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Multiplicity moments and hard processes in relativistic heavy ion collisions
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The normalized multiplicity moments and their relation with soft and hard processes in relativistic heavy ion
collisions are analyzed in a general two-component model. It is found that the strong fluctuations in the binary
collision numbem, in minimum-bias events can enhance the hard component, especially for the higher order
moments. This enhancement cannot be effectively described by modifying the participant number in the
one-component model.
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I. INTRODUCTION malized multiplicity moments are independent of the con-
crete behavior of elementary nucleon-nucleon collisions, but
The relativistic heavy ion collisions at SPS and RHIC dominated by the normalized participant moments

may be the only way to create the extreme conditions neces-
sary to produce a new state of matter—quark-gluon plasma <Nip>
in the laboratory{1,2]. One can attempt to understand the Ci:Cip:mv (4)
energy density achieved in the collisions by studying the P
multiplicity and transverse energy distributions through hy-
drodynamic model$3]. At SPS energies, the global quanti-

ties, such as average multiplicity, multiplicity distribution, : I
e : _change the normalized multiplicity moments. We extend the
and rapidity distribution, can be well described by soft pro tudy in Ref.[10] to include the hard component. We wil

nly, namel the number of participant nucleon -
cesses only, namely, by the number of participant nucleo ocus on the sensitivity of; to the colliding energy, nuclear

only [4]. However, at RHIC energies, the measured pseUdo_eometr and especially to the aeometry fluctuations
rapidity density normalized per participant pair for central 9 Y, pecially 9 y fluctuations.

Au-Au collisions shows that 70% more particles are pro-
duced than at SP[$,6]. This indicates that the yield of par- Il. MULTIPLICITY MOMENTS
ticles created by hard scattering processes becomes impor-
tant at RHIC[1,7]. One can decompose the multiplicity at a .
fixed impact parameter into a soft component and a har
component a$l,6,8|

provided that the colliding nuclei are not too light.
In this paper we investigate how the hard processes

If the average multiplicity distribution of each soft source

gp(np), and the average multiplicity distribution of each
ard source ig.(n;), the multiplicity distribution of anAB

collision is the supposition of the contributions Nf, soft

n=aN,+bN,, (1) sources andN. hard sources:
whereN, andN, are the participant number and binary col- Np
lision number, respectively. Gn, N (M= 5( n—z ng)
However, the two-component expressidn can be effec- P nd, né“p) =1
tively described by a simple power-law form RO (No
L .
n=cNy, a>1, (2

Ne Np Ne
_ () () (1)

n n ng’). (5
which is then similar to that measured at SP$ A natural jzl ¢ ).Hl 9p(Np )jljl ge(ne). ()
guestion then arises: Can one find other global observables
which are more sensitive to the hard processes than the mut will be seen later that the results in this paper are not
t|p|IC|ty itself, and which cannot be eﬁectively described in concerned with the concrete form gfp(np) and gc(nc)_

the models with only soft processes? _ Taking into account all the processes with differéht and
As is well known, the multiplicity moments are important N the observed multiplicity distribution is

characteristics in multiparticle production. The properties of
the multiplicity distribution can be completely described by

the normalized moments P(n):NEN P(Np,Ne) Gy (), (6)
) p:Ne
(nHy
Ci:w' 1=23,.... 3 wherep(N,,N,) is the distribution function oN, andN.

At fixed impact parametds, the nuclear geometry of soft
In Ref. [10] C; were investigated at SPS energies with aand hard processes is expressed in tern$,0b) andN.(b)
general wounded nucleon model. It was found that the norf11], respectively,
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We introduce now generating functiong10,12]
Np(b):f d’J Ta(s)(1—e NTe(b™9) F(0),f,(0), andf(6) for the whole system and the elemen-
tary soft and hard sources,
+Tg(b—s)(1—e NTa)],

F(0)=2 0"P(m)= 2 p(Np No)Lfo(0)]"eLFe(0)]",
Nc(b):f d?sonTA(S) Te(b—s), (7) " pre
whereay is the nucleon-nucleon inelastic cross section, and fi H)EnE 0"°gp(Np),
p

Ta(s) andTg(b—y9) are the local participant densities in the
plane orthogonal to the collision axis defined as

f(0)=2, 6"g.(n.), —1l<6<1. (13

nC
TA(S)ZJ dzpa(s 2), . - . .
Differentiating Eq.(13) with respect tod and making use of
the relations

Tolb=9= [ dapofb-52) ® F(O o1 = O)] -1 = B)] 1= 1,

SinceN.(b) calculated with Eq(7) is a monotonic function d

of Np(b), the distribution of Ny(b) and N(b), 257 (D] o=1=(n),
P(Ny(b),Nc(b)), is just the distribution oN(b), which can
be obtained from Eq.7) as

J
%fp(e)|9=1:<np>a

P(Ny(b),Nc(b))~ dN,(b)/db 9

14

L . . . a_afc(a)|0:1:<nc>-
Whenb is fixed, the stochastic variablég, andN. in Eq.

(6) still have fluctuations around,(b) andN.(b). For sim-
plicity, we use the Gaussian distribution to describe the sto-
chastic fluctuations,

2
WF(0)|9=1=<n(n—l)),

2
1 2. 2 4
p(Np|Np(b))= —zei[NpiNP(b)] /20p(b), (9_6’2fp( 0)|0zl=<np(np_ 1)>v
V2moy(b)
2
PINAN(0)) = —— e MO, o g e Dloma=(nelne =, o e
mTo
¢ we derive the multiplicity momentén') in terms of the el-

with the variances ementary soft and hard momengs,) and (n;) and the
nuclear geometry momen¢dly),(Nc), and(N,NL),

a?(b)=a,N(b), P
<n>:<Np><np>+<Nc><nc>'

aZ(b)=a.Nc(b), (12)
(n?)=((NZ)=(Np))(np)?+(Np)(np) + ((NZ) = (Nc))(nc)
wherea, anda, are constants. Considering both the geom- 2
etry fluctuations(9) and the stochastic fluctuatio$0), the +(Ne)(ng) +2(NpNc)(np)(nc),
probability of the stochastic variablég, andN, in Eq. (6) is 3 3 ) 3 )
given by (n%) = ((N3) = 3(N2)+ 2(Np) () 3+ B((NZ) — (Np)){np)
p(Np o) X(n2)+(Np)(n3)+ ((N3) = 3(NZ) +2(Nc))(nc)*

+3((N2) = (Ne){(ne)(n) +(Nc)(nd)
= 2 p(NyINp(D)P(N/Nc(b))P(N,(b),Ne(b)),

Np(B)=Nimin +3((N2Ng) = (NoN) (o) A(ne) +3((NpN2)
(12 = (NN X(np) () + 3(NpNe)(ng)(nc)
where we have used the minimum participant num¥gy, +3<Nch><np)<n§>, o (15)
to select eventsN,;;=2 means minimum-bias events and
very largeN,,;, corresponds to central events. with the definitions of the moments,
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. ) TABLE |. The ratio x of the hard to soft component and the
(n'y=2>, n'P(n)/X, P(n), geometry parameted ,,;, determined from the comparison with the
n n data of central Au-Au collisions at RHIC.

(ny=2>, nbg(ny)/ > g(ny), Js (Np) (N) Nopi X
P "p P P "p P ° 0.5(Np)
i i 56 330 2.47 297 0.32
<nc>=; ncg<nc>/n2 a(ne), 130 343 3.24 323 0.58
¢ ¢ 200 344 3.78 326 0.74

(NENLY= > NyNLp(Np, No)/ > p(Np,No). (16)
Np-Ne Np-Ne (Npp)=2(np)+(nc), (21)

With the known multiplicity moments, the normalized . . ; ; -
- i ' .~~~ with the experimental datgb,13] in the central rapidity re-
momentsC;=(n')/(n)' can be expressed as an expansion in" xper 5,13/ pidity

the inverse number of average participant\}, gion|#»|<1 at RHIC and the parametrization of tRé® data

[14],
Ny N |
m+ Ny~ (n)pp=2.5-0.25Ins+0.023 Irfs, (22)
p c

= ‘ + . . : :

! (1+x)! O( (Np>) ' (9 we can determine at different energies the average xatial
the minimum participant numbeM,,;,, which is used to se-

where the average ratio of the hard to soft component lect centrality in calculating geometry moments. Using a
Woods-Saxon distribution
_ (Ne)(n)
X= =~ (18
(Np)(np) Po

pa(r) J d3rpa(r)=A, (23

depends on the elementary nucleon-nucleon dynamics and 1+elmRaf2
the nuclear geometry. If we do not consider peripheral inter- 13 197
actions alone(N,),(N¢)>1, we can then consider only the With the parametera=0.53 fm, Ry=1.1A™*fm for ““'Au,
zeroth order in the expansiofl?). In this case, only the taking oy=37 mb ats=56AGeV (oy=41mb for \'s
average ratio of the hard to soft component remains, thé 130,200A GeV) [8], and choosing the constarits anda,
other dynamics of elementary soft and hard processes hidddh the variances of the Gaussian distributida) to beay,
in (n}) and(n.) with i>2 is washed away by the nuclear =a:=1, the two parameters are shown in Table I. We see
geometry. that at RHIC energiex<1, the soft component is still more
When the hard contribution can be neglected, namely, important than the hard component. In our numerical calcu-

—0, the normalized multiplicity moments are just the nor-ations, when we change the variance parameigranda,
malized participant moments from 0.1 to 1, the ratiok determined using Eq$20)—(22)

remains almost a constant, b\t,;, increases with increas-

(Np) ing a, anda,. Takinga,=a,=0.1, Np,inp is 289, 314, and
Ci:cip:m- 19 316 corresponding to colliding energfs= 56,130, and 200
. GeV. The change Ny, will certainly lead to a consider-
This is the case discussed in REE0] at SPS energies. able change in the momen(s\l'pN{:), especially for the
minimum-bias events, but our numerical calculations show
Ill. NUCLEAR GEOMETRY AND ENERGY DEPENDENCE that the normalized momen@; andC;, are not sensitive to
OF HARD CONTRIBUTION the variance parametesas anda..

The influence of nuclear geometry is twofold: The aver-
Let us first determine the soft and hard componénty ~ age numbergN,) and(N¢) and the fluctuations o, and
and (n.) in elementary nucleon-nucleon collisions. To this Nc around their average values. For central collisions the
end, we compare the average multiplicity with the experi-average numberéN,) and(N.) are huge, but the fluctua-
mental data for central Au-Au collisions. Since we did nottions are small. This can be seen clearly in Table | where
introduce rapidity dependence in our discussion, we consideNp) =330 and 29%N(b)<Ny(b=0). From the Gaussian
only the central rapidity region where the data show a pladistributions (10), when N,(b) and N(b) vary in such a
teau structure. By comparing the average participant numbérarrow region, the stochastic variablg and N, fluctuate

(Np), the average multiplicity per participant pair, only around this small region. For minimum-bias events the
ny average numbers are relatively small, but the fluctuations are
n the maximum.
0.5Np) =2(np)(1+x), (20 The multiplicity (n) is only related to the average values

. (Np) and(N;). When the hard contribution vanishes, the
and the multiplicity forP P, average multiplicity is proportional tON,). The hard con-
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FIG. 1. The centrality dependence of the average multiplicity ) .
normalized to per participant pair and its comparison with the RHIC ~ FIG. 3. The centrality dependence of the geometry fluctuations.

data.
The fluctuations grow up when the minimum participant

tribution reflected in the ratia leads to an extréN.) depen- ~humberNy,;, decreases from its maximum valtg(0). Fig-
dence. The centrality dependence of the average multiplicityire 3 shows the centrality dependence of the fluctuations
per participant pai20) can be calculated by changing the (NpN$)/(Np)'(Nc)!. As the orders andj are not too small,
minimum participant numbeN,;, from 2 toNy(b=0). In  the fluctuations are very strong for minimum-bias events.
Fig. 1 it is compared with the data in the central rapidity In order to see the contribution from the hard processes,
region |p|<1 for the central Au—Au collisions at/s Wwe define the ratio of the normalized moments with and
=130A GeV [15]. The extra geometry dependence inducedwithout consideration of the hard component,
by the hard component is weak. . c

since  (Np)=((Np/(Np))'XNp)' and  (Ng)=((Nc/ f=—t. 26
(N)'"XN¢)', the multiplicity momentgn') for i=2 are as- Cip
sociated with both the average numbekg,) and(N.) and
the fluctuations ilN, andN.. From Eq.(17) the normalized
momentsC; depend on the fluctuations and the average rati
x of the hard to soft component. Figure 2 shows the central
ity and energy dependence xfAt any energy the centrality
dependence is very weak. Therefore, the behavior of the no
malized moment€; is mainly controlled by the fluctuations
in N, andN,. Let us first consider the limit of no fluctua-
tions, N, =(Np),Nc=(N¢). In this limit,

The centrality and energy dependence ofs shown in Fig.
4. While there is no remarkable difference betwégp and
C; in central collisions, the big fluctuations M, andN in
minimume-bias events enhance the hard contribution, and this
F_nhancement becomes more and more important when the
colliding energy increases. Afs=200A GeV, the hard con-
tribution to Cs is larger than 50%.

In order to see the contribution of the fluctuations of the
stochastic variablel, andN aroundN,(b) andN.(b) at a

P(Np) =8N (n )+ (24)  fixed impact parametdy, we recalculated the ratig without
PP considering the Gaussian distributio(i€). From the com-
we have parison shown in Fig. 5, the difference between with and
without stochastic fluctuations lies mainly in minimum-bias
Ci=Cj,=1 (250  events.

To search for nonstatistical fluctuations in the distribu-
In this case there is no difference between the twotions of secondary particles in high energy interactions, the
component and one-component model. Although fluctuationgnethod of factorial moments was introduced by Bialas and
around the average numbers always exist, and it is difficult tpeschanskj16]. The pseudorapidity bidz dependence of
choose events with the same impact parambtenamely,  the factorial moment§; in relativistic heavy ion collisions
with the sameN,(b) and N¢(b), in experiments, for very at SPS can be well described by a lineaf fif]
central collisions with largéN,) and(N¢), N, andN_ fluc-
tuate in a narrow region, the case is then similar to the above InFi=gi+ai(=Indn). (27)
fimit. The rapidity bin independent intersg&tcan be calculated in
1 our global model. When the hard contribution is neglected at

SPS energies, we have to the zeroth order ,
Vs =200 GeV g dﬂg’y
o Bi=inFp,

04 130 GeV (NN 1)+ (No—i + 1))

—”// — o« o —1 +

0.2 56 GeV Fp=—t—" — : (28)
(Np)

0.8

0
100 150 200 250 300 350

(Np?

Table Il shows the comparison between our calculation with
Nmin=10 and the experimental dafa7] for O-Ag/Br. The

FIG. 2. The energy and centrality dependence of the averaggalculation agrees with the data reasonably well. Since we
ratio x of the hard to soft component. did not consider the rapidity dependence of the soft and hard
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FIG. 6. The ratio of the two-component to effective one-
component normalized moment as a function of the centrality.

FIG. 4. The ratio of the two-component to one-component nor-

malized moment as a function of the centrality.

sources in our global model, we cannot distinguish different
rapidity bins, and therefore we cannot calculate the interest-
ing slope parametey; . Its calculation depends on the details

of the distributions ofN, and N, in momentum space.

IV. COMPARISON WITH THE EFFECTIVE MODEL
WITHOUT THE EXPLICIT HARD COMPONENT

component model by modifying the participant nump&j;
Nc—0, Np—Ng, a>1. (29

By comparing the average multiplicity) = (N2)(n%"") with

the RHIC data listed in Table I, we can determine the power
a and the average contribution of each effective soft source
(ne". Corresponding to the colliding energis=56, 130,
200A GeV, we havew=1.04, 1.07, and 1.08, respectively.

The effect of the hard scattering processes on the average In the effective one-component model, the normalized

multiplicity can be effectively described in the

1.6

15} 5

1.4 Vs =200 GeV
rq

13

12} '3

11t

1

one- moments are just the effective participant moments,

@
eff_ <Np
I AR
(Np)'
TABLE Il. The intercept parametes; for O-Ag/Br. The data are

taken from the KLM collaboration &,,,=200A GeV and for the
pseudorapidity intervah »=0.5-5.5.

(30

100 150 200 250 300 350 i 2 3 4 5 6
Np»
’ Data 0.183 0.496 0.902 1.377 1.903
FIG. 5. The centrality dependence fwith (thick lines and Model 0.190 0.501 0.877 1.282 1.691

without (thin lineg stochastic fluctuation&l0).
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when the peripheral interactions are not considered alonél, strongly, the normalized moment;=(n')/(n) have
While the contribution of the hard processes to the averagenly weak(N,) and(N.) dependence, and are mainly asso-
multiplicity through the average binary collision number ciated with the fluctuations ifN, and N.. Therefore, the
(N¢) can be equivalently expressed by increasing the averaggeometry background faZ; is not so complicated as that for
participant number froniNp) to (Np), the fluctuations ilN. ~ (n').
cannot be effectively included in the fluctuations (iNy). We have investigated the normalized mome@tsin the
This can be seen clearly in Fig. 6, which shows the ratio frame of a general two-component model. When the hard
component can be neglected at SPS ener@iesare com-
Ci pletely determined by the geometry fluctuations, the dynam-
i~ ceff 31 ics is totally washed away. When the hard processes become
! important at RHIC energies, the average ratio of the hard to
as a function of the centrality for Au-Au collisions. From the SOft component depends on the centrality weakly, @nere
comparison with Fig. 4R,<r,, the fluctuations i\, are ~ dominated by the fluctuations. For central collisions where
partly included in the fluctuations in the effective participantthe fluctuations are weaki; approach 1, the dynamic infor-
number N®. However, the difference between the two- Mation cannot be seen @;. However, the big fluctuations
componenpt model and the effective one-component model il minimum-bias events allow us to see clearly the difference
still remarkable in minimum-bias events, especially for thePeween the models with and without the hard component.
higher order moments and at high energies. Whlle the average effect of the hard processes can pe
effectively described in the one-component model by modi-
fying the participant number, we have found that the fluctua-
tions in the binary collision number cannot be fully included
The huge average participant numt(eup> and binary in the fluctuations in the effective participant number.
collision number{N;) in relativistic heavy ion collisions
make it difficult to extract dynamic information on hard pro-
cesses from the geometry background. Different from the
multiplicity moments(n'), which depend on both the aver-  This work was supported in part by the NSFC and the
age numbergNp) and(N.) and the fluctuations itN, and ~ Major State Basic Research Development Program.

V. CONCLUSIONS
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