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Self-consistent quasiparticle random phase approximation
for the description of superfluid Fermi systems
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Self-consistent quasiparticle random phase approximation~SCQRPA! is for the first time applied to a more
level pairing case. Various filling situations and values for the coupling constant are considered. Very encour-
aging results in comparison with the exact solution of the model are obtained. The nature of the low-lying
mode in SCQRPA is identified. The strong reduction of the number fluctuation in SCQRPA vs BCS is pointed
out. The transition from superfluidity to the normal fluid case is carefully investigated.
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I. INTRODUCTION

One of the most spectacular quantum phenomena is
transition to the superconducting or superfluid state in in
acting Fermi systems. This happens, e.g., in metals, liq
3He, neutron stars, in finite nuclei, and it is actively search
for in systems of magnetically trapped atomic fermions.
most of these systems the canonical mean field approac
Bardeen, Cooper, and Schrieffer~BCS! with a couple of ad-
justable parameters works astonishingly well. However,
recent years there have been increasing attempts to des
the pairing phenomenon on completely microscopic groun
To our knowledge, these attempts have mostly been car
out for nuclear systems. This stems, on the one hand, f
the fact that phenomenologicalNN forces are on the marke
which very well describe the nucleon-nucleon phase shift
all channels and in a wide range of energies. On the o
hand, the physics of neutron stars makes quantitative pre
tions of the pairing phenomenon in neutron matter indispe
able, since superfluidity of neutron stars manifests itself o
quite indirectly through, e.g., the phenomenon of neut
star glitches. The microscopic approaches to pairing, star
from a bare two-body interaction, are not very numero
The simplest one is based on the BCS theory, using, h
ever, in the gap equation the bare force and for the sin
particle dispersion the one given by the Bru¨ckner theory. In
this way one obtains, e.g., gap values in the1S0 channel for
neutron-neutron pairing which in infinite matter, as a fun
tion of the Fermi momentumkF , have a typical bell-shape
form roughly dropping to zero aroundkF51.3 fm21 and cul-
minating atkF50.8 fm21 to values ofD52.5–3.0 MeV for
neutron and nuclear matter, respectively. This rather elem
tary approach has been extended in the past in various w
The most ambitious procedure is probably the so-called
related basis function approach@1#. However, more recently
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self-consistentT-matrix approaches and extended Bru¨ckner
theories with rearrangement terms have achieved a rem
able degree of sophistication@2#. The screening of the inter
action was treated to lowest order in the density, resum
the random phase approximation~RPA! bubbles, in introduc-
ing self-consistent Landau parameters@3#. The outcome of
all these investigations inevitably leads to a quite substan
reduction of pairing in not only neutron matter, but also
symmetric nuclear matter. The global reduction generally
tains important values and often reaches factors close t
Such small values of the gap in infinite matter, however, p
a problem. Employing the local density approximatio
~LDA ! to estimate from the infinite matter results the gap
finite nuclei @4#, one finds with the simplified approach de
scribed above using the bareNN force, quite reasonable ga
values for finite nuclei. Interestingly, in the gap equatio
quite similar results are obtained with the Gogny D1S fo
@5# using the same procedure. However, with such stron
reduced gaps from the more sophisticated approaches m
tioned above, one obtains much too small gaps in finite
clei. Of course, this reasoning may be completely errone
and the situation in finite nuclei may be very different fro
infinite matter. Nevertheless we find the above argumenta
intriguing. On the other hand, we know that pairing is
extraordinarily subtle process, and employing theories t
are in one or the other way uncontrolled may turn out to
a hazardous enterprise. In such a situation it is probably w
to investigate the problem from different angles using a
riety of approaches.

In the past we have made very positive experience with
extension of RPA theory that we called self-consistent R
~SCRPA! @6–8#. For instance, in a recent work this theo
has been applied to the exactly solvable many-level pair
model in the precritical regime and very good agreem
with the exact results for ground-state energy and the lo
lying part of the spectrum was found@7,8#. This success has
encouraged us to develop the SCRPA, formalism also for
fully developed superfluid regime. This is a not complete
trivial extension of the SCRPA and we here apply it for t
first time to the two-level pairing model. As we will see, th
theory also gives very promising results in the sup
fluid phase. Since the self-consistent quasiparticle R
©2002 The American Physical Society15-1
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~SCQRPA!, as in general SCRPA theory, can be derived fr
a variational principle, which turns out to be very close to
Raleigh-Ritz variational theory, we believe that SCQRPA i
nonperturbative approach going in a certain systematic
beyond the mean field BCS theory, including, in a se
consistent way, correlations and quantum fluctuations.
believe that this microscopic approach can ultimately
used to calculate pairing properties of realistic Fermi syste
starting from the bare force.

It should be mentioned that extensions of the RPA the
based on the equation of motion~EOM! method, have by
now a quite long history. They, to a great deal, have b
developed in nuclear physics. It started out with the work
Hara who included the ground-state correlation in the F
mion occupation numbers@9#. More systematic was the sub
sequent work by Rowe and co-workers~see the review by
Rowe @10#!. The same theory was developed using
Green’s function method by one of the present authors@6#.
Independently, the method was also proposed by Ro¨pke and
co-workers using a graphical construction@11#. These au-
thors named their method cluster-Hartree-Fock and it
equivalent to SCRPA. The latter approach has recently b
further developed by Dukelsky and Schuck in a series
papers@7,8,12–15#. However, also other authors contribute
actively to the subject@16–18#. For instance, in an early
work Karadjovet al. @17# attempted, in a simplified versio
of SCRPA, the so-called renormalized RPA (r -RPA! to cal-
culate collective nuclear states in a more fundamental w
In the same spirit, interesting results have been obtained
metallic clusters by Cataraet al. @18#. A number of remark-
able results have been obtained using SCRPA in nontri
models where comparison with exact solutions was poss
@8,12#. As already mentioned, for the exactly solvable man
level pairing model of Richardson@19#, SCRPA provides
very accurate results for the ground state and the low-ly
part of the spectrum@7,8#.

In detail our paper is organized as follows: in Sec. II t
two-level pairing model is introduced; in Sec. III the SC
QRPA formalism is presented; in Sec. IV numerical resu
are given and detailed discussions are presented. Compa
with other recent works is made in Sec. V; in Sec. VI t
question of the second constraint on the particle number v
ance is invoked and applied to the seniority model. In S
VII, we will summarize the results and draw some conc
sions. Finally, some useful mathematical relations and a
ond method for the calculation of occupation numbers
given in the appendixes.

II. THE MODEL

The two-level pairing model is an exactly solvable mod
extensively employed in nuclear physics to test many-b
approximations. It was first used to test the standard parti
particle RPA (pp-RPA! @20# and its ability to describe
ground-state correlations and vibrations in the normal ph
as well as in the superfluid phase. The model is compose
two levels with equal degeneracy 2V52J11 (J is the spin
of each level! and a single-particle energy splittinge. The
pairing Hamiltonian in this model space is
06431
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j

j N̂ j2gV(
j j 8

Aj
†Aj 8 , j 561, ~1!

wherej takes the value 1 for the upper level and21 for the
lower level. N̂j and Aj

† are the number and monopole pa
operators of the levelj, respectively,

Aj
†5

1

AV
(

m51

V

ajm
† ajm̄

†
~2!

and

N̂j5 (
m51

V

~ajm
† ajm1ajm̄

†
ajm̄!. ~3!

whereajm
† creates a particle in the levelj with spin projection

m andajm̄5(21)J2maj 2m . The operators obey the follow
ing commutations relations:

@Aj ,Aj 8
†

#5d j j 8S 12
N̂j

V
D ,

@N̂j ,Aj 8
†

#5d j j 82Aj
† ,

@N̂j ,Aj 8#52d j j 82Aj ; ~4!

thus, they define an SU~2! algebra for each level and the tw
level model satisfies an SU(2)3SU(2) algebra.

For a system not at half-filling, the normalized states
the Hilbert subspace of the monopole pairs are

un&5
VṼ/2

V!
A~V2Ṽ1n!! ~V2n!!

n! ~Ṽ2n!!
~A1

†!n~A21
† !Ṽ2nu0&,

0<n<Ṽ ~5!

where Ṽ5V leads to the half-filling case, i.e., the lowe
level is filled for g50. The matrix Hamiltonian is tridiago-
nal of dimensionṼ11, with matrix elements

hn,n5^nuHun&

5e~2n2Ṽ!2g~2nṼ22n21ṼV2Ṽ21Ṽ!, ~6!

hn21,n5^n21uHun&

52gAn@V2~n21!#~V2Ṽ1n!~Ṽ2n11!,

~7!

where n is the number of pairs in the upper level and t
number of particle is given byN52Ṽ.

III. SELF-CONSISTENT QRPA

In a recent work@8# the SCRPA has been applied wit
very good success to the picket fence model in the nonsu
fluid phase. The extension to the superfluid phase is slig
5-2
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delicate and we here limit ourselves to the two-level mod
however, considering arbitrary degeneracies and fillings
the levels. The objective in this section is to establish
equations for SCQRPA. A first application of SCQRPA h
been performed in Ref.@14# for the case of the seniority
model~one-level pairing model!. We will later come back to
this model. Here we want to consider the two-level pairi
model with arbitrary filling and coupling strength in the SC
QRPA approach, which already more or less shows the
complexity of more realistic many-level problems. As a fi
step, we have to transform the constrained Hamiltonian

H85H2mN̂, ~8!

whereN̂ is the full particle number operator, to quasipartic
operators

S a jm
†

a jm̄
D 5S uj 2v j

v j uj
D S ajm

†

ajm̄
D , ~9!

S ajm
†

ajm̄
D 5S uj v j

2v j uj
D S a jm

†

a jm̄
D ~10!

with

uj
21v j

251, j 561. ~11!

We define new quasispin operators as

Pj
†5

1

AV
(

m.0
a jm

† a jm̄
† , Pj5~Pj

†!† ~12!

and the quasiparticle number operator in the levelj is given
by

N̂q, j5 (
m.0

~a jm
† a jm1a jm̄

†
a jm̄!. ~13!

The quasiparticle operators obey the following commu
tions relations:

@Pj ,Pj 8
†

#5d j j 8S 12
N̂q, j

V
D ,

@N̂q, j ,Pj 8
†

#5d j j 82Pj
† ,

@N̂q, j ,Pj 8#52d j j 82Pj . ~14!

Then the Hamiltonian in the quasiparticle basis can be w
ten as

H85H008 1H118 1H208 1H228 1H318 1H408 1H112118 , ~15!

where for the sake of self-containedness of the paper we
the coefficients, in spite of the fact that they can be found
the literature@20#:

H008 5h0 , ~16!
06431
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H118 5h1N̂q,11h21N̂q,21 , ~17!

H208 5h2~P1
†1P1!1h22~P21

† 1P21!, ~18!

H228 5h3P1
†P11h23P21

† P211h4~P1
†P211P21

† P1!,
~19!

H318 5h5~P1
†N̂q,11N̂q,1P1!1h25~P21

† N̂q,211N̂q,21P21!
~20!

1h6~P1
†N̂q,211N̂q,21P1!

1h26~P21
† N̂q,11N̂q,1P21!, ~21!

H408 5h7~P1
†P1

†1P1P1!1h27~P21
† P21

† 1P21P21!

1h8~P1
†P21

† 1P21P1!, ~22!

H112118 5h9N̂q,1
2 1h29N̂q,21

2 1h10N̂q,1N̂q,21 ~23!

and

h05~e22m!Vv1
22gV~Vu1

2v1
21v1

4!2~e12m!Vv21
2

2gV~Vu21
2 v21

2 1v21
4 !22gV2u1v1u21v21 ,

h15S e

2
2m D ~u1

22v1
2!1gVS 2u1

2v1
21

v1
4

V D
12gV2u1v1u21v21 ,

h2152S e

2
1m D ~u21

2 2v21
2 !1gVS 2u21

2 v21
2 1

v21
4

V D
12gV2u21v21u1v1 ,

h25AVu1v1~e22m!2gVH u1v1~u1
22v1

2!AV1
2u1v1

3

AV
J

2gVAVu21v21~u1
22v1

2!,

h2252AVu21v21~e12m!2gVH u21v21~u21
2

2v21
2 !AV1

2u21v21
3

AV
J 2gVAVu1v1~u21

2 2v21
2 !,

h352gV~u1
41v1

4!,

h452gV~u1
2u21

2 1v1
2v21

2 !,

h55gAVu1v1~u1
22v1

2!,

h65gAVu21v21~u1
22v1

2!,

h75gVu1
2v1

2 ,

h85gV~u1
2v21

2 1u21
2 v1

2!,
5-3
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h952gVu1
2v1

2 ,

h10522gVu1v1u21v21 , ~24!

and h2n5hn(1↔21) for n53,5,6,7,9. Also, in this basis
the full particle number operator is given by

N̂5(
j

N̂ j , j 561 ~25!

where

N̂j5~uj
22v j

2!N̂q, j12Vv j
212ujv jAV~Pj

†1Pj !. ~26!

The RPA excited states are, as usual, obtained as

un&5Qn
†uRPA&, ~27!

whereuRPA& is the correlated RPA ground-state defined
the vacuum condition

QnuRPA&50. ~28!

In terms of the generators of the HamiltonianN̂q, j , Pj
† , and

Pj , for the most general QRPA excitation operator, wh
can be viewed as a Bogoliubov transformation of ferm
pair operators@35# we can write down the following expres
sion:

Qn
†5 (

j 561
Xj ,nP̄j

†2Yj ,nP̄j , n51,2 ~29!

where we introduced the following notation:

P̄j5
Pj

A12
^N̂q, j&

V

, j 561 ~30!

guaranteeing that the RPA excited state~27! is normalized,
i.e., ^nun8&5^RPAu@Qn ,Qn8

†
#uRPA&5dn,n8 . The RPA am-

plitudesXj ,n and Yj ,n in Eq. ~29! shall obey the following
orthogonality relations:

(
j 561

Xj ,n
2 2Yj ,n

2 51, n51,2,

X21,1X21,21X1,1X1,22Y21,1Y21,22Y1,1Y1,250,

X1,2Y1,11X21,2Y21,12X1,1Y1,22X21,1Y21,250, ~31!

and the closure relations

(
n51,2

Xj ,n
2 2Yj ,n

2 51, j 561,

X21,1X1,11X21,2X1,22Y21,1Y1,12Y21,2Y1,250,

X1,1Y21,11X1,2Y21,22X21,1Y1,12X21,2Y1,250 ~32!
06431
with which one can invert relation~29!

S P̄1

P̄21

P̄1
†

P̄21
†

D 5S X1,1 X1,2 Y1,1 Y1,2

X21,1 X21,2 Y21,1 Y21,2

Y1,1 Y1,2 X1,1 X1,2

Y21,1 Y21,2 X21,1 X21,2

D S Q1

Q2

Q1
†

Q2
†

D .

~33!

In analogy to Baranger@21# and Weigel and Winter@22# we
obtain the SCQRPA equations in minimizing the followin
mean excitation energy:

Vn5
^@Qn ,@H8,Qn

†##&

^@Qn ,Qn
†#&

~34!

with respect to the RPA amplitudesXj ,n andYj ,n . The mini-
mization leads straightforwardly to the following eigenval
problem:

S A1,1 A1,2 B1,1 B1,2

A2,1 A2,2 B2,1 B2,2

2B1,1 2B1,2 2A1,1 2A1,2

2B2,1 2B2,2 2A2,1 2A2,2

D S X1,n

X21,n

Y1,n

Y21,n

D
5VnS X1,n

X21,n

Y1,n

Y21,n

D , ~35!

where

A1,15^@ P̄1 ,@H8,P̄1
†##&, A1,25^†P̄1 ,@H8,P̄21

† #‡&,

A2,15^@ P̄21 ,@H8,P̄1
†##&, A2,25^†P̄21 ,@H8,P̄21

† #‡&,

B1,152^@ P̄1 ,@H8,P̄1##&, B1,252^†P̄1 ,@H8,P̄21#‡&,

B2,152^@ P̄21 ,@H8,P̄1##&,B2,252^†P̄21 ,@H8,P̄21#‡&,
~36!

and ^•••& stands for the expectation values in the RP
vacuum defined by Eq.~28!. Explicitly, the RPA matrix ele-
ments are given by
5-4
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A1,152h11h35 2
2

V

^P1
†P1&

12
^N̂q,1&

V

1

12
2^N̂q,1&

V
1

^N̂q,1
2 &

V2

12
^N̂q,1&

V
6

2
2

V

1

12
^N̂q,1&

V

$h4^P21
† P1&12h7^P1P1&

1h8^P21P1&%14h95 ^P1
†P1&1^P1P1

†&

12
^N̂q,1&

V

1

^N̂q,1&2
^N̂q,1

2 &
V

12
^N̂q,1&

V
6 12h10

^N̂q,21&2
^N̂q,1N̂q,21&

V

12
^N̂q,1&

V

,

A1,25A2,15h4

12
^N̂q,1&1^N̂q,21&

V
1

^N̂q,1N̂q,21&

V2

AS 12
^N̂q,1&

V
D S 12

^N̂q,21&

V
D

14h10

^P1P21
† &

AS 12
^N̂q,1&

V
D S 12

^N̂q,21&

V
D

,

A2,252h211h235 2
2

V

^P21
† P21&

12
^N̂q,21&

V

1

12
2^N̂q,21&

V
1

^N̂q,21
2 &

V2

12
^N̂q,21&

V
6

2
2

V

1

12
^N̂q,21&

V

$h4^P1
†P21&12h27^P21P21&

1h8^P1P21&%14h295 ^P21
† P21&1^P21P21

† &

12
^N̂q,21&

V

06431
1

^N̂q,21&2
^N̂q,21

2 &
V

12
^N̂q,21&

V
6 12h10

^N̂q,1&2
^N̂q,21N̂q,1&

V

12
^N̂q,21&

V

,

B1,152
2

V

1

12
^N̂q,1&

V

$h3^P1P1&1h4^P21P1&

1h8^P21
† P1&%18h9

^P1P1&

12
^N̂q,1&

V

12h75 2
1

V

^P1
†P1&1^P1P1

†&

12
^N̂q,1&

V

1

12
2^N̂q,1&

V
1

^N̂q,1
2 &

V2

12
^N̂q,1&

V
6 ,

B1,25B2,15h8

12
^N̂q,1&1^N̂q,21&

V
1

^N̂q,1N̂q,21&

V2

AS 12
^N̂q,1&

V
D S 12

^N̂q,21&

V
D

14h10

^P21P1&

AS 12
^N̂q,1&

V
D S 12

^N̂q,21&

V
D

,

B2,252
2

V

1

12
^N̂q,21&

V

$h23^P21P21&1h4^P1P21&

1h8^P1
†P21&%18h29

^P21P21&

12
^N̂q,21&

V

12h275 2
1

V

^P21
† P21&1^P21P21

† &

12
^N̂q,21&

V

1

12
2^N̂q,21&

V
1

^N̂q,21
2 &

V2

12
^N̂q,21&

V
6 . ~37!
5-5
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Using Eq.~33! and condition~28!, the expectation values o
type ^Pj

†Pj 8&, ^Pj Pj 8
† &, ^Pj

†Pj 8
† &, and ^Pj Pj 8& are readily

expressed by the RPA amplitudesXj ,n and Yj ,n . For ex-
ample, one obtains

^Pj Pj 8&5^Pj
†Pj 8

† &

5~Xj ,1Yj 8,11Xj ,2Yj 8,2!

3AS 12
^N̂q, j&

V
D S 12

^N̂q, j 8&
V

D , ~38!

and similarly for the other expectation values.
Before we discuss how to express the expectation va

^N̂q, j&, ^N̂q, j
2 &, and ^N̂q, j N̂q, j 8& as functions of the ampli-

tudesXj ,n and Yj ,n , we want to give the equations for th
determination of the Bogoliubov amplitudesuj , v j of Eqs.
~9! and~10!. As usual they are determined from the minim
zation of the ground-state energy@13,23#

]^H8&
]uj

1
]^H8&

]v j

]v j

]uj
[^@H8,P̄j

†#&50, j 561, ~39!

whereH8 is given by Eq.~15!. It is worth noticing that the
second of relation ~39! is equivalent to ^@H8,Qn

†#&
5^@H8,Qn#&50 with n51,2. This relation is very sugges
tive, since, with Eq.~33!, it holds true in the exact case
When Eq.~39! is evaluated with a BCS ground-state th
this leads to the usual BCS equations. However, here we
the correlated RPA ground state and then the mean
equations couple back to the RPA amplitudesXj ,n andYj ,n .
Explicitly these equations lead to

2j jujv j1D j~v j
22uj

2!50, j 561, ~40!

which together with Eq.~11! can be written as

S j j D j

D j 2j j
D S uj

v j
D 5Ej S uj

v j
D , Ej5Aj j

21D j
2 ~41!

with the standard solution

uj
25

1

2 S 11
j j

Aj j
21D j

2D ,

v j
25

1

2 S 12
j j

Aj j
21D j

2D ~42!

from where follows the gap equation

D i5(
j

g̃i j ujv j5
1

2 (
j

g̃i j

D j

Aj j
21D j

2
, i , j 561,

~43!

where the renormalized single-particle energies are
06431
es

se
ld

j j5S j
e

2
2gv j

2D1
g

12
^N̂q, j&

V

~u2 j
2 2v2 j

2 !~^Pj
†P2 j

† &

1^Pj
†P2 j&!2m, j 561 ~44!

and the renormalized interaction is given by

g̃5S g̃1,1 g̃1,21

g̃21,1 g̃21,21
D , ~45!

with

g̃1,15gV2
g

12
^N̂q,1&

V

H 2~^P1
†P1

†&1^P1
†P1&!1^N̂q,1&

2
^N̂q,1

2 &
V

J ,

g̃1,215gV2g

^N̂q,21&2
^N̂q,1N̂q,21&

V

12
^N̂q,1&

V

,

g̃21,15gV2g

^N̂q,1&2
^N̂q,1N̂q,21&

V

12
^N̂q,21&

V

,

g̃21,215gV2
g

12
^N̂q,21&

V

H 2~^P21
† P21

† &1^P21
† P21&!

1^N̂q,21&2
^N̂q,21

2 &
V

J . ~46!

We see that the mean field equations have exactly the s
mathematical structure as in the BCS case, however, w
renormalized vertices and single-particle energies involv
the RPA amplitudes. We, therefore, explicitly see that
mean field equations are coupled to the quantum fluctuati

Let us now come to the elaboration of the quasiparti
occupation numbers and their variances. The determina
of those quantities is one of the difficulties in the SCQR
approach@8,13,23#. However, this problem has found an e
egant solution in the early works of Ref.@24# ~see also Ref.
@25#!. In the same way, we derived expressions of the qu
particle occupation numbers and their variances as exp
sions in the operatorsPj

† and Pj up to any order in a sys
tematic way. The detailed derivation is given in Appendix
We here present a different method that shows some in
5-6
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esting aspects and will lead to the same result. Using
bosonic representation of the quasispin operators of
model, we can write

N̂q, j52Bj
†Bj ,

Pj
†5Bj

†S 12
1

V
Bj

†Bj D 1/2

,

Pj5~Pj
†!†5S 12

1

V
Bj

†Bj D 1/2

Bj , ~47!

where one can show that these operators in this repres
tion always obey the commutation rules of angular mom
tum ~14!. We also can invert this relation, and we obtain

Bj
†5Pj

†S 12
1

V
Bj

†Bj D 21/2

,

Bj5S 12
1

V
Bj

†Bj D 21/2

Pj . ~48!

With Eq. ~48! N̂q, j can be expressed as

N̂q, j52Bj
†Bj 52Pj

†S 12
1

V
Bj

†Bj D 21

Pj

52Pj
†S 12

1

2V
N̂q, j D 21

Pj . ~49!

Therefore, we obtained a recursive relation forN̂q, j , and
using it we can derive an expansion forN̂q, j . By successive
replacement ofN̂q, j in the right-hand side of Eq.~49!, one
finds the following expansion:

N̂q, j52Pj
†S 12

1

V
Pj

†Pj D 21

Pj

52Pj
†Pj1

2

V
Pj

†2(
n50

` S Pj Pj
†

V D n

Pj
2

52Pj
†Pj1

2

V
Pj

†2(
n50

` S VPj
†Pj2N̂q, j1V

V2 D n

Pj
2

52Pj
†Pj1

2

V
Pj

†2(
n50

` S 1

V D n

Pj
21¯

52Pj
†Pj1

2

V21
Pj

†2Pj
21¯. ~50!

It should be noted that the first term in Eq.~50! becomes
already exact forJ51/2 and, including the second term, it
also exact forJ53/2, etc.

For N̂q, j
2 , we can use the Casimir relation,

VPj
†Pj1

N̂q, j
2

4
2

V11

2
N̂q, j50. ~51!
06431
e
ur

ta-
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It is equivalent to use the expansion ofN̂q, j
2 obtained as the

square ofN̂q, j ,

N̂q, j
2 54Pj

†Pj1
4~V11!

~V21!
Pj

†2Pj
21¯. ~52!

In the same way, we use Eq.~50! to obtain an expansion fo
N̂q,1N̂q,21, but it is sufficient to use the term of the first ord
of this expansion, to obtain

N̂q,1N̂q,2154P1
†P1P21

† P211¯ . ~53!

In principle the expansion~50! can be pushed to higher or
der, however, it quickly becomes quite cumbersome and
practice we always will stop at second order. In any case
expansion is finite with maximalJ11/2 terms. It is natural
that such an expansion exists since there is a duality betw
the pair of operatorsBj

† ,Bj⇔Pj
† ,Pj . There is the choice

either to bosonize the problem, then everything is expres
in terms ofBj

† and Bj operators; or else one stays with th
fermion pair operators and everything is expressed in te
of Pj

† andPj . In Ref.@26# the former route was chosen, he
we choose the latter one. One should mention that a trun
tion of the series~50! also entails some violation of the Pau
principle, but one may notice that the series is very fast c
verging and that already the lowest order correctly conta
two limits: J51/2, as already mentioned, andJ→`, since
then Pj

†→Bj
† and the lowest order is also correct see E

~47!. With these remarks in mind we go ahead. By the inv
sion of the QRPA excitation operatorQn

† , the expectation
values of these expressions are immediately given in te
of the RPA amplitudesXj ,n and Yj ,n , as one can see in
Appendix A, where we give some details concerning the c
culation of expectation values of these expressions in
RPA ground state.

Our system of SCQRPA equations is now fully closed a
we can proceed to its solution. First let us, however, sho
come back to the limit of standard QRPA. This we will d
for the symmetric case, i.e.,N52V. This case is obtained in
evaluating all expectation values in all interaction kern
with the BCS ground state or else puttingYj ,n50 and
(nXj ,n

2 51 for j 561. The matrix elements are then

A1,15A2,25gV2
D2

2gV2
1

D2

2gV
,

A1,25A2,152
D2

2gV
,

B1,15B2,252
D2

2gV2
1

D2

2gV
,

B1,25B2,15gV2
D2

2gV
, ~54!

where the gap equation in the BCS theory leads to the s
tion in the symmetric case
5-7
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D5Ag2V22
j2

4
, ~55!

together with

u1
25v21

2 5
1

2 S 11
j

2gV D ,

v1
25u21

2 5
1

2 S 12
j

2gV D ,

m52
g

2
, ~56!

where j is defined asj52eV/(2V21). For the positive
eigenvalues of the RPA matrix, we obtain

V1
QRPA50, ~57a!

V2
QRPA5A4D22

2D2

V
. ~57b!

As usual, the other two eigenvalues are2Vn
QRPA with n

51,2. These results are well known@20,27#. We have re-
peated them here for completeness and stressing the
that in QRPA, because of the spontaneously broken par
number symmetry, one obtains a Goldstone modeV1

QRPA

50. We again would like to stress the point that this is t
case only if we evaluate Eq.~54! with the solutionuj , v j

given by the mean field equations~40! which for (nXj ,n
2

51, Yj ,n50 reduce to the usual BCS equations. We exp
itly showed it here for the symmetric case but the same s
nario holds true for cases away from half-filling.

IV. RESULTS AND DISCUSSION

We first recall that the phase transition point in the BC
theory for the two-level pairing model is produced atgc
5e/(2V21), wheree is the single-particle energy splittin
andV is the pair degeneracy of each level. In the followin
the graphs are plotted, as usual, as a function of the vari
V5gV/2e, and refer to the case with level spinJ511/2,
i.e., V56 and single-particle energye52 ~in arbitrary
units!. This latter value forJ has been chosen for easi
comparison with the results of Ref.@26# which will be given
in Sec. V.

Let us first discuss the case withN512, i.e., the lower
level is filled in the absence of correlations. We call this t
half-filled or symmetric case. In Fig. 1 we show in the upp
panel the excitation energies. Let us consider the well kno
scenario of the standard RPA. Before the phase transitio
the superfluid phase, we work with the unconstrained Ham
tonian. One obtains two eigenvalues with the interpretat
of differences of ground-state energies, differing by two un
in mass 2m656(E0

N622E0
N). They are evidently related to

the chemical potential and inpp-RPA they are given by

Va52m152g1Ag1eAe1g~122V!, ~58a!
06431
int
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V r522m25g1Ag1eAe1g~122V!, ~58b!

where Va and V r correspond to the addition and remov
phonons of thepp-RPA, respectively. In Fig. 1 the case
22m2 is shown and we will discuss the case 2m1 sepa-
rately below in Fig. 8. We see on the graph the usual res
namely, that22m2 drops to zero at the phase transitio
point ~strictly speaking only in the largeV limit !. After the
phase transition point we work with the constrained Ham
tonian ~15! in the BCS quasiparticle representation. T
QRPA eigenvalue~57b! is also shown in Fig. 1. The Gold
stone mode~57a! at zero energy corresponds to a rotation
gauge space whereas the second eigenvalue correspon
the ‘‘b vibration’’ of the nucleus withN particles@28#. This
difference in interpretation is also well borne out in th
SCQRPA in comparison with the exact solution. We see t
in the transition region SCRPA shows a tremendous
provement over RPA and that SCRPA follows the exact va
of 22m2 even far beyond the phase transition point~as
defined by the BCS theory! where no RPA solution exists. I
is also to be noticed that the sharp phase transition see
RPA-QRPA is an artifact of the theory and that in reality t
phase transition is completely washed out due to the fin

FIG. 1. Ground-state energyEgs and excitation energy of the
first 01 stateEexc as a function of the variableV5gV/2e described
in the text and for particle numberN512 ~energies are divided by
2e). The spin of the levels isJ511/2. The results refer to exac
calculations~solid line and double-dot dashed line!, BCS ~dotted
line!, RPA and QRPA~dot-dashed line!, SCQRPA~dashed line!, and
SCRPA~double-dash dotted line!. ~Note that SCRPA and SCQRPA
solutions coexist over a wide range ofV values.!
5-8
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ness of the system. The fact that the ‘‘spherical’’ SCR
solution coexists with the ‘‘deformed’’ SCQRPA solutio
over a wide parameter range representing different ene
states of the system is a quite unique situation. In all ot
model cases where we have investigated the ‘‘spheri
deformed’’ transition the spherical solution ceased to c
verge numerically@29# beyond a certain critical coupling
This, however, is no proof that the spherical solution do
not also exist far in the deformed region representing ph
cal states. It may be that in those works, simply the met
for the numerical solution was not sophisticated enou
This is a point to be investigated in the future. In the sup
fluid ~deformed! region SCQRPA still is superior to QRP
but the improvement is less spectacular. This stems from
fact that the transformation to BCS quasiparticles effectiv
accounts already for some supplementary correlations
QRPA and thus the differences with exact and SCQRPA
lutions become less important than in the nonsuperfluid
gime. A feature that is to be remarked in Fig. 1 is the fact t
SCRPA and SCQRPA do not smoothly match in the tran
tion region, whereas RPA and QRPA have a certain cont
ity at the transition point. However, we see that SCRPA a
SCQRPA describe two physically very distinct states that
not have any contact in the exact case neither and therefo
is not astonishing that SCRPA and SCQRPA do not join. T
mismatch has as a consequence that there also exists a
ture in the ground-state energy as a function of interaction
is seen in the lower panel of Fig. 1. Again SCQRPA resu
improve strongly over BCS ground-state energies in the
formed region.

So far we have omitted the discussion of two items of
case considered in Fig. 1 which are slightly subtle. The fi
is the fact that the QRPA shows two eigenvalues: theb vi-
bration and the Goldstone mode at zero energy~the pair ro-
tation mode!, whereas we have not shown the correspond
low energy mode of SCQRPA. Below we will discuss th
issue. The second point is that we have not shown in Fi
the QRPA values for the ground-state energies. We show
separately in an enlarged scale around the transition poin
Fig. 2. We there see that QRPA overbinds in the transit
region, but that, further to the right of the transition regio
the QRPA values are closer to the exact solution than
ones from SCQRPA. This is a paradoxical result that syst
atically repeats itself for all other configurations we will co
sider below. However, the seemingly ‘‘better agreement’
an artifact of the QRPA which has already been encounte
in others cases@29#. We want to argue as follows: SCQRP
is in itself a well defined theory, resulting from the vari
tional principle~34! for two-body correlation functions. On
also can consider it as a Hartree-Fock-Bogoliubov~HFB!
approach for fermion pairs. The Pauli principle is respec
in an optimal way, since at no point a bosonization of f
mion pair operators is introduced and the Pauli principle
only violated in the truncation of Eq.~50! which is a very
fast converging series. However, any approximation to
full SCQRPA scheme necessarily violates~mildly! the Pauli
principle and consequently simulates more energy gain t
there should be. Since, for the present model case,
SCQRPA ground-state energy is systematically above the
06431
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act one~under binding!, it may happen that, when the Pau
principle constraint is released in going from SCQRPA
QRPA, the corresponding gain in energy is such that, a
dentally, the QRPA ground-state energy practically coincid
with the exact values over a wide range of parameters.
think that this is what happens in this model not only for t
configuration in Fig. 1, but systematically for all types
degeneracies and all fillings. We will not discuss this iss
for the other cases any more in this work. We again sho
mention that we have found such fortuitous coincidences
ready in other works@29#. However, in more realistic case
ones usually finds that the standard RPA strongly overbi
with respect to the exact values~see, e.g., Ref.@30#!.

Let us now discuss situations where either the lower
upper levels are only partially filled. As in the one-level pa
ing case, these configurations always show a nontrivial B
solution, i.e., they are always in the superfluid regime in
pendent ofV. Let us look at Fig. 3 withJ511/2 andN58
that is the lower level partially filled forV50. In the upper
panel the high-lying eigenvalue of the SCQRPA equation
shown against the exact value. We see that there is s
improvement of SCQRPA with respect to QRPA but it is n
spectacular. It is similar to the case of Fig. 1 where, in
superfluid region, the improvement, for reasons already
plained above, is modest. For the ground-state energy t
is quite strong improvement over the BCS theory. The QR
result is not shown, but the situation is the same as alre
explained above. The casesJ511/2, N54, and N514
shown in Figs. 4 and 5 are qualitatively similar.

Let us now come to the low-lying eigenvalue of SCQRP
which in QRPA corresponds to the zero-energy eigenva
~Goldstone or spurious mode!. In Fig. 6 we show the low
lying eigenvalue for the caseJ511/2 andN510. We see
that this eigenvalue follows very precisely the differen
2(m12m2)5E0

N121E0
N2222E0

N of the two chemical po-
tentials 2m15E0

N122E0
N and 2m25E0

N2E0
N22 as obtained

FIG. 2. An enlargement on the ground-state energyEgs as a
function of the variableV5gV/2e described in the text and fo
particle numberN512 ~energies are divided by 2e). The spin of
the levels isJ511/2. The results refer to exact calculations~solid
line!, BCS ~dotted line!, RPA and QRPA ~dot-dashed line!,
SCQRPA~dashed line!, and SCRPA~double-dash dotted line!.
5-9
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from the exact calculation. This identification makes inde
sense: since we are in the symmetry broken phase,
SCQRPA system cannot distinguish betweenN62 states.
For largeN, both 2m1 and 2m2 tend individually to Gold-
stone modes but for finiteN it definitely is reasonable to
define the difference between 2m1 and 2m2 as the low-lying
excitation, and it is this combination that shows up as lo
lying mode in the SCQRPA calculation. This is confirmed
looking at other configurations: in Fig. 7 we show the ca
J511/2, N54 and in fact we find analogous scenarios
all configurations we investigated, besides one: this is
symmetric case withJ511/2, N512. In the Fig. 8 we see
that the picture is slightly different from the rest of the cas
This stems from the fact that in the symmetric case we h
a transition from the superfluid to the nonsuperfluid regim
which is absent in the other partially filled cases. We also
that the values for 2m1 and 2m2 are very asymmetric; 2m1

apparently taking the role of the Goldstone mode alone. A
the agreement of the low-lying SCQRPA solutionV1 is
slightly less good than in all other cases.

Let us also add some remarks why in SCQRPA there
contrary to QRPA, no exact Goldstone mode at zero ene
This is relatively easy to understand: in quasiparticle rep
sentation the number operator is given by Eqs.~25! and~26!.
One can check that in QRPA the termsa†a, if they were

FIG. 3. As in Fig. 1 but forN58.
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included, completely decouple of the QRPA equatio
Therefore, in QRPA, it is as if one had used the full partic
number operator and therefore a particular solution of
QRPA equations isQ†[N̂ and with @H,N̂#50 we get the
zero eigenvalue in the EOM approach. This argumentatio
no longer true in SCQRPA where the termsN̂q, j Eq. ~26!, of
the number operator contribute in principle to SCQRP
However, we cannot include them in the RPA operator
cause these are Hermitian pieces leading to non-normaliz
eigenstates. ThereforeQ†5N̂, as a particular solution, only
holds in QRPA but not in other cases such as SCQR
However as a benefit, we see in the preceding figures tha
can identify the finite value ofV1 with a particular rotational
frequency in the gauge space of the exact solution of
problem. The finite energy comes because of the finite p
ticle number in the system. On the other hand, in realis
situation, one can include in the RPA operator terms of
form ak

†ak8 for kÞk8 @14#. Only the Hermitian operators
ak

†ak have to be excluded for the reason already mention
These components correspond in an infinite system to
mentum transfer zero and they are thus of zero meas
Therefore, in an infinite system, we have again full resto
tion of symmetry.

Other quantities that are interesting to be calcula

FIG. 4. As in Fig. 1 but forN54.
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FIG. 5. As in Fig. 1 but forN514.

FIG. 6. Excitation energy of the soft~spurious! mode~energies
are divided by 2e) as a function of the variableV5gV/2e de-
scribed in the text and for particle numberN510. The spin of the
levels isJ511/2. The results refer to exact calculations~solid line,
dotted line, and double-dot dashed line!, QRPA ~dot-dashed line!,
and SCQRPA~dashed line!.
06431
within the SCQRPA formalism are the chemical potenti
directly from differences of ground-state energies. For
ample, in Figs. 9 and 10 we showm656 1

2 (E0
N622E0

N)
where the individual ground-state energies are obtained
rectly from separate SCQRPA calculations. We see foJ
511/2 andN54 and 8 that the agreement between SCQR
results and exact values is excellent, and in any case a st
improvement over BCS theory can be noticed. The sam
true for the chemical potentialm as obtained fromm
5 1

2 (m11m2) in the exact calculation. The latter, which
an average chemical potential, should be identified with
Lagrange multiplierm used for restoring the symmetry of th
good particle number~8! in BCS and SCQRPA. This identi
fication is shown in each upper panel in Figs. 9–11. In F
11 we show the results form andm6 for the symmetric case
J511/2 andN512. We see that again the same remarks
for the asymmetric cases hold true. However, we notice

FIG. 7. As in Fig. 6 but forN54.

FIG. 8. Excitation energy of the soft~spurious! mode~energies
are divided by 2e) as a function of the variableV5gV/2e de-
scribed in the text and for particle numberN512. The spin of the
levels isJ511/2. The results refer to exact calculations~solid line,
dotted line, and double-dot dashed line!, RPA and QRPA~dot-
dashed line!, SCQRPA~dashed line!, and SCRPA~double-dash dot-
ted line!.
5-11
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particular situation that form the exact, BCS, and SCQRP
solutions coincide exactly. This has to do with the spec
symmetries in the half-filled case.

It is also interesting to show the chemical potentials 2m1

and 2m2 in a symmetric way as done in Ref.@31#. This also
gives us the occasion to study the accuracy of our appr
mation~50! and~53! for the occupation numbers. Let us fir
of all say that we have here a quite unusual situation
SCRPA: as already mentioned, the solution in the spher
i.e., nonsuperfluid basis, exists far into the superfluid regi
Usually in other models the solution of SCRPA in the sphe
cal basis can be found up to interaction values slightly
yond the mean field transition point but here very reasona
values for the chemical potentials 2m6 are obtained for all
values ofV as seen in Fig. 12. This was also found in t
work by Passoset al. @31#. It should be mentioned, howeve
that maintaining the spherical basis gives much less g
results for the ground-state energy as seen in Fig. 1. Ind
after the transition point the ground state energy values
viate quite strongly from the exact results. In Fig. 12 w

calculate the expectation values^N̂i& and ^N̂i N̂j& with the
exact RPA ground state@15#

FIG. 9. Comparison between SCQRPA, BCS, and exact res
for the chemical potentialsm5

1
2 (m11m2) and m656

1
2 (E0

N62

2E0
N), for particle numberN54. The spin of the levels isJ

511/2. The results refer to exact calculations~solid line!, SCQRPA
~dashed line!, and BCS~dotted line!.
06431
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uRPA&5(
l 50

V S Y

XD l

~A1
†! l~A21

† !V2 l u2&, ~59!

whereX, Y are the RPA amplitudes, defined with the additi
~P! and removal~R! phonons of the particle-particle RPA an
satisfying the normalization conditionX22Y251. This
gives the broken lines. If we calculate the same values fr
our limited expansion~50! then the dotted lines are obtaine
We see that beyond the transition point the solution beco
extremely sensitive to approximations. Indeed our appro
mated values deviate quite a bit from the ones calcula
with the full wave functionuRPA&.

The occupation numbers are particularly sensitive to
correct treatment of correlations are. For example, for
particle number in the upper level we obtain

^N̂1&5~u1
22v1

2!^N̂q,1&12Vv1
2 ~60!

and the result is shown in Fig. 13 for the superfluid a
nonsuperfluid regimes. Once again we see that the cha
around the phase transition is not continuous. Still w
SCQRPA one notices a tremendous improvement over s
dard QRPA for which the amplitudes diverge at the critic
point. Indeed it is just in such quantities as occupation nu
bers where the full superiority of SCQRPA over its lineariz
version of QRPA is fully borne out. Before finishing th
section, we will explain how we proceeded to make t

lts FIG. 10. As in Fig. 9 but forN58.
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SELF-CONSISTENT QUASIPARTICLE RANDOM PHASE . . . PHYSICAL REVIEW C 66, 064315 ~2002!
QRPA and RPA calculation of̂N̂q,1& in both regions, norma
and superfluid. We use the first order of the bosonic exp
sion of theN̂q,1 , i.e., the first order of the expansion show
in Eq. ~50!, where it is sufficient to putP1

†5B1
† . Thus, with

the commutation rules~14!, we find

^N̂q,1&5
2~Y1,1

2 1Y1,2
2 !

F11
2

V
~Y1,1

2 1Y1,2
2 !G . ~61!

In linearizing this expression, we obtain

^N̂q,1&52~Y1,1
2 1Y1,2

2 !. ~62!

It is interesting to detail this calculation, since it is useful
see analytically the QRPA and RPA results for the parti
number in the upper level close the transition point. It is w
known that the two excitation modes in the RPA meth
converge to zero at the transition point, then the correspo
ing RPA amplitudes tend to infinity, which explains the d
vergence of̂ N̂1&. In the superfluid zone, we mention that w
neglected the RPA amplitudes corresponding to the G
stone ~spurious! mode when we make the calculation

^N̂1&.
A constant concern for superfluidity or superconductiv

in finite systems is that the quasiparticle transformation~9!

FIG. 11. As in Fig. 9 but forN512.
06431
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does not preserve good particle number. Even though
fixes particle number in the mean with the help of
Lagrange multiplier, the contamination of expectation valu
with components that have wrong particle number can
quite important. This is for instance the case for atomic n
clei. That is why, very early, one has thought of how
improve the BCS theory with respect to particle number c
servation. One quite popular approach is to project the B
wave function on good particle number. An approximation
this relatively heavy scheme is the approximate parti
number projection by Lipkin and Nogami@32#. It is therefore
interesting to investigate how much SCQRPA improves
the spread in particle number. We therefore will calculate

FIG. 12. Excitation energies 2m1 ~upper lines! and 2m2 ~ener-
gies are divided by 2e) as a function of the variableV5gV/2e
described in the text and forN512. The spin of the levels isJ
511/2. The full lines correspond to the exact results, the bro
lines to SCRPA with occupation numbers calculated with the w
function ~59!, and dotted lines to SCRPA with occupation numbe

FIG. 13. Particle number in the upper levelN1 as a function of
the variableV5gV/2e described in the text and forN512. The
spin of the levels isJ511/2. The results refer to exact calculation
~solid line!, SCQRPA~dashed line!, SCRPA ~double-dash dotted
line!, and QRPA~dot-dashed line!.
5-13
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~DN!25^N̂2&2^N̂&2 ~63!

with N̂5N̂11N̂21 being the particle number operator an
N̂j given by Eq.~26! within SCQRPA. The terms involving
bilinear forms inPj

† , Pj are as usual directly expressed
the RPA amplitudes and for the quasiparticle occupat
number operators we use Eqs.~50!–~53!. ThenDN can be
calculated and the results for various configurations
shown in Figs. 14–16. We see that the spread in part
number is strongly reduced over BCS values reaching typ
factors 2–3. We, however, see thatDN even in SCQRPA
acquires nonvanishing sizable values. This is an expres
that particle number is not completely restored. We will s
in Sec. VI how one eventually can improve on this. We a
tried to evaluateDN in standard QRPA in applying a lowes
order bosonization of the expression. However, due to
non-normalizable Goldstone mode we ran into troubles w
this procedure and could not reach a definite conclusion
this point.

FIG. 14. Variance as a function of the variableV5gV/2e de-
scribed in the text and for particle numberN510. The spin of the
levels isJ511/2. The results refer to SCQRPA calculations~dashed
line! and BCS~dotted line!.

FIG. 15. As in Fig. 14 butN512.
06431
n

e
le
al

on
e
o

e
h
n

Another interesting aspect that can be studied with
model is the question whether the pairing correlations, w
respect to BCS, have been enhanced or weakened due t
SCQRPA correlations. To this end we define the followi
quantal expression for the correlation function:

C5
1

V (
j 561

S ^Aj
†Aj&2

1

4V2
^N̂j&^N̂j& D . ~64!

This expression reduces to the following expression wh
evaluated with the BCS ground state:

CBCS5 (
j 561

uj
2v j

2 . ~65!

Often Eq.~64! is given in a nondiagonal form@33#, but hav-
ing difficulties to express nondiagonal densities with S
QRPA amplitudes we will not consider the nondiagonal fo
here. We therefore evaluate Eq.~64! in three approximations
we can express Eq.~64! in terms ofPj

† , Pj , andN̂q, j opera-
tors and then take the expectation value with the SCQR
ground state. Equations~33!, ~50!, and~52! then allow us to
expressC in terms of the SCQRPA amplitudesXj ,n , Yj ,n .
We will call this CSCQRPA. We also evaluate Eq.~65! in the
standard BCS approximation which is Eq.~64!. However, we
also calculate Eq.~65! with uj , v j amplitudes from the
renormalized BCS (r -BCS! theory, i.e., from Eq.~42! with
D i solution of Eq.~43!. The results are shown in Figs. 17 an
18 for N512 andN514, respectively~the caseN510 gives
exactly same results asN514). We see thatr-BCS gives less
correlations with respects to BCS. Eventually this suppr
sion of pairing can be put into analogy with gap suppress
in infinite neutron matter from renormalized theories@3# ~see
discussion in the Introduction!. However, the suppression o
pairing correlation inr-BCS is misleading in our model
since, on the contrary, the full SCQRPA gives mostly

FIG. 16. As in Fig. 14 butN514.
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SELF-CONSISTENT QUASIPARTICLE RANDOM PHASE . . . PHYSICAL REVIEW C 66, 064315 ~2002!
enhancement of pair correlations with respect to BCS. I
not obvious whether this conclusion can be taken over to
infinite matter case. It may, however, be indicated that
renormalized gap equations from screening~RPA!-type cor-
relations should be carefully treated consistently with
evaluation of a two-body correlation function before defin
conclusions can be reached.

V. COMPARISON WITH OTHER RECENT WORKS

The two-level pairing model has recently served as a t
ing ground for various generalizations of the BCS theo
The work that comes closest to the present is the one
Sambataro and Dinh Dang@26#. Instead of treating quasipa
ticle pair operators directly as we do here, they boson
them~with a method developed in Ref.@26#! and expand the
Hamiltonian~1! in terms of these bosons up to fourth ord
A Bogoliubov transformation of the boson operators qu

FIG. 17. Correlation functionC as a function of the variableV
5gV/2e described in the text and for particle numberN512. The
spin of the levels isJ511/2.The results refer to SCQRPA~solid
line!, renormalized BCS,~dashed line! and standard BCS~dotted
line!.

FIG. 18. As in Fig. 17 butN514.
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analogous to our Bogoliubov transformation of fermion p
operators~9! is then performed and the corresponding no
linear Hartree-Fock-Bogoliubov equation is written dow
Again these are quite analogous to our SCQRPA equati
The coefficients of quasiparticle transformation are obtain
as usual, by minimizing the ground-state energy@see also our
procedure~39!# with respect to the transformation coeffi
cients. As in our case, equations are obtained which cou
back to the bosonic HFB, i.e., the RPA amplitudes. T
coupled system of equations for fermionic and bosonic tra
formation amplitudes is then solved self-consistently. F
better comparison, we actually, on purpose, have cho
most of the configurations inJ and N the same as in Ref
@26#. Since in Ref.@26# J511/2, which is a rather high de
generacy of the levels, the fermion pair operators are q
collective and a bosonization certainly is a valid procedu
Not unexpectedly, therefore, the results of the present w
are very close to those presented in Ref.@26#. A detailed
comparison shows that our results are systematically clo
to the exact ones by a very small amount. This may be du
the fact that we never bosonize and treat the fermion p
commutation rules exactly but the difference is too small
drawing any definite conclusion. In Ref.@26#, Sambataro and
Dinh Dang show an explicit comparison of results referri
to the symmetric case withJ519/2. We also can make suc
a comparison for the ground-state energy referring to
same configuration. It is given in Table I, where we show
results for four different many-body approaches: our a
proach~SCQRPA!, approach of Sambataro and Dinh Dan
~BF-RPA! @26#, standard QRPA@27#, and the BCS method
@28#. Of course, we recall that in our approach, we use
self-consistent particle-particle RPA in the normal fluid zon
while, in the superfluid region, we use the generalized v
sion of SCRPA that is SCQRPA. In order to accentuate
differences one would have to go to configurations w
much lower degeneracies where the constraints from
Pauli principle become much more severe. For example,
SCRPA approach has been applied to the caseJ51/2 with
N52 in Ref.@8# and the exact result was recovered. It wou
be interesting to see how the approach with the bosoniza
@26# performs in that case. In spite of being very similar,
general, to the work in Ref.@26# we have solved and consid
ered several additional problems that remained open in R
@26#. In the first place, this concerns the low-lying eigenval
of SCQRPA. No interpretation of this important root wa
given in Ref.@26#. We, however, suppose that the results
Ref. @26# for this state~no numerical values have been give!
can be equally interpreted as the difference 2(m12m2) as
in our case. Another quantity that was not considered in R
@26# is the number fluctuation. Again we believe that corr
sponding values would be close to the ones found here. A
the transition to the nonsuperfluid regime has not be
treated in Ref.@26#. However, probably all these aspects w
be quite similar in both approaches as long as the boson
tion of the fermion pair operators is valid. We think, how
ever, that it does not cost much to avoid bosonization a
gether as with the SCQRPA approach.
5-15
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TABLE I. Results for the ground-state energy~in arbitrary units! vs the variableV5gV/2e described in
the text. The spin of the levels isJ519/2 and the number of particles isN520.

V Exact SCQRPA BF-RPA QRPA BCS

20.50 218.55446 218.55410 218.55360 218.56890 218.00000
20.45 218.66849 218.66821 218.66784 218.67924 218.20000
20.40 218.78706 218.78686 218.78660 218.79474 218.40000
20.35 218.91072 218.91058 218.91040 218.91592 218.60000
20.30 219.04010 219.04001 219.03990 219.04338 218.80000
20.25 219.17600 219.17594 219.17588 219.17787 219.00000
20.20 219.31939 219.31936 219.31933 219.32031 219.20000
20.15 219.47153 219.47151 219.47150 219.47188 219.40000
20.10 219.63406 219.63405 219.63405 219.63415 219.60000
20.05 219.80919 219.80919 219.80919 219.80919 219.80000
0.00 220.00000 220.00000 220.00000 220.00000 220.00000
0.05 220.21101 220.21101 220.21101 220.21102 220.20000
0.10 220.44921 220.44918 220.44917 220.44953 220.40000
0.15 220.72625 220.72599 220.72593 220.72899 220.60000
0.20 221.06339 221.06130 221.06100 221.08080 220.80000
0.25 221.50260 221.48733 221.48640 221.64174 221.00000
0.30 222.12491 222.03638 222.03620 222.13484 221.37193
0.35 223.03321 222.80453 222.77899 222.99299 222.21880
0.40 224.24609 223.99588 223.97001 224.21285 223.37895
0.45 225.68929 225.42829 225.39821 225.65779 224.74795
0.50 227.29077 227.01885 226.98390 227.25633 226.26316
s
lt

so
m
io
th

pr
it
n
f
m

s
ad

gh
h

di
r t
t
it
nl
ce
lts

al
b

ob-
en,
n-
do

PA
e
o a

PA
tor.

n
m-
to

.
is

ine
par-
n-
Also in the work by Passoset al. @31# the SCRPA method
was applied to the present model. However, only the non
perfluid formulation, i.e., SCRPA, was studied. The resu
are quite analogous to ours. In addition, in Ref.@31# a further
approximation, half way between RPA and SCRPA, the
calledr-RPA where only the single-particle occupation nu
bers are allowed to be affected by ground-state correlat
has been considered. The astonishing finding there was
the exact occupation numbers are almost perfectly re
duced over the whole range of the coupling constant w
r-RPA but not with SCRPA that undershoots the correlatio
This was interpreted in Ref.@31# as a positive feature o
r-RPA over SCRPA. We cannot follow this conclusion fro
our experience with SCRPA in this and other works@8#. As
we outlined above, any relaxation of the severe constraint
the Pauli principle respected in SCRPA will inevitably le
to more correlations as there should be. It can happen
accident that one relaxes the Pauli principle just by the ri
amount that one falls more or less on the exact values. T
is what happened for the QRPA ground-state energy
cussed above and apparently it is also what happens fo
occupation numbers inr-RPA. However, we think this resul
cannot be generalized and for other models or physical s
ations the scenario may be completely different. The o
really trust worthy theory is the full SCRPA approach, sin
it can be derived from a variational principle. If the resu
are not good, one must improve on SCRPA~i.e., include,
e.g., higher configurations! and not approximate it.

In the work by Hagino and Bertsch@27# the QRPA ap-
proach is advocated. This in the spirit to have a numeric
viable alternative to projected BCS and the method
06431
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Nogami and Lipkin@32#. It is certainly true that in realistic
cases SCRPA is numerically very demanding, though pr
ably not impossible to solve with modern computers. Th
of course, in a first step it is worthwhile to investigate sta
dard QRPA. This is for instance true if one intends to
large scale calculations for a great number of nuclei@27#.
However, one should always remember that standard QR
may have quite important failures, which certainly will b
most prominent in situations where the system is close t
phase transition.

VI. THE QUESTION OF A SECOND CONSTRAINT ON
THE PARTICLE NUMBER VARIANCE

As we have seen above, with respect to BCS the SCQR
reduces the spread in particle number by an important fac
However, the varianceDN is still appreciable and one ca
ask the question whether or not it is possible to further i
prove the theory on this point. A natural idea that comes
mind is that instead of fixing onlŷN̂&5N, one could at the
same time fix̂ N̂N̂&5N2 with a second Lagrange multiplier
Since in SCQRPA the number of variational parameters
largely increased with respect to BCS, one could imag
that there is indeed enough freedom for constraining the
ticle number fluctuation to zero. The Hamiltonian to be co
sidered is therefore

H85H2m1N̂2m2N̂2. ~66!
5-16
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SELF-CONSISTENT QUASIPARTICLE RANDOM PHASE . . . PHYSICAL REVIEW C 66, 064315 ~2002!
Let us immediately give our conclusion: in the two-lev
pairing case we could not find a solution to this problem. T
system of nonlinear equations with the two constraintsm1
andm2 is quite complex and in spite of considerable nume
cal effort we did not succeed in getting converged soluti
We were not able to decide whether the difficulty is pure
numerical or there is a principal problem. In fact we were
first encouraged by results we obtained in the one-level p
ing case~the seniority model!. The outcome of employing
the second constraint was that the one-level model
solved exactly. In spite of being a somewhat trivial mod
that certainly limits the conclusions, it may be interesting
sketch the procedure. The Hamiltonian to be considere
now

H52gVA†A ~67!

in analogy to Eq.~2! A†51/AV(m.0am
† a2m

† , and where we
put the origin of energy at the single-particle level. As in t
two-level case we transform to quasiparticles and with o
one level the SCQRPA equation reduces to a (232) eigen-
value problem, withA and B in analogy to the two-leve
case. Also the generalized mean field equations are in a
ogy to the two-level case.

In addition to the SCQRPA equations we have two furth
equations that, in principle, allow us to find the Lagran
multipliers m1 andm2 ~see, however, below!,

N5^N̂&5~u22v2!^N̂q&12Vv2, ~68a!

N25^N̂2&5~u22v2!2^N̂q
2&18Vu2v2S 12

^N̂q&
V

D ~XY1Y2!

14Vv2~u21Vv2!14v2
„V~u22v2!

2u2
…^N̂q&. ~68b!

We see that Eqs.~68! reduce to the standard expression
once, as in the HFB approximation, we poseY5^N̂q&
5^N̂q

2&50. In the case of the seniority model the numb
equation~68a! in the HFB approximation determines the am
plitudes u,v and then no freedom is left to imposeDN

5A^N̂2&2^N̂&250. However, in the more general approa
of SCQRPA there is more freedom, and one we will be a
to satisfy the relationDN50 as well. ForN̂q and N̂q

2 we
have the same relation as in Eqs.~50! and ~52!. Again the
system of equations is therefore closed.

Usually the number equations~68a! and ~68b! are to be
used for the determination of the chemical potentialm1 and
the second Lagrange multiplierm2 and the mean field equa
tions for the amplitudesu,v andX,Y. In the present case i
is, however, more convenient to invert the role of the me
field and number equations, since Eqs.~68! do not depend on
06431
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the Lagrange multipliers and therefore readily allow us
determinev2 andY2 as a function of the particle numberN.
Inversely the two mean field equations SCQRPA and gen
alized BCS turn out to be linear inm1 and m2 and, for in-
stance, one can deduce that SCQRPA equations directly y

m25
g

4
, ~69!

independent of the particle numberN. Considering, the well
known exact expression for the ground-state energyE0 of the
model @28# we realize fromm25]2E0 /]N2 that this is the
exact value for the second Lagrange multiplierm2. For the
chemical potentialm1 we obtain

m15~g24m2!5 ~V21!v21~122v2!S XY1Y2

1
1

2

^N̂q&2
^N̂q

2&
V

12
^N̂q&

V

D 6 2
g

2
V22m2 , ~70!

with relation ~69! this givesm152g/2(V11) which again
is the exact value. Furthermore, one obtains thatA5B50
and therefore the RPA eigenvalueE50. This means that, a
in standard QRPA, SCQRPA yields a Goldstone mode at z
energy. This feature signifies that the particle number sy
metry is exactly restored.

It is well known that the restoration of good particle num
ber implies in this very simple model case that the mode
solved exactly@28#. We have already seen that one obta
the exact values form1 andm2. One can show that one als
obtains the exact value for the ground-state energy~and
therefore for the whole band of ground-state energies!. This
goes as follows. For the expectation value ofH of Eq. ~67! in
the RPA ground state, using the analogous relations~28! and
~33! for this case and the quasiparticle representation forH,
we can write

E05^H&52
g

2
~V11!$~122v2!^N̂q&12Vv2%

1
g

4
$~122v2!2^N̂q

2&1@4v2~V~122v2!21

1v2!28~12v2!v2~XY1Y2!#^N̂q&

18V~12v2!v2~XY1Y2!

14Vv2~12v21Vv2!%. ~71!
5-17
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RABHI et al. PHYSICAL REVIEW C 66, 064315 ~2002!
In this expression we have used the Casimir relation for
case 4Y2(V2^N̂q&)52(V11)^N̂q&2^N̂q

2& that follows
from Eq. ~51!. Using the expression forN and N2 of Eqs.
~68a! and~68b! once more, we see that the exact express
is recovered. It should be mentioned that because of the
plicity of the model, also the Lipkin-Nogami approach@32#
solves the model exactly.

VII. CONCLUSION

In this work we extended for the first time the se
consistent RPA theory~SCQRPA! to the superfluid case for
model with more than one level. Indeed in Ref.@14#
SCQRPA was already applied to the seniority model but
only allowed one to study rotation in gauge space wher
intrinsic excitations (b vibrations! are absent in the 01 sec-
tor of the seniority model. We have considered the two-le
version of the pairing Hamiltonian with arbitrary degene
cies and fillings of the levels. We mostly considered the c
J511/2 for the upper and lower levels. This configurati
was chosen in order to have a better comparison with
work by Sambataro and Dinh Dang@26#, which in many
aspects is quite analogous to ours. Indeed SCQRPA ca
considered as a Bogoliubov transformation among quasi
ticle pair operatorsa†a† andaa, whereas in Ref.@26# the
quasiparticle pair operators were replaced by ideal bos
a†a†;B†, and then a Bogoliubov transformation amo
these boson operators was applied while the pairing Ha
tonian was also bosonized up to fourth order. For such
lective pairs as are formed inJ511/2 shells, a bosonizatio
seems indeed valid and as expected our results are very
to the ones given in Ref.@26#, even though they are consis
tently slightly better. This could be due to the fact that
SCQRPA one never bosonizes, and rather all constra
from Pauli principle are fully kept. However, we do not wa
to attribute much importance to these differences that o
could become relevant for cases where a bosonization f
On the other hand in our work, considerably more iss
were studied. In the first place, this concerns the phys
interpretation and identification of the low-lying state
SCQRPA. This state corresponds to the Goldstone mod
standard QRPA. However, in SCQRPA for finiteN this state
comes at finite energy and reproduces very precisely the
ference 2(m12m2) of the chemical potentials of the exa
solution. We also evaluated the fluctuationDN of the particle
number and showed that, with respect to the fluctuation
BCS theory, there is a strong improvement. However,
particle number symmetry is still not entirely restored. Al
for other quantities, SCQRPA is always superior to the B
and QRPA approaches as explained in the main text. In
the situation with respect to the particle number symmetr
somewhat particular and not encountered in other case
spontaneously broken symmetries. For example, in the
of rotation the angular momentum operatorLz has no contri-
butions that are Hermitian in the deformed basis, and t
the Goldstone mode also comes in the case of SCRPA@34#.
In order to improve on the restoration of the particle num
symmetry we also investigated the possibility of fixin

^N̂2&5N2 with a second Lagrange multiplier. Whereas in t
06431
is

n
m-

is
s

l
-
e

e

be
r-

ns

il-
l-

se

ts

ly
ls.
s
al

in

if-

in
e

S
ct
is
of
se

n

r

one-level pairing model we could show analytically that th
solves the model exactly, in the two-level model we cou
not find a numerical solution of the system of equations
remained unclear whether this is due to some fundame
problem or just a numerical difficulty.

We also discuss carefully in this work the transition fro
the nonsuperfluid regime to the superfluid one. We, for
stance, pointed out that the transition from SCRPA
SCQRPA is not continuous and in fact in both regimes qu
different physical excitations are described. This also can
seen looking at the ground-state energies as a function o
coupling constant. In the transition region there is no co
tinuous transition between the SCRPA and SCQRPA val
but it is definitively seen that the SCRPA values for t
ground-state energies deviate quite strongly from the ex
values after the phase transition, whereas SCQRPA s
close to them.

In conclusion we can say that we have applied with ve
promising success for the first time SCQRPA to a more le
pairing situation, where, at least for the 01 sector, all the
complexity of a more realistic situation is present. It could
interesting to extend this work to the description of ultr
small superconducting metallic grains for which the man
level picket fence model seems appropriate@8#.
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APPENDIX A: SOME USEFUL MATHEMATICAL
RELATIONS

We will explain how we express the quasiparticle occup
tion number for each levelj as a function of the RPA ampli
tudes. We start with the expectation value of~50! in the RPA
state, we can write

^N̂q, j&.2^Pj
†Pj&1

2

V21
^Pj

†2Pj
2&. ~A1!

Using Eqs.~28! and ~33! we find

^Pj
†2Pj

2&5K j ,11K j ,2^Pj
†Pj&1K j ,3^Pj Pj

†&1K j ,4^Pj
†Pj

†&,
~A2!

where

K j ,15S 11
2

V D $~Xj ,1Yj ,11Xj ,2Yj ,2!
212~Yj ,1

2 1Yj ,2
2 !2%,
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K j ,252
2

V2
$2~Xj ,1Yj ,11Xj ,2Yj ,2!

213~Yj ,1
2 1Yj ,2

2 !2%,

K j ,352
2

V2
$~Xj ,1Yj ,11Xj ,2Yj ,2!

213~Yj ,1
2 1Yj ,2

2 !2%,

K j ,452
6

V2
~Xj ,1Yj ,11Xj ,2Yj ,2!~Yj ,1

2 1Yj ,2
2 !. ~A3!

Expressing the remaining expectation values byXj ,n , Yj ,n
amplitudes, we obtain
ed

g
rs
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^N̂q, j&.2~Yj ,1
2 1Yj ,2

2 !S 12
^N̂q, j&

V
D 1

2

~V21!
K j ,1

1
2

~V21!
$K j ,2~Yj ,1

2 1Yj ,2
2 !1K j ,3~Xj ,1

2 1Xj ,2
2 !

1K j ,4~Xj ,1Yj ,11Xj ,2Yj ,2!%S 12
^N̂q, j&

V
D . ~A4!

Therefore, we can express^N̂q, j& as function of the RPA
amplitudes,
^N̂q, j&.
2~Yj ,1

2 1Yj ,2
2 !1

2

~V21!
$K j ,11V@K j ,2~Yj ,1

2 1Yj ,2
2 !1K j ,3~Xj ,1

2 1Xj ,2
2 !1K j ,4~Xj ,1Yj ,11Xj ,2Yj ,2!#%

11
2

V
~Yj ,1

2 1Yj ,2
2 !1

2

~V21!
$K j ,2~Yj ,1

2 1Yj ,2
2 !1K j ,3~Xj ,1

2 1Xj ,2
2 !1K j ,4~Xj ,1Yj ,11Xj ,2Yj ,2!%

. ~A5!

In the same way, we express^N̂q, j
2 & and ^N̂q,1N̂q,21& as follows:

^N̂q, j
2 &52~V11!^N̂q, j&24V~Yj ,1

2 1Yj ,2
2 !S 12

^N̂q, j&
V

D ~A6!

and

^N̂q,1N̂q,21&.4^P1
†P1P21

† P21&.
4M

12
4

V2
~Y1,1

2 1Y1,2
2 !~Y21,1

2 1Y21,2
2 !

, ~A7!

whereM is a constant depending of the RPA amplitudes, and is given by

M5~Y1,1
2 1Y1,2

2 !~Y21,1
2 1Y21,2

2 !1S 11
2

V D $~Y21,1X1,11Y21,2X1,2!~X21,1Y1,11X21,2Y1,2!1~Y21,1Y1,11Y21,2Y1,2!

3~X21,1X1,11X21,2X1,2!%2
2

V
@~Y21,1X1,11Y21,2X1,2!~X21,1X1,11X21,2X1,2!^P1

†P1
†&1~Y21,1Y1,11Y21,2Y1,2!

3~X21,1Y1,11X21,2Y1,2!^P1P1&1$~Y21,1X1,11Y21,2X1,2!~X21,1Y1,11X21,2Y1,2!1~Y21,1Y1,11Y21,2Y1,2!~X21,1X1,1

1X21,2X1,2!%~2^P1
†P1&1^P1P1

†&!1~Y21,1
2 1Y21,2

2 !~X21,1Y1,11X21,2Y1,2!^P1
†P21

† &1~Y21,1
2 1Y21,2

2 !~Y21,1Y1,1

1Y21,2Y1,2!^P1
†P21&1 1

2 ~Y1,1
2 1Y1,2

2 !~Y21,1
2 1Y21,2

2 !~^N̂q,1&1^N̂q,21&!#. ~A8!
)
it is
ert
APPENDIX B: METHOD FOR CALCULATION OF N̂q,j
k

In this appendix, we will present our method inspir
from Ref. @24# ~see also Ref.@25#! for the derivation of the
quantities of typeN̂q, j

k in the case of the two-levels pairin
model. At first, we recall that in this model the operato
N̂q, j , Pq, j

† , andPq, j close the SU~2! algebra for each levelj.
Consequently the two-level model fulfills an SU(2
3SU(2) algebra. Thanks to this special group structure,
easy to find a complete orthonormalized basis for the Hilb
subspace corresponding to each levelj,

unj&5AVnj~V2nj !!

V!nj !
Pj

†nj u2&, j 561, ~B1!
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wherenj50,1, . . . ,V. Using this basis, we can express t
identity operator relative to each levelj as

1 j5 (
nj 50

V

unj&^nj u

5u2&^2u1 (
nj 51

V
Vnj~V2nj !!

V!nj !
Pj

†nj u2&^2uPj
nj , j 561;

~B2!

therefore, we can express the projectoru2&^2u as follows:

u2&^2u51 j2 (
nj 51

V
Vnj~V2nj !!

V!nj !
Pj

†nj u2&^2uPj
nj .

~B3!

One sees that Eq.~B3! produces an expansion of the form

u2&^2u5 (
mj 50

V

bmj
Pj

†mj Pj
mj , ~B4!

if we substitute Eq.~B4! in both the lhs and rhs of Eq.~B3!,
we obtain the coefficientsbmj

,

b051, bmj
52 (

l 50

mj 21
Vmj 2 l~V2mj1 l !!

V! ~mj2 l !!
b l . ~B5!

For example, the first termsbmj
are explicitly given by

b051,

b1521,

b25
V22

2~V21!
,

b352
V226V112

6~V21!~V22!
. ~B6!

However, to calculate the quantitiesN̂q, j and N̂q, j
2 , one can

expand these operators as

N̂q, j
k 5 (

l j 51

V

a l j

(k)Pj
†l j Pj

l j , j 561. ~B7!

For all operators of the formN̂q, j
k , using the fact that

N̂q, j unj&52nj unj&, ~B8!

we can calculate
06431
N̂q, j
k 5 (

nj 50

V

N̂q, j
k unj&^nj u ~B9a!

5 (
nj 50

V

~2nj !
kunj&^nj u ~B9b!

5 (
nj 50

V
Vnj~V2nj !!

V!nj !
~2nj !

kPj
†nj u2&^2uPj

nj .

~B9c!

By inserting Eq.~B4! in the rhs of Eq.~B9c! and substituting
Eq. ~B7! into the lhs of Eq.~B9c!, we obtain

N̂q, j
k 5 (

nj 50

V
Vnj~V2nj !!

V!nj !
~2nj !

k (
mj 50

V

bmj
Pj

†nj Pj
†mj Pj

mj Pj
nj ,

(
l j 51

V

a l j

(k)Pj
†l j Pj

l j

5 (
nj 51

V
Vnj~V2nj !!

V!nj !
~2nj !

k (
mj 50

V

bmj
Pj

†nj 1mj Pj
nj 1mj

5 (
l j 51

V

(
mj 50

l j 21
V l j 2mj~V2 l j1mj !!

V! ~ l j2mj !!

3@2~ l j2mj !#
kbmj

Pj
†l j Pj

l j . ~B10!

Therefore, by identification, from Eq.~B10! it is easy to get
the coefficientsa l j

(k) ,

a l j

(k)5 (
mj 50

l j 21
V l j 2mj~V2 l j1mj !!

V! ~ l j2mj !!
@2~ l j2mj !#

kbmj
.

~B11!

To calculateN̂q, j we putk51 in ~B7!, and find

N̂q, j5 (
l j 51

V

a l j

(1)Pj
†l j Pj

l j , ~B12!

with

a l j

(1)5 (
mj 50

l j 21
V l j 2mj~V2 l j1mj !!

V! ~ l j2mj !!
@2~ l j2mj !#bmj

.

~B13!

The first coefficientsa l j

(1) are explicitly given by

a1
(1)52,

a2
(1)5

2

V21
,

a3
(1)5

4

~V21!~V22!
,
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a4
(1)5

2~5V26!

~V21!2~V22!~V23!
. ~B14!

Therefore, forN̂q, j we can write

N̂q, j52Pj
†Pj1

2

V21
Pj

†2Pj
21

4

~V21!~V22!
Pj

†3Pj
3

1
2~5V26!

~V21!2~V22!~V23!
Pj

†4Pj
41¯. ~B15!
l,
-
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s,
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od
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ett
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In the same way, it is very easy using this method to find
expansion forN̂q, j

2 ; it is sufficient to putk52 in Eq. ~B7!

and calculatea l j

(2) . We find

N̂q, j
2 54Pj

†Pj1
4~V11!

V21
Pj

†2Pj
21

8~V11!

~V21!~V22!
Pj

†3Pj
3

1
4~V11!~5V26!

~V21!2~V22!~V23!
Pj

†4Pj
41¯. ~B16!
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