation to the junction motion. Withou

=1,=1,. this approximation, i.e., wheid, in Hj,, in Eq.(20) is taken
Solving the Schidinger equation corresponding to Egs. from Egs. (13) and (16) for the casesf;=120° and 6,
(20) and (29) y|e|ds the ground_state energy, Corresponding> 120°, respectively, the eigenfl’equencies and eigenVECtOI’S
to the adiabatic potential for the quark motion in a conven-cannot be solved for analytically.
tional baryon, of The variational principle is used to separately minimize
the expectation value of the Hamiltoni&t; , by solving the
Schralinger equation for the conventional baryons and hy-
brids H; using the ansatz simple-harmonic-oscillator wave
functions in Eqs(33) and (34). The calculated energies are
upper bounds for the true energies, according to the
Hyleraas-Undheim theorem. The parameters of the ansatz
wave functions no longer have the values that they had in the
small-oscillations approximation, but need to be fitted. For
A R example, the directioniyz, ;7_ , and ;7+ are no longer given
Junction excitations in they_, ., or #, directions yield py Egs.(25) and (26), but will be fixed by the variational
adiabatic potentials for the quark motion in different low- principle.

lying hybrid baryons, denotedi,, H,, and H;, ordered
from least to most energetic. The hybrid baryon string energy,,
(adiabatic potentialis that of the baryon in Eq32) with the

Equation (16) cannot be expanded in the small-

3

1
VB(|1,|2,|3)=bE |i+§(w++w,+wz)
=1

+§3‘, 4—li—l—leO(aZH
=1 |ma? a 12; .

(32

Note thatH;, [Eq. (20)] is even under the discrete trans-
mation z— —z sinceV; in Egs. (13) and (16) only de-
pends orz?. This implies that the wave functions should be

terme_, ., Or w, added forH,, Hy, orHg hybrid bary-  gjher odd or even under— —z. But since the wave func-
ons, respectively. Note that these results neglect the junctionr) < ore assumed to be of the form in E(RS) and (34), it

bead and bead-bead interacti_ons,_ which has been OlemOf‘%'not difficult to show that this implies that one of the junc-
strated to be a good approximation only for the lowest-

energy (_) mode. tion vibrational modes, corresponding ig,Ais aIwayAs per-

It is intriguing to note that the baryon potential in §2)  Pendicular to th&€ QQ plane. Note thay_, %, andy, are
serves as an analytical form to which the infinitely heavyrequired to be orthonormal, in order to obtain orthonormal
quark potentials calculated in lattice QCD can be fitted as &ybrid baryon wave functions in Eq34). This gives four
function ofl; . Furthermore, thé dependence of the various Vvariational parameters that specify the ansatz wave func-
hybrid baryon potentials are predicted. Potentials were als8ons:Mggw , Mggo ., Mgo,, and an angle that describes
predicted in Ref[26]. Comparisons to lattice results would the ray in which§7, lies in the plane relative to thedirec-

be instructive at large;, for which Eq.(32) was derived.
The physical string tension is—4/(wa?). The constant

tion defined in Fig. 5. The minimization is carried out with
respect to these four variables.

—1/a term is regularization-scheme dependent, and hence

not physical. Indeed, lattice calculatiops5] find the con-

stant term regularization dependent, and proportionaldo 1/

The remaining terms do not depend on eitheor a when
M;—o<c, which is the limit in which lattice QCD potentials
are evaluated, noting that M is independent ob in this
limit.

The normalized flux wave function of the baryon is

_(M :ﬁ)3/4(w+w,wz)1/4

,773/4

M .
Wg(r) exr{—Tﬁ[wm-r)Z

+w_<97_-r>2+wz<2yz~r>2]]cb. (33

Hl. FLUX SYMMETRY
A. Quark label exchange symmetry

Denote byP,,, P43, and P53 the permutations that ex-
change the labels of the quarks. Except for color, quark-spin,
and flavor labels, which will only be of interest later, ex-
change symmetry affects only position labels. Under such
quark label permutations, the positions of the quarks are ex-
changed, e.gP1, exchanges < r,, but note that variables
that are not functions of the are unaffected. Since the phys-
ics does not depend on the quark position labeling conven-
tion, the flux Hamiltonian given by Eq5) should be ex-
change symmetric. As the equilibrium junction positiogy
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in Eq. (1) is invariant under th®;;, andl;=r;—r¢, it fol- oscillations are not assumed, ansatz wave functions of the
lows thatl;—I; underP;; . Also, since the number of beads f0rm in Eqgs.(33) and (34) are used, so that the preceding
on theith triad isN;=1;/a— 1, thenN;~N; underP;; . The arguments regarding exchange symmetry remain valid.

potential V, in Eq. (13) can be written in the manifestly The above arguments can be repeated to show thqt in the
exchange-symmetric form 0,>120° case, the baryon ansatz wave functibg(r) is

invariant underP,, and that the hybrid baryon ansatz wave

3 . A~ ~ .
Vbe Ir—r|, (35 functions \Iin(r) and »_, n,, and », are either odd or
i=1 even undeP .
noting that the junction position is not determined by the B. Parity

positions of the quarks. This establishes that all quantities in  The operation of the inversion of all coordinates, or parity,

the flux Hamiltonian in Eq(5) for the §,=120° case are 5 5 symmetry of the flux Hamiltonian. It follows thag, in

invariant under exchange symmetry transformations. Eq. (25 is even under paritysince p——p and A— —A
Since the flux Hamiltonian is invariant under exchange ,qeor parity. Ifo,= 1 this follows trivially, and ifer, is given

symmetry, it is clear that energ.iéer adiabatic potentials by Eq.(C2), it follows because Eq(C2) is invariant under
that are solutions of the flux Schiimger equation are also parity. '

exchange symmetric. This is explicit for the frequencies in The I, remain invariant under parity since they are

Egs.(30) and(31), and the potential in Eq32). - ) L
By the same arguments as above it can be shown that ilﬁngAths, but thé; are odd under parity. From the definition of

the 6;>120° case, the HamiltoniafEq. (14)] is invariant ~ the ». in Eq. (26), and the definition ok andy in terms of
underP,. thel, in Eq. (2), it follows that thez. areodd under parity
Since the Hamiltonian is exchange symmetric, the comThe signo - is invariant under paritysee Appendix € This
mutation relationg Hyyy ,Pi;]=0 hold. This implies that the argument is so far valid only when. is given by Eq.(26),
wave functions of conventional and hybrid baryons have tgapplicable for theg;=120° case in the small-oscillations
represent the permutation grofp. Possible representations approximation. However, for the ansatz variational wave

are the one-dimensional symmetric and antisymmetric rePr&,nctions in Sec. Il E they.. lie in the QQQ plane and so

sentations, and the two-dimensional mixed-symmetry reéprég,, ¢ he jinear combinations pfandX with coefficients that

sentation. Since the baryon and each of the hybrid baryon ; L : ;

H. have different[36] flux energiesV(l, l,.l5), where Sre funActlons of_ the parity mvarlgnt variablgs\, andé,, ,
Hiu?=V(l1,15,15)W, each of the four wave functions Sogi]r?(%trr]eemaclnlgit?gr? gp(tjr?é Puzzrggi/bn is a vector, it is odd
V(1) and\Iin(r) have to belong to a one-dimensional rep- der parity. IF':foIIows that thJe baryon wave func’tidfb(r)

n
resentation, as they cannot mix with each other under any qlf] Eq.(33) is invariant under parity. The hybrid baryon wave
the permutations®;; . This implies that¥g(r) and ¥y (r) func?ions in theQQQ plane, iﬁ?-,‘l’i (r) an):j‘l’H (f)yin Eq.
are either totally symmetric or antisymmetric under quark(34) are even under parity, WhiM!‘Hl(r) is odd u;der parity

, , s .

label exchange. ) .
In the baryon wave function of Eq33), the quantities NeS€ results also obtain feg>120°.
In summary, flux wave functions of baryons ad , hy-

w,, o_, w,, andMZ; are exchange symmetric, so that the i ) )
factor before the exponential is invariant. The bead wav%rld baryons are even under parity, while thQ hybrid
aryon flux wave functions are odd under parity.

function®, given in Eq.(22), is also invariant. Sinc® g(r)

is either exchange symmetric or antisymmetric, the exponen- o

tial function in the junction coordinates must be either ex- C. Chirality

change symmetric or antisymmetric. The second possibility Reflection in theQQQ plane, or “chirality” [27], is gen-

is untenable since the exponential function is always posierally a symmetry of the flux wave function in the adiabatic

tive. Hence, the baryon wave functiding(r) is totally sym-  approximation, since the physics does not distinguish be-

metric under exchange symmetry tween above and below tf@QQ plane. The relevant group
Consider the hybrid baryon wave functions in E84).  consists of the identity and reflection transformations. In this

The above implies thaiy_, 7, , and %, are either totally ~approximation the flux wave function can be classified ac-

symmetric or totally antisymmetric under exchange symmecording to its eigenvalue under reflections in the plane

try, sincer is independent of the quark labels. It is shown inspanned by the three quarks, which is the chiratity.

Appendix C that both possibilities are explicitly realizable. In the flux-tube model this reflection takes- —z and

This implies that for each of the hybrid baryoHs, there is  q' ,— —q\ ,,. The most general Hamiltonian derived in this

a degenerate pair of totally symmetric (S) and totally anti-work, Eq. (5), is invariant under this reflection transforma-

symmetric (A) wave functiondenoted b)HiS and HiA. tion, as it must be. The baryon and hybrid baryon wave func-
The preceding argument assumed tlahas the form in  tions in Egs.(33) and(34) are eigenfunctions of the reflec-

Egs.(33) and(34), which applies only in the&d;=120° case tion transformation. The baryon and “planar” hybrids { )

with small junction oscillations. However, as was discussedave chirality 1, and the “nonplanar” hybrid ; has chirality

in Sec. Il F, in the more general case where small junction—1. Hence the chirality formally allows us to clearly distin-
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guish “planar” and “nonplanar” hybrids, even for more gen- ~ TABLE Ill. Flux energies and angular momentum probabilities
eral solutions of the Hamiltonian than those in E@S) and  calculated using Eq36) and (37) with \wMg=0.4 GeV, for
(34). four quark configurations. Herg;M;=0.99 GeV,b=0.18 Ge\?,

In adiabatic lattice QCD, exchange symmetry, parity, andhe triad lengths; are given in GeV*, and energies are in GeV.
chirality should classify théhybrid) baryon flux wave func- HereEq andPo(l=0) are the energy antwave probability of the
tions. These properties are sometimes called the “quanturfi’x ground stateE, and Py(I=1) are the energy an&-wave
numbers of the adiabatic surface.” probability of the first excited state of the flux.

IV. QUANTUM NUMBERS h 12 '3 Bo  Po(l=0) & Pu=1)

25 25 25 1.09 0.995 1.76 0.997

N S 25 25 05 142 0.999 2.18 0.998
For every set of quark positions the potential in which 5 g 50 05 1.18 0.993 1.80 0.998

the junction moves is anisotropic, which means that the sog 5 05 100 1.30 0.986 1.92 0.998
lutions of the Schrdinger equation for the junction motion
do not have definite orbital angular momentum or its projec-

tion. However, in the absence of the adiabatic approximation ) i . i . i

the combined wave function of the quark and junction mo-With the!unctlon positiom defined relative to &ody) z axis
tions must be a state of good angular momentum. perpendicular to the quark plane.

It is possible to determine the angular momentum charac- Further numerical studies, described below, have shown
ter of the variational wave functions that minimize the flux that the least energetic motion of the quarks in theadia-
energy for a given set of quark positions. The probability ofbatic potential has the quark angular momentuy0, the
overlap between an isotropi&wave harmonic-oscillator next highest. =1, etc. Furthermore, there is a substantial
state with frequencyw and the baryon flux wave function cost in energy to increase the quark angular momentum in

A. Orbital angular momentum

Pg(r) of Eq.(33) is the H, hybrid potential, so the total orbital angular momen-
tum of the lightest hybrid baryon is unity.
8Vw'o_w. w, In order for the combined flux and quark orbital angular

Po(1=0)=[(W¥;(r)|000)|*=

(w_+ o) w;+o)(w,+0)’ momentum to have a definite val@enity), in principle, the

(36) components with orbital angular momentum other than unity
) ) ) . in the flux wave function must be combined with quark mo-
and that of an isotropi®-wave harmonic-oscillator state tjon with L,>1 to make the total orbital angular momentum
with the flux wave function of the lightest hybriéi, () of  ynity. Given the negligible size of these components, a very
Eq.(34) is good approximation to the energy can be found by assuming
that the flux orbital angular momentum is unity.

P,(1=1)= Z » [(Wy,(r)]01M)[?
B. Color
[[5 3
_ 3w w0, 37) It is important to note that the wave function of tfey-
(w_+ ), +o)w,+o) brid) baryon has both a coland a flux sector, which are

separable. This is because color is a separable degree of free-

Once the energies of the ground and first excited states of tH#om in quantum chromodynamics, which labels the quarks
flux have been independently minimized in the variationaland flux lines. This is described by the color sector of the
calculation described in Sec. V, the calculated values of  theory. The flux sector, on the other hand, concerns the dy-
w,, and w, can be used to find these probabilities. Thenamics of the flux. In the bag model and laiyg limit the
result of these numerical studies is shown for sample quarkame separation occurs, where the octet color of the gluon is
configurations in Table Ill. It is clear that the ground state ofcombined with that of the quarks, and the spatial motion of
the flux is in an almost exclusively angular momentum zerathe gluon is treated separaté¢ly,6].
state, so the orbital angular momentum of the baryon is that In the flux-tube model the color structure of a hybrid
of the quark motion. baryon is motivated by the strong coupling limit of the

Table Il shows that variational calculations result in flux Hamiltonian formulation of lattice QC[28]. Here, the
wave functionS\Ile(r) that are to better than 99% a linear quarks are sources of triplet color, which flows along the
combination ofY,(f) andY;_4(r). An alternative argument triad connecting the quarks to the junction, wheresaensor
is given here that the angular momentum of the flux in theneutralizes the color. The color wave function is hence to-
lowest-lying hybrid baryons H,) is predominantly unity. tally antisymmetric under exchange of quarks bmth the
The flux wave function in Eq(34) of the lightest H,)  conventional and hybrid baryon. In the bag moj@land in
hybrid baryon is proportional t@_-r, where#_ lies inthe  the largeN, limit [5] the color structure of a hybrid baryon is
plane of the quarks. If the exponential in E&4) was spheri-  very different. This color structure is critical for the correct
cally symmetric, it would be strictly true thaky, (r) was  exchange symmetry properties of the conventional and hy-
proportional to a linear combination of 1(r) andY, _4(r), brid baryons, and hence the structure of the wave function.
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C. (Hybrid ) baryon wave functions NSOROO(p)ROO()\)YOO(Qp)YOO(Q)\)
The energy of the quarks in the potential given by the flux 3 5
energies is found by expanding the quark wave function in a _ a—exp{ B “_(p2+)\2)] (40)
basis with well defined orbital angular momentury and 732 2 '
projectionM,, made up from orbital angular momenita
andl, in the coordinatep and\, respectively, wherea is a parameter that characterizes the Laguerre poly-
nomials. This is obviously even under parity and is totally
(PNl Nl iLgMg)=Na 1 Rn i (P) o1, R (M) symmetric under exchange sinpé+\? is exchange sym-
metric. Since the parity is unaffected by the color, flavor, and
X C(l,m,l,m, ;LM quar.k—spin wave functions whigh will mu'ltiply thik,=0
mpmy spatial wave function, the parity is determined by that of the

flux wave function given in Sec. Ill B. The parities of the
low-lying hybrids are displayed in Table IV.
The [quark spin(x)]Xx[flavor (¢)] wave function can be

where,, is a normalization factor, and the Clebsch-Gordonmade totally symmetric fofguark-spin) X (flavor A), using
coefficient combines spherical harmonics with orbital anguthe product of symmetric factong;,¢3 . and for(quark spin

lar momentuni , and|, to form a state with orbital angular 3) X (flavor N), using the linear combinatiof29] of mixed-
momentumL . Here theR,, are orthonormal and complete symmetry factors ;e'i’;5¢mp+ Xi",g%“)/\/ﬁ. It can also be
functions in the radial coordinate, where=0,1,2 ... de- made totally antisymmetric for (quark spin 3%)
notes the radial quantum number, which are taken to be(flavor N) using the linear combination of mixed-
three-dimensional harmonic oscillator radial wave functionsgymmetry factorsﬂfllg(b'\l\‘ﬂx_xiﬂlg(b"\“"p)/\/i

ie., ITagugrre polynomials. It is easy to §how that the wave Since quarks are fermions, the combined color, space,
functions in Eq.(38) form an orthonormalin all six labels

q | n EGO) a f I L 4 wh quark-spin, flavor, and flux wave function should be totally
and complete set. In E¢38) a formal notation is used where iisymmetric under exchange symmetry. Since lfgr=0
the wave function is defined as the overlap of a stat

i . Ebaryons and hybrid baryons the color and space parts are
NI,y ;LgMg), characterized by the quantum numbersie iy antisymmetric and symmetric, respectively, the
indicated, with a position staig,\).

flavor) X (quark spinX (flux) part must be totally symmetric.
A linear combination of the states in E@®8) can be used ( )x(q pin (flux) p y SY

. . For baryons the flux wave function is totally symmetric
to form a general eigenstate of quark orbital angular momengith orhital angular momentum zero, and so their quantum
tum L, and projectionM, denoted by1nLqu), wheren

) _ numbers are exactly as they were in the conventional quark
denotes the radial quantum number. The corresponding wayRqe| with an assumed static confining potential between

XYy m (Y1 m (D)), (39

function is the quarks. As an example, the quantum numbers of the non-
strangel ;=0 ground states are shown in Table IV. Thg
(p.)\lnLqu) =0 hybrid baryonsHiS have a totally symmetric flux wave
function, and so théquark spinx(flavor) structure is the
- nL . same as for the correspondibg=0 baryons, i.e., the sym-
= chta ANy LgMg(pA)). _ ondihg ;
nPIrJEn)\I)\ ”o'p”A'x<p Mol LaMa(p M) metric products above with quark spin 1/2 for nucleons, and

quark spin 3/2 foA states. Fot. ;=0 hybrid baryons with a
totally antisymmetric flux wave functiori,—IiA, the (quark
spin X (flavor) wave function must be totally antisymmetric,
The coefficients in this linear combination, and the corre-and the only possibility is the antisymmetric product with
sponding hybrid baryon energies, are found by diagonalizingiucleon flavor and quark spin 1/2, as shown in Table IV.
the three-quark Hamiltonian in the basis of E8g) with the Chirality is a reflection in th€ QQ plane, and hence only
potential energy given by the flux energy. Note that the or-affects the flux part of the wave function, so that its values
bital angular momentum and spin of the quarks are goo@re those given in Sec. Il C.

quantum numbers as the interquark potential is a spatial and For the lightestL,=0 (hybrid) baryons the total orbital
quark-spin scalar, even in the presence of the Coulomb anghgular momentum is that of the flux. This givies=0 for

hyperfine(spin-spin interactions. low-lying conventional baryons, so thd&=S. SincelL=1
It has been checked numerically for the adiabatic potenfor the low-lying H, hybrid baryonsJ=1% or 3 for S=3,
tials_.found here that the lowest-energy solutions of theandj=1%, £, or 3 for S=£, as shown in Table IV.
Schralinger equation for both conventional and hybrid bary-
ons have_ ;=0 quark wave functions. In order to determine
the color, flavor, quark-spin, parity, exchange symmetry, and
chirality quantum numbers of these states, it is sufficient to A phenomenological form is used here for the quark
consider the(p,A|0000;00 component of thé. ;=0 wave  Hamiltonian which is fit to conventional baryon spectros-
function in Eq.(39), as these quantum numbers must be thecopy in Ref.[8]. In the case of hybrid baryons, the difference
same for all components of the wave function. between the adiabatic potential found from numerical calcu-

From Eq.(38), (p,A\|0000;00 equals lation of the energy of the ground state and the first excited

(39

V. HAMILTONIAN FOR THE QUARK MOTION
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TABLE IV. Quantum numbers of ground statg=0 flux-tube model(hybrid) baryons for the lowest
flux-tube surface® (the conventional barygrandH; (the lightest planar hybrid barypnin the absense of
spin-dependent forces all ground states corresponding to a given flux-tube bdetsymmetridS and
antisymmetric A)] are degenerate. Heteis the total orbital angular momentum of the quarks and the flux,
N or A denotes the flavoSis the spin of the three quarkd=L + Sis the total angular momentum, akrd
is the parity. Low-lying hybrid baryons in the bag model constructed with a transverse electric(gbren
responding to the surfacesf andH’i\) are also showm6].

(Hybrid) Baryon Chirality L (N,A)2ST1P
BS 1 0 N2%+’A4g+
H1 1 N2%+’N2%+,A4%+,A4g+’A4g+
HY 1 N2L+ N23+
Bag model hybrids 1 N2L+ N23+ NAL+ N2+ N4S+ A2L+ A23+
state of the flux is added to the quark Hamiltonian. potential is found by solving Eq42) variationally for the
The quark Hamiltonian has the form wave function\Ile(r) and energWHl(Il,Iz,Ig) of the first
3 excited state of the junction Hamiltonian, using the first an-
Ha909— PErMZ+ S vCoul ST yeont vy | ), satz wave function in Eq34). 'I_'hls corresponds to junction
21 ! ! ; 4 ; g (I1.l2.13) motion in theQQQ plane, and is used because the analytical

(41)  solutions in Sec. Il E suggest that the lowest hybrid baryon

) ) energy can be described by such junction motion. The mini-
where P; is the momentum operator of théh quark,M;  mizations for the baryon and lightest hybrid baryon poten-
=0.22 GeV for light quarksh=0.18 GeV, and the Cou- tjas are carried out independently. It has been checked that
lomb potential Vi;>! and hyperfine contact potenti®®™™  the numerical potentials calculated here in the long-string
have the same form as in R€8]. The justification for adopt-  |imit agree with the analytic expressions derived in that limit
ing this form of the Coulomb and hyperfine contact interac-in Sec. Il E, to within 2%.
tion is outlined in Sec. V B_below. For the conventional  The hybrid baryon adiabatic potential is defined to be
baryon the adiabatic potenti®k(l,,l5,l3) also has the form _
bs;l; adopted in Ref[8]. In what follows, the numerical Vi (11.12,13)=Va(l1,12,13)+Vy (11,12,13) = Va(l1.12,13)
calculation of the form of the adiabatic potenthalfor the
lightest hybrid baryon is outlined. :bzi i+ Vi, (11,12.19) = Va(l1.15,15). (43

A. Numerical adiabatic potentials Selected numerical results for the differel’\qul—vB of the

As it is not possible in all quark configurations to derive pyprid and conventional baryon adiabatic potentials are plot-
the adiabatic potential of baryons and hybrid baryons in thged in Figs. 8 and 9. In Fig. 8 the potential is plotted with
small-oscillations approximation to the junction motion fixed , (proportional to the separation of quarks 1 ancad
given by Eq.(32), a numerical calculation is used to find the yariable \ (proportional to the separation of the center of
flux energy, which is part of the potential energy for the mass of quarks 1 and 2, and quark &hd 6, (the angle

quark motion, for all quark configurations. As discussed preypenveen the vectorg and\), which clearly demonstrates a
viously, the linear term in Eq(32), which arises from the

bead motion, is regularization-scheme dependent, and can be
absorbed into the physical linear term in the potential. Also,
there will be no need to consider constant and Luscher terms
in this section as they are identical for the conventional and
hybrid baryons.

The procedure of numerically evaluating the hybrid
baryon potential is as follows. For a large set of quark con-
figurations{l,l,,l3}, the Schrdinger equation

(%MZ}MVJ VD=Vl %) (42

is solved variationally for the wave functiokiz(r) and en-
ergy Vg(l1,12,13) of the ground state of the junction Hamil-  FIG. 8. DifferenceVy, —Vg of the hybrid and conventional
tonian, as described in Sec. Il F, using the ansatz wave funaryon adiabatic potentials far=6.2 GeV*, as a function ofx
tion in Eq. (33). The lowest-lying hybrid K,) baryon andé,,.

065204-13



SIMON CAPSTICK AND PHILIP R. PAGE PHYSICAL REVIEW @6, 065204 (2002

discontinuity in the derivative when the flux goes from the
shape withf;=120° to that withd;>120°. In Figs. 9 and
10 the behavior of\/Hl—VB andVg—bZ;l; whenp and A

are orthogonal is plotted againstand\. It is obvious that
both the conventional and hybrid baryon adiabatic potentials
increase whem\ is small, with the hybrid adiabatic poten-
tial increasing faster. If the small-oscillations approximation
were employed they would tend to infinity a& —0. Solv-
ing for the energy variationally has softened this behavior
considerably.

The value ofyM g _ for the baryon is approximately in
the range 0.37-0.5 GeV, while the hybrid baryon is
~0.35-0.48 GeV.

Vg (GeV)

FIG. 10. Conventional baryon adiabatic potential without the
confining potential Vg—bZ;l;, for 6,,=m/2, as a function op

B. Short-distance interactions between the quarks andA.

There are two important configurations of the quarks,g e ground-state nucleon. This implies that the lightest
when considering the Coulomb interactions. These are Wherﬁybrid baryons are always heavier than the lightesy-
two quarks are near to each other and the third is distal

. ) . rBrids, due to the same hyperfine interaction that makeathe
(mesonlike configurationsand where all three quarks are

. : heavier than the nucleon.
close to each other. It is possible to focus on the former,

because the latter is atypical and contributes little to the en-
ergy of the baryon.

In the flux-tube model, in the mesonlike configuration a
string extends from the distant quark to the other two quarks, The Hamiltonians in Eqg41) and(43) are evaluated us-
i.e., the system looks like a meson with the two nearbying the basis of coupled three-dimensional harmonic oscilla-
quarks in color 3 The reason for this is that the long- tor wave functions in Eq(38), expanded up to at least the
distance picture is still appropriate for the distant quark,N=7 oscillator level, wher&N=2(n,+n,)+I,+1,. These
which means that its color flows along the long string, andmatrices are subsequently diagonalized to yield the energies.
must be cancelled by the two nearby quarks. The two nearbyhe resulting full wave functiongeqg. (39)], which are linear
quarks are hence in color Br both the conventional and Ccombinations of the harmonic oscillator wave functions, are
hybrid baryon. This implies that the Coulomb interactionsSelutions of the Schxtinger equation for the quark motion in
between the nearby quarks are attractive, and identical in thidne presence of the usudg baryon confining potential and

conventional and hybrid baryon. the V},_ hybrid-baryon adiabatic potential. The differences

This also has implications for hyperfine contdepin-  peryeen the energies for the hybrid and the conventional

spin) interactions, the existence of which has recently bee'Baryon are then added to the experimental mass of the light-
confirmed in lattice QCO30], since their form is given by est baryonthe nucleoi

the color representation of the interacting quark pair. The | ig interesting to determine what sets the scale of the

interactions are, therefore, identical for conventional and hyénergy difference between the lightest hybrid and conven-
brid baryons. As seen in Table IV above, the lightashy- s, baryons in this model. This can be illustrated by ex-

brid baryons have the same quark-spin structure as thgmining the analytic solution to the junction Hamiltonian

ground statel, and both the symmetric and antisymmetric ye\ejoped above, in the limit of small oscillations and a large
lightest nucleon hybrids have the same quark-spin structurg, mber of beads. Equatia8l) gives the frequencys  of

the lowest energy string excitation in terms of the string ten-
sionb, the effective mas# o of the junction in the limit of

a large number of beads, and the lendthsf the three lines
from the rest position of the junction to the quarfssads.

The effective mass of the junction is, in turn, given in terms
of the same quantities and the quark maddesn Eq. (21).

The scale of the energy difference is set by the same quan-
tities in our variational calculations, which do not employ the
small oscillations limit.

Consistent values of the string tension and ligM (
=My) quark mass are used in evaluating the flux energies,
which define the adiabatic potentials in which the quarks
move, and in the calculation of the energy of the quasks

FIG. 9. DifferenceVy —Vg of the hybrid and conventional SO hybrid and conventional bar)_/on maés'gsthese poten-
baryon adiabatic potentials fat,, = m/2, as a function op andx. ~ tials. The value of the string tension used is

VI. NUMERICAL MASS ESTIMATE FOR LOW-LYING
HYBRID BARYONS
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=0.18 Ge\#) the typical value resulting from lattice gauge oscillations approximation has been fully lifted. The effect
theory calculations, which is also used in quark model calon the masses of hybrid baryons when the various approxi-
culations of hadron massés3]. The light quark masses are mations are lifted is the same as those found for hybrid me-
set to 0.22 GeV, the same value used in R&f, which also  sons.
uses the relativistic kinetic energy, and Coulomb and hyper- In the numerical simulation described above, with an
fine contact potentials identical to those in the current calculdentical Coulomb interaction in_conventional and hybrid
lation. baryons, the rms valueg(p?)=(\?)=2.12,2.52 GeV*

The triad lengthd; are not parameters, as, in principle, e obtained for the baryon amth _hybrid baryon sizes, re-
they are evaluated for every set of quark positions in order t§Pectively. The result/(p)=V(\%) is expected since the
find the potential in which the quarks move. Their averageSPat'a| parts of the wave functions of the low-lying states are

size does of course affect the excitation energy of the stringg)ta”y symmetric under exchange symmetry. The hybrid
and since this is determined by solving for the motion of the aryon is, therefore, 20% larger in size than the conventional

quarks in the confiningland, to a lesser extent, short- aryon.

distance potential, it only depends on the quark masses and lt_'s of _phyS|caI m;tcer_est to obtain an estimate of the effec-
string tension tive junction massM ; in Eq. (21). Taking the average val-

In the case that the hyperfine contact spin-spin term in E €S Olf V(” )Iand V]S_)‘ ) a_bove WSE the qua:l;s indan t_equi—
(41) is set to zero, the lightest, =0 states havé/,, —M atera trlangg cor_1 |gurat|on., Wolct =0.18 GeV, and using
—890 MeV. giving a mass estimate of =108%+ 890 Eqg. (24), the junction mass M z=0.17,0.20 GeV for the

» giving i H baryon andH, hybrid baryon, respectively. This effective
=1975 MeV. Here 1085 MeV is the spin-averaged mass Ofnass is made smaller by the center-of-mass corrections due
the nucleon and ground states. Note that this means that allyy the quark motion in Eq21). This effective junction mass
of the lowest-lyingH, hybrid states in Table IV have this found in the flux-tube model in the refined adiabatic approxi-
mass. Furthermore, the states built on this adiabatic surfaggation is very different from the constituent gluon mass of
with Lq=1 andL,=2 have masses 2340 and 2620 MeV,0 8 GeV typically employed in constituent gluon models

respectively, showing a considerable cost in energy for orf1g], and partially accounts for the higher excitation energy
bital excitation of the quarks, comparable to that in the conyf the hybrid in the present work.

ventional baryons. Similarly, the lightest radial excitation

built on this adiabatic surface has mass 2485 MeV, with a VII. DISCUSSION
position between thé ;=0 andL =2 states, as is also the o ) )
case in conventional baryons. It is interesting to compare results found here for hybrid

Including the hyperfine contact spin-spin term in E4f) baryons to the predictions of the bag mop&l Ogt.of all of
lowers the mass of the quark—spin-1¥, hybrid states, the flux-tube model states listed undef‘ andH7 in Table
which coincide with the lightestl hybrids as outlined in Sec. 1V, only the N23*, andN?3* states have the same flavor,
IV C, by 110 MeV to 1865 MeV, and raises the mass of thequark-spinS, total angular momentum, and parity as the low-
quark—spin-3/2H, hybrid states, which coincide with the lying hybrid baryons in the bag model. However, restricting
lightestA hybrids, by a similar amount. to experimentally measurable quantum numigéasor, total

These mass predictions depend on the form of the quarkngular momentum, and parityonly one light hybrid is dif-
Hamiltonian used herfEq. (41)], which has been fit to the ferent between the flux-tube and bag model predictions. This
baryon spectrum. The parameters that determine the adid®=5/2" state is flavorA in the flux-tube model and flavor
batic potential are the string tensidmand the sum of the N in the bag model, but is amongst the higher-lying states in
quark masse&;M; . In order to conservatively estimate the both modeld6].
error in the hybrid masses due to uncertainties in these pa- Looking at quantum numbers alone, the Roper resonance
rameters, a variation obb/b=+10%, anddéZ;M;/Z;M; could be regarded as a hybrid baryon candidate in both mod-
=+50% have been considered. These variations change tleds. However, our mass estimates do not support this identi-
mass prediction for the lightest hybrid by less thanfication, in contrast to some bag modél] and QCD sum
+100 MeV. rule estimate$4]. Both our model and the bag model have

These mass estimates are substantially higher than othseven low-lying hybrid baryons.
mass estimates in the literature, which are approximately One of the disadvantages of hybrid baryons relative to
1.5 GeV in the bag moddl] and 1.5-0.15 GeV in QCD  hybrid mesons, multiquark states and glueballs, is that all
sum ruleg4]. possible baryon quantum numbers can be attained by con-

There are two crucial assumptions that were made in thgentional baryons, so there are no “exotic” quantum num-
early work on hybrid meson masses in the flux-tube modelbers. However, our low-lying4 hybrid baryons are “non-
the adiabatic motion of quarks and the small-oscillations aprelativistic quark model exotic,” since these states have
proximation for bead motio13]. It was later shown that quark-label exchange antisymmetric flux wave functions,
when the adiabatic approximation is lifted, the masses go umand so totally antisymmetri¢spacgx (spin X (flavor) wave
and when the small-oscillations approximation is lifted, thefunctions, and states of this nature cannot be constructed in
masses go dowiB1]. In the present study of hybrid baryons, the nonrelativistic quark model.
the adiabatic approximation has been partially lifted by the The phenomenology of hybrid baryons has been reviewed
use of the redefined adiabatic approximation. The smallrecently [32,33 and so will not be discussed here.
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realistic flux-tube model ofhybrid) baryons. The full multi-
bead Hamiltonian is constructed and it is demonstrated th
the junction decouples from the beads on the triads to a hig
degree of accuracywith the exact and decoupled lowest
frequencies differing by at most 2%so that the lowest-lying It is now shown that the junction can move and leave the
hybrid-baryon excitations in the flux-tube model can be asstring in the ground state of its Y-shaped configuration in
sociated with the motion of the junction. This simplifies the first-order HLGT perturbation theory, i.e., with the applica-
description of the long distance properties of a low-lyingtion of a single plaquette operator.

(hybrid) baryon to be that of three quarks and a junction, In Fig. 2 the plaquette operator which operates on the
with the junction connected to each of the quarks via a lineajunction has the effect of producing a link that is indicated
potential. The parameter dependence of the conventional aith two arrows on it. The color structure of this link is 3
hybrid baryon potential ipredicted and can be used as an 3=3g6. A link with color 6 is not allowed by conserva-
input in various theoretical approaches. tion of color, because its neighboring link is color 3 flowing

PPENDIX A: ACTION OF THE PLAQUETTE OPERATOR
ON THE JUNCTION

The quantum numbers of the lightest hybrid baryons "in the opposite direction, or color. However, it would ap-
the flux-tube model are given in Table IV, and in the pres- PP _ . R ' P P
ence of the expected spin-spin interactions between thB€ar that a link with color 3s allowed. The following shows

quarks, the lightest hybrid baryons are four nucleons witifhat this is the case. o , , ,
JP=1/2" and 3/7 and with a mass of 1865100 MeV. An enlargement of the junction region of Fig. 2 is pro-
’ vided in Fig. 11. The creation of a link from spatial positions

Ato B with color projectionsa andb, respectively, is denoted
by U;i%. Denoting by capital letters the spatial positions, and

Helpful discussions with T. Barnes, T. Cohen, N. Isgur, G.by lowercase letters the color projections, the mathematical
Karl, R. Lebed, A. V. Nefediev, R. Pack, and E. S. Swansorexpression corresponding to the graph in Fig. 11 is

ACKNOWLEDGMENTS

ady 1dg1, by, fgsy jcf f'epjed d'g’y9'f’
2, . UADUDGUBGUFGUCFEglgzg3UFEUEDUDG UGF (A1)
dfg;g,03f'ed’'g

where the first term is the initial baryon state and the second 1 b et y
term is the plaquette operator. Now contract the 6 ~3 > URRURLULS VLRV U  egarar
links, and the twd=G links, using Appendix B of Ref(34], g"tedd' d” (Ad)
where the 6 term does not contribute as mentioned above,
2 e g and the 8 term is not Qisplaygd as it leads to a more co'mpli—
bt dd’d"®g,9'g"~ GD cated topology. EquatiofA4) is a mathematical expression
that gives a graph similar to Fig. 11, with the junction moved
Lz 2 (840 Baragn+ Bqcpr Sar ) from spatial ppsitiorG to positionD, and the I_inks in the_ir
4 grangn dd”“d’d dd”“d’d usual color triplet state. Hence 'Fhe gpphcatlon of a smg_le
plaguette operator can move the junction and leave the string

X (8,1 Bgrgnt 5glg,,,5g,g,,)Ug{g"d"'}{g"g"'}, in its ground state, as promised.

1

dgyyd'g’ —
UpcUoe =3

(A2) APPENDIX B: FLUX-TUBE HAMILTONIAN

The flux-tube Hamiltonian is first derived for thé,
AN =120° case, using the coordinate system defined in(H&g.
Ufg3Ug’f’:15 50 t23 }\L 939’ BEICH The goal is to describe the position of each quark and bead
FG-GF 3 7ff" Ta50' fron 22 FG and the junction with respect to an alternative coordinate
’ (A3)  system with origin at the center of maRs ,, of the entire
system.
In this coordinate system the junction isrg&er—R. , ,
whereU® andU? refer to sextet and octet links, respectively, wherer=(x,y,z). The quark positions are
and \? are the usual Gell-Mann §B) matrices. It follows o
that Eq.(A1) equals ri=li(—e},e,0—Rcm., (BY)
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FIG. 11. Enlarged view of the effect of the plaquette operator o
the junction in Fig. 2.

where thee are defined in Eq(10). Beadn on theith triad
is at position

Ni+1_n i
e/l

i n
no N+1 7Y

N . Ni+1_n .
TN+

X+ &€l -We'xh

+

n . n .
Ni+1)’+§'ne'y,m2+2'n —Rem.- (B2)

Here §in is the displacement of beadalong the directiore
which is perpendicular to thigh triad in theQQQ plane(see
Fig. 7), andz, is its displacement perpendicular to Q€ Q

PHYSICAL REVIEW C 66, 065204 (2002

The displacements of the beads within and out of the
QQAQ plane, given by, andz,, is expanded in terms of the
amplitudes of themth normal mode of the beads,, and
g\ m, respectively, by

mnm .

N.
' v mnar
i _ i o i_
&= 2, dinSing 7> 2 N

N;
i .
ijl qusmm. (B5)

The potential energy now becomes diagonal in these normal
mode amplitudesy;,,,q) ,, of the beads. Carrying out the

phecessary algebra yields E®). As an aside, it is perfectly

meaningful in Eq(5) to putN;=N,=N3=0, the case with
no beads other than the junction.

For the§,>120° case, the definition of the coordinates in
Egs.(B1) and(B2) remains the same, except that #heare
given by Eq.(15 and there are no beads on the third triad.
Carrying out the necessary algebra yields the Hamiltonian
discussed in Sec. Il B.

APPENDIX C: QUARK LABEL EXCHANGE SYMMETRY
FOR THE 6;=120° CASE
IN THE SMALL-OSCILLATIONS APPROXIMATION

It is now shown, using the explicit definition af,, that
both quark-label exchange symmetric and antisymmetric re-

alizations of 73, are possible. First consider the possibility

plane. Note the bead displacements are transverse to the tg,=1 in the definition Eq.(25) of ;,Z, so that;/z points
ads on which they lie, and are measured from the line conalongpx \. By inserting the expressions fprandX\ in Eq.

necting quark to the (in general, displacedunction. Bead
n=1 is placed next to thith quark, and beal; lies next to
the junction.

(23) into pX A\, it can explicitly be verified thapx\ is to-
tally antisymmetric under exchange symmetry. Henfz)g,
with o,=1 is totally antisymmetric under quark label ex-

Requiring that the center of mass is at the origin gives th%hange symmetry.

constraint,

3
rh+ > My, (B3)

I
g

x

l
N[ -

(B4)

|rin+1_ rin|1

where the first three terms form the kinetic energy. The last
term is the linear potential energy between neighboring®

beads, WheraeiNi+1 is defined as the position of the junction
ry andrl) is defined as the quark positiop.

Another possibility is to choosEyZ along the vector

[Z-pXN]pXN\, (C1)

whereZ is a space-fixed unit vectdgnot determined by the
quark positions This is equivalent to choosing

2~p><)\
o= (C2
|Z-pxA|
in Eq. (25). This choice ofc, obviously yields a totally
symmetricy, .
Next consider the quark-label exchange symmetryyof

nd z_ in the §;=120° case in the small-oscillations ap-
proximation, as defined in Eq26). Consider the vectors

7., defined byn. = 0. 7. . Applying P;; exchanges; |

The Hamiltonian is now simplified using the redefined N EQ.(26), as well as the labeisandj in x andy in Eq. (2).
adiabatic approximation, where the distances between thdnderP,, it is easy to see thag. — — »’. . Both P,3 and

quarks remain fixed, concisely stated las 0. The small-

P,z can be shown to lead tg’, — =+ % , where the sign is

oscillations approximation is used to Taylor expand the podependent on the relative sizes lgf, |,, andl;. For ex-

tential energy in Eq(B4) to yield a function quadratic in the
junction and bead position coordinates.

ample, undeP,5 one can show that this sign is given by the
sign of the expression
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wheres(l4,l,,13) is defined in Eq(27).
The fact that they’. transform under label exchange into

1
—+
2

Vs(lq,15,13) =

(C3

themselves, up to a sign, follows from the observation tha

theray in which the;y’i lie is the physical line of oscillation

of the junction in these vibrational modes. Since label ex-

PHYSICAL REVIEW @6, 065204 (2002

still be in the same ray after label exchange, as found. Since
only the ray in which. lies is physical, the possibility
cannot be excluded that thg. are multiplied by a signr..
when a standard choice of eigenvectors is constructed, as in
Eq. (26). It is possible to show that a consistent set of sign
conventionso.. can be chosen such that thge. are either
’Eotally symmetric or antisymmetric under label exchange.
Neither choice can be excluded.

It is also possible to show that the sigms , o, , ando,

change does not change the physics, the oscillation shoulate invariant under parity.
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