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Nucleon charge and magnetization densities from Sachs form factors
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Relativistic prescriptions relating Sachs form factors to nucleon charge and magnetization densities are used
to fit recent data for both the proton and the neutron. The analysis uses expansions in complete radial bases to
minimize model dependence and to estimate the uncertainties in radial densities due to limitation of the range
of momentum transfer. We find that the proton charge distribution, fitted to recent recoil-polarization data
displaying an almost linear decrease @g,/Gy, for Q%=1 (GeV/)?, is significantly broader than its
magnetization density. We also find that the magnetization density is broader for the neutron than the proton.
The neutron charge form factor is consistent with the Galster parametrization over the available r@ige of
but the relativistic inversion produces a softer radial density. Discrete ambiguities in the inversion method are
analyzed in detail. The method of Mitra and Kumari ensures compatibility with pQCD at@frged is most
useful for extrapolating form factors. Although a recent observation@#at, /F,, is approximately constant
for 2<Q?<6 (GeV/c)? appears to be inconsistent with tRE ? scaling expected from quark helicity con-
servation, our analysis fits these data while remaining consistent with pQCD forQérge
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[. INTRODUCTION counts for the Lorentz contraction along the momentum
transfer, Licht and Pagnameritd] obtained a reasonable fit

A fundamental test of the QCD confinement mechanismto proton form factors using a Gaussian density with a more
either on the lattice or in models, is the electromagnetiaealistic behavior in the interior. Ji7] obtained similar re-
structure of the nucleon. This electromagnetic structure isults using a relativistic soliton model and we used this
reflected by the electric and magnetic form fact@g(Q?) model in Ref.[8] to fit data for Sachs form factors. These
andGy,(Q?), measured by electron scattering with spacelikemodels offer plausible radial densities, but are not compat-
invariant momentum transfé. At low Q one can interpret ible with pQCD scaling unless one imposes somewhat awk-
these form factors as Fourier transforms of the nucleomward restrictions upon the Fourier transform, as discussed in
charge and magnetization densitiés?], but the relationship  Sec. Il C. Fortunately, a variant proposed by Mitra and Ku-
between form factor and density is complicated by recoil asnari[9] complies with pQCD scaling automatically, without
Q increases. Although models of nucleon structure can ofteneed of such constraints. We use this method, described as
calculate the form factor directly, it is still desirable to relate relativistic inversion to extract nucleon charge and magneti-
form factors to spatial densities because our intuition tends teation densities from data for Sachs form factors. Our fitting
be grounded more firmly in space than momentum transfeprocedure minimizes model dependence by employing linear
In this paper we fit charge and magnetization densitiegxpansions in complete radial bases, such as Fourier-Bessel
to recent nucleon form factor data using a prescription thabr Laguerre-Gaussian expansions, and estimates uncertain-
accounts for nucleon recoil and Lorentz contraction andies arising from the limitation of experimental data to a
is compatible with perturbative QCDpQCD) scaling at finite range of momentum transfer using methods originally

large Q2. developed to analyze electron scattering by nuclei. Such an
Early experiments with mode§? suggested that analysis produces a good fit to form factor data using a radial
density whose error band reflects both the statistical quality

_ GMpN Gmn _ of the data and its limited coverage of momentum transfer.

Gep~ M_pNINGD’ @) Differences between densities obtained using several varia-

tions of the inversion formula are describeddiscrete am-
whereGp(Q?) =(1+ Q% A?) 2 with A>=0.71 (GeVt)?is  biguitiesand are analyzed in detail herein.
known as the dipole form factdi3,4]. However, the naive Data forGy, and Gy, with Q?>1 (GeV/c)? show sig-
Fourier transform of the dipole form factor produces an ex-ificant departures from the simple dipole parametrization,
ponential density with an unphysical cusp at the origin. Simi-but the extraction ofGg, using the traditional Rosenbluth
larly, data forGg,, at low Q? can be described by the Galster method[10] becomes increasingly difficult &2 increases

parametrization5] because the dominance of tdg,, contribution to the cross
section increases wit®?. Consequently, there are large sta-
AT tistical uncertainties in Rosenbluth data f@g, at Q2

Gen(Q%) =~ 1nGp(Q?)

)

>1 (GeVIc)? and the discrepancies between comparable
experiments suggests that systematic errors in the Rosen-
where A and B are constants ane=(Q/2m)?, but direct  bluth analysis are often underestimaféd]. More recently,
Fourier transform of this form factor also produces a cusp atecoil polarization has been used to measure the gtio
the origin. Using a relativistic inversion formula that ac- =Gg,/Gy, directly, without need of Rosenbluth separation.
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In this technique, the components of the nucleon polarization Il. MODEL
P’ after scattering by a polarized electron beam are mea- A. Sachs form factors

S“ref’ alorlg t_he momentum transAfgr direction, d_enoted, by Matrix elements of the nucleon electromagnetic current
and in thex direction transverse to in the scattering plane. operatorJ* take the form
The form factor ratio is then obtained usifit2,13

(N(p’,s")|3#IN(p,s))=u(p’,s")el“u(p,s),  (4)

P, 2€ whereu is a Dirac spinorp,p’ are initial and final momenta,
;Z - m@ () g=p—p’ is the momentum transfes,s’ are spin four-
B vectors, and where the vertex function

ik,
wheree=[1+ (1+7)2 tarf /2] ! is the transverse polar- F“=F(Q?)y*+ KFZ(QZ)Z—mq

ization of the virtual photon for an electron scattering angle

f . For the proton, both components can be measured SimUaaqres Dirac and Pauli form factafs andF, that depend
taneously using a polarimeter in the focal plane of a magynon the nucleon structure. Heds the elementary charge,
netic spectrometer, thereby minimizing systematic uncertaing, is the nucleon mass is the anomalous part of the mag-
ties due to beam polarization, analyzing power, anthetic moment, and* and o are the usual Dirac matrices
kinematic parameters. The systematic uncertainty due to Pr€e.g., Ref[18]). The interpretation of these form factors ap-
cession of the proton spin in the magnetic spectrometer ir?ears simplest in the nucleon Breit frame where the energy

usually much smaller than the systematic uncertainties igansfer vanishes. In this frame the nucleon approaches with
combining the absolute cross sections obtained with different . . -~ .
itial momentum—qg/2, receives three-momentum transfer

kinematical conditions and acceptances that are needed i} : i -
the Rosenbluth method. Recent data using the recoil polafls. and leaves with final momenturyg/2. Thus, the
ization techniquel14—16 have shown a dramatic, almost Nucleon Breit frame momentum is defined mf=Q?
linear, decrease iBg,/Gy, for Q*>1 (GeVlc)?. It was  =g?/(1+7) where (@,q) is the momentum transfer in the
suggested that those results demonstrate that the protdaboratory, Q>=q%— w? is the spacelike invariant four-
charge is distributed over a larger volume than its magnetimomentum transfer, ang= Q2/4m?. In the Breit frame for a
zation, but radial densities were not obtained. Our analysiparticular value ofQ?, the current separates into electric and
confirms that interpretation quantitatively. magnetic contribution§2]
Similar techniques can be used to obtain the neutron form
factor ratio,g,= Gg,,/Gun, using either target or recoil po- — t
larization, but in the absence of a target with free neutrons u(p’,s")HI*u(p,s)=xy
one must employ quasifree scattering from a neutron bound
in a light nucleus. Detection of a recoil neutron with quasi-where y, is a two-component Pauli spinor and where the
free kinematics and small missing momentum tends to miniSachs form factors are given by
mize uncertainties due to nuclear structure and final state

©)

iexq
GE+ —qBGM

2m XS’ (6)

interactions[17]. Although considerable care is still needed Ge=F,—7«F5,, (74
at low Q?, polarization methods offer smaller systematic er-
rors and less model dependence than traditional Rosenbluth Gu=Fi+«F,. (7b)

analyses of elastic scattering or quasifree knockout. We ex- o i .
tracted the neutron charge der;sity from recent polarizatior] "€ similarity of Eq.(6) to the classical current density
data forg, for Q“<1.6 (GeVk)~ using the relativistic in- - -
version mnethod. Although the form factor data remain con- INR=(epgh X Vpp") ®)
sistent with the Galster parametrization over this range of . e o
momentum transfer, the charge density obtained by relativisg'.u.ggeStS an identification of charge and magnetization den-
tic inversion is considerably softer than that from nonrelativ-S'tIeS
istic inversion of the Galster form factor and does not feature 2 (o
a cusp at the origin. Over the next several years, extending of pa(r)= —f dQ Q%jo(Qr)Ge(Q?), (93
the experimental range of momentum transfer should sub- mJo
stantially reduce the uncertainty in the interior density. )

The model is presented in Sec. Il, the analysis procedures NRo_ 2|7 ; 2
in Sec. lll, and principal results in Sec. IV. In Sec. V we #Pm (1= wfo dQ Qo(QNGM(QY), (90
compare our results to another analyses, discuss the extrapo-
lation to higherQ? and the role of discrete ambiguities in where u=1+ « is the appropriate static magnetic moment
fitted densities. We also form combinations of neutron andeitheru, or u,) relative to the nuclear magneton. However,
proton charge densities that in the naive quark model reprethis naive inversion procedure is described as nonrelativistic
sent the distribution of up and down quarks in the proton(NR) because it ignores the variation of the Breit frame
Finally, our conclusions are summarized in Sec. VI. with Q2.
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B. Intrinsic form factors more, the boost operator for a composite system depends

Let por(r) andp,(r) represent spherical charge and mag-YPON the interactions among its constituents. Nevertheless, a
(o] m . . . T
netization densities in the nucleon rest frame. It is convenien'ide variety of models have employed similar relativistic

to normalize these intrinsic densities according to prescriptions to relate elastic form factors to ground-state
densities. The first proposal was made by Licht and Pagna-

-, menta[19] using a cluster model and a kinematic boost that
fo drrépen(r)=2, (108 neglects interactions. The transition form factors were evalu-
ated using the impulse approximation and neglecting relative
" motion. Mitra and Kumar[9] obtained similar results using
f drrépp(r)=1, (10p  a kinematic transformation that is more symmetric between
0 initial and final states and can be applied to inelastic scatter-
. . ing also. Ji 7] also obtained similar results using a relativis-
whereZ=0,1 is the nucleon charge. Fourier-Bessel transyic’syyrmion model based upon a Lorentz invariant Lagrang-
forms of the intrinsic densities are defined by ian density for which the classical soliton solution can be
w evaluated in any frame. Quantum fluctuations were then
B(k)zf drr2jo(kr)p(r), (11)  evaluated after the boost. Although an approximation is still
0 required to evaluate the transition form factors, it was argued
_ . that this approximation is best in the Breit frame. Holzwarth
wherel< is the spatial frequencfor wave number We de- [20] extended the soliton model to the timelike regime and
scribep(k) as anintrinsic form factor If one knew how to  analyzed the superconvergence relations needed to obtain
obtainp(k) from data for the appropriate Sachs form factor, spectral functions.
the intrinsic density could be obtained simply by inverting Each of these prescriptions can be represented in the form
the Fourier transform, such that ~
pen(K)=Ge(Q?)(1+ 1), (14a

2 (= . ~
p(r)=;J0 dk K2jo(kr)p(Kk). (12 21pm(K)=Gp(Q3)(1+ 7)MM, (14b

The naive nonrelativistic inversion method assumes thaivhereG(Q?) is one of the four Sachs form factoisjs the
k—Q andp(Q)—G(Q?) whereG(Q?) is the appropriate intrinsic spatial frequency given by E¢13), and\ is a
Sachs form factor. However, this inversion procedure promodel-dependent constant. The most important relativistic
duces unsatisfactory results for the common dipole and Gagffect is Lorentz contraction of spatial distributions in the
ster parametrizations—the corresponding radial densitieBreit frame and the corresponding increase of spatial fre-
have unphysical cusps at the origin and rather hard cores. Fétiency represented by the factor of%) in Eg. (13). A
example, the naive Fourier transform of the dipole form fac-measurement with Breit-frame momentum transdgr=Q
tor produces an exponential densitplthough it appears Pprobes a reduced spatial frequericin the rest frame. The
much more complicated, the Galster density can also be olachs form factor for a large invariant momentum transfer
tained in closed form and displays similarly unrealistic be-Q? is determined by a much smaller spatial frequeiéy
havior near the origif Licht and Pagnamenfd 9] attributed ~ =Q?/(1+7) and thus declines much less rapidly with re-
these failures of nonrelativistic inversion to the replacemenspect toQ? than the Fourier transform of the density declines
of the intrinsic spatial frequendywith the momentum trans- with respect tk?. In fact, the accessible spatial frequency is
fer Q and demonstrated that by applying a boost from thdimited to k<2m such that the asymptotic Sachs form fac-
Breit frame with momentungz=Q to the rest frame, inver- tors in the limitQ?—c are determined by the Fourier trans-
sion of the dipole form factor using a reduced spatial fre-form of intrinsic densities in the immediate vicinity of the
quency limiting frequencyk,=2m. In this model, no information

can be obtained beyond the limiting frequency determined
2 Q? by the nucleon Compton wavelength. This limitation can be
1+ 7 13 understood as a consequence of relativistic position fluctua-
tions, known as oZitterbewegungthat smooth out radial
softens the density. In fact, a good fit to the data @y, Vvariations on scales smaller than the Compton wavelength.
could then be obtained using a Gaussian density typical of Ji[7] derived\g=0 for electric and\;=1 for magnetic
guark models. form factors in the soliton model and attributed the differ-

Unfortunately, unique relativistic relationships betweenence betweeng and\, to the Lorentz transformation prop-
the Sachs form factors measured by electron scattering &tties of scalar and vector densities. The same choices were
finite Q2 and the static charge and magnetization densities iemployed by Holzwart{20,23. On the other hand, Licht
the nucleon rest frame do not exist. The basic problem is thaand Pagnamen{d 9] obtained\g=\,=1 using the cluster
electron scattering measures transition matrix elements banodel, but Mitra and Kumafi9] found that a more symmet-
tween states of a composite system that have different maic treatment of the kinematics gives valugs=\ =2 that
menta and the transition densities between such states ametomatically satisfy the perturbative QCD scaling relations
different from the static densities in the rest frame. Furtherat very largeQ?. For most of the present analysis we will
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employ the symmetric choicec=\,,=2 because fewer re- of the form factors can be made using dispersion thg4y-
strictions upon the behavior gf(k) are needed ned,, to 26, but.that approach does not cqnsiderthe densitie; that are
ensure compatibility with the asymptotic behavior of Sachsthe subject of the present analysis. Nor do we consider here
form factors expected from dimensional scaling. We describéhe modifications of pQCD scaling due to logarithmic run-
the variation of a fitted density with the choice bfas a  Ning of the strong coupling27]. . .
discrete ambiguityThe effect of discrete ambiguities upon ~ With the exception ofGy,, the available data constrain

fitted densities will be examined in Sec. V D. p(K) very little neark,, because the ratio
. . 2
C. Asymptotic behavior £~1_ ki (16)
The present form factor model with=0 suggests that K 2Q?

the asymptotic behavior fd@>2m is given by
approaches unity relatively slowly &7 increases. Thus, we
K\ 2 ~ _ ~ k2, will find that the choice ol has very little effect upon the fit
G(QZ):(a) p(Km) —[2X\p(Km) +Kmp' (Km) ] = to data for Sachs form factors, but does have a strong effect
2Q upon the extrapo;ation of fitted form factors beyond the mea-
~ ~, sured range ofQ<. By incorporating pQCD scaling in its
TANN+1) p(Km) +(3+4N)kmp' (Kin) basic parametrization, the choide=2 limits the range of
variation available to extrapolated form factors. Conversely,
, (15  without explicit enforcement of pQCD by means of some-
what artificial constraints upop(k) neark.,, fits with X
_ _ <2 permit much wider latitude at larg®?. The data for
where p’ and p” are derivatives of the momentum-space G, for Q?>20 (GeVk)? exhibit scaling and automatically
density evaluated at the limiting frequenéy,=2m. Evi-  enforce the appropriate constraints upptk,), but data
dently, noninteger values of are mcompatlb_ltlel with the per-  ayajlable for the other three electromagnetic form factors do
e e excatas ', 10 Conseguenty cne couimpose constans )
leaving just three choicés If we choose=2, then we need with little effect upon the fits in the measured rangeQut
o ' ; T ) However, we chose not to employ constraints of this kind,
only require p(ky)#0 to obtain consistency with pQCD. \yhich seem rather artificial, and to permit fits wikh<2 the
Thus, the proposal by Mitra and Kumd#8] of A=Ay =2 greatest possible latitude.
offers the most natural approach to the pQCD limit. If we = e useng=\y =2 for most of the present work, but will
chooser =1, as recommended by Ref§,20] for Gy or by giscuss the consequences of the discrete ambiguity in Sec.
Ref.[19] for bothGg andG), , then we must require(k) to  V D. Note that our previous work8], motivated by the soli-
have a node ak,, such thaip(k,)=0 andp’(k,)#0. Fi- ton model, usedg=0 andAy=1.
nally, if we choose\ =0 as recommended by Refg,20] for
Gg, then we must impose the somewhat unnatural con- D. Moments
straintsp(Km) = p’ (ki) = 0 with p”(ky) # 0. Thus, it appears It is customary to describe the lo@? behavior of a form
that the usefulness of the chiral soliton model is limited Oy ctor in terms of a transition radius obtained from integral

Q?<4m? and in order to fit data for Iarge‘_r}lzlwnh. that  moments of the underlying density, but care must be taken
model Holzwarth found it necessary to artificially increaseyit, the relativistic relationship between a Sachs form factor
the soliton mas$21]. 5 and its intrinsic density. We define integral moments by
Although the intrinsic form factorg (k) obtained using
either dipole or Galster functions f@(Q?) in Eq. (14) are
compatible with the pQCD constraints upp(k,,), neither

can be inverted using Eq12) with A\=0 becausep(k) ) _ )
=G(—k2)(—km/k)?* for k—o0. The inversion integrals for wherea is an even integer. For a charge density these mo-

these functions converge well for=2, slowly for \=1, ments are related to the electric form factor by
and diverge forn=0. Recognizing that pQCD favors

4
R ] Tt
8Q*

M, = fwdrrz*“pm, 17)
0

=2, we expecip(k) to have an asymptoti& * behavior Mo=G(0), (183
with an amplitude de_termined by the nucleon—antinucleon 5

annihilation procesd!N—e~e" at threshold. Similarly, the M,= _BdG(Q ) _ S—AG(O) (18b)
behavior of p(k) for k—o should be determined by the dQ? 920 2m?

electromagnetic annihilation data f@°< —4m?. However,

we have not attempted to incorporate electromagnetic datahile for magnetization we divide by the magnetic moment.
for timelike Q? in the present analysis because it is not cleafThus, one expectM,=Z for charge densities aniil,=1

that the prescription for intrinsic form factors should apply tofor magnetization densities. Notice that the lowest nonvan-
that regime. A more general analysis of the analytic structuréshing moment is free of discrete ambiguities, but that higher
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moments depend upoR. For example, the mean-square
neutron charge radius reduces to

dG(Q?%
<r2>n:_6 402 (19 '
& lozo -
because the charge vanishes, while the proton radius retains a 0T 07 wc:”
small dependence upon Q?

FIG. 1. The ratio between Sachs form factor withk 2 and the
(r2> :<r2) _ 3A (20) dipole form factor is shown for a Gaussian intrinsic density using
AP op 2 g ' several values of the oscillator parametgerjsted with units in fm.

due to the discrete ambiguity in the intrinsic density. This E. Example: Gaussian density

term, equal to 0.066 in units of fm?, appears to be similar It is instructive to consider the Sachs form factor that
to the famous Foldy contribution to the neutron charge radiusvould be produced by a simple Gaussian density
[28] but has a different origin because it does not depend

upon the anomalous magnetic moment. 4 )2
WhenM,#0 it is useful to distinguish between a radius p(r)= ba\/;exp[—(r )7L
parameter

(23)
p(k)=exp[ — (kb/2)?]

=( Gdin G(Q2)>l/2

M, 3\ 172
102 +— (21

Mo 2m2

that is typical of quark models. The form factor obtained
using Eq.(14) with A=2 is compared with the familiar di-
pole form factor in Fig. 1 for several choices lgfnote with
b=0.556 fm the Gaussian parametrization has the same rms
radius as the dipole form factor. These curves display the
12 same general features as the dataGey,, Gyp, andGy:
(r2) V2= ( o 3_7\) (22 for low Q? the form factor is close to the dipole form while

A 2m?2 for large Q? one finds an asymptotic limit fo6/Gp that
depends sensitively updmbut is less than unity for reason-

; ; - i able values. The greatest sensitivity to the shape of the den-
of the corresponding density obtained for specifiedrhus, sity is found in a transition region fo@? that ranges from

¢ is a model-independent property of the form factor dataseveral tenths to several (Gay?, depending upob. Thus,

while (r2)12 is subject to a discrete ambiguity. These radild 3 with simil | foat be fit b dulati
agree fol =0, but(r?)Y2is smaller thar¢ for larger\ due ~ 02'& Wi Simiiar generaj teatures can be fit by moduating a
basic Gaussian with an even polynomial, where the polyno-

to the Zitterbewegungorrection. : S . :
Accurate calculations for many phenomena in atomicm'aI degree can be minimized by an optimal choicé.dFor

physics, such as the Lamb shift, require corrections for th&en One need only require the polynomial part mffk) to
finite size of nucleons. Although it might appear that thebegin withk® to ensure that the net charge vanishes. Expan-
nucleon size should be determined by an integral moment g¥ions of this form are no more complicated than other pa-
a nucleon density through E€1L7), the static radial density is rametrizations in common use, but are free of unphysical
not directly measurable by electron scattering. The discret€USPS at origin.

ambiguity between the initial slope of the Sachs form factor

and its associated transition density reflects the model- I1. ANALYSIS PROCEDURES

dependence of the relativistic inversion procedure arising
from the treatment oZitterbewegungBy convention, QED
theorists have decided to identify the radius with the initial To extract radial densities from the nucleon form factor
slope of the Sachs form factor and to treat recoil, vacuundata we employ techniques originally developed for fitting
polarization, Zitterbewegung and other effects as separate radial distributions to data for scattering of electrons or pro-
correctiondle.g., Refs[29,30). To distinguish between vari- tons from nucle{31-33. Simple models with a small num-
ous determinations of nucleon size, we describe the modeber of parameters do not offer sufficient flexibility to provide
independent quantity as theSachs radiusand the model- a realistic estimate of the uncertainty in a radial density.
dependent rms radius obtained from moments of a fittedRather, we employ linear expansions in complete sets of ba-
radial density as amtrinsic radius When necessary, these sis functions that are capable of describing any plausible ra-
radii are further qualified as either charge or magnetic andlial distribution without strong priori constraints upon its

for intrinsic radii by the value of. The Sachs charge radius shape. Such expansions permit one to estimate the uncertain-
is usually the most appropriate for QED applications. ties in the fitted density due to both the statistical quality of

Q%0

based upon thaitial logarithmic derivativeof a Sachs form
factor and the rms radius

A. Linear expansions
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the data and the inevitable limitation of experimental data tajons in the form factor. One should chooRg,, to be sev-

a frequency range&<Kpay, where eral times the root-mean-square radius but not so large that
an excessive number of terms is needed to span the experi-
Koo Qmax (24) mental range of momentum transfer. Terms W™ Kpayx
max Q2 provide an estimate of the incompleteness error. We chose
1+LZX Rmax=4.0 fm, but the results are insensitive to its exact
4m

value. However, a disadvantage of the FBE is that a rela-

. . . ) tively large number of terms is often needed to accurately
is the maximum spatial frequency sampled by experlmentqlepresent a typical confined density.

data limited toQ<Q,ax- The uncertainty due to limitation Alternatively, the Laguerre-Gaussian expansi@rGE)

of k is known asincompleteness error employs basis functions of the form
A radial density can be represented as an expansion of the
form fo(r)=e ¥L¥(2x2), (299
r)y= a,fq(r (25) - T
p( ) ; nfn( ) fn(k): gbB(_)ne—yzLﬁ/Z(zyZ), (29b)

where the basis functionis,(r) are drawn from any conve-

nient complete set. The corresponding Fourier transform theWherex=r/b, y=Kkb/2, andL{ is a generalized Laguerre
takes the form polynomial. A significant advantage of the LGE is that the

number of terms needed to provide a reasonable approxima-
~ ~ tion to the density can be minimized by chooslmin accor-
P(k):; anfn(k), (26) " dance with the natural radial scale. We chtse0.556 fm
such that the mean-square radius of the Gaussian factor is
where consistent with that of the common dipole parametrization of
Sachs form factors. We then find that the magnitude,pf
~ c o, decreases rapidly with, but the quality of the fit and the
f(k)= fo drrejo(kr)fa(r) (27) shape of the density are actually independenbafver a
wide range. However, a disadvantage of the LGE is that the

represent basis functions in momentum space. The expansi®@sis functions are not localized in momentum space so that

coefficientsa,,, are fitted to form factor data subject to sev- the coefficients tend to be correlated more strongly than for

eral minimally restrictive constraints to be discussed shortlythe FBE.

Analyses of this type are often described as model indepen-

dent because a complete basis can reproduce any physically B. Constraints

reasonable density; if a sufficient number of terms are in-

cluded in the fitting procedure the dependence of the fitted

density upon the assumptions of the model is minimized. By yi—y
. . . . 2 I I

contrast, simple parametrizations like the Galster model se- X =Z (—

verely constrain the shape of the fitted density. ‘ oY

We consider two bases that have been found useful in the _
analysis of electron or proton scattering data. The presentherey; is the fitted value of a quantity; with uncertainty

discussion is limited to monopole densities, but generalizadyi - In addition to experimental data, the sgtgenerally
tions to higher angular momenta are discussed in Refdncludes pseudodata used to enforce constraints and to esti-

The expansion coefficients are obtained by minimizing

2

(30

[33,34. mate the incompleteness error associated with the limitation
The Fourier-Bessel expansi¢BBE) employs basis func- of experimental data to a finite range of momentum transfer.
tions of the form The absence of data for very lar@¥ requires some con-
_ straint upon the behavior gf(k) for knya<k<k,. Further-
fa(r)=Jo(kn) O (Ryax—1), (288 more, inversion of the Fourier transform also requires an

assumption about the experimentally inaccessible region
~ (—)"Rimax. >kK.,,. On quite general grounds one expects the asymptotic
fa(k)= K2— K2 Jo(KRma), (28D form factor for a confined system to decrease more rapidly
n thank™# [32]; in particular, this condition ensures that there
where © is the unit step functionR, ., is the expansion will be no cusp at the orgin. In fact, our results show that the

radius, anck,=nm/Rm,,. One advantage of the FBE is that intrinsic form factorp(k) is well approximated by a Gauss-
the contribution of each term to the form factor is concen-ian for largek. Therefore, we will assume thai(k) for k
trated around its characteristic frequengyso that a coeffi- >k, is bounded by & * envelope and use the flexibility
cienta, is largely determined by data witrKk,. The larger  afforded by that envelope to estimate the incompleteness er-
the expansion radiuR ., the smaller the spacing between ror due to the limitation of experimental information to the
successivé,, and the greater the sensitivity one has to varia+angek<k,. Although some restriction is needed to stabi-
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lize the fits, thek™* envelope probably overestimates theto suppress strong deviations from the tail function. The ra-

uncertainties in unmeasured form factors and their effectlial pseudodata were constucted on the gyidr,,+iAr for

upon uncertainties in fitted densities; nevertheless, we prefée= 1N, in the ranger >r,,. We chooseA =4.27 fm 1, r,,

to employ minimally restrictive constraints so that those den=2.0 fm, Ar=0.2 fm, Ny=10, andw=2, but the results

sities will have the best possible model independence. are rather insensitive to these details. The tail bias improves
More detailed discussions of the method may be found irthe convergence of moments of the density but has little

Refs.[31-33, but the basic idea is to supplement the experi-effect upon a fitted density in the region where it is large.

mental data by pseudodata of the foptk;)=0= sp(k;) The fitting procedure also permits constraints to be placed

whose uncertainties are based upon a reasonable model @f integral moments of the radial density. We define fitted

the asymptotic behavior of the form factor fét>k,, Moments by

where K.« IS the spatial frequency corresponding to the "

maximum measure@®?. Therefore, uncertainties in the form Ma:f drr2tep(r), (33

factor for k>k,.x are based upon an envelope of the form 0

where herep(r) is the fitted density and include a penalty

~ 1 .
5P(k)=\[§p|im(k), (319 function of the form
— —
Mo—Mg N M,—M, |
oMy M,

2
XM~

(34)

~ Kmax| *
pim(K) = |p<kmax>|(%"*) , (31 - _
whereM , is the measured value adM , is its uncertainty.
The constraint on the neutron charge was enforced by means
where the factor of/1/3 represents the variance of a uniform of a pseudodatunM,=0+10"°. In addition, the atomic
distribution of unit width. When using FBE the pseudodataphysics datum fotM, from Ref.[35] was included in fits
are chosen at the characteristic frequendigs nm/R,,,x ~ made to the neutron charge density.

with n>KpaRna/m while a uniform spacing ofAk; It is also useful to define a fitted transition radRsas
=1.0 fm ! was employed for LGE. The error band for a
fitted density is computed from the covariance matrix for the R=VM,/M, (35)

x? fit and includes the incompleteness error. A detailed dis-
cussion of the decomposition of the density uncertainty intcfor Gg,, Gy, or Gy, . Thus, the fitted transition radius is
statistical and incompleteness errors may be found iorrelated with the experimental normalization at IQ#. If

Ref.[33]. . ___ thefittedM, were constrained, the uncertaintyRwould be
Recogn|2|n94that pQCD imposes an asymptotic I_|mlt 01Eartificially reduced. Therefore, no constraints were placed on
the formG«Q ™" upon the Sachs form factors, one might beMO for Gep, Gup, OF Gya—given that those intrinsic den-

2 ! ) . N )
tempted to employ pseudodata fGr at large Q°. If one  gjties were defined with unit normalization, the fitted values
knew how to estimate the proportionality constant, this pro-

~ of My test the normalization of the experimental data.

cedure could be used to regulai€k) for k. <k<k; but
would not be sufficient for construction of the radial density
because inversion of the Fourier transform also requires in-
formation for thek>k,, region that is inaccessible to elec- We tried to select the best available data in each range of
tron scattering. Although we expeptk) to be small fork Q?, With an emphasis upon recent data using r_ecoil or target
>2m, we cannot simply set it to zero because an abruppola\_nzatl_on wherever available. These sele_ctlons are sum-
cutoff would introduce unreasonable density oscillations aff@rized in Table 1. Although a thorough review of the data
very large radii. The present procedure estimates the uncefQ" Nucleon electromagnetic form factors is beyond the scope
tainty in the radial density arising from both the unmeasured®’ the present work, in this section we provide brief expla-
and the unmeasurable ranges of spatial frequency. In thidations for some of our selections and omissions.
model, the minimum uncertainty in density is governed by = CGwmp data were taken fron;n the compllatlonzof Kler et
the nucleon Compton wavelength and can be interpreted & [24] for Q°<0.15 (GeVk)“ and for largerQ” from the
an irreducible smearing b¥itterbewegung compilation and rganalysu; made by Bree;hal..[36] to im-

Small but undesirable” oscillations in fitted densities atProve the correction fzor the small contribution Gf, to
large radii were suppressed usingad bias based upon the Cross section at largQ<. Values forGg, were obtained by
method discussed in Rdf34]. We employed a tail function multiplying the recent recoil polarization measurements_ of
of the formt(r)<e A", based upon the successful dipole Gep/Gmp from Refs.[14,16,37,38by the Brash parametri-

parametrization for lowQ?, and included in they? fit a  Zation ofGy,. Supplementary recoil polarization data from
penalty function of the form Ref.[15] were omitted—those data are consistent with those

selected but have larger statistical uncertainties. In addition,
Ny ’ the cross section data f@¢, from Refs.[39,40 were used
3 (P(ri)—t(ri)) (39 at low Q? The cross section data foGg, at Q2
=1\ wi(ry) >1 (GeVic)? from Refs.[41,42] were omitted because, as

C. Data selection

2
Xr=
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TABLE |. Data selection summary.

Quantity Reaction Q? [(GeV/ic)?] Ref. Method
Gwmp p(e.e’) 0.017-0.15 [24] Rosenbluth

0.16-31.2 [36] Reanalysis usin@g,/Gy, from recoil polarization
Gep p(e,e’) 0.005-0.055 [39] Rosenbluth

0.13-1.75 [40] Rosenbluth

Gegp/Gup p(e,e’p) 0.37-5.54 [14,16,37,101 Using Gy, from Ref.[36]

Gun d(e,e’'n) 0.11-0.26 [46] Absolute, efficiency frond(y,pn)
d(e,e’N) 0.12-0.61 [47] Ratio method, efficiency frorp(y,7*)n
d(e,e’N) 0.095, 0.126 [48] Ratio method, efficiency from elastig(n,p)n
d(e,e’N) 0.24-0.78 [49] Ratio method, efficiency from elastig(n,p)n

0.07-0.89 [50] Ratio method, efficiency from elastig(n,p)n
d(e,e’) 1.75-4.0 [44] Quasielastic
d(e,e’) 2.5-10.0 [45] Quasielastic
3He(e,e') 0.1,0.2 [53] Fadeev analysis based upon R¢&!,55

Gen d(é,e'n) 0.26 [58] PWIA
d(e,e’'n) 0.15, 0.34 [102] FSI analysis by Refl103]
d(e,e’'n) 0.2 [104] FSI from Arenheel et al. [57]
d(e,e’'n) 0.5 [87] FSI from Arenheel et al. [57]

3He(e,e'n) 0.4 [105] Fadeev analysis by Ref55]
*He(e,e'n) 0.67 [59] PWIA
to0,T20 0.008-1.64 [60] Extracted from deuteron quadrupole form factor
(r2) e(n,n) 0 [35] Thermal neutron transmission in liquid®Pb

shown in Ref[14], they are in significant disagreement both the acceptancgs1,52, whereas the(n,p)n reaction is ki-
with the recoil polarization data and with each other presumnematically complete but requires calibration at a different
ably because the Rosenbluth technique becomes increasinghyility and under different conditions than used for the re-
difficult as Q? increases and the relative contribution of the action of interest. Unfortunately, these methods remain in
electric form factor to the unpolarized cross section becomesypstantial disagreement; because we are not convinced there
quite small. Nevertheless, we eagerly await new results frons a compelling preference, we include the data from both
a proposed improvement of the Rosenbluth mef#8].  nethods in the present analysis. Finally, we also include re-
The neutron magnetic contribution is large enough at highsent |owQ? data[53] from inclusive electron scattering from

Q? to employ quasielastic electron-deuteron scattering wit g .
subtraction of the proton contribution. Data of this type Wergransversely polarizedHe that uses the Fadeev calculations

obtained from Refs[44,45. At low Q2 the model depen- of Refs.[54,55 to correct for nuclear structure effects. These

dence of the quasielastic method becomes relatively larg&@t@ aré more consistent with the coincidence ratio method
Markowitz et al.[46] measured the quasifree neutron knock_callbrated by elastic scattering than by associated-particle
out cross section for thé(e,e’n) reaction and calibrated the Production. . S _
efficiency of the neutron detector using associated particle We do not use any elastic or quasielastic cross section
production in the deuteron photodisintegration reactiondata forGg, because the uncertainties arising from nuclear
d(y,pn). The dependence upon the deuteron wave functiotructure are prohibitively large. Polarization techniques of-
can be reduced by analyzing the ratio between quasifreter a signal that is linear iGg, and with less model depen-
cross sections for neutron or proton knockout, indicated agence. Nevetheless, at [a@? it remains important to correct
the d(e,e’N) reaction in Table I, with relatively small cor- recoil polarization data for final-state interactions and target
rections made for meson-exchange currents and final-stag®larization for nuclear structure. Most of the data for deu-
interactions(FSI). Bruinset al. [47] calibrated their neutron terium targets have been analyzed using the calculations of
detector using the(y,7*n) reaction while Refs[48—-5(0  Arenhovel et al. [56,57] to correct for nuclear structure; in
employed elastic neutron-proton scattering. The associatedable | we cite both the experimental paper and the subse-
particle techniques permit calibratiam situ but must correct quent analysis. The result from the first experiment of this
the bremsstrahlung measurements for the contributions dfpe [58] has not been corrected, but the statistical uncer-
three-body reactions from electroproduction that lie outsiddainty was large. The Q?=0.4 (GeVk)? data for
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3He(6,e'n) have been analyzed using Fadeev calculationd€xandrov[71] argues that the energy-independent reso-
[55] but Roheet al. [59] argue that the plane-wave impulse nance correction should be fitted to the data and that in the
approximation(PWIA) is adequate at large@?. We also absence of definitive information a negative contribution
include values foGg, extracted by Schiavilla and Si¢0] cfannot be echuEISed. Futhermore, neutrpn diffraction from
from an analysis of the deutron quadrupole form factor ob-Single crystals of "W provides a larger signal than the en-
tained from tensor polarization measurements of elastic scaf'9y dependence of the total cross section, and is hence is
tering [61—64. Although the model uncertainties remain less sensitive to this correction. Although this controversy
somewhat large, this analysis covers a larger rangg?aind has not yet been resolved satlsfactorlly,_we decided to em-
appears to be more accurate than the older analysis of deEil-Oy the most recir;t result from Oak Ridge, naméf§),
teron elastic scattering by Platchkat al. [65], which is ~— —0-115:0.003 fn7, as a datum in our fit of the neutron
omitted. charge densny an_d to omit .the Dubna result. The sensitivity
Finally, the neutron mean-square charge radius is relatetf this choice is discussed in Sec. IV C 4.
to the neutron-electron scattering lengbh., by

5 IV. RESULTS

3
2 = ——
(ro)n am.c Dhe- (36) A. Form factors

Fits to the form factor data are shown in Fig. 2 as bands
Unfortunately, the measurements are rather difficult and moghat represent the uncertainties in the fitted form factors.
techniques require substantial corrections for effects fofhese bands were computed using the covariance matrix.
which there is often insufficient information. A recent review The fits shown in Fig. 2 employ the LGE parametrization
of these measurements has been made by Alexari@&ly  with A=\, =2, but the results using the FBE parametriza-
who finds that most modern measurements cluster arountibn are practically indistinguishable. Nor do these fits de-
two values. From measurements of the energy dependengend upon the choices fdr, R4, Or details of the con-
for the transmission of thermal neutrons through liquidstraints. Fits using\<2 are almost identical within the
208ph, Kopeckyet al. [35] obtainedb,.=(—1.33+0.027 ranges spanned by experimental data, but their error bands
+0.03)x10 3 fm, corresponding to (r?),=—0.115 grow more rapidly at largeQ?. The rapidly decreasing di-
+0.003 fnf. This result agrees well with similar measure- pole form factor is divided out to emphasize the deviations at
ments by Koesteet al.[67] for lead isotopes and®®Bi and  large Q? from this characteristic behavior. F&g,, we also
with the results of Krohn and Ring[®8] using the angular display a simple two-parameter fit using the Galster param-
distribution for neutron scattering by noble gases. Alterna-<trization.
tively, Alexandrovet al. [69] obtainedb,.=(— 1.60+0.05) The intrinsic form factors, obtained via the relativistic
%10 % fm, corresponding to(r?),=—0.138+0.004 fnt, transformation prescribed by E¢l4), are shown in Fig. 3
using neutron diffraction from single crystals 8. This  using \g=\y=2. From these figures we observe that for
result is consistent with a bismuth transmission experimentoderatek? three of the four intrinsic form factors resemble
that was also performed at Dubna, but disagrees by abosimple Gaussians, while the intrinsic neutron charge form
five standard deviations from the Garching, Argonne, andactor requires an additional factor kf in first approxima-
Oak Ridge experiments. This discrepancy has been attributatbn. Consequently, only a few terms of the Laguerre-
to resonance correctiorf¥0,71] but remains controversial. Gaussian expansion are needed to obtain good fits, with
The extracted scattering length is strongly correlated with thénigher-order terms used primarily for the estimation of the
resonance correction. Leeb and TeichtmeifZét argue that incompleteness error. Although it is possible to obtain fairly
the correction employed by Alexandret al. [69] requires  good fits using just two terms fdBg,, 4 for Gg,, or 6 for
implausibly large contributions from negative energy levels.Gy, andGy,, in order to minimize model dependence and
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FIG. 3. Fourier transforms of
the nucleon charge and magneti-
zation densities are shown as error
bands. The LGE parametrization
was used withhge=\\,=2. The
dashed lines show the upper limits
used for estimation of incomplete-
ness errors. The vertical lines di-
vide the regimes of spacelike and
timelike Q?, where the timelike
threshold, Q?<—4m?, is ap-
proached in the limik?—c. Note
that electron scattering is limited
to the spacelike regime, wherein
Q%= is represented byk
—2m.

p(k)?

p(k)?

e
k2 k> [(GeV/c)?]

to evaluate incompleteness errors we employed 20 terms fdhe fitted proton intrinsic charge form factor suggests a node
each of the four form factors. between the present experimental linkit,,,=6.5 fm™ 1, and
The widths of the form factor bands are governed by theultimate limit, k,,=9.5 fm%. Consequently, this model sug-
quality of the experimental data in the rangeskéfwhere  gests a zero crossing g, nearQ®~ 10 (GeVk)?. Figure
data are available and for largkt by the asymptotic enve- 4 compares the form factor ratjeG /G,, deduced from the
lopes indicated by dashed curves. Note that the uncertaintidited form factors with experimental data using recoil polar-
in the fitted form factors fokk>k,.x are reduced by the ization for the proton or using either recoil or target polar-
factor of 1/3 used in Eq31) to transform from a uniform to ization for the neutron. For the proton we also show the
a normal distribution and by the effect of constraints uponlinear parametrization proposed by Jomsal. [14] for Q2
densities at large radii. Although the intrinsic form factors >0.3 (GeVk)?, while for the neutron we show a new fit
fitted to data forGg,, Gyp, and Gy, appear to decrease using the Galster parametrization, E(), that gaveA
more rapidly than thé&™* envelopes, we prefer to employ =0.90+0.02 andB=3.8+0.5. The data for the proton do
these more generous uncertainties rather than to impose thet distinguish between linear and LGE parametrizations,
steeper declines suggested by extrapolation from the me&ut according to pQCD one would expe8t,/Gy, to ap-
sured into the unmeasurable regigvherek>k,,). The use
of steeper envelopes would simply reduce the uncertainties
in the extracted densities without affecting their central val-
ues. Thereforek * envelopes were matched to fitted form
factors atky,,=6.5, 9.0, and 8.2 fm* for Gg,, Gy, and
G based upon the experimen@@l,,, for each form factor.
However, uncritical application of the same procedure to
Gg, would suppress the high-frequency components of its
intrinsic form factor too strongly becaus®,,, for Gg, is

presently too small to expepi(k) to decrease more rapidly
thank . Figure 2 shows that the data presently available for

Gg, are compatible with the Galster parametrization, but the . 04F
procedure used for the other form factors would cause o E
Gen/Gp to decrease fairly rapidly beyond the range of these \5 03¢
data. On the other hand, it is reasonable to ex@egl/ Gp to O o2f
decrease fof)? beyond a few (GeW)?, as observed in the 3 ‘
other form factors. Therefore, in order to permit the positive 0.1
slope forGg,/Gp to continue over a limited but larger range 0.0 : : : ;

of Q?, we used the same valuelof,, for bothGg, andGg, ) CeV /e )2
even though the&sg, data are limited tk<5.4 fm 1. We q [(GeV/e)?]
believe that this compromise provides a more reliable ex- g 4. comparison between data f6 /Gy, obtained from
trapolation to higheiQ® and that the increased estimate of pojarization measurements with fits made to the entire data sets
incompleteness error is more realistic, but obviously it iSemployed for nucleon electromagnetic form factors. Results for the
very important to acquire accurate data®, at higherQ?.  LGE parametrizatiolng=\y =2 are shown as bands. Also shown
These fits to intrinsic magnetic form factors do not changeare the linear parametrization proposed 4] for the proton and a
sign within the experimentally accessible regikr;k,,,, but  fit based upon the Galster parametrization for the neutron.

065203-10



NUCLEON CHARGE AND MAGNETIZATION DENSITIES . .. PHYSICAL REVIEW C 66, 065203 (2002

proach a constant for sufficiently largg?. Extrapolation of 30 L ]
the LGE parametrization suggests that the asymptotic ratio o5 Proton Densities ]
will be very small, but data at much largéy® are needed to 7 i A=A=2 ]
establish that level. An extension to 9 (Ge)? has been E 20¢ E
approved 72], but largerQ? remains desirable. Similarly, the 15 E ]
present data foGg,, /Gy, are compatible with the Galster 2 1
parametrization but remain limited to rather sm@f. Con- 2 10 ] E
sequently, the extrapolation to larg®f is rather uncertain. S s F .
If an approved experiment using th#e(e,e’n) reaction b S ]
[73] achieves the proposetl 13% statistical uncertainty at 0.0 0.5 1.0 15
Q?%=3.4 (GeVk)?, the error band will be reduced to about r [fm]

the same width and the extrapolation much improved. Nev-
ertheless, there is little reason to expect the asymptotic Iimi{
to be reached earlier for the neutron than for the proton.
Although a review of recent theoretical calculations is be-_
yond the scope of the present work, it is probably worth
mentioning a few which describe the ne@,/Gy, data
relatively well. Among these the earliest is the chiral soliton
model of Holzwarth[20], which predicted the linear de-
screase with respect t@? and a sign change near
10 (GeVk)2. More recently{21], modifications of the vec-
tor meson parameters were made to improve the fits to th
neutron form factors, but the ratiGy,/Gy, is not repro-
duced. Furthermore, because the chiral soliton model us#
Ag=0 and\y =1, Holzwarth found it necessary to artifi-
cially increase the soliton mass in order to obtain reasonabl

FIG. 5. Comparison between charge,() and magnetization
pm) densities for the proton fitted using the LGE parametrization
with A\g=\,,=2. Both densities are normalized tbdr r2p(r)

Neutron densities are shown in Fig. 6. We find that the
magnetization density for the neutron is very similar to that
for the proton, although the interior precision is not as good
because the range @? is smaller and the experimental

ncertainties larger. Limitations in the range and quality of
the Gg, data presently available result in a substantially
ider error band for the neutron charge density. Data at
gherQ? are needed to improve the interior precision, but a

seful measurement of the interior charge density is obtained
nonetheless. The positive interior density is balanced by a

fits at largeQ?. Alternatively, Lu et al. [74,75 obtained a . N

00d fit to theGe,/Gyy, data forQ2=3 (GeVic)? by ad- negative surface lobe. Note that polarization measurements
goof Ep. ~Mp - y . are sensitive to the sign of the density.
justing the bag radius in the cloudy bag model, but the ratio . . . . e
appears to level off well above the more recent data for Whereas Figs. 5 and 6 emphasize the interior densities, it
higher Q2. Note that this model usese=A,,=1. The co is also of interest to compare these densities in the surface

. E_ M_ . = . - . _

variant calculation of Boffiet al. [76] using the point-form and tail regions. Figures 7 and 8 use a factor’ofo empha

spectator approximation provides reasonably accurate pres_lze these surface and tail densities. Although the densities

dictions of the form factors foR?<5 (GeVic)?, although are small, the reduced slopes seen between 1 and 1.5 fm in

there remains a significant discrepancy @y, near the end the neutron magnetization and in both the charge and the
of this range. The light-front calculations of Cardarellii and magnetization densities for the proton are seen as significant

) . i - peaks inr2p. Virtually identical features also emerge using
dSilg:jlgﬁ([qu dgffngoagfa?_"f?g] :I);%hg;)?g dﬁzg twe?li:fllge%g ONChe FBE parametrization. These features are independént of

dependence oBe,/Gy, fairly well for the LGE orR,,, for the FBE parametrization over wide

Neutron Densities ]
A=A =2

B. Densities

Proton charge and magnetization densities are compared R
in Fig. 5. Both densities are measured very precisely, with £
uncertainties at the origin better than 6% for magnetization -
or 8% for charge. Incompleteness dominates in the interior
region while statistical errors become comparable in the sur-
face region. As shown by the variation Gfz,/Gy,, in the : :
top panel of Fig. 4, the new recoil-polarization data &,
decrease more rapidly than either the dipole form factor or
the magnetic form factor forQ?>>1 (GeV/c)?. Conse-
quently, we find that the charge density is significantly softer
than the magnetization density of the proton. The densities
obtained using LGE or FBE parametrizations are practically
indistinguishable and are independent of the choicé of
Rmax over wide ranges. These densities are similar to the ' p [fmj
Gaussian densities one might expect from a quark model and
are more realistic than the exponential density that results FIG. 6. Charge f.,) and magnetizationg(,) densities for the
from naive nonrelativistic inversion of the dipole form factor. neutron fitted using the LGE parametrization with=\,,=2.

1.5
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2 P T Therefore, the secondaryp peaks in the 1-1.5 fm re-
I Proton Densities | gion appear to be essential features of the data rather than
A=A,=2 ] artifacts of analyses based upon linear expansions. While it is
1 not possible to determine the physical mechanism for such
—Pg, ] features from data analysis alone, there is at least one simple
] candidate. The tensor interaction between quarks is expected
m 1 to produce a smalD-state component peaking at larger ra-
et f ks ] dius than the dominart-state configuration, and the super-
T position of these components could yield a secondary peak at
00 05 10 15 20 25 30 relatively large radius.
ro [fm]

[fm™]

r‘p
ke

. o C. Fitted moments
FIG. 7. Comparison between proton charge and magnetization

densities using a factor af? to emphasize the surface and tal Moments andy? for each fit are listed in Table Il. The
regions. The fits used the LGE parametrization With=\,,=2. expansion coefficients require too much space to list but are
available by request; also note that accurate reproduction of
ranges. Many attempts were made to suppress structures time error bands would require full covariance matrices. Here
r2p in the 1-1.5 fm region by limiting the number terms in we quotey?/N, whereN is the number of data points, be-
the expansions or by application of stricter tail biases, but altause counting the number of degrees of freedom is not so
modifications which did produce smoothép curves in this  clear when both higtk- and larger constraints are applied.
region damaged the fits to the form factor data ®f  For each form factor we find that the six fits obtained for
=1 (GEV/C)Z. Although it is difficult to prove that smoother three possib|e choices of used in either LGE or FBE pa-
fits do not exist, especially if one is willing to tolerate a rametrizations are essentially identical and give the same val-
moderate increase ig®, we were unable to produce accept- yes of y2/N. The normalization foiGe,, is consistent with
able fits without some structure irfp in this region. On ity within the 0.5% systematic uncertainty claimed by Si-
other hand, because local errors in momentum space c3fgn et al. [39] for their data at lowQ?. For theGy,, at low
mtroduce_artlflqa! oscillations at large r_adu, we did apply an Q? we employed the results of Hter et al. [24] who ad-
exponential tail bias for>2 fm where little structure is ex- justed the relative normalizations of several data sets to a

pected. Thl.JS’ the s_maller oscillations for 1.5 fm are 9€N-  common standard. The normalization produced by the
erally consistent with zero and can be suppressed using the

tail bias with little effect upon the fits. We believe that the 2 PréSent fit is consistent with the systematic uncertainty in
fm matching radius is sufficiently large to have minimal in- that standard. Except fdBy,, data gelected from seve_ral
fluence upon densities for intermediate distances governetf!'c€S appear to be mutually consistent and the quality of
by data withQ? of order several (Ge\t)2. the fitted form fac_tors is very good. AIthough thg |

The relatively small differences betwe@), and Gy, data f_orGN_In have mproved in recent years, significant sys-
seen in Fig. 2 produce the small differences between neutrdigmatic discrepancies remain. Recent data from Refs.
and proton magnetization densities shown in Fig. 8. Th 53,48—_5() with small statistical uncertainties suggest a
peak ofr2p,, is found at a slightly larger radius for the neu- SMall dip near 0.2 and a peak near 1 (GeN/ However,
tron than for the proton because the form factor decreases!e data from Refg.46,47 are inconsistent with the fit and

littte more rapidly with respect t§2. The secondary peaks inflate x*. Nor do the data foBy, reach sufficiently lowQ
in the 1—1.5 fm region are also similar. Again, these com0 strongly constrain the normalization and the data sets are

parisons are independent of the details of the analysis and af@t entirely consistent either; consequently, the present

virtually identical using either LGE or FBE parametrizations. 212!ysis suggests that a 2% normalization error remains. We
decided to retain the data from Refd6,47], despite their

deviation from the fit because we are not entirely convinced
of the transportability of the efficiency calibration from a
] hadron facility to an electron facility.

- N ] The final two columns of Table Il list the Sachs radiés,
7 1 defined by Eq(21) in terms of the initial logarithmic deriva-

€05 D ] tive of the Sachs form factor and the transition radiRs,
: ‘ ] obtained from integral moments of the density fitted for a

00k = = specific\ according to Eq(35). The dependencies of rms
L radii for Gg,, Gyp, and Gy, upon\ are consistent with
Eqg. (22), showing a significant discrete ambiguity arising
from the model dependence of the form factor to density
inversion. By contrast, for each of these form factors all six

FIG. 8. Comparison between neutron and proton magnetizatiofleterminations of are consistent with each other, demon-
densities using a factor af to emphasize the surface region. The Strating that the fitted is a model-independent property of
fits used the LGE parametrization with,=2. the Sachs form factor.

L . L . .
0.0 0.5 1.0 15 2.0
ro [fm]
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TABLE Il. Moments, radii, andy? per point for the four fitted densities.

Quantity Model \ X3IN Mo M, (fm?) R (fm) £ (fm)
Gegp LGE 0 0.67 1.003:0.001 0.7760.019 0.87¢0.011 0.87¢0.011
1 0.69 1.0030.002 0.7120.020 0.84%0.012 0.88%0.012
2 0.71 1.00%0.002 0.64%0.021 0.8040.013 0.88%0.014
Gep FBE 0 0.69 1.0020.001 0.776:0.020 0.88a0.011 0.88@:0.012
1 0.70 1.00%0.002 0.7130.024 0.84%30.014 0.8820.015
2 0.73 1.003%0.002 0.65%0.030 0.806:0.019 0.884-0.020
Gwmp LGE 0 0.71 1.012-0.008 0.72%0.038 0.84%0.023 0.84%0.025
1 0.71 1.0120.008 0.6590.040 0.807%0.024 0.8470.027
2 0.73 1.0130.008 0.59%0.037 0.76%0.024 0.851%0.026
Gwmp FBE 0 0.71 1.012:0.008 0.72%0.038 0.84%0.023 0.84%0.025
1 0.71 1.0120.008 0.66%*0.040 0.80& 0.025 0.84&0.027
2 0.75 1.015:0.009 0.6150.073 0.77&0.046 0.859-0.050
Gwmn LGE 0 2.69 1.0160.025 0.8390.099 0.909 0.055 0.9090.058
1 2.69 1.02%0.028 0.82%0.116 0.8950.064 0.93%+0.067
2 2.71 1.0230.027 0.736:0.107 0.84& 0.063 0.922-0.065
Gwmn FBE 0 2.69 1.01%0.026 0.8430.101 0.916:0.056 0.916:0.059
1 2.70 1.0280.029 0.82%¢0.120 0.89& 0.066 0.9340.069
2 2.75 1.026:0.028 0.7520.123 0.856:0.074 0.936:0.076
Gen LGE 0 0.52 —0.115+0.003
1 0.55 —0.115+0.003
2 0.57 —0.115+0.003
Ggn FBE 0 0.55 —0.115+0.003
1 0.58 —0.115+0.003
2 0.56 —0.114+0.003

1. Proton charge radius Fig. 9 shows only the lowesD? region. Fits made using

The analysis of Simoret al. [39] has been accepted for _diffgr(_ant v_alues of\g or_using the FBE parametrizatipn are
about two decades as the definitive determination of the prdndistinguishable and give values fég, that are consistent
ton charge radius, but more recently there has been renewddthin their quoted uncertainties. Therefqre, we claim that
interest in that quantity now that the finite-size correctionséep="0-88+0.01 fm represents a model-independent prop-
have become the dominant uncertainty in theoretical calcuéfty of the experimental data even if its interpretation as a
lations of the B Lamb shift in hydrogen. For example, charge radius depends upon the choice pf This value is
Melnikov and van Ritbergefi79] argue that the Lamb shift
provides the most accurate measurement of the proton charge 1.01 . , . ,
radius and deduced a value 0.8B8 fm that is somewhat
larger than the 0.8622) fm obtained by Simoret al. Al-

though our definition for the intrinsic charge radius depends 100
upon the choice ok g employed to fit the Sachs form factor, o
the definition generally employed by QED theorists corre- ~, 0.99
sponds to the quantity we labeled &s, that is based upon o
the initial slope ofGEp(QZ) and is independent &fg. Thus, 0.98

it is the fitted value o, that should be compared with the
Lamb shift result.

Our fit using the LGE parametrization is compared with 08 56 ooz o004 oo
the data from Simoet al. in Fig. 9. Also shown is the mono- Q2 [(GeV/c)?]
pole fit made by Simonet al to the data for Q2
<2.3 (GeVk)? that were available at that time. That analy-  FiG. 9. Low Q2 fits to proton charge radius. The solid line
sis gave a smaller valugg,=0.862+0.012 fm, but does shows our LGE fit with\g=0 to the entire data set while
not fit the low Q? data as well as our LGE fit. Our fit em- the dashed line shows the monopole parametrization of Simon
ploys the entire data set described in Sec. Il C even thought al. [39].
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consistent with the rms radius derived by Melnikov and vancluded data from Ref§46,47 that were omitted by Kubon
Ritbergen[79] from the Lamb shift. et al. and that deviate strongly from our LGE fit, but these
Coulomb distortion may also affect the charge radius ob-data appear to have little influence upon the fitted normaliza-
tained by electron scattering. Rosenfelfg®] analyzed this tion and radius. Although the fitted normalization is consis-
effect using a distorted wave Born calculation to correcttent with unity, the 3% uncertainty does have an appreciable
measured electron scattering cross sections for Coulomb digffect upon the uncertainty i8,,,. We choose not to con-
tortion, thereby obtaining effectively plane-wave cross secstrain the normalization in the standard analysis because the
tions. The charge radius was then obtained by fitting thesystematic errors in neutron efficiency have been a big prob-
resulting form factors with low-order polynomials. Although lem for Gy, measurements and there remains significant
the form factor corrections were typically less than 1%, thescatter among recent experiments at IO
value of g, extracted from the adjusted data of Simetral
nevertheless increases by about 0.008—-0.013 fm depending 4. Neutron charge radius
upon the fitting strategy and the degree of the polynomial.
However, that analysis employed a Coulomb potential ob:[
tained from a charge density of the form

The charge radius for the neutron can be expressed in
erms of Dirac and Pauli form factors as

3 2 dF;,(Q?) 3k
p(r):f dk giker Ge(k) _ 37) <r2>n:—6# 2 1 (38)
(2m)° % ¥ oo M
1 am? where the first term is sometimes described as the intrinsic

radius (e.g., Refs[66,81]) while the second term is called
This form not only lacks the Lorentz-contraction factor for the Foldy term and is attributed to a charge separation in-
spatial frequency, but uses a value fqr=—1/2 that is in-  duced by theZitterbewegungmotion of the magnetization
consistent with the higip? behavior of the form factor. The density. We prefer to describe the first term as the Dirac
question of Coulomb distortion of the lo®? form factors  radius because it is derived from the init@f dependence of
merits further investigation, but a consistent relativistic rela-the Dirac form factor and to reserve the term intrinsic radius
tionship between form factor and density must be employedfor Eq. (19), which is based upon a moment of the radial
Nevertheless, the magnitude of that correction appears to fgnction that we identified as the intrinsic charge density.

smaller than the uncertainty in the fitted quantity. However, for the present purposes it will be clearer to refer
to the radius based upon the Sachs form factor as the Sachs
2. Proton magnetization radius radius. The observation that the Foldy term, equal to

—0.126 fnf, is by itself almost equal to the mean-square

With §y,=0.85+0.03 fm the proton magnetization ra- . . .
dius appears to be slightly smaller than its charge radius, a arge _rad|us obtained frofs, has gener_ated considerable
Iscussion. Furthermore, as discussed in Sec. Il C, a sub-

expected from Fig. 5, but the uncertainty is as large as thstantial disagreement remains between the results from

difference because the data at very |Q% are less precise . .

: . Dubna and those from Oak Ridge, Garching, and Argonne.
for G’V'P tzan forﬁEp' A supstant|al part I(')f the ur:]f:ertalnty For example, Alexandroy66] argues that the Foldy term
In &p IS due to the uncertainty in normalization. If we con- should be discarded and that the pionic cloud should make

zte;ﬁ!sr;ti'\e/zl SO ;?eurrgltg{i\:gf g:r?e:?esu;nngtﬁgt;?r??/;licefrgs and jhe mean-square Dirac radius negative. He further claims
y : B that experiments givingp,,.~—1.31 fm are likely to suffer

?%862: OHOOG fm anngp:h0.83St?.Q06er thaF apl)pear from serious experimental or interpretative errors because
0 be much more precise. The constrained fiGig, is close the corresponding mean-square Dirac radius would be posi-

. - . 2
to Fhe result. of Simoret al. shown in F|g..9 atvery Iov@ ' tive. On the other hand, Glozman and Ri$84] calculated
This analysis demonstrates that there is an appreciable d'}hat the pion loop contribution to the Dirac radius is negli-

I_erenget t_)tet\;veer?_ t?ﬁf %rtot?r? c_harget and m?gnetl_zatlol? d?? ible. Using a Foldy-Wouthuysen analysis of the interaction
1es, but 1t aiso highlights the importance of precise absolutey 5 particle with internal structure with an external electro-

normalization at very lowQ®. magnetic field, Bawin and Cod82] demonstrated that the
Foldy term is canceled by a higher-order term arising from
the Dirac form factor, leaving the Sachs radius as the domi-
Our fits to theGy, data give a value foEy,,=0.92 nant coefficient, independent of the dynamics responsible for
+0.07 fm that has substantial uncertainty because the lack efe neutron form factors.
data for very lowQ? permits significant widening of the From a more microscopic point of view, Isgur used a
error band asQ?—0. By contrast, Kubonetal. [50] quark model to argue that the observation of a very small
obtained a value,;,=0.873+0.011 fm that appears to be Dirac radius is a potentially misleading accident and that the
much more precise. However, their continued-fraction parelativistic boost cancels the Foldy term such that the slope
rametrization automatically constrains the normalization abf Gg, does provide the second moment of the intrinsic
Q?=0. If we constrain the normalization by requirifd,  charge distribution[83]. Cardarelli and Simula[84,77
=1, then the LGE analysis gives a value f&;,=0.881 showed that this cancellation depends upon neglect of trans-
+0.018 fm that agrees with Kuboet al. Note that we in- verse momenta and that quark spin-spin interactions that

3. Neutron magnetization radius
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00 02 04 06 08 10 FIG. 11. Selected data f@ ¢, at low Q- are compared with fits
2 2 ased upon the Galster model. The solid curve is the original Gal-
Q [(GeV/c)?] based upon the Galst del. The solid the original Gal

ster fit while the dotted line is a new fit based upon the entire data

FIG. 10. Sensitivity to the Dirac radius: the hatchetbtted set considered in this work. The dashed curve is a fit by Platchkov

bands were obtained from fits to ti@&:, data that includgomit) et al. [65] to elastic scattering by deuterium based upon the Paris

the Oak Ridge datum for the neutron charge radius. potential. The dashed-dotted curve was fitted to a subset of the
Mainz data by Schmied€fi86].

break SW6) symmetry provide a mixed-symmet§/ com- V. DISCUSSION
ponent that enhancé:,, and provides a fairly accurate fit to
the recoil-polarization data for,Gg,/Gyp. Leinweberet
al. [85] argued that chiral perturbation theory provides Several analyses have appeared recently in which the pa-
model-independent constraints on the dependencies o&meters of the Galster model were fitted to selected data for
nucleon magnetic moments and charge radii upon quarkég, at low Q2 and a density extracted using the nonrelativ-
masses that demonstrate that the similiarity between the Sistic inversion formula given by Eq9). Examples of this
chs radius and the Foldy term is purely accidental. type are shown in Figs. 11 and 12. Figure 11 compares fits of
Our fitted mean-square radius for the neutron charge derthis type to recent data using theeg¢’n), d(e,e’n), or
sity is largely determined by and is completely consistentsHg(e, e’n) reactions. The slope of the form factor obtained
with the datum of Refl35] that was included in the analysis. from the Oak Ridge value fds, is shown as a line segment.
This quantity is free of discrete ambiguity becaldg van-  The result obtained by Platchket al.[65] from an analysis
ishes and the analysis procedure enforced that constraint eaf elastic cross sections for electron scattering from deute-
plicitly. Unfortunately, the electron-scattering data are notrium using the Paris potential is shown as the dashed curve
sufficiently precise at very lowQ? to resolve the controversy and lies well below the data obtained from polarization mea-
concerning the sign of the Dirac radius. In the absence of aurements. However, variations 6/60% in Gg,, were found
datum for M,, the fit to the data forGg, gives M,  using different realistic nucleon-nucleon potentials; the result
= —0.187+0.04 fm, which is about one or two standard de-Using the Paris potential is quoted most often, but the
viations larger in absolute magnitude than the Dubna or Oak
Ridge results, respectively, but is much less precise than
either—the error bands o8¢, with or without theM, da- 4k
tum overlap almost completely, even at I@¢. The effect
of the constraint onM, is shown in Fig. 10, where the
shaded band foF ,,, represents the unconstrained fitGg, .
data that has a negative Dirac radius while the cross-hatched <
band with a positive Dirac radius includes tifle, datum and
is consequently narrower &°—0. The rather small differ-
ence between these fits is confined@=<0.2 (GeVk)?,
but becausé;,<0 over most of its measured range the fit
with negative Dirac radius requires a sign change r@ar
~0.14 (GeVt)?. Therefore, the present electron-scattering
data offer very little sensitivity tdl,. Furthermore, because

A. Comparison with nonrelativistic analyses

5 \I T T T
\\ Neutron Density

Galster

[m™]

the nuclear physics corrections needed to ext&gtfor low —0.2r , . , i
Q? are substantial even for polarization methods, it is unclear 0.0 05 1.0 1.5 2.0
whether one can ever expect better accuracy from nuclear r [fm]

p.hyS|cs Fhan atomic thSICS measurementd/of We 09”‘ FIG. 12. Neutron charge densities obtained from nonrelativistic
sider neither the theoretical argument for negative Dirac ragqyrier transform of fits using the Galster model are compared with

FjiUS nor the limited expe.rimental evidence for a sign changgne present resultéand using the relativistic transformation with
in Fy, at low Q2 compelling. Ae=0.
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FIG. 13. The approach to scal-
0o ing is shown by multiplying Sachs
0 form factors byQ*. For Gg, the
original Galster model is shown as
010 08 ' a dashed curve and a new fit as the
0.08 i ; solid curve. The LGE parametri-
< oos ' zation was used withh\g=X\y,
Qu ' 04t =2.
O 0.04
0.02 02 i
0.00 weaft 0.0 . L
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Q* [(Gev/c)?] Q*  [(Gev/c)?]
result using the Argonne V14 potential is closer to the mod- B. Approach to scaling

ern data. The dashed-dotted curve shows a fit by Schmieden 1pg asymptotic behavior of the fitted form factors is illus-

[38_6)] to the datza from Mainzz, e>.<cll{din.g the pgint for trated in Fig. 13 by multiplication by*. The uncertainties
He(e,e’'n) at Q“=0.4 (GeVk)%; this fit gives the highest in the fitted form factors are clearly dominated by experi-
values forGg,. The original Galster model is shown as a mental uncertainties where data are available, while the ex-

solid curve and our fit based upon E@) is shown as a pansion of the error bands for largéf is governed by the
dotted curve and lies between the Paris and Mainz resultsacompleteness errors in the rankgg,<k<k.. The scaling
The fit by Zhuet al. [87] is also close to the dotted curve. pehavior ofGy,, appears fully developed because the data up
Note that our fit uses the entire data set described in Se% anaxz:gl (C;evlt)2 reach a Sufﬁcient|y |arge ratio
[Il C, including the slope at the origin, while the Mainz fit Konax/ky=0.95 to strongly constrain the asymptotic limit. Al-

used a smaller subset. Even though the data employed ko ,gh the fit toG,,, is compatible with pQCD scaling, the
Galsteret al.[5] had much larger uncertainties, their result is uncertainties at larg®? grow much more rapidly because

remarkably close to the present analysis. However, the aere k /k =0.86 is smaller and the data fdk, . /k,

.. . . . max . max
parent agreement of the original Galster parametrization With. 79 are much less precise. Furthermore, because scaling is
more modern data must be judged as fortuitous. not fully developed forGy, unti Q2=20 (GeVk)? we

chhmannet a]. [88,89 argue that the heutron charge should expect that data f@),, at higherQ? will be needed
density reflects differences between the spatial dlstr|but|on.§0 establish its asymptotic limit. The data f@, do not
of constituent quarks induced by the color hyperfine interac- ' Ep

; ; 2 _ 2
tion and that because the same interaction is responsible fﬁrh Ov)lkmsfglg]g_zzza\i/tfrr;;%gj‘x Ieri (Lﬁli\éﬁ;ihti\év:?rr]eex—
theN— A mass splitting thél— A quadrupole form factor is | max m ~ P y 'arg

related in a simple manner @®¢,,. In Ref.[89] they used the trapolation, the present fit suggests a sign change Q@éar

- 2 ; SO
Galster parametrization to fit a selection of tBg, data and th;to G(Ge;/rg G Th;ﬁgfvér;?:gilc glcl)lir(l)zrgg]ad? éi\f/‘égzge“
used nonrelativistic inversion to obtain a density similar to Ep Mp y .

the solid curve in Fig. 12 and it is clearly crucial to extend theg, data to higheQ?.
The nonrelativistic densities obtained from these fits are. V\erl]ialso l')l'i |rr1rportﬁ1nt tfo C:?ﬁqk :hssg (Id?ata l;sblln?han)(()th?ir_
compared in Fig. 12 to the present relativistic LGE result. echnique. he resutts o a proved Rosenbluih expe

Here we chose\g=0 to minimize the differences between me?;grei:sxepriccﬁ?asfgﬁ]ére t00 limited in both rande and
relativisitic and nonrelativistic inversion formulas; however, P En 9

it is important to remember that the Galster form factor isprecision to address the question of scaling. High-precision

inconsistent with the relativistic inversion procedure fgr ~ data forQ?<1.5 (GeVk)? from a recent d§,e'n) experi-
=0. The upper panel, emphasizing the interior density, demMent are expected s0¢@0], and an approved proposal for
onstrates that the naive Fourier transform tends to produce 3He(e,e’n) should extend the range to 3.4 (Gey in a
rather hard core and an unphysical cusp at the origin. Theouple of yeard73]. However, experience with the other
relativistic transformation, by contrast, softens the interiorthree form factors suggests that one must approach
density and eliminates its cusp, providing a much more plau20 (GeVk)? to determine the asymptotic limit.

sible charge density. The lower panel, emphasizing the sur- Quark helicity conservation suggests th@°F,/F,
face lobe, shows that all three nonrelativistic densities havehould approach a constant in the asymptotic limit of large
positive peaks at smaller radii and less surface charge tha@?. The Dirac and Pauli form factors are related to Sachs
our result. form factors by
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FIG. 14. Data forF,/F, are compared with the usug) 2 FIG. 15. Data forF,/F; are compared with the usu® 2

scaling expected from pQCD or witR ! scaling recently pro- scaling expected from pQC.D or wit® ! scaling recently pro- .
posed by several authors. Fitted bands employ the LGE parameti0Sed by several authors. Fitted bands employ the LGE parametri-
zation with\g=\,,=2. The data are shown as squafeel], tri-  Zation WithAg=Ay=2.

angles[37], circles[14,16].
observation to the appearance of a broad maximum in

Ge+ Gy, QF,/F rather than to the onset of tr@ * scaling.
ST (399
C. Quark densities
Gu—Gg Assuming isospin symmetry and neglecting strange
KF2=—1+T 1 (89D quarks, nucleon charge densities can be expressed in a
simple two-flavor quark model as
and their ratio is given by po(r)=2u(r)—3d(r), (413
kF, 1-—g 2 2
—c_ ry=—su(r)+35d(r), 41b
F, g’ (40 pn(r) su(r)+3sd(r) ( )

) ) _whereu(r) is the radial distribution for an up quark in the
whereg=Gg /Gy can be measured directly by either recoil pyoton or a down quark in the neutron whitdr) is the
or target polarization. Recoil-polarization data for this ratio yistripution for a down quark in the proton or an up quark in

are compared in Fig. 14 with bands constructed from thghe npeutron. Thus, the quark densities are obtained from
present fits to Sachs form factors. Gayaital.[16] observed | ,cleon charge densities using

that the proton recoil polarization data appear to reach a pla-

teau in the range QQ22<6 (GeV/c)? when scaled byQ u(r)=pp(r)+2pn(r), (423

instead of the expecte@“. Ralstonet al.[91,92 suggested

that orbital angular momentum in the quark distribution

c:ould1 explain an asymptotic behavior of the foif/F;

«Q~*. Later Miller and FranK 93] argued that substantial . . .

violation of quark helicity conservation should be expectedWhereu(r) andd(r) are normalized to unity according to

for intermediateQ? when Poincarenvariance is imposed "

upon relativistic constituent quark models. f drrq(r)=1 (43)
Recognizing thatg is small compared withr for Q2 0

>6 (GeV/c)? and that the model imposes constraints upon

the Sachs form factors for higQ? that inhibit the growth of ~ but need not be positive everywhere. There is no guarantee

the error band foF,/F,, we can extrapolaté,/F, beyond that these combinations of radial densities obtained from

the present experimental range fg,. This extrapolation, form factor data by relativistic inversion must be positive,

shown in Fig. 15, shows that the data are consistent wittior are the densities derived from positive-definite matrix

quark helicity conservation fof)?=20 (GeVk)?2. There- elemg_nts. Within the quark model one could decompose the

fore, although the present model is consistent with the obseflensities

vation by Gayouet al. that QF,/F, is approximately con- .

stant in the range 2 Q%<6 (GeV/c)?, we attribute that q(r)=q,(r)+9gs(r)—asr) (44)

d(r)=pp(r)+2pn(r), (42b)
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T T T D. Discrete ambiguities

quark density ) o

3 Ag=2 ] Although discrete ambiguities ing and\,, do not affect

g N 1 fitted form factors in the range where data are available, the
] choice of N does affect the growth of the uncertainties in

extrapolated form factors &2 increases beyond the mea-

sured range. For example, Fig. 17 shows form factors fitted

[fm™]

p(n)

using the LGE parametrization withg=0 and\y=1 as
suggested by the relativistic soliton model. Although the

T N EE relative uncertainties become quite large @t beyond the
0.0 10 2.0 3.0 range of the experimental data, the uncertainties in the form

ro [fm] factors actually remain small because, with the exception of
- . Gg,, the form factors are greatly reduced as their experi-

FIG. 16. .Q”ark.dens't'es obtained fr.om. proton and NeUtroN  ental limits are reached. Consequently, the contribution of
charge densities using the LGE parametrization Wil 2. o .

the uncertainties in form factors at lar@¥ upon uncertain-

for each flavorg, into valence ¢) and sea$) contributions ties in radial densities is relatively insensitive to the choice
which would be expected to be positive definite but cannobf . However, the change in fitted density due to a change
be separated using only Sachs form factors. The valence disf A need not be contained within the fitted error band—the

tributions, g, , are normalized to unity while the sea distri- bands do not accommodate discrete ambiguities in the

butions,qs and g5, must have equal normalizations. Thus, model. o _ N _
within this picture the contributions from quarks should be ~ The sensitivity of fitted charge densities to the choice of

positive but antiquarks in the sea could produce region§E is illustrated in Flg 18. These figures were made with the
whereu(r) or d(r) might become negative. LGE parametrization, but very similar results are obtained

The quark densities obtained with LGE densities Xgr ~ With the FBE parametrization. The smoothest results at large
=2 that are displayed in Fig. 16 are determined with relaJadii are obtained with =0, whereas larger values pftend
tively small uncertainties and are predominantly positive, ag0 Pull the density inward and to amplify oscillations at large
expected. We find that the pair of like quarks has a somewhdgdil. This behavior can be understood by interpreting Eq.
broader distribution than that of the unlike quark, being de{14) in terms of the convolution theorem for Fourier trans-
pleted in the interior and enhanced at the surface. In thiforms. Expressing this equation in termskof

model, the neutron charge density arises from incomplete 2\ -\ )

cancellation between charge densities for up and down Ty(k):(l—k—) G k (45)
quarks, resulting in positive core and negative surface kﬁq k2 |’

charges. The broader distribution for like quarks is consistent 1-—

with the repulsive color hyperfine interaction between like Kin

quarks needed to explain thé—A mass difference. This 5

picture is also consistent with the model of a pion cloudone finds thafp(k) for A>0 is obtained from the Lorentz
surrounding a three-quark core, but in that model one mightontracted form factor by deconvolution of a resolution func-
expect to find a slightly negativé(r) near the surface due to tion with mean square radius equal ta/2m?. This resolu-

the antiquark content of the pion. The present data are mation function originates in th&itterbewegungnd is charac-
ginally consistent with a slightly negativa{r) near 1.0 fm, terized by the nucleon Compton wavelength. As discussed in
but more accurate data for the neutron charge density woul8ec. IV B, acceptable fits to the Sachs form factor data for
be needed to reduce the uncertaintyl{n) before drawinga Q?~1 (GeV/c)? usingh =2 seem to require structure in the

definitive conclusion. radial densities in the 1-1.5 fm region. Reducigends to
1.0 [-—o—sosonsm B
08 a 10
o 0.6 a
or 3 09
\.f} 0.4 ~,
O = 08
02 (@) .
ool 0.7 FIG. 17. The bands show fits
0'5 to selected data for nucleon elec-
‘ tromagnetic form factors using the
0.4t o 10 LGE parametrization witthhg=0
of o3k O and \y=1 as suggested by the
~ 13 os soliton model.
w 02 \c
O =
01F © os
— g - 1 0.4 L - L 1
0° 10 10 10' 0 10 10 10
Q% [(Gev/c)?] Q% [(GeV/c)?)
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FIG. 18. Discrete ambiguities
in the charge densities. The value
of Ag increases from 0 to 2 from
left to right. The curves forg
=0 are reproduced, without error
bands, in the middle and right col-
umns for comparison.
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smooth out such structures, but sacrifices the I@gHimit. extracted by the present techniques. It is clear that simple
Therefore, although=2 provides the most natural imple- parametrizations like the dipole model cannot fit the proton
mentation of pQCD scaling, accurate reproduction of theor G,,, data over a wide range 6§2; nor is it likely that the
data using that representation of the intrinsic form factor apGalster parametrization will continue to @, at higherQ?.

pears to require oscillations in the radial density with aThe empirical parametrization proposed by Bodi@d]
wavelength of order 0.7 fm.

Despite this ambiguity in the relationship between form Go(1+a,Q+a,Q%+a;Q%+a,Q% ! (46)
factor and density, the qualitative conclusion thgt) is
broader thard(r) depends only the assumption of isospin fits the data for largeQ? well and is consistent with pQCD,
symmetry and the observation that the neutron charge detut its odd powers of) are incompatible with the interpre-
sity is positive in the interior and negative at its surface. Theation of the form factor as the Fourier transform of a radial
quark distributions derived using==0 shown in Fig. 19 are density and with the moment expansion for sn@fl. Fur-
qualitatively similar to those shown fars=2 in Fig. 16, but thermore, it is not sufficiently flexible to provide realistic
are slightly more diffuse. The choicez=0 is appropriate error bands, especially if the odd powers are eliminated. By
for the soliton model, is consistent with nonrelativistic ex- inclusion of aQ® term, Brashet al. [36] also sacrificed the
pectations for smallQ?, and is favored by the radius ob- pQCD limit in order to improve the quality of the fit for
tained from the Lamb shift. However, it appears to be inconfinite Q2.
sistent with pQCD. Therefore, in the absence of a unique Kubon et al. [50] fit a subset of theG),, data using a
relationship between form factors and densities, it appearsontinued-fraction parametrization of the form
necessary to select the appropriate valug bhsed upon the

intended application. For long-wavelength properties one 5 M
should usexg=0, but for extrapolation to the pQCD limit Gumn(Q%)= T (47)
one should emplojg=\y=2. 1+1b—Q2
2
E. Alternative parametrizations 1+ 1+---

Without a unique relationship between form factor and ] i ) o ] ]
intrinsic density, one may question the value of densitiesarried to fifth order. This parametrization provides a good fit
to the data forQ?<4 (GeV/c)? using five parameters, but

the parameters do not decrease with order and the fit depends
upon fairly delicate cancellations. Adding additional terms to
extend the range of? changes the lower terms. Further-
more, this fit does not conform with the asympto@c *
behavior expected by pQCD unless a fairly complicated con-
straint of the form

2 T
k densit
quar )\E:gna y

[fm™]

 plr)

r b3b5+ bz(b4+ b5):0 (48)
0
Y E Y S— is imposed to eliminate th@ 2 contribution. The constraint
c fm] increases in complexity as additional terms are included. A

comparison between the Kubon parametrization and our
FIG. 19. Quark densities obtained from proton and neutronLGE fit with A, =2 is shown in Fig. 20. The Kubon analysis
charge densities using the LGE parametrization wigh=0. included only the data indicated by filled circles and was
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1.2

VMD +pQCD. That approach was pioneered by Gari and
Krumpelmann [95-98 and recently refined by Lomon
[99,100. Similarly, the classic dispersion-theory analysis of
Hohler et al. [24] has recently been updated by Mergetlal.
[25] to handle better the requirements of unitarity and the
approach to the pQCD limit. These approaches have the ad-
vantage that all four electromagnetic form factors are ana-
lyzed simultaneously, thereby relating their isospin structure
to an underlying model, and can be extended to timelike
momentum transfef26]. By contrast, our approach is lim-
= ited to spacelike momentum transfer and must construct the
10 10 10 10 isospin form factors from four independent fits to individual
Q% [(GeV/c)?] form factors. Both the VMD and dispersion theory ap-
proaches appear to be capable of fitting the data as well as
our linear expansion analysis, although the data have im-
proved considerably since the analysis of R&5]. How-
ever, we omit detailed comparisons here because these mod-
els do not consider radial densities.

FIG. 20. Comparison with th&,,, analysis by Kuboret al.
[50]. The band shows our LGE fit withy, =2 to the entire data set
while the solid line shows the continued-fraction fit by Kulairal.
[50] to a subset of the data. The data includenhitted by Kubon
et al. are indicated by filledopen circles.

: 2
limited to Q?<4 (GeV/c)? while our analysis used all data F. Importance of Ge,, data at higher Q

shown and extended to 10 (Ge¥f. The LGE parametriza- The present data fa@Bg, do not extend high enough @?
tion fits the data well over a broader range and is compatibléo determine the interior charge density as accurately for the
with pQCD, whereas the continued-fraction parametrizatiomeutron as for the proton or to permit reliable extrapolation
behaves badly soon after the range fitted by Kubbal By  to the scaling regime, but new data expected from an ap-
not imposing the pQCD constraint, the extrapolation deterioproved proposa[73] at Jefferson Laboratory should help
rates quite quickly. We believe that the continued-fractionconsiderably. The impact of extending tf@’ range to
method also underestimates the uncertainty in the rms radit&4 (GeVk)? is illustrated in Fig. 21. This analysis was per-
due to the strong correlations among its parameters and ifermed using\g=0, which permits the greatest latitude at
built-in normalization constraint &9?=0. high Q2. The left column shows the form factor and density
A rather different phenomenological parametrization carfitted to published datéshown by open symbolswhile the
be made in the context of the vector meson dominanceniddle and right columns show the effect of pseudodata
model at modesD? matched to pQCD at larg®?, denoted  (shown as filled symbo)sfor two hypothetical scenarios.

0.4

o 03

O
\ 0.2
w

O oa

0.0

FIG. 21. The sensitivity of the neutron charge
density to extension of the experimental range of
Q? is illustrated by comparing a fit to published
data (open circleg with two scenarios that in-
clude pseudodata (filled circley for Q2
=2.4, 3.4 (GeVt)2. The middle column as-
sumes that new data would follow the Galster
parametrization, shown by the solid curve, while
the right column assumes th&g,/Gp would
decrease foQ?>2 (GeV/c)2. Densities for the
Galster model use nonrelativistic inversion. All
fits use the LGE parametrization and relativistic
inversion withAg=0.

¢]

r 1[fm] r 1[fm] r 1[fm]
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The middle scenario assumes that the new data would followlent of details of the parametrization, such as number of
the Galster parametrization while the right scenario assumegrms, radial scale parameters, and tail bias. The fitting pro-
that the new data would fall more rapidly than the dipolecequre usep(k) pseudodata fok>k.., to estimate the in-
form factor for Q?>2 (GeV/c)?. Both scenarios are com- completeness error in radial density due to the limitation of
patible with the uncertamugs extrapola_ted from the fit to theexperimental data for the rande<k,.,<k,. For a given
present data and can be fitted well, with error bandsQfér choice of\, the radial densities fitted with either LGE or

2 - . B - .
=4 (QeV/c) consistent with t_he anticipated experlmen_tal FEBE expansions are practically identical and are insensitive
precision. The reduction of the incompleteness error obtalnefi

by extending the measurements to high@k greatly im- 0 details of the analysis. We find that the proton charge

proves the precision of the interior charge density. If mea_denslty is significantly broader than its magnetization den-

surements at highed? come close to the Galster parametri- sity, .cor_lsistent with the observation in recent .recoil-
zation, then the error band would be reduced in width withPolarization meagurementszthStEp/GMp giecreases In an
little change in its centroid. On the other hand, if new mea-2/most linear fashion for £ Q<6 (GeV/c)”. Our result for
surements o6¢, /G, decrease witl? in a manner similar the pro_ton_Sachs charge radius is con5|_ste_nt with a recent
to the proton charge form factor, the softer charge densitf€termination based upon the&s Lamb shift in hydrogen.
would be reduced in the interior, moving toward the lowerSimilarly, we find the magnetization density is slightly
edge of the present error band. These scenarios have quiéoader for the neutron than for the proton. Each of these
different asymptotic values fa@*Gg,, but the present data three densities exhibits a secondary peakrfp(r) near
cannot distinguish between them. Furthermore, the recerkt—1.5 fm that cannot be suppressed without sacrificing the
VMD +pQCD analysis by Lomon[100] suggests that fit to the corresponding form factor fa@?>1 (GeVic)2.
Gg,/Gp could reach an asymptotic value substantially This structure appears somewhat strongerfer2 than for
higher than predicted by the Galster parametrization. Therex=0, but A=2 provides the clearest extrapolation to the
fore, it is very important to exten@g, data as far as possible pQCD limit.
in Q2. The recent recoil-polarization data fErzzplFlp appear to
favor scaling withQ ! rather than theQ 2 expected from
V1. SUMMARY AND CONCLUSIONS quark helicity conservation in pQCD. Although that observa-
) _ “tion has stimulated some speculation about violations of
We have employed expansions in complete sets of radiajuark helicity conservation due to orbital angular momentum
basis functions to parametrize nucleon Sachs form factors igr imposition of Poincarénvariance, in our analysis with
terms of char_ge and magnetization densities. Our selection QQ‘E:)\MZZ we find that althouglQF,,/F;, appears to be
data emphasizes repen't polarization data. The inversion fror,mea”y constant for 2 Q%<6 (GeV/c)? we nevertheless ob-
form factor to _den3|ty is based upon _relat|V|st|c model_s iNtain a constant asymptotic value f@Zsz/Flp for Q2
which the spatial frequendy=Q/y1+ 7 in the restframe is =20 (GeVk)?2 whereGy, scales withQ™*. Therefore, we
related to the momentum transf@ in the Breit frame by  find that the data are consistent with a broad maximum in
Lorentz contraction. The maximum possible frequencyQsz/,:1p and do not require tru@ ! scaling.
sampled by electron scattering is thém<ky, where ky, We have compared the LGE parametrization @, to
=2m is determined by the nucleon Compton wavelength. Afits based upon the Galster parametrization. Although the
variety of models produce inversion formulas of the form  yange 0fQ? remains too small to discriminate between these
- models, the Galster parametrization cannot be inverted using
p(k)=G(Q*)(1+ ) a relativistic relationship between intrinsic spatial frequency
and Breit-frame momentum transfer unless 1. The tradi-
but differ in the choice oh. By considering the asymptotic tjonal nonrelativistic inversion of the Galster form factor
form of G(Q?), we can limit the exponent to 0,1,2. The produces a charge density with an unphysical cusp at the
relativistic soliton model suggesta =0\ =1}, the origi-  origin while the relativistic fit to the data using the LGE form
nal quark cluster model suggested=\y =1, and a more factor softens the interior density and removes the cusp.
symmetric version of the quark cluster model gives choiceHowever, the incompleteness error in the neutron charge
Ae=Ay=2 that are compatible with pQCD without the density remains fairly large because the availablg, data
somewhat artificial constraints upgi(k,,) needed by the are limited to small Q° and the data for 04Q?
other models. In most of this paper we parametrized the<1.6 (GeVk)? have relatively large uncertainties. More
Sachs form factors using the Laguerre-Gaussian expansi@recise data for 08Q?< 1.5 (GeVk)? are expected soon
(LGE) and derived densities using.=\y =2, but we have and an experiment fo@?<3.4 (GeVk)? is in preparation.
also analyzed the impact of the discrete ambiguity impon  These data should improve the accuracy of the neutron
the radial densities. Although some of the details of the radiatharge density considerably, but data approaching
densities are affected by the discrete ambiguity in the rela20 (GeVk)? will probably be needed to test scaling in the
tivistic inversion formula, their qualitative features are inde-neutron and in the isospin form factors.
pendent of\. Combining the neutron and proton charge densities, we
We find that virtually identical fits to the Sachs form fac- deduced the up and down quark radial distributions assuming
tors are obtained with either LGE or Fourier-Bessel expanisospin symmetry and neglecting heavier quarks. This sche-
sions(FBE) and within a wide range these fits are indepen-matic model suggests that the distribution is slightly broader
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for up quarks than for down quarks in the proton. Wit  ties do provide useful parametrizations of the form factors
=2 we also observe a statistically significant negative dennonetheless. The choicg==\,;=2 automatically satisfies
sity for down quarks near 1 fm that might be attributed to thepQCD scaling and provides a natural means for extrapolating
d content of the pion cloud. form factors to higheQ? for the purpose of planning future

Although we cannot claim that there is a unique relation-€xperiments.
ship between form factors and densities, expansion of densi-
ties in a complete radial bases provides physically appealing ACKNOWLEDGMENTS
parametrizations of form factor data that are applicable over
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