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Hybrid and conventional baryons in the flux-tube model
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Conventional and hybrid light quark baryons are constructed in the nonrelativistic flux-tube model of Isgur
and Paton, which is motivated by lattice QCD. The motion of the flux tube with the three quark positions fixed,
except for center-of-mass corrections, is discussed. It is shown that the problem can be reduced to the inde-
pendent motion of the junction and the strings connecting the junction to the quarks. The important role played
by quark-exchange symmetry in constraining the flavor structure of~hybrid! baryons is emphasized. The
flavor, quark spinS, and JP of the seven low-lying hybrid baryons are found to be (N,D)2S11JP
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1 states are doublets. The motion of the three
quarks in an adiabatic potential derived from the flux-tube dynamics is considered. A mass of 1870
6100 MeV for the lightest nucleon hybrids is found by employing a variational method.
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I. INTRODUCTION

Since all possible good (JP) quantum numbers of baryon
can be described by conventional excitations of three qua
the description of hybrid baryons, defined as bound sta
containing explicit excitations of the gluon fields of QCD,
necessarily model dependent. Nevertheless,any model of
QCD bound states which allows the gluon fields to be
namical degrees of freedom, as opposed to simply genera
a potential~or surface! in which the quarks move, will have
additional states involving excitations of those degrees
freedom. A description of the spectrum of hybrid baryo
the degree of mixing between them and conventionalqqq
excitations, and their strong decays will therefore be nec
sary in order to describe the results of scattering experim
that involve excited baryons. For example, such experime
make up the excited baryon resonance (N*) program at Jef-
ferson Laboratory, where many excited states of baryons
produced electromagnetically. Hybrid baryons must pla
role in such experiments. In principle, their presence can
detected by finding more states than predicted in a partic
partial wave by conventionalqqq models. Doing so will
require careful multichannel analysis of reactions involvi
many different initial and final states@1#. Another possibility
is that such states will have characteristic electromagn
production amplitudes@2#. If hybrid baryons obey similar
decay selection rules to hybrid mesons@3#, they may be dis-
tinguishable based on their strong decays. This work conc
trates on a determination of their masses and quantum n
bers, in an approach where the physics of the confin
interaction defines the relevant gluonic degrees of freedo

Hybrid baryons have been examined using QCD s
rules@4# and in the large number of colors~largeNc) limit of
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QCD @5#. One approach to modeling the structure of hyb
baryons~not taken here! is to view them as bound states o
three quarks and a ‘‘constituent’’ gluon. Hybrid baryons ha
been constructed in the MIT bag model@6# by combining a
constituent gluon in the lowest energy transverse elec
mode with three quarks in a color-octet state, to form a co
singlet state. With the assumption that the quarks are in
S-wave spatial ground state, and considering the mixed
change symmetry of the octet color wave functions of
quarks, bag-model constructions show that adding aJP

511 gluon to three light quarks with total quark spin 1
yields bothN (I 5 1

2 ) andD(I 5 3
2 ) hybrids withJP5 1

2
1 and

3
2

1. Quark spin 3/2 hybrids areN states withJP5 1
2

1, 3
2

1,
and 5

2
1. Energies are estimated using the usual bag Ham

tonian plus gluon kinetic energy, additional color-Coulom
energy, and one-gluon exchange plus gluon-ComptonO(as)
corrections. Mixings betweenq3 andq3g states from gluon
radiation are evaluated. If the gluon self-energy is includ
the lightestN hybrid state hasJP5 1

2
1 and a mass betwee

that of the Roper resonance and the next observedJP5 1
2

1

state,N(1710). A secondJP5 1
2

1N hybrid and aJP5 3
2

1N
hybrid are expected to be 250 MeV heavier, with theD hy-
brid states heavier still. A similar mass estimate of ab
1500 MeV for the lightest hybrid is attained in the QCD su
rules calculation of Ref.@4#.

For this reason, there has been considerable interest in
presence or absence of light hybrid states in theP11 and
other positive-parity partial waves inpN scattering. Interest-
ingly, quark potential models that assume aq3 structure for
the Roper resonance@7,8# predict an energy that is roughl
100 MeV too high, and the same is true of theD(1600), the
lightest radial recurrence of the ground stateJP5 3

2
1

D(1232). Furthermore, models of the electromagnetic c
plings of baryons have difficulty accommodating the su
stantial Roper resonance photocoupling extracted from p
photoproduction data@9#. Evidence for two resonances ne
1440 MeV in theP11 partial wave inpN scattering was cited
©2002 The American Physical Society04-1
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@10#, which would indicate the presence of more states in
energy region than required by theq3 model. However, this
has been interpreted as due to complications in the struc
of the P11 partial wave in this region, and not an addition
qqq excitation @11#. Recent calculations@12# of Np
→Npp reaction observables incorporating baryon-mes
dynamics are able to describe this reaction in the Roper r
nance region in the absence of aqqq excitation, and find a
dynamically generated pole at the mass of the Roper r
nance. Given this complicated structure, it is perhaps
surprising that there are difficulties in describing the pho
couplings of this state within a simple three-quark picture

The motivation of this work is to build a model consiste
with predictions from QCD lattice gauge theory, based on
Isgur-Paton nonrelativistic flux-tube model@13#. This model
is motivated from the strong coupling limit of the Hami
tonian lattice gauge theory~HLGT! formulation of QCD.
This strong coupling limit predicts linear confinement in m
sons proportional to the expectation of the Casimir opera
for color charges, which has been verified in lattice QC
@14#. In conventional baryons, in the limit of heavy quark
the static confining potential has been shown in lattice c
culations @15# to be consistent with that given by
minimum-length configuration of flux tubes meeting in
Y-shaped configuration at a junction~see Fig. 1!, and not
consistent with two-body confinement, where a triangle
tubes would connect the quarks in aD configuration@16#. It
is possible to experimentally examine this configuration
studies of baryon production in the central rapidity region
ultrarelativistic nucleon and nuclear collisions@17#.

This structure of the glue, where the gluon degrees
freedom condense into flux tubes, is very different from
constituent-gluon picture of the bag model and largeNc con-
structions. Substantial progress has been made in re
years in understanding conventional baryons by studying
largeNc limit of QCD. However, the largeNc limit does not
necessarily provide model-independent results on hy
baryons. Hybrid baryons in the largeNc limit consist of a
single gluon andNc quarks@5#. Even in the case of physica
interest,Nc53, this does not correspond to the descripti
of hybrid baryons presented here, where it is argued that
dynamics relevant to the structure of hybrids are that of c
finement, where numerous gluons have collectively c
densed into flux tubes. Since the color structure of a hyb
baryon determines~through the Pauli principle! its flavor

FIG. 1. A possible configuration of flux lines in a baryon on t
lattice.
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structure, theNc53 case gives rise to states with differe
quantum numbers than in our approach. It has been sh
by Swanson and Szczepaniak@18# that a constituent-gluon
model is not able to reproduce lattice QCD data@19# for
hybrid-meson potentials at large interquark seperations
addition, the flux-tube model hybrid-meson potential is co
sistent at large interquark separations with that evalua
from lattice QCD@13,20#.

Hybrid baryons are constructed here in the adiabatic
proximation, where the quarks do not move in response
the motion of the glue, apart from moving with fixed inte
quark distances in order to maintain the center-of-mass p
tion. The effect of the motion of the glue in hybrid baryon
~and the zero-point motion of the glue in conventional ba
ons! is to generate a confining potential in which the qua
are allowed to move. This differs from that found from mu
tiplying the sum of the lengths of the strings~‘‘triads’’ ! con-
necting the quarks to the junction by the string tension. T
adiabatic approximation is exact only in the heavy-qua
limit, although the success of quark model phenomenolo
of conventional mesons and baryons implies that there
close relation between heavy-quark and light-quark phys
A modified adiabatic approximation is employed, which c
be shown to give exact energies and wave functions for s
cific dynamics even for light quarks@21#. Moreover, a modi-
fied adiabatic approximation has been shown to be good
properties of light quark mesons in the flux-tube model@23#.

The model is motivated from the strong coupling limit
HLGT, where there are ‘‘flux lines’’ that play the role o
glue. In the adiabatic approximation, operators that make
quarks move are neglected. The plaquette operator corr
the strong coupling limit, and induces motion of the ‘‘flu
lines’’ between the quarks and the junction perpendicula
their rest positions. The flux lines are modeled by equa
spaced ‘‘beads’’ of identical mass, so that the energy of e
flux line is proportional to the number of beads, and hence
length. The spacing of the beads along the rest position
the flux lines can be thought of as a finite lattice spacing, a
the beads are allowed to move perpendicular to their
position. The beads are attracted to each other by a lin
potential, and the resulting discretized flux lines vibrate
various modes. Global color invariance requires that
three flux lines emanating from the quarks meet at a junct
which is also modeled by a bead. It is shown in HLGT tha
single plaquette operator can move the junction and re
the Y-shaped string with the links in their ground state~see
Fig. 2 and Appendix A!, so that the junction may have
similar mass to the beads. However, for generality, we all
the junction to have a different mass associated with it th
that of the other beads.

The final picture of both conventional and hybrid baryo
is that of three quarks, connected via a line of beads to
junction in a Y-shaped configuration. The potential betwe
neighboring beads is linear. The adiabatic approximation
used, so that the string is assumed to adjust its state qui
in response to motion of the quarks, thus generating a po
tial in which the quarks move, in both conventional and h
brid baryons. The motion of the quarks in these potential
then solved for variationally. A brief outline of this approac
4-2
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is given in Ref.@22#. The purpose of the present paper is
describe the model and the calculation of hybrid bary
masses in much more detail, and to put this work in
context of recent advances in lattice gauge theory.

The rest of the paper is organized as follows. Section
describes the dynamics of the flux tubes in various qu
configurations, with analytic solutions in special cases. S
tion III discusses the quark-label exchange symmetry, pa
and chirality of the flux configuration. In Sec. IV, the orbit
angular momentum and color of the flux, and the combin
quark and flux wave function are constructed. Section V
scribes the potential in which the quarks move, which
cludes the energy of the flux. Numerical estimates of
masses of hybrid baryons are given in Sec. VI. In Secs.
and VIII further discussions and conclusions are given.

II. FLUX DYNAMICS

Denote byu132 the angle between the line from quark 1
3 and that from quark 2 to 3. Ifu123, u132, andu213 are all
smaller than 120°, the flux is in its equilibrium~lowest-
energy! configuration when the junction is located such th
there are angles of 120° between each of the triads that
nect the quarks to the junction, and the beads all lie on
triads. In this lowest-energy configuration, the string lies
the plane defined by the three quarks, denoted by theQQQ
plane. The angle between the line from any two quarks to
junction equilibrium positionreq is 120°, which is denoted
by uJ5120° ~see Fig. 3 and Table I!. In terms of the lengths
l i of the lines from thei th quark to the junction, and th
quark positionsr i , the equilibrium junction position is

FIG. 2. Flux lines in a baryon on the lattice, illustrating th
application of a pair of plaquette operators, the upper operator m
ing one flux line perpendicular to its starting position, and the low
attempting to move the junction.

FIG. 3. Flux configuration when none of the angles in the
angle joining the quarks are larger than 120°.
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req5
l 2l 3r11 l 1l 3r21 l 1l 2r3

l 2l 31 l 1l 31 l 1l 2
. ~1!

The position vectors of the quarks relative to the juncti
equilibrium position arel i5r i2req.

If one of u123, u132, andu213 is larger than or equal to
120°, the equilibrium configuration of the flux is not th
Y-shaped configuration. Ifu i jk.120°, the lowest-energy
configuration has the junction at the position of quarkj ~see
Fig. 4!. This situation is denoted byuJ.120°. In what fol-
lows, the case whereu132.120° is analyzed, but the formu
las for the other cases follow by the appropriate label
change.

An axis system is chosen as indicated in Fig. 5. T
defines normalizedx̂ andŷ, which can also be written in the
uJ5120° case as

x̂52
l̂12 l̂2
A3

ŷ52
l̂11 l̂222 l̂3

3
, ~2!

v-
r

-

TABLE I. Notations frequently used in the main text.

b String tension
uJ Angle between triads suspended at the equilibrium

junction position
i 51,2,3 Quark or triad label
Ni Number of beads on triadi
n51,Ni Counts the beads on triadi from quarki to the

junction
m51,Ni Counts the modes of the triadi
M i Mass of quarki
mb Mass of the beads
mJ Mass of the junction
l i Distance from the equilibrium junction position to

quark i

l̂ i Direction from the equilibrium junction position to
quark i

r i Position of quarki
qim

i Amplitude of modem on triad i in the QQQ plane,

but perpendicular tol̂ i
q'm

i Amplitude of modem on triad i perpendicular to the
QQQ plane

r5(x,y,z) Cartesian coordinates of the junction

ĥ6 ,ĥz
Junction oscillation directions parallel and perpend

ular to theQQQ plane, respectively
v6 ,vz Junction oscillation frequencies parallel and perpen

dicular to theQQQ plane, respectively

FIG. 4. Flux configuration when one of the angles in the trian
joining the quarks, hereu132, is larger than 120°.
4-3
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where the l̂ i are unit vectors along the triads, andl̂11 l̂2
1 l̂350, so thatŷ equalsl̂3 andx̂ is perpendicular tol̂3. The
third triad lies on the positivey axis and the other two triad
are 120° on either side of they axis: triad one on the left-
hand side and triad two on the right-hand side. It is assum
that the sum of the masses of the beads and the junctio
the energy of the flux configuration in its equilibrium pos
tion, so that

mb(
i 51

3

Ni1mJ5b(
i 51

3

l i , ~3!

which implies

mb5

b(
i 51

3

l i

(
i 51

3

Ni1
mJ

mb

, ~4!

whereNi is the number of beads on triadi. Note from the
above that the bead massmb is determined by the string
tensionb, the triad lengthsl i , and the ratiomJ /mb , and so
should not be regarded as an independent parameter.

A. Hamiltonian for uJÄ120° case

The flux configuration is made dynamical by allowing t
junction and the beads to vibrate with respect to their eq

FIG. 5. Coordinate system used to describe motion of the flu
the QQQ plane, for configurations with~a! all of u123, u132, and
u213 less than 120° and~b! with uJ5u132 larger than 120°.
06520
d
is

i-

librium configuration. There are two important motions th
are expected to have physical significance:~1! the motion of
the junction perpendicular to and within the plane relative
its rest position, denoted ‘‘junction motion,’’ and~2! the mo-
tion of the beads in the two directions perpendicular to
line connecting the quark to the junction, called ‘‘bead m
tion,’’ as illustrated in Fig. 6. The bead motion coordinat
are not their positions, but the oscillating-wave amplitud
~defined in Appendix B! of the beads relative to their res
positions on the triads. It is important for what follows th
the bead position coordinates are defined relative to their
positions on the triads between the quarks and junct
which have followed the junction motion~see Fig. 7!. The
Hamiltonian is written in terms of the junction and bea
motion coordinates. In what follows, the small-oscillatio
approximation is used, where the beads and junction rem
close to their positions in the equilibrium configuration. Th
approximation is used to motivate the basis of the subseq
numerical treatment, which is that it is a reasonable appro
mation to treat the flux motion as that of the junction, with
effective mass that depends on the equilibrium lengths of
triads, among other quantities. In the numerical treatm
that follows, the restriction to small oscillations is remove

As the string moves, the quarks are allowed to move w
fixed positions relative to each other, in order to keep
center of mass fixed. This is called the ‘‘redefined adiabat
approximation. By working in this approximation, some b
not all nonadiabatic effects are incorporated.

The flux Hamiltonian for theuJ5120° case in the rede
fined adiabatic approximation is~see Appendix B!

n

FIG. 6. Motion of the flux configuration decomposed in
‘‘junction motion’’ and ‘‘bead motion.’’
Hflux5
1

2
Meffṙ

21VJ
sm.osc.1

1

2
meff(

i 51

3 Ni11

2
(

m51

Ni

@~ q̇im
i !21~ q̇'m

i !2#1
b

2
(
i 51

3

l i (
m51

Ni 1

2
~vm

i !2@~qim
i !21~q'm

i !2#

1mbṙ •(
i 51

3

(
m51

Ni F bm
i 2

mb

2

(
k51

3

Nk12
mJ

mb

(
k51

3

~blk1Mk!

am
i G ~ex

i q̇im
i ,ey

i q̇im
i ,q̇'m

i !2
mb

2

2

1

(
i 51

3

~bli1Mi !

H (
i 51

3

(
nÞm

Ni

an
i am

i ~ q̇in
i q̇im

i

1q̇'n
i q̇'m

i !1(
iÞ j

3

(
n51

Ni

(
m51

Nj

an
i am

j @ei
•ej q̇in

i q̇im
j 1q̇'n

i q̇'m
j #1(

i 51

3

(
m51

Ni F ~am
i !22

Ni11

2
G @~ q̇im

i !21~ q̇'m
i !2#J . ~5!
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The first term in Eq.~5! is the kinetic energy of the junction
with an effective mass of

Meff[mbF (
i 51

3 Ni~2Ni11!

6~Ni11!
1

mJ

mb

2

mbS (
i 51

3

Ni12
mJ

mb
D 2

4S (
i 51

3

~bli1Mi ! D G ,

~6!

where the last term in Eq.~6! arises from the center-of-mas
correction, and the first from the trivial motion of the bea
which accompanies motion of the junction. The second te
in Eq. ~5! is the potential energy of the junction in the sma
oscillations approximation, given in terms of the coordina
r[(x,y,z) defined in Fig. 5 by

VJ
sm.osc.[b(

i 51

3

l i1
b
2

Fx2S 1
4l 1

1
1

4l 2
1

1
l 3

D1
3
4

y2S 1
l 1

1
1
l 2

D
2

A3
2

xyS 1
l 1

2
1
l 2

D1z2S 1
l 1

1
1
l 2

1
1
l 3

D G . ~7!

The third and fourth terms in Eq.~5! are the kinetic and
potential energies of the beads, respectively, written in te
of the effective mass of the beads, including a center-of-m
correction,

meff[mbS 12
mb

(
i 51

3

~bli1Mi !
D , ~8!

and the frequency of themth normal mode on thei th triad,

vm
i [

2~Ni11!

l i
sin

mp

2~Ni11!
. ~9!

The fifth and sixth terms in Eq.~5! represent interaction
between the junction and the beads, and interactions am
the beads, respectively. In these terms, the vectorsei are
defined to be perpendicular tol̂ i , so that

e15S 2
1

2
,
A3

2
,0D , e25S 2

1

2
,2

A3

2
,0D ,

e35~1,0,0!, ei
•ej52

1

2
. ~10!

FIG. 7. Coordinates used to describe the motion of the bead
the presence of a displaced junction.
06520
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In terms of the amplitudesqm
i of themth normal mode on the

i th triad, where displacements of the beads along the tr
are not allowed, the coordinatesqim

i 5ei
•qm

i are the projec-
tions in theQQQ plane, and the coordinatesq'm

i are the
projections of these amplitudes out of theQQQ plane. Fi-
nally, thebm

i andam
i are the sums

bm
i [ (

p51

Ni p

Ni11
sin

mpp

Ni11
5

~21!m11

2
cot

mp

2~Ni11!
~11!

and

am
i [ (

p51

Ni

sin
mpp

Ni11
5H 0, m5even

cot
mp

2~Ni11!
, m5odd.

~12!

The above demonstrates that the Hamiltonian can be s
rated into three parts. The first@the first two terms in Eq.~5!#
corresponds to the motion of the junction in the absence
beads, with an effective junction mass related to its o
mass and the bead mass, with a center-of-mass correctio
finite quark masses. The second part~terms three and four! is
the independent motion of the beads on the three triads
respect to a fixed junction, with a bead mass also correc
for center-of-mass motion for finite quark masses. There
also an ‘‘interaction’’ part where the junction interacts wi
the various bead modes~term five!, where the bead mode
associated with the same quark interact with each other,
where the modes on triads corresponding to different qua
interact with each other~term six!. Note that these bead sel
interactions~term six! vanish for infinite quark masses.

Because the quarks move with fixed relative positio
only to maintain the center-of-mass position in the prese
of a moving junction and beads, there are no quark kine
terms in this string Hamiltonian, and there is no sense
which the quarks acquire mass from the beads, i.e., cons
ent quark masses are not derived from current quark mas

Note that the model predicts that for bead motion in t
small-oscillations approximation the potential has the c
tomary, and phenomenologically important@8#, linear poten-
tial termb( i 51

3 l i @see Eq.~7!#. For largel i , where the small-
oscillations approximation becomes exact, the potentia
just the linear term expected in any string model. This p
tential is a prediction of the model, not an ansatz. In
numerical work that follows, the small-oscillations approx
mation for the junction will be removed to yield the potenti
energy in the absence of beads, i.e.,

VJ[bFAS A3

2
l 11xD 2

1S l 1

2
1yD 2

1z2

1AS A3

2
l 22xD 2

1S l 2

2
1yD 2

1z2

1Ax21~ l 32y!21z2G . ~13!

in
4-5
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B. Hamiltonian for uJÌ120° case

The correct expression in the small-oscillations appro
mation for the flux Hamiltonian for the caseuJ.120° can be
obtained~see Appendix B! by setting l 35N350 in Hflux ,
Meff , andmeff in Eqs.~5!, ~6!, and~8!, andqim

3 , q'm
3 50 in

Hflux in Eq. ~5!, and changing the junction potential energy
Eq. ~7! to

VJ
sm.osc.[b(

i 51

2

l i12by cos
uJ

2
1bAx21y21z2

1
b

2 S Fx2cos2
uJ

2
1y2sin2

uJ

2
1z2G H 1

l 1
1

1

l 2
J

22xy sin
uJ

2
cos

uJ

2 H 1

l 1
2

1

l 2
J D . ~14!

Note that the third term above, which is the length of t
third triad when the junction has moved, cannot be expan
in the small-oscillations approximation. The vectorsei be-
come

e15S 2cos
uJ

2
,sin

uJ

2
,0D , e25S 2cos

uJ

2
,2sin

uJ

2
,0D . ~15!

In the numerical work that follows, the small-oscillation
approximation for the junction will be removed to yield th
potential energy in the absence of beads,

VJ[bFAS l 1sin
uJ

2
1xD 2

1S l 1cos
uJ

2
1yD 2

1z2

1AS l 2sin
uJ

2
2xD 2

1S l 2cos
uJ

2
1yD 2

1z2

1Ax21y21z2G . ~16!

C. Approximate flux Hamiltonian

It will now be demonstrated that the interaction terms
Eq. ~5! ~terms five and six! give a minor contribution in the
small-oscillations approximation. The free parameters in
model ~and the values initially used for the numerical sim
lation! are the string tension (0.18 GeV2), the ratio of the
junction and bead masses~1!, and the quark masses~0.33
GeV!. The simulation is performed with one bead betwe
each quark and the junction, and the quarks at first form
equilateral triangle with the lengths of the triads given a ty
cal value of 2.5 GeV21.

For the purposes of this demonstration, the problem
first solved numerically without approximations, by solvin
the classical Euler-Lagrange equations of motion rather t
using quantum mechanics. This solution should provid
good indicator of how the mode frequencies with and wi
out the interaction Hamiltonian compare. The mode frequ
cies parallel and perpendicular to the plane are~in GeV!
06520
i-

d

e

n
n
-

is

n
a
-
-

Parallel 0.607 0.607 0.924 1.08 1.08
Perpendicular 0.828 0.924 0.924 1.37

where the lowest frequencies have been identified in b
face. If the interaction Hamiltonian is set to zero, the num
of modes does not change, as the number of degrees of
dom ~three junction coordinates and two transverse bead
ordinates per bead! is unchanged. Since the junction an
bead degrees of freedom become uncoupled, it is possib
identify modes involving junction motion and those invol
ing bead motion. The mode frequencies~in GeV! corre-
sponding to the junction motion~bold! and bead vibrations
are

Parallel 0.614 0.614 1.00 1.00 1.00
Perpendicular 0.869 1.00 1.00 1.00

The similarity of the frequencies of the lowest-energy mod
in this approximation to those arising from the full Ham
tonian ~a deviation of 1% in the case of the modes w
motion parallel to theQQQ plane, and 5% for the mode
perpendicular to the plane! shows that for these lowest
energy modes the interaction Hamiltonian can be safely
glected. In retrospect, the reason for this is because of
choice of physically appropriate coordinates for the proble
i.e., the junction coordinates and the coordinates of the be
transverse to the triads joining the junction to the quarks~see
Fig. 7!.

To ensure that this result is not dependent on this cho
of QQQ configuration or the parameters in the Hamiltonia
the parameters were varied independently around the ce
values used above. Quark masses up to the charm q
mass of 1.5 GeV were used, the ratio of the junction to
bead mass was taken up to 10, and the triads were g
lengths from 0.5– 5 GeV21, and cases with unequal length
were tested. The percentage difference between all n
mode frequencies calculated with the full Hamiltonian a
with the interaction terms neglected is shown for selec
parameters in Table II. The largest error for the two light
parallel modes and the lightest perpendicular mode, show
bold face, is 7%. This demonstrates that, to a good appr
mation, the dynamics of the three lowest frequency mo
can be simplified to junction and bead motion, which a
independent of one another. The bead motion on various
ads, and bead motion in various modes on the same triad
to a good approximation independent of each other.

The frequencies can be followed from the noninteract
case as interactions are turned on, and level crossing doe
occur. Hence mode frequencies for the fully interacti
Hamiltonian can be uniquely associated with modes frequ
cies obtained with interactions neglected. The lowest f
quency isalwaysassociated with the lowest junction excit
tion. However, the next lowest frequency can be associa
with the second junction excitation or with a bead excitati
along a triad when theQQQ configuration is asymmetric
This work focuses on the lowest-lying excitation of the flu
configuration, always corresponding to junction motion, b
it should be kept in mind that the next lowest hybrid bary
may involve bead excitation.

The equal-mass three-bead model is unrealistic when
of the triads is short, since the mass of the bead on the s
4-6
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triad is not representative of the energy stored in the triad
which it lies. An alternative model has been conside
where the bead mass is taken to be proportional to the le
of the triad, but the sum of the bead masses and junc
mass still equals the energy stored in the Y-shaped st
configuration@Eq. ~3! with Ni51]. In this model it is found
that the low-lying frequencies for the full Hamiltonian a
very similar to the former model, with similar small erro
induced by neglecting the interaction terms in the Ham
tonian of Eq.~5!.

D. Analytical solution of the flux Hamiltonian

For the Hamiltonian in Eq.~5! ~the uJ5120° case! the
last two terms have been shown to be negligible for the lo
est frequency in the small-oscillations approximation, in
case where there is one bead on each triad, and these
are neglected in what follows. What follows is, therefo
based on the approximateuJ5120° Hamiltonian,

H̃flux[
1
2

Meffṙ
21VJ1

1
2

meff(
i 51

3 Ni11
2

3 (
m51

Ni

@~ q̇im
i !21~ q̇'m

i !2#

1
b
2 (

i 51

3

l i (
m51

Ni 1
2

~vm
i !2@~qim

i !21~q'm
i !2#, ~17!

with VJ given by Eq.~13!. Note that since theqim
i ,q'm

i are
defined with respect to the line from the junction to t
quarks, they depend implicitly onr . The corresponding
Hamiltonian foruJ.120° is obtained by settingl 35N350
in Meff andmeff in Eqs.~6! and~8!, and restricting the sum
mation in Eq.~17! to i 51,2, with VJ given by Eq.~16!.

Since Eq.~17! is diagonal in the coordinates of the bead
the last two terms in Eq.~17!, corresponding to the bea
energies, can be replaced by their ground-state harmonic
cillator energies,

H̃flux5
1
2

Meffṙ
21VJ1(

i 51

3 A bli
meff~Ni11! (

m51

Ni

vm
i ,

~18!

which is summed over the two polarizations possible
each bead vibration. The sum of the frequencies is

(
m51

Ni

vm
i 5A2

Ni11

l i

sin
Nip

4~Ni11!

sin
p

4~Ni11!

. ~19!

If the number of beads is taken to infinity, the dependence
the Hamiltonian on the~unphysical! number of beads can b
removed. The part of the Hamiltonian in Eq.~18! arising
from the beads becomes infinite whenNi→`. To avoid in-
finite energies, the bead separation regularization param
~analogous to the lattice spacing! a[ l i /(Ni11) is fixed
06520
n
d
th
n
g

-

-
e
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,

,

s-

r
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when Ni→`. This is consistent with the flux-tube mode
philosophy thata cannot be chosen arbitrarily small, sinc
that would lead to the breakdown of the strong coupli
expansion of the Hamiltonian formulation of QCD, from
which the model is motivated@13#. Taking Ni→`, while
keepinga fixed, the Hamiltonian becomes@13#

H̃flux
` 5

1
2

Meff
` ṙ21VJ1(

i 51

3 F 4l i

pa2
2

1
a

2
p

12l i
1O~a2!1•••G ,

~20!

with

Meff
` [b(

i 51

3

l iS 1
3

2

b(
i 51

3

l i

4(
i 51

3

~bli1Mi !
D , ~21!

where H̃flux
` is now independent of the~unknown! ratio

mJ /mb . SinceNi→` with a fixed, the part of the Hamil-
tonian in Eq.~20! arising from the beads is valid only in th
limit l i→`.

The part of the Hamiltonian in Eq.~20! arising from the
beads contains a linear term 4l i /pa2 and a constant term
21/a, which are regularization-scheme dependent terms
the ‘‘self-energy’’ of the string system. As explained in Re
@13#, the linear term should be regarded as a contribution
renormalizes the bare string tensionb to its physical value.
The constant term is three times larger than the constant
found for mesons@13#. The Luscher@24# term 2p/12l i is
regularization-scheme independent and finite, and can be
garded as a prediction of the flux-tube model, although i
insignificant at largel i , where its derivation is valid. The
Luscher term arises in relativistic string theories@24# in the
limit l i→`. In this limit, the string excitations in our mode
coincide with relativistic string theories. There exists stro
lattice-QCD evidence, through the study of ‘‘torelons,’’ o

TABLE II. Percentage differences between all nine mode f
quencies obtained in the one bead per triad problem for the
Hamiltonian @Eq. ~5!# and the Hamiltonian with the interactio
terms@the last two terms in Eq.~5!# neglected, for selected param
eters. The first group of five percentage differences is for para
mode frequencies, the last four for perpendicular mode frequen
Within each group, the percentage differences are displayed f
left to right in ascending order of mode frequency. Quark mas
are in GeV and triad lengths in GeV21.

M1 M2 M3 mJ

mb

l 1 l 2 l 3 Percentage difference~%!

0.33 0.33 0.33 1 2.5 2.5 2.51 1 8 8 8 5 8 8 37
1.5 0.33 0.33 1 2.5 2.5 2.52 2 5 11 11 7 5 5 40
0.33 0.33 0.33 10 2.5 2.5 2.50 0 2 1 1 0 2 2 5
0.33 0.33 0.33 1 0.5 2.5 2.51 6 9 2 4 7 0 10 11
0.33 0.33 0.33 1 5 2.5 2.51 1 0 2 7 3 2 8 28
0.33 0.33 0.33 1 0.5 2.5 51 1 2 1 3 2 0 4 10
4-7
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the existence of the Luscher term in QCD@25#. The form of
the Luscher term should be contrasted with that of a C
lomb term, with the former depending inversely on the tri
lengths, and the latter inversely on the distance between
quarks.

The Hamiltonian for theuJ.120° case is obtained b
settingl 350 in Meff

` in Eq. ~21!, and restricting the summa
tion in Eq. ~20! to i 51,2 with VJ from Eq. ~16!.

If the redefined adiabatic approximation was not ma
i.e., if the calculation was not performed in the center-
mass~c.m.! frame of the entire system with the distanc
between the quarks fixed, thenMeff

` 5b( l i /3. The correction
from center-of-mass motion in Eq.~21! substantially reduces
the effective mass of the junction. It is shown below that
excitation energies of the junction are proportional
(Meff

` )21/2 @see Eqs.~30! and~31!#, and so with typicalQQQ
configurations the junction excitation energies are 1 to
times larger in the redefined adiabatic approximation than
the adiabatic approximation. This underlines the importa
of working in the c.m. frame.

The ground-state bead configuration that solves
Hamiltonian of Eq.~17! is

F5 lim
Ni→`

)
i 51

3

p2Ni /2)
m51

N i

@meff bli~Ni11!#1/4Avm
i

2

3expH 2
1
2 (

i 51

3

(
m51

Ni

Ameff bli~Ni11!
vm

i

2

3@~qim
i !21~q'm

i !2#J , ~22!

in the limit Ni→` ~with a fixed! that is used to express th
Hamiltonian in Eq.~20!. The corresponding wave functio
for uJ.120° is obtained by restricting the products in E
~22! to i 51,2, and settingl 350 in meff in Eq. ~8!.

E. Analytic small-oscillations solution to the junction
Hamiltonian for uJÄ120°

Define

r[
r12r2

A2
, l[

r11r222r3

A6
, cosurl[

r•l

rl
.

~23!

The six Jacobi variablesr,l consist of~1! four variables that
specify the positions of the quarks in theQQQ plane, r
[uru, l[ulu, andurl ~the angle betweenr andl) andfr

~the angle betweenr and the space-fixedx direction!, and~2!
two polar anglesu andf that specify the orientation of th
vector r3l that lies perpendicular to the plane. The va
ablesr, l, andurl are rotational scalars. They are relat
to the triad lengthsl 1 , l 2, and l 3 by the relations

l 15N~r21rlsinurl1A3rl cosurl!,

l 25N~r21rl sinurl2A3rl cosurl!,
06520
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l 35NS 2
r2

2
1

3

2
l21rl sinurlD ,

N 215A3

2
~r21l2!13rl sinurl. ~24!

In the remainder of this section junction motion is treat
in the small-oscillations approximation for theuJ5120°
case. The junction Hamiltonian is12 Meff

` ṙ21VJ
sm.osc., where

the potential is from Eq.~7!. Junction motion in (x,y) and
out ~z! of the QQQ plane are not coupled inVJ

sm.osc., so
motion along thez direction is one of the vibrational mode
of the junction. One way to define thez direction in terms of
the positions of the quarks is by the normalized vector

ĥz5sz

r3l

ur3lu
, ~25!

wheresz denotes a sign that will be specified later. Note th
z motion of the junction motion occurs along the direction
the vectorr3l, but there is no physical reason to prefer o
sign sz over the other.

The in-plane part of the Hamiltonian can be diagonaliz
in terms of the normalized eigenvectors@35#,

ĥ65
s6

N~ l 1 ,l 2 ,l 3! H F 1

l 3
2

1

2 S 1

l 1
1

1

l 2
D6As~ l 1 ,l 2 ,l 3!G x̂

1
A3

2 H 1

l 2
2

1

l 1
J ŷJ , ~26!

where

s~ l 1 ,l 2 ,l 3![
1

l 1
2

1
1

l 2
2

1
1

l 3
2

2
1

l 1l 2
2

1

l 1l 3
2

1

l 2l 3
.0, ~27!

and

N~ l 1 ,l 2 ,l 3!

[A2As~ l 1 ,l 2 ,l 3!6F 1

l 3
2

1

2 S 1

l 1
1

1

l 2
D GAs~ l 1 ,l 2 ,l 3!,

~28!

and a signs6 is included for the same reasons as above. T
vectorsĥz , ĥ1 , and ĥ2 can be verified to be orthonorma
vectors. The junction Hamiltonian can now be written as

1

2
Meff

` ṙ21VJ
sm.osc.5b(

i 51

3

l i1
1

2
Meff

` @~ĥ1• ṙ !2

1~ĥ2• ṙ !21~ĥz• ṙ !21v1
2 ~ĥ1•r !2

1v2
2 ~ĥ2•r !21vz

2~ĥz•r !2#, ~29!

where the vibrational frequencies are given by
4-8
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vz
25

b

Meff
` S 1

l 1
1

1

l 2
1

1

l 3
D ~30!

and

v6
2 5

b

2Meff
` S 1

l 1
1

1

l 2
1

1

l 3
6As~ l 1 ,l 2 ,l 3! D . ~31!

Note that the out-of-plane mode is always more energ
than the in-plane modes, sincevz.v6 , and that the in-
plane modes havev2<v1 , with degeneracy only whenl 1
5 l 25 l 3.

Solving the Schro¨dinger equation corresponding to Eq
~20! and ~29! yields the ground-state energy, correspond
to the adiabatic potential for the quark motion in a conve
tional baryon, of

VB~ l 1 ,l 2 ,l 3!5b(
i 51

3

l i1
1
2

~v11v21vz!

1(
i 51

3 F 4l i

pa2
2

1
a

2
p

12l i
1O~a2!1•••G .

~32!

Junction excitations in theĥ2 , ĥ1 , or ĥz directions yield
adiabatic potentials for the quark motion in different low
lying hybrid baryons, denotedH1 , H2, and H3, ordered
from least to most energetic. The hybrid baryon string ene
~adiabatic potential! is that of the baryon in Eq.~32! with the
termv2 , v1 , or vz added forH1 , H2, or H3 hybrid bary-
ons, respectively. Note that these results neglect the junc
bead and bead-bead interactions, which has been dem
strated to be a good approximation only for the lowe
energy (v2) mode.

It is intriguing to note that the baryon potential in Eq.~32!
serves as an analytical form to which the infinitely hea
quark potentials calculated in lattice QCD can be fitted a
function of l i . Furthermore, thel i dependence of the variou
hybrid baryon potentials are predicted. Potentials were a
predicted in Ref.@26#. Comparisons to lattice results wou
be instructive at largel i , for which Eq. ~32! was derived.
The physical string tension isb24/(pa2). The constant
21/a term is regularization-scheme dependent, and he
not physical. Indeed, lattice calculations@15# find the con-
stant term regularization dependent, and proportional to 1a.
The remaining terms do not depend on eitherb or a when
Mi→`, which is the limit in which lattice QCD potential
are evaluated, noting thatb/Meff

` is independent ofb in this
limit.

The normalized flux wave function of the baryon is

CB~r !5
~Meff

` !3/4~v1v2vz!
1/4

p3/4
expH 2

Meff
`

2
@v1~ĥ1•r !2

1v2~ĥ2•r !21vz~ĥz•r !2#J F, ~33!
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where the bead wave functionF in Eq. ~22! has been incor-
porated. For theH1 , H2, and H3 hybrid baryons, respec
tively, the normalized flux wave functions areCHi

(r ),

A2Meff
` v2ĥ2•rCB~r !, A2Meff

` v1ĥ1•rCB~r !,

A2Meff
` vzĥz•rCB~r !. ~34!

F. Junction motion away from the small-oscillations limit

Equation ~16! cannot be expanded in the sma
oscillations approximation to the junction motion. Witho
this approximation, i.e., whereVJ in H̃flux

` in Eq. ~20! is taken
from Eqs. ~13! and ~16! for the casesuJ5120° and uJ
.120°, respectively, the eigenfrequencies and eigenvec
cannot be solved for analytically.

The variational principle is used to separately minimi
the expectation value of the HamiltonianH̃flux

` by solving the
Schrödinger equation for the conventional baryons and h
brids Hi using the ansatz simple-harmonic-oscillator wa
functions in Eqs.~33! and ~34!. The calculated energies ar
upper bounds for the true energies, according to
Hyleraas-Undheim theorem. The parameters of the an
wave functions no longer have the values that they had in
small-oscillations approximation, but need to be fitted. F
example, the directionsĥz , ĥ2 , andĥ1 are no longer given
by Eqs. ~25! and ~26!, but will be fixed by the variational
principle.

Note thatH̃flux
` @Eq. ~20!# is even under the discrete tran

formation z→2z since VJ in Eqs. ~13! and ~16! only de-
pends onz2. This implies that the wave functions should b
either odd or even underz→2z. But since the wave func-
tions are assumed to be of the form in Eqs.~33! and~34!, it
is not difficult to show that this implies that one of the jun
tion vibrational modes, corresponding toĥz , is always per-
pendicular to theQQQ plane. Note thatĥ2 , ĥ1 , andĥz are
required to be orthonormal, in order to obtain orthonorm
hybrid baryon wave functions in Eq.~34!. This gives four
variational parameters that specify the ansatz wave fu
tions:Meff

` v2 , Meff
` v1 , Meff

` vz , and an angle that describe

the ray in whichĥ2 lies in the plane relative to thex direc-
tion defined in Fig. 5. The minimization is carried out wi
respect to these four variables.

III. FLUX SYMMETRY

A. Quark label exchange symmetry

Denote byP12, P13, and P23 the permutations that ex
change the labels of the quarks. Except for color, quark-s
and flavor labels, which will only be of interest later, e
change symmetry affects only position labels. Under su
quark label permutations, the positions of the quarks are
changed, e.g.,P12 exchangesr1↔r2, but note that variables
that are not functions of ther i are unaffected. Since the phys
ics does not depend on the quark position labeling conv
tion, the flux Hamiltonian given by Eq.~5! should be ex-
change symmetric. As the equilibrium junction positionreq
4-9
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in Eq. ~1! is invariant under thePi j , and l i5r i2req, it fol-
lows that l i↔ l j underPi j . Also, since the number of bead
on thei th triad isNi5 l i /a21, thenNi↔Nj underPi j . The
potential VJ in Eq. ~13! can be written in the manifestly
exchange-symmetric form

VJ5b(
i 51

3

ur i2r u, ~35!

noting that the junction positionr is not determined by the
positions of the quarks. This establishes that all quantitie
the flux Hamiltonian in Eq.~5! for the uJ5120° case are
invariant under exchange symmetry transformations.

Since the flux Hamiltonian is invariant under exchan
symmetry, it is clear that energies~or adiabatic potentials!
that are solutions of the flux Schro¨dinger equation are als
exchange symmetric. This is explicit for the frequencies
Eqs.~30! and ~31!, and the potential in Eq.~32!.

By the same arguments as above it can be shown th
the uJ.120° case, the Hamiltonian@Eq. ~14!# is invariant
underP12.

Since the Hamiltonian is exchange symmetric, the co
mutation relations@Hflux ,Pi j #50 hold. This implies that the
wave functions of conventional and hybrid baryons have
represent the permutation groupS3. Possible representation
are the one-dimensional symmetric and antisymmetric re
sentations, and the two-dimensional mixed-symmetry rep
sentation. Since the baryon and each of the hybrid bary
Hi have different @36# flux energiesV( l 1 ,l 2 ,l 3), where
HfluxC5V( l 1 ,l 2 ,l 3)C, each of the four wave function
CB(r ) andCHi

(r ) have to belong to a one-dimensional re
resentation, as they cannot mix with each other under an
the permutationsPi j . This implies thatCB(r ) and CHi

(r )
are either totally symmetric or antisymmetric under qua
label exchange.

In the baryon wave function of Eq.~33!, the quantities
v1 , v2 , vz , andMeff

` are exchange symmetric, so that t
factor before the exponential is invariant. The bead wa
functionF, given in Eq.~22!, is also invariant. SinceCB(r )
is either exchange symmetric or antisymmetric, the expon
tial function in the junction coordinates must be either e
change symmetric or antisymmetric. The second possib
is untenable since the exponential function is always p
tive. Hence, the baryon wave functionCB(r ) is totally sym-
metric under exchange symmetry.

Consider the hybrid baryon wave functions in Eq.~34!.
The above implies thatĥ2 , ĥ1 , and ĥz are either totally
symmetric or totally antisymmetric under exchange symm
try, sincer is independent of the quark labels. It is shown
Appendix C that both possibilities are explicitly realizab
This implies that for each of the hybrid baryonsHi , there is
a degenerate pair of totally symmetric (S) and totally an
symmetric (A) wave functions, denoted byHi

S andHi
A .

The preceding argument assumed thatC has the form in
Eqs.~33! and~34!, which applies only in theuJ5120° case
with small junction oscillations. However, as was discuss
in Sec. II F, in the more general case where small junct
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oscillations are not assumed, ansatz wave functions of
form in Eqs. ~33! and ~34! are used, so that the precedin
arguments regarding exchange symmetry remain valid.

The above arguments can be repeated to show that in
uJ.120° case, the baryon ansatz wave functionCB(r ) is
invariant underP12, and that the hybrid baryon ansatz wa
functions CHi

(r ) and ĥ2 , ĥ1 , and ĥz are either odd or

even underP12.

B. Parity

The operation of the inversion of all coordinates, or par
is a symmetry of the flux Hamiltonian. It follows thatĥz in
Eq. ~25! is even under parity, since r→2r and l→2l
under parity. Ifsz51 this follows trivially, and ifsz is given
by Eq. ~C2!, it follows because Eq.~C2! is invariant under
parity.

The l i remain invariant under parity since they a
lengths, but thel̂ i are odd under parity. From the definition o
the ĥ6 in Eq. ~26!, and the definition ofx̂ and ŷ in terms of
the l̂ i in Eq. ~2!, it follows that theĥ6 areodd under parity.
The signs6 is invariant under parity~see Appendix C!. This
argument is so far valid only whenĥ6 is given by Eq.~26!,
applicable for theuJ5120° case in the small-oscillation
approximation. However, for the ansatz variational wa
functions in Sec. II F, theĥ6 lie in the QQQ plane and so
must be linear combinations ofr andl with coefficients that
are functions of the parity-invariant variablesr, l, andurl ,
so theĥ6 remain odd under parity.

Since the positionr of the junction is a vector, it is odd
under parity. It follows that the baryon wave functionCB(r )
in Eq. ~33! is invariant under parity. The hybrid baryon wav
functions in theQQQ plane, i.e.,CH1

(r ) andCH2
(r ) in Eq.

~34!, are even under parity, whileCH3
(r ) is odd under parity.

These results also obtain foruJ.120°.
In summary, flux wave functions of baryons andH1,2 hy-

brid baryons are even under parity, while theH3 hybrid
baryon flux wave functions are odd under parity.

C. Chirality

Reflection in theQQQ plane, or ‘‘chirality’’ @27#, is gen-
erally a symmetry of the flux wave function in the adiaba
approximation, since the physics does not distinguish
tween above and below theQQQ plane. The relevant group
consists of the identity and reflection transformations. In t
approximation the flux wave function can be classified
cording to its eigenvalue under reflections in the pla
spanned by the three quarks, which is the chirality61.

In the flux-tube model this reflection takesz→2z and
q'm

i →2q'm
i . The most general Hamiltonian derived in th

work, Eq. ~5!, is invariant under this reflection transforma
tion, as it must be. The baryon and hybrid baryon wave fu
tions in Eqs.~33! and ~34! are eigenfunctions of the reflec
tion transformation. The baryon and ‘‘planar’’ hybrids (H1,2)
have chirality 1, and the ‘‘nonplanar’’ hybridH3 has chirality
21. Hence the chirality formally allows us to clearly distin
4-10
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guish ‘‘planar’’ and ‘‘nonplanar’’ hybrids, even for more gen
eral solutions of the Hamiltonian than those in Eqs.~33! and
~34!.

In adiabatic lattice QCD, exchange symmetry, parity, a
chirality should classify the~hybrid! baryon flux wave func-
tions. These properties are sometimes called the ‘‘quan
numbers of the adiabatic surface.’’

IV. QUANTUM NUMBERS

A. Orbital angular momentum

For every set of quark positionsr i the potential in which
the junction moves is anisotropic, which means that the
lutions of the Schro¨dinger equation for the junction motio
do not have definite orbital angular momentum or its proj
tion. However, in the absence of the adiabatic approxima
the combined wave function of the quark and junction m
tions must be a state of good angular momentum.

It is possible to determine the angular momentum cha
ter of the variational wave functions that minimize the fl
energy for a given set of quark positions. The probability
overlap between an isotropicS-wave harmonic-oscillator
state with frequencyv and the baryon flux wave functio
CB(r ) of Eq. ~33! is

P0~ l 50![u^CB~r !u000&u25
8Av3v2v1vz

~v21v!~v11v!~vz1v!
,

~36!

and that of an isotropicP-wave harmonic-oscillator stat
with the flux wave function of the lightest hybridCH1

(r ) of
Eq. ~34! is

P1~ l 51![ (
M521,11

u^CH1
~r !u01M &u2

5
32Av5v2

3 v1vz

~v21v!3~v11v!~vz1v!
. ~37!

Once the energies of the ground and first excited states o
flux have been independently minimized in the variatio
calculation described in Sec. V, the calculated values ofv2 ,
v1 , and vz can be used to find these probabilities. T
result of these numerical studies is shown for sample qu
configurations in Table III. It is clear that the ground state
the flux is in an almost exclusively angular momentum z
state, so the orbital angular momentum of the baryon is
of the quark motion.

Table III shows that variational calculations result in flu
wave functionsCH1

(r ) that are to better than 99% a line
combination ofY11( r̂ ) andY121( r̂ ). An alternative argumen
is given here that the angular momentum of the flux in
lowest-lying hybrid baryons (H1) is predominantly unity.
The flux wave function in Eq.~34! of the lightest (H1)
hybrid baryon is proportional toĥ2•r , whereĥ2 lies in the
plane of the quarks. If the exponential in Eq.~34! was spheri-
cally symmetric, it would be strictly true thatCH1

(r ) was
proportional to a linear combination ofYl 1( r̂ ) andYl 21( r̂ ),
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with the junction positionr defined relative to a~body! z axis
perpendicular to the quark plane.

Further numerical studies, described below, have sho
that the least energetic motion of the quarks in theH1 adia-
batic potential has the quark angular momentumLq50, the
next highestLq51, etc. Furthermore, there is a substant
cost in energy to increase the quark angular momentum
the H1 hybrid potential, so the total orbital angular mome
tum of the lightest hybrid baryon is unity.

In order for the combined flux and quark orbital angu
momentum to have a definite value~unity!, in principle, the
components with orbital angular momentum other than un
in the flux wave function must be combined with quark m
tion with Lq>1 to make the total orbital angular momentu
unity. Given the negligible size of these components, a v
good approximation to the energy can be found by assum
that the flux orbital angular momentum is unity.

B. Color

It is important to note that the wave function of the~hy-
brid! baryon has both a colorand a flux sector, which are
separable. This is because color is a separable degree of
dom in quantum chromodynamics, which labels the qua
and flux lines. This is described by the color sector of t
theory. The flux sector, on the other hand, concerns the
namics of the flux. In the bag model and largeNc limit the
same separation occurs, where the octet color of the gluo
combined with that of the quarks, and the spatial motion
the gluon is treated separately@5,6#.

In the flux-tube model the color structure of a hybr
baryon is motivated by the strong coupling limit of th
Hamiltonian formulation of lattice QCD@28#. Here, the
quarks are sources of triplet color, which flows along t
triad connecting the quarks to the junction, where ane tensor
neutralizes the color. The color wave function is hence
tally antisymmetric under exchange of quarks forboth the
conventional and hybrid baryon. In the bag model@6# and in
the largeNc limit @5# the color structure of a hybrid baryon i
very different. This color structure is critical for the corre
exchange symmetry properties of the conventional and
brid baryons, and hence the structure of the wave functio

TABLE III. Flux energies and angular momentum probabiliti
calculated using Eqs.~36! and ~37! with AvMeff

` 50.4 GeV, for
four quark configurations. Here( iM i50.99 GeV,b50.18 GeV2,
the triad lengthsl i are given in GeV21, and energies are in GeV
HereE0 andP0( l 50) are the energy andS-wave probability of the
flux ground state,E1 and P1( l 51) are the energy andP-wave
probability of the first excited state of the flux.

l 1 l 2 l 3 E0 P0( l 50) E1 P1( l 51)

2.5 2.5 2.5 1.09 0.995 1.76 0.997
2.5 2.5 0.5 1.42 0.999 2.18 0.998
2.5 5.0 0.5 1.18 0.993 1.80 0.998
0.5 0.5 10.0 1.30 0.986 1.92 0.998
4-11
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C. „Hybrid … baryon wave functions

The energy of the quarks in the potential given by the fl
energies is found by expanding the quark wave function
basis with well defined orbital angular momentumLq and
projection Mq , made up from orbital angular momental r

and l l in the coordinatesr andl, respectively,

^r,lunrl rnll l ;Lqmq&[Nnr l r
Rnr l r

~r!Nnl l l
Rnl l l

~l!

3 (
mrml

C~ l rmrl lml ;LqMq!

3Yl rmr
~Vr!Yl lml

~Vl!, ~38!

whereNnl is a normalization factor, and the Clebsch-Gord
coefficient combines spherical harmonics with orbital an
lar momentuml r and l l to form a state with orbital angula
momentumLq . Here theRnl are orthonormal and complet
functions in the radial coordinate, wheren50,1,2, . . . de-
notes the radial quantum number, which are taken to
three-dimensional harmonic oscillator radial wave functio
i.e., Laguerre polynomials. It is easy to show that the wa
functions in Eq.~38! form an orthonormal~in all six labels!
and complete set. In Eq.~38! a formal notation is used wher
the wave function is defined as the overlap of a st
unrl rnll l ;LqMq&, characterized by the quantum numbe
indicated, with a position stateur,l&.

A linear combination of the states in Eq.~38! can be used
to form a general eigenstate of quark orbital angular mom
tum Lq and projectionMq , denoted byunLqMq&, wheren
denotes the radial quantum number. The corresponding w
function is

^r,lunLqMq&

[ (
nr l rnl l l

cnr l rnl l l

nLq ^r,lunrl rnll l ;LqMq~r,l!&.

~39!

The coefficients in this linear combination, and the cor
sponding hybrid baryon energies, are found by diagonaliz
the three-quark Hamiltonian in the basis of Eq.~38! with the
potential energy given by the flux energy. Note that the
bital angular momentum and spin of the quarks are g
quantum numbers as the interquark potential is a spatial
quark-spin scalar, even in the presence of the Coulomb
hyperfine~spin-spin! interactions.

It has been checked numerically for the adiabatic pot
tials found here that the lowest-energy solutions of
Schrödinger equation for both conventional and hybrid ba
ons haveLq50 quark wave functions. In order to determin
the color, flavor, quark-spin, parity, exchange symmetry, a
chirality quantum numbers of these states, it is sufficien
consider thê r,lu0000;00& component of theLq50 wave
function in Eq.~39!, as these quantum numbers must be
same for all components of the wave function.

From Eq.~38!, ^r,lu0000;00& equals
06520
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N 00
2 R00~r!R00~l!Y00~Vr!Y00~Vl!

5
a3

p3/2
expH 2

a2

2
~r21l2!J , ~40!

wherea is a parameter that characterizes the Laguerre p
nomials. This is obviously even under parity and is tota
symmetric under exchange sincer21l2 is exchange sym-
metric. Since the parity is unaffected by the color, flavor, a
quark-spin wave functions which will multiply thisLq50
spatial wave function, the parity is determined by that of t
flux wave function given in Sec. III B. The parities of th
low-lying hybrids are displayed in Table IV.

The @quark spin~x!#3@flavor (f)] wave function can be
made totally symmetric for~quark-spin3

2 )3~flavor D!, using
the product of symmetric factorsx3/2

S fD
S , and for~quark spin

1
2 )3~flavor N), using the linear combination@29# of mixed-
symmetry factors (x1/2

MrfN
Mr1x1/2

MlfN
Ml)/A2. It can also be

made totally antisymmetric for ~quark spin 1
2 )

3~flavor N) using the linear combination of mixed
symmetry factors (x1/2

MrfN
Ml2x1/2

MlfN
Mr)/A2.

Since quarks are fermions, the combined color, spa
quark-spin, flavor, and flux wave function should be tota
antisymmetric under exchange symmetry. Since forLq50
baryons and hybrid baryons the color and space parts
totally antisymmetric and symmetric, respectively, t
~flavor!3~quark spin!3~flux! part must be totally symmetric

For baryons the flux wave function is totally symmetr
with orbital angular momentum zero, and so their quant
numbers are exactly as they were in the conventional qu
model with an assumed static confining potential betwe
the quarks. As an example, the quantum numbers of the n
strangeLq50 ground states are shown in Table IV. TheLq

50 hybrid baryonsHi
S have a totally symmetric flux wave

function, and so the~quark spin!3~flavor! structure is the
same as for the correspondingLq50 baryons, i.e., the sym
metric products above with quark spin 1/2 for nucleons, a
quark spin 3/2 forD states. ForLq50 hybrid baryons with a
totally antisymmetric flux wave function,Hi

A , the ~quark
spin!3~flavor! wave function must be totally antisymmetric
and the only possibility is the antisymmetric product wi
nucleon flavor and quark spin 1/2, as shown in Table IV.

Chirality is a reflection in theQQQ plane, and hence only
affects the flux part of the wave function, so that its valu
are those given in Sec. III C.

For the lightestLq50 ~hybrid! baryons the total orbita
angular momentum is that of the flux. This givesL50 for
low-lying conventional baryons, so thatJ5S. SinceL51
for the low-lying H1 hybrid baryons,J5 1

2 or 3
2 for S5 1

2 ,
andJ5 1

2 , 3
2 , or 5

2 for S5 3
2 , as shown in Table IV.

V. HAMILTONIAN FOR THE QUARK MOTION

A phenomenological form is used here for the qua
Hamiltonian which is fit to conventional baryon spectro
copy in Ref.@8#. In the case of hybrid baryons, the differen
between the adiabatic potential found from numerical cal
lation of the energy of the ground state and the first exci
4-12
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TABLE IV. Quantum numbers of ground stateLq50 flux-tube model~hybrid! baryons for the lowest
flux-tube surfacesB ~the conventional baryon! andH1 ~the lightest planar hybrid baryon!. In the absense of
spin-dependent forces all ground states corresponding to a given flux-tube surface@both symmetric~S! and
antisymmetric (A)] are degenerate. HereL is the total orbital angular momentum of the quarks and the fl
N or D denotes the flavor,S is the spin of the three quarks,J5L1S is the total angular momentum, andP
is the parity. Low-lying hybrid baryons in the bag model constructed with a transverse electric gluon~cor-
responding to the surfacesH1

S andH1
A) are also shown@6#.

~Hybrid! Baryon Chirality L (N,D)2S11JP

B 1 0 N2 1
2

1,D4 3
2

1

H1
S 1 1 N2 1

2
1,N2 3

2
1,D4 1

2
1,D4 3

2
1,D4 5

2
1

H1
A 1 1 N2 1

2
1,N2 3

2
1

Bag model hybrids 1 N2 1
2

1,N2 3
2

1,N4 1
2

1,N4 3
2

1,N4 5
2

1,D2 1
2

1,D2 3
2

1
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state of the flux is added to the quark Hamiltonian.
The quark Hamiltonian has the form

Hqqq5(
i 51

3

APi
21Mi

21(
i , j

Vi j
Coul1(

i , j
Vi j

cont1V̄~ l 1 ,l 2 ,l 3!,

~41!

where Pi is the momentum operator of thei th quark, Mi
50.22 GeV for light quarks,b50.18 GeV2, and the Cou-
lomb potentialVi j

Coul and hyperfine contact potentialVi j
cont

have the same form as in Ref.@8#. The justification for adopt-
ing this form of the Coulomb and hyperfine contact intera
tion is outlined in Sec. V B below. For the convention
baryon the adiabatic potentialV̄B( l 1 ,l 2 ,l 3) also has the form
b( i l i adopted in Ref.@8#. In what follows, the numerica
calculation of the form of the adiabatic potentialV̄ for the
lightest hybrid baryon is outlined.

A. Numerical adiabatic potentials

As it is not possible in all quark configurations to deri
the adiabatic potential of baryons and hybrid baryons in
small-oscillations approximation to the junction motio
given by Eq.~32!, a numerical calculation is used to find th
flux energy, which is part of the potential energy for t
quark motion, for all quark configurations. As discussed p
viously, the linear term in Eq.~32!, which arises from the
bead motion, is regularization-scheme dependent, and ca
absorbed into the physical linear term in the potential. Al
there will be no need to consider constant and Luscher te
in this section as they are identical for the conventional a
hybrid baryons.

The procedure of numerically evaluating the hyb
baryon potential is as follows. For a large set of quark c
figurations$ l 1 ,l 2 ,l 3%, the Schro¨dinger equation

S 1

2
Meff

` ṙ21VJDC~r !5V~ l 1 ,l 2 ,l 3!C~r ! ~42!

is solved variationally for the wave functionCB(r ) and en-
ergy VB( l 1 ,l 2 ,l 3) of the ground state of the junction Hami
tonian, as described in Sec. II F, using the ansatz wave fu
tion in Eq. ~33!. The lowest-lying hybrid (H1) baryon
06520
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potential is found by solving Eq.~42! variationally for the
wave functionCH1

(r ) and energyVH1
( l 1 ,l 2 ,l 3) of the first

excited state of the junction Hamiltonian, using the first a
satz wave function in Eq.~34!. This corresponds to junction
motion in theQQQ plane, and is used because the analyti
solutions in Sec. II E suggest that the lowest hybrid bary
energy can be described by such junction motion. The m
mizations for the baryon and lightest hybrid baryon pote
tials are carried out independently. It has been checked
the numerical potentials calculated here in the long-str
limit agree with the analytic expressions derived in that lim
in Sec. II E, to within 2%.

The hybrid baryon adiabatic potential is defined to be

V̄H1
~ l 1 ,l 2 ,l 3![V̄B~ l 1 ,l 2 ,l 3!1VH1

~ l 1 ,l 2 ,l 3!2VB~ l 1 ,l 2 ,l 3!

5b(
i

l i1VH1
~ l 1 ,l 2 ,l 3!2VB~ l 1 ,l 2 ,l 3!. ~43!

Selected numerical results for the differenceVH1
2VB of the

hybrid and conventional baryon adiabatic potentials are p
ted in Figs. 8 and 9. In Fig. 8 the potential is plotted wi
fixed r ~proportional to the separation of quarks 1 and 2! and
variable l ~proportional to the separation of the center
mass of quarks 1 and 2, and quark 3! and url ~the angle
between the vectorsr andl), which clearly demonstrates

FIG. 8. DifferenceVH1
2VB of the hybrid and conventiona

baryon adiabatic potentials forr56.2 GeV21, as a function ofl
andurl .
4-13
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discontinuity in the derivative when the flux goes from t
shape withuJ5120° to that withuJ.120°. In Figs. 9 and
10 the behavior ofVH1

2VB and VB2b( i l i when r and l

are orthogonal is plotted againstr andl. It is obvious that
both the conventional and hybrid baryon adiabatic potent
increase whenrl is small, with the hybrid adiabatic poten
tial increasing faster. If the small-oscillations approximati
were employed they would tend to infinity asrl→0. Solv-
ing for the energy variationally has softened this behav
considerably.

The value ofAMeff
` v2 for the baryon is approximately in

the range 0.37– 0.5 GeV, while the hybrid baryon
'0.35– 0.48 GeV.

B. Short-distance interactions between the quarks

There are two important configurations of the qua
when considering the Coulomb interactions. These are wh
two quarks are near to each other and the third is dis
~mesonlike configurations!, and where all three quarks ar
close to each other. It is possible to focus on the form
because the latter is atypical and contributes little to the
ergy of the baryon.

In the flux-tube model, in the mesonlike configuration
string extends from the distant quark to the other two qua
i.e., the system looks like a meson with the two nea
quarks in color 3̄. The reason for this is that the long
distance picture is still appropriate for the distant qua
which means that its color flows along the long string, a
must be cancelled by the two nearby quarks. The two nea
quarks are hence in color 3¯ for both the conventional and
hybrid baryon. This implies that the Coulomb interactio
between the nearby quarks are attractive, and identical in
conventional and hybrid baryon.

This also has implications for hyperfine contact~spin-
spin! interactions, the existence of which has recently be
confirmed in lattice QCD@30#, since their form is given by
the color representation of the interacting quark pair. T
interactions are, therefore, identical for conventional and
brid baryons. As seen in Table IV above, the lightestD hy-
brid baryons have the same quark-spin structure as
ground stateD, and both the symmetric and antisymmet
lightest nucleon hybrids have the same quark-spin struc

FIG. 9. DifferenceVH1
2VB of the hybrid and conventiona

baryon adiabatic potentials forurl5p/2, as a function ofr andl.
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as the ground-state nucleon. This implies that the lightesD
hybrid baryons are always heavier than the lightestN hy-
brids, due to the same hyperfine interaction that makes thD
heavier than the nucleon.

VI. NUMERICAL MASS ESTIMATE FOR LOW-LYING
HYBRID BARYONS

The Hamiltonians in Eqs.~41! and~43! are evaluated us
ing the basis of coupled three-dimensional harmonic osc
tor wave functions in Eq.~38!, expanded up to at least th
N57 oscillator level, whereN52(nr1nl)1 l r1 l l . These
matrices are subsequently diagonalized to yield the energ
The resulting full wave functions@Eq. ~39!#, which are linear
combinations of the harmonic oscillator wave functions, a
solutions of the Schro¨dinger equation for the quark motion i
the presence of the usualV̄B baryon confining potential and
the V̄H1

hybrid-baryon adiabatic potential. The differenc
between the energies for the hybrid and the conventio
baryon are then added to the experimental mass of the li
est baryon~the nucleon!.

It is interesting to determine what sets the scale of
energy difference between the lightest hybrid and conv
tional baryons in this model. This can be illustrated by e
amining the analytic solution to the junction Hamiltonia
developed above, in the limit of small oscillations and a la
number of beads. Equation~31! gives the frequencyv2 of
the lowest energy string excitation in terms of the string te
sion b, the effective massMeff

` of the junction in the limit of
a large number of beads, and the lengthsl i of the three lines
from the rest position of the junction to the quarks~triads!.
The effective mass of the junction is, in turn, given in term
of the same quantities and the quark massesMi in Eq. ~21!.
The scale of the energy difference is set by the same qu
tities in our variational calculations, which do not employ t
small oscillations limit.

Consistent values of the string tension and light (Mu
5Md) quark mass are used in evaluating the flux energ
which define the adiabatic potentials in which the qua
move, and in the calculation of the energy of the quarks~and
so hybrid and conventional baryon masses! in these poten-
tials. The value of the string tension used isb

FIG. 10. Conventional baryon adiabatic potential without t
confining potential,VB2b( i l i , for url5p/2, as a function ofr
andl.
4-14
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50.18 GeV2) the typical value resulting from lattice gaug
theory calculations, which is also used in quark model c
culations of hadron masses@13#. The light quark masses ar
set to 0.22 GeV, the same value used in Ref.@8#, which also
uses the relativistic kinetic energy, and Coulomb and hyp
fine contact potentials identical to those in the current ca
lation.

The triad lengthsl i are not parameters, as, in principl
they are evaluated for every set of quark positions in orde
find the potential in which the quarks move. Their avera
size does of course affect the excitation energy of the str
and since this is determined by solving for the motion of
quarks in the confining~and, to a lesser extent, shor
distance! potential, it only depends on the quark masses
string tension.

In the case that the hyperfine contact spin-spin term in
~41! is set to zero, the lightestLq50 states haveMH1

2MB

5890 MeV, giving a mass estimate ofMH1
510851890

51975 MeV. Here 1085 MeV is the spin-averaged mass
the nucleon andD ground states. Note that this means that
of the lowest-lyingH1 hybrid states in Table IV have thi
mass. Furthermore, the states built on this adiabatic sur
with Lq51 and Lq52 have masses 2340 and 2620 Me
respectively, showing a considerable cost in energy for
bital excitation of the quarks, comparable to that in the c
ventional baryons. Similarly, the lightest radial excitati
built on this adiabatic surface has mass 2485 MeV, wit
position between theLq50 andLq52 states, as is also th
case in conventional baryons.

Including the hyperfine contact spin-spin term in Eq.~41!
lowers the mass of the quark–spin-1/2H1 hybrid states,
which coincide with the lightestN hybrids as outlined in Sec
IV C, by 110 MeV to 1865 MeV, and raises the mass of t
quark–spin-3/2H1 hybrid states, which coincide with th
lightestD hybrids, by a similar amount.

These mass predictions depend on the form of the qu
Hamiltonian used here@Eq. ~41!#, which has been fit to the
baryon spectrum. The parameters that determine the a
batic potential are the string tensionb and the sum of the
quark masses( iM i . In order to conservatively estimate th
error in the hybrid masses due to uncertainties in these
rameters, a variation ofdb/b5610%, andd( iM i /( iM i
5150% have been considered. These variations change
mass prediction for the lightest hybrid by less th
6100 MeV.

These mass estimates are substantially higher than o
mass estimates in the literature, which are approxima
1.5 GeV in the bag model@6# and 1.560.15 GeV in QCD
sum rules@4#.

There are two crucial assumptions that were made in
early work on hybrid meson masses in the flux-tube mod
the adiabatic motion of quarks and the small-oscillations
proximation for bead motion@13#. It was later shown tha
when the adiabatic approximation is lifted, the masses go
and when the small-oscillations approximation is lifted, t
masses go down@31#. In the present study of hybrid baryon
the adiabatic approximation has been partially lifted by
use of the redefined adiabatic approximation. The sm
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oscillations approximation has been fully lifted. The effe
on the masses of hybrid baryons when the various appr
mations are lifted is the same as those found for hybrid m
sons.

In the numerical simulation described above, with
identical Coulomb interaction in conventional and hybr
baryons, the rms valuesA^r2&5A^l2&52.12,2.52 GeV21

are obtained for the baryon andH1 hybrid baryon sizes, re-
spectively. The resultA^r2&5A^l2& is expected since the
spatial parts of the wave functions of the low-lying states
totally symmetric under exchange symmetry. The hyb
baryon is, therefore, 20% larger in size than the conventio
baryon.

It is of physical interest to obtain an estimate of the effe
tive junction massMeff

` in Eq. ~21!. Taking the average val
ues ofA^r2& andA^l2& above with the quarks in an equ
lateral triangle configuration, withb50.18 GeV2, and using
Eq. ~24!, the junction mass isMeff

` 50.17,0.20 GeV for the
baryon andH1 hybrid baryon, respectively. This effectiv
mass is made smaller by the center-of-mass corrections
to the quark motion in Eq.~21!. This effective junction mass
found in the flux-tube model in the refined adiabatic appro
mation is very different from the constituent gluon mass
0.8 GeV typically employed in constituent gluon mode
@18#, and partially accounts for the higher excitation ener
of the hybrid in the present work.

VII. DISCUSSION

It is interesting to compare results found here for hyb
baryons to the predictions of the bag model@6#. Out of all of
the flux-tube model states listed underH1

S and H1
A in Table

IV, only the N2 1
2

1, andN2 3
2

1 states have the same flavo
quark-spinS, total angular momentum, and parity as the lo
lying hybrid baryons in the bag model. However, restricti
to experimentally measurable quantum numbers~flavor, total
angular momentum, and parity!, only one light hybrid is dif-
ferent between the flux-tube and bag model predictions. T
JP55/21 state is flavorD in the flux-tube model and flavo
N in the bag model, but is amongst the higher-lying states
both models@6#.

Looking at quantum numbers alone, the Roper resona
could be regarded as a hybrid baryon candidate in both m
els. However, our mass estimates do not support this ide
fication, in contrast to some bag model@6# and QCD sum
rule estimates@4#. Both our model and the bag model hav
seven low-lying hybrid baryons.

One of the disadvantages of hybrid baryons relative
hybrid mesons, multiquark states and glueballs, is that
possible baryon quantum numbers can be attained by
ventional baryons, so there are no ‘‘exotic’’ quantum nu
bers. However, our low-lyingH1

A hybrid baryons are ‘‘non-
relativistic quark model exotic,’’ since these states ha
quark-label exchange antisymmetric flux wave functio
and so totally antisymmetric~space!3~spin!3~flavor! wave
functions, and states of this nature cannot be constructe
the nonrelativistic quark model.

The phenomenology of hybrid baryons has been review
recently @32,33# and so will not be discussed her
4-15
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VIII. CONCLUSIONS

Significant progress has been made towards buildin
realistic flux-tube model of~hybrid! baryons. The full multi-
bead Hamiltonian is constructed and it is demonstrated
the junction decouples from the beads on the triads to a h
degree of accuracy~with the exact and decoupled lowe
frequencies differing by at most 2%!, so that the lowest-lying
hybrid-baryon excitations in the flux-tube model can be
sociated with the motion of the junction. This simplifies t
description of the long distance properties of a low-lyi
~hybrid! baryon to be that of three quarks and a junctio
with the junction connected to each of the quarks via a lin
potential. The parameter dependence of the conventiona
hybrid baryon potential ispredicted, and can be used as a
input in various theoretical approaches.

The quantum numbers of the lightest hybrid baryons
the flux-tube model are given in Table IV, and in the pre
ence of the expected spin-spin interactions between
quarks, the lightest hybrid baryons are four nucleons w
JP51/21, and 3/21 and with a mass of 18656100 MeV.
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APPENDIX A: ACTION OF THE PLAQUETTE OPERATOR
ON THE JUNCTION

It is now shown that the junction can move and leave
string in the ground state of its Y-shaped configuration
first-order HLGT perturbation theory, i.e., with the applic
tion of a single plaquette operator.

In Fig. 2 the plaquette operator which operates on
junction has the effect of producing a link that is indicat
with two arrows on it. The color structure of this link is
^ 353̄% 6. A link with color 6 is not allowed by conserva
tion of color, because its neighboring link is color 3 flowin
in the opposite direction, or color 3.̄ However, it would ap-
pear that a link with color 3̄is allowed. The following shows
that this is the case.

An enlargement of the junction region of Fig. 2 is pr
vided in Fig. 11. The creation of a link from spatial positio
A to B with color projectionsa andb, respectively, is denoted
by UAB

ab . Denoting by capital letters the spatial positions, a
by lowercase letters the color projections, the mathemat
expression corresponding to the graph in Fig. 11 is
(
d f g1g2g3f 8ed8g8

UAD
ad UDG

dg1UBG
bg2UFG

f g3UCF
c f eg1g2g3

UFE
f 8eUED

ed8UDG
d8g8UGF

g8 f 8 , ~A1!
ove,
pli-
n
ed

gle
ring

ead
ate
where the first term is the initial baryon state and the sec
term is the plaquette operator. Now contract the twoDG
links, and the twoFG links, using Appendix B of Ref.@34#,

UDG
dg1UDG

d8g85
1

2 (
d9g9

edd8d9eg1g8g9UGD
g9d9

1
1

4 (
d9d-g9g-

~ddd9dd8d-1ddd-dd8d9!

3~dg1g9dg8g-1dg1g-dg8g9!UDG
6$d9d-%$g9g-% ,

~A2!

UFG
f g3UGF

g8 f 85
1

3
d f f 8dg3g812(

f 9g9

l f f 8
f 9

2

lg3g8
g9

2
UFG

8 f 9g9 ,

~A3!

whereU6 andU8 refer to sextet and octet links, respective
and la are the usual Gell-Mann SU~3! matrices. It follows
that Eq.~A1! equals
d
2

1

3 (
g9 f edd8d9

UAD
ad UBG

bg9UGD
g9d9UCF

c f UFE
f e UED

ed8edd8d9 ,

~A4!

where the 6 term does not contribute as mentioned ab
and the 8 term is not displayed as it leads to a more com
cated topology. Equation~A4! is a mathematical expressio
that gives a graph similar to Fig. 11, with the junction mov
from spatial positionG to positionD, and the links in their
usual color triplet state. Hence the application of a sin
plaquette operator can move the junction and leave the st
in its ground state, as promised.

APPENDIX B: FLUX-TUBE HAMILTONIAN

The flux-tube Hamiltonian is first derived for theuJ
5120° case, using the coordinate system defined in Eq.~2!.
The goal is to describe the position of each quark and b
and the junction with respect to an alternative coordin
system with origin at the center of massRc.m. of the entire
system.

In this coordinate system the junction is atr J[r2Rc.m.,
wherer5(x,y,z). The quark positions are

r i[ l i~2ey
i ,ex

i ,0!2Rc.m., ~B1!
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where theei are defined in Eq.~10!. Beadn on thei th triad
is at position

rn
i [S 2

Ni112n

Ni11
ey

i l i1
n

Ni11
x1jn

i ex
i ,

Ni112n

Ni11
ex

i l i

1
n

Ni11
y1jn

i ey
i ,

n

Ni11
z1zn

i D2Rc.m.. ~B2!

Herejn
i is the displacement of beadn along the directionei

which is perpendicular to thei th triad in theQQQ plane~see
Fig. 7!, andzn

i is its displacement perpendicular to theQQQ
plane. Note the bead displacements are transverse to th
ads on which they lie, and are measured from the line c
necting quarki to the ~in general, displaced! junction. Bead
n51 is placed next to thei th quark, and beadNi lies next to
the junction.

Requiring that the center of mass is at the origin gives
constraint,

05mJr J1mb(
i 51

3

(
n51

Ni

rn
i 1(

i 51

3

Mir i , ~B3!

which can be solved forRc.m.. The Hamiltonian is

Hflux[
1
2

mJṙ J
21

1
2

mb(
i 51

3

(
n51

Ni

~ ṙn
i !2

1
1
2 (

i 51

3

Mi ṙ i
21(

i 51

3

(
n50

Ni

urn11
i 2rn

i u, ~B4!

where the first three terms form the kinetic energy. The
term is the linear potential energy between neighbor
beads, whererNi11

i is defined as the position of the junctio

r J and r0
i is defined as the quark positionr i .

The Hamiltonian is now simplified using the redefin
adiabatic approximation, where the distances between
quarks remain fixed, concisely stated asl̇ i50. The small-
oscillations approximation is used to Taylor expand the
tential energy in Eq.~B4! to yield a function quadratic in the
junction and bead position coordinates.

FIG. 11. Enlarged view of the effect of the plaquette operator
the junction in Fig. 2.
06520
tri-
n-

e
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g

he

-

The displacements of the beads within and out of
QQQ plane, given byjn

i andzn
i , is expanded in terms of the

amplitudes of themth normal mode of the beads,qim
i and

q'm
i , respectively, by

jn
i 5 (

m51

Ni

qim
i sin

mnp

Ni11
, zn

i 5 (
m51

Ni

q'm
i sin

mnp

Ni11
. ~B5!

The potential energy now becomes diagonal in these nor
mode amplitudesqim

i ,q'm
i of the beads. Carrying out th

necessary algebra yields Eq.~5!. As an aside, it is perfectly
meaningful in Eq.~5! to put N15N25N350, the case with
no beads other than the junction.

For theuJ.120° case, the definition of the coordinates
Eqs.~B1! and ~B2! remains the same, except that theei are
given by Eq.~15! and there are no beads on the third tria
Carrying out the necessary algebra yields the Hamilton
discussed in Sec. II B.

APPENDIX C: QUARK LABEL EXCHANGE SYMMETRY
FOR THE uJÄ120° CASE

IN THE SMALL-OSCILLATIONS APPROXIMATION

It is now shown, using the explicit definition ofĥz , that
both quark-label exchange symmetric and antisymmetric
alizations of ĥz are possible. First consider the possibili
sz51 in the definition Eq.~25! of ĥz , so thatĥz points
alongr3l. By inserting the expressions forr andl in Eq.
~23! into r3l, it can explicitly be verified thatr3l is to-
tally antisymmetric under exchange symmetry. Hence,ĥz
with sz51 is totally antisymmetric under quark label e
change symmetry.

Another possibility is to chooseĥz along the vector

@ Ẑ•r3l#r3l, ~C1!

whereẐ is a space-fixed unit vector~not determined by the
quark positions!. This is equivalent to choosing

sz5
Ẑ•r3l

uẐ•r3lu
~C2!

in Eq. ~25!. This choice ofsz obviously yields a totally
symmetricĥz .

Next consider the quark-label exchange symmetry ofĥ2

and ĥ2 in the uJ5120° case in the small-oscillations ap
proximation, as defined in Eq.~26!. Consider the vectors
ĥ68 , defined byĥ65s6ĥ68 . Applying Pi j exchangesl i↔ l j

in Eq. ~26!, as well as the labelsi andj in x̂ andŷ in Eq. ~2!.
Under P12, it is easy to see thatĥ68 →2ĥ68 . Both P13 and

P23 can be shown to lead toĥ68 →6ĥ68 , where the sign is
dependent on the relative sizes ofl 1 , l 2, and l 3. For ex-
ample, underP23 one can show that this sign is given by th
sign of the expression

n
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As~ l 1 ,l 2 ,l 3!6S 1

l 2
1

1

l 3
2

2

l 1
D , ~C3!

wheres( l 1 ,l 2 ,l 3) is defined in Eq.~27!.
The fact that theĥ68 transform under label exchange in

themselves, up to a sign, follows from the observation t
the ray in which theĥ68 lie is the physical line of oscillation
of the junction in these vibrational modes. Since label
change does not change the physics, the oscillation sh
.

the
.

ys

d

he

06520
t

-
ld

still be in the same ray after label exchange, as found. S
only the ray in whichĥ6 lies is physical, the possibility
cannot be excluded that theĥ68 are multiplied by a signs6

when a standard choice of eigenvectors is constructed, a
Eq. ~26!. It is possible to show that a consistent set of si
conventionss6 can be chosen such that theĥ6 are either
totally symmetric or antisymmetric under label exchang
Neither choice can be excluded.

It is also possible to show that the signss2 , s1 , andsz
are invariant under parity.
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