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Scalar ground-state observables in the random phase approximation
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We calculate the ground-state expectation value of scalar observables in the matrix formulation of the
random phase approximatigRPA). Our expression, derived using the quasiboson approximation, is a straight-
forward generalization of the RPA correlation energy. We test the reliability of our expression by comparing
against full diagonalization inw shell-model spaces. In general the RPA values are an improvement over
mean-field(Hartree-Fock results, but are not always consistent with shell-model results. We also consider
exact symmetries broken in the mean-field state and whether or not they are restored in RPA.
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[. INTRODUCTION ground-state expectation value of a general observable in
RPA. This expression is derived using the quasiboson ap-

Mean-field theory is the starting point for most micro- proximation, in exact analogy with the RPA correlation en-
scopic models of many-body systems such as nuclei. In facgrgy, and is a generalization of the RPA one-particle density
for global studies of nuclear properties, such as nuclear bindderived by Rowe4,10]. Because the RPA ground state is
ing energies, mean-field theory in the form of Hartree-Fockapproximated by a quasiboson vacuum, one can read off di-
(HF) and related approximations is still the only viable mi- rectly the expectation value without having to construct an
croscopic approacfi]; otherwise one turns to semiclassical explicit wave function. Other, more recent wofk1] dis-
methods such as the liquid drfp] and Thomas-Fermi meth- cusses briefly the computation of RPA observables using the
ods[3]. response-function formalism, but does not make any system-

Unfortunately, mean-field theory ignores particle-holeatic study.
correlations and can break fundamental symmetries such as Having an expression is not sufficient. Does it produce
rotational and translational invariance. The next logical stepuseful and reliable results? After all, RPA is an approxima-
beyond the static mean field is known as the random phadi#on, and because it violates the Pauli exclusion principle
approximation(RPA) which can be derived in the small am- RPA s not even variational. Despite this, rigorous tests of the
plitude limit of time-dependent mean-field theory, and whichaccuracy of RPA calculations have been spotty. For example,
implicitly allows for small correlations in the ground state although the RPA correlation energy has been in the litera-
[4-6]. ture for decades, the only tests were in toy modélg].

The main applications of RPA have been to transitionRecently we compared the RPA correlation energy against
strengths and excitation spectra. One can also calculate ttexact shell-model resul{d3]. We found that generally RPA
correction to the ground state energy due to RPA correlagave very good agreement—albeit with some significant fail-
tions, which was the basis of a recent proposal to use meamwes which reduce the reliability of RPA binding energies.
field + RPA to compute global binding energy systematics We continue this program by computing the ground-state
[7]. expectation value of observables both in exact shell-model

There are other potential quantities of interest, namely, thealculations and in RPA. As discussed below, in this paper
ground state expectation value of observables other than thee limit ourselves to scalar operators. Unfortunately #i.0
Hamiltonian. An important application is the root-mean- harmonic oscillator model spacéR?) is trivial, so we in-
square radius. Any global fit of nuclear systematics involvestead compute and compare the expectation values of a one-
both binding energies and nuclear radii. Indeed, most globabody operator: the number of particles outside tlie,Qor-
fits to binding energies and radii with nonrelativistic phe- bit; and several two-body operators?, L?, Q?, and the
nomenological interactions such as Skyrme require densitypairing HamiltonianH ;= PTP.
dependent forces, although we will not deal specifically with  The results are found in Sec. IIl. In general, RPA offers an
that issue in this paper. Further challenges to mean-field calmprovement over the mean-fieldHF) expectation values.
culations are isotopic shifts in the charge radf@}, and This is not always the case, however, and even when HF
parity-violating electron scattering, which is sensitive to the+RPA is closer to the exact shell-model results than HF
difference between the neutron and proton rms ridii values, the improved agreement is sometimes still unsatisfac-

In Sec. Il of this paper we present an expression for theory. (The situation is reminiscent of variational calculations,

where one typically gets much better agreement in energy
than in the wave function. But again, RPA is not a variational
*On leave from National Institute for Physics and Nuclear Engi-theory)
neering — Horia Hulubei, Bucharest, Romania. In Sec. IV we turn to another issue of relevance to RPA:

0556-2813/2002/66)/0643047)/$20.00 66 064304-1 ©2002 The American Physical Society



CALVIN W. JOHNSON AND IONEL STETCU PHYSICAL REVIEW (66, 064304 (2002

the restoration of symmetries, such as rotational invarianceyhich has analogous commutation relations, eAh; mi
brokzen by the mean field. We compute the expectatiqn value (0|[5nj J[Ag.b! 17]0), etc. The boson Hamiltonian can be
of J* and compare the exact shell-model result against th@itten in matrix form, which induces an additional constant
Hartree-Fock and RPA values. If RPA “restores” the brokenigrm

symmetry then one expects that either one regains the correct

ground state value af or gets a much better value than the 1 1 A B\[b
Hartree-Fock value. We find that, although oftg}) is im- Hg=Epe— =TrA+ _(BTB)( ) R ) ) (5)
proved by RPA corrections, one does not always regain a 2 2 B A/\p!

very good estimate of the ground state angular momentum.
We interpret this to mean that RPA only approximately re- We want to put Eq(5) into diagonal form, the first step of

stores broken symmetries. which is to solve the well-known RPA matrix equation
Nonetheless, we consider our results relevant. The RPAis

not new, but we remind the reader that for global approaches A B X X

to nuclear structure the state of the art is still mean-field (—B —A) S| =8 (6)

theory; ab initio methods can only be applied to very light Y Y

nuclei, and shell model diagonalization can only be applied .

piecewise. Consistent calculations using-HRPA through-  The solutions have normalizatiof—Y?=1.

out the nuclides is conceiveable, however, and this paper is Before going on one must treat carefully the case of zero
part of a larger program to rigorously test the reliability of modes(2,=0. Zero modes arise in RPA when an exact sym-

RPA as an approximation to much larger microscopic calcumetry is broken. Suppose the HF state is deformed. The HF

lations. energy will not change as the orientation is rotated; this in-
variance is reflected irE(Z) and resurfaces as RPA zero
Il. CORRECTIONS TO A GENERAL OPERATOR IN RPA modes.(This is also a good check of one’s RPA codes. One

. expects three zero-frequency modes for triaxially deformed

Before we deri\_/e th_e expe_ctation value_ of an operator "states, and two zero modes for an axisymmetric deformed
RPA, we first begin with a brief pedagogical review of the gia4a. rotation about an axis of symmetry takes one to the

derivation of the RPA correlation energy, including Propersame. indistiguishable state. If one's model space admits

trgatment of zero mode§ that correspond to broken SymmPs'purious center-of-mass motion, then one would expect three
tries. The RPA expectation value of a general operator theQqitional zero modes as welone cannot define properly

follows naturally. lizedX v f des. Instead introd |
There are many ways to derive RIP&,6]. One approach normalizedX,Y for zero modes. Instead one introduces col-

is to expand the energy about the Hartree-Fock miminumlective coordinate®, and conjugate momenta, [4,5,14,
Let |HF) be the Hartree-Fock Slater determinant, and letvhich satisfy

| (2))=expEmZicic)|HF) be small perturbations from

the Hartree-Fock state. We follow the usual convention AP,—BP]=iM vQIZzQw

wherem,n denote single-particle states above the Fermi sur-

face in the Hartree-Fock state, or “particle” states, whilg AG, —BG* = — i B )
denote “hole” states below the Fermi surface. Then one can v v MV

expand the energy surfacE(Z) in the vicinity of the

Hartree-Fock minimum in terms of the particle-hole ampli-Here M, is a constant, interpretable as mass or moment of

tudes{Z;} up to second order: inertia but whose value depends on the normalization of
P,Q, which are only constrained by

E(Z)=E etz Az+ EZTBE*JF 1*TBE (1) L .
. 2 2n 7" Qi -P,—Qy-Pr=id,. ®)
where Now one obtains a generalized Bogoliubov transformation of
~trrgy Ata the boson operatorls, b', not only to quasibosong, A,
Anj,mi=(HFI[E]C, [A,EHET1IHF), ) P y to quasibosons, S
but also to the zero-mode collective coordinate operapr
an’miE<H|:|[[|3|,6g6j],&;6i]||-||:>_ (3)  and conjugate momentum operafoy:
We restrict ourselves to real wave functions, so thaB are h o~ > - At
also real. There is no linear term in E@l) because B nE-0 (XmiaBrt YminBr)
(HF|[H,clci1/HF)=0 by the definition of the Hartree-Fock
state. This quadratic surface can be mapped to a harmonic i P O-0. %P 9
oscillator, replacing th&,,,; by boson operators]. V,nzyzo (Pt y @y~ Qi P2)- ©

Application of Eq.(9) and its Hermitian conjugate to Eq.

. O R .
— t p'BpT+ =
Hg=Enrt+b Ab+ zb Bb"+ szb' @ (5) puts it in diagonal form:
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7
Hg=Egrpat > 0, 8] Br+ > M
N v,Q1,=0 v

(10
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where

O=XT-A-X+YT.A-Y+XT-B-Y+YT-B-X. (19

The ground state is the quasiboson vacuum, and one can

easily read off the RPA ground state energy, which is just th

zero-point energy

1 1
ERPA: EHF_ ETr(A) + ETr(Q) . (11)
One can expand
A=XQXT+PM~1PT, (12

ubstitution of Eq.(6) with A, B derived from the Hamil-
tonian immediately regains the RPA binding eneftyy). It is
important to emphasize again that the Y used here are
those calculated from Ed6) using theoriginal A, B matri-
ces(from the Hamiltoniajy one doesiot computeX, Y using
A, B.

As before we can rewrite E417) into an expression with
explicit segregation of the zero modes

where the second term is restricted to zero modes, and then

obtain an expression equivalent to Efl),

>
v,Q)

- 1 1 .
Erea=— 22 QY [2— 5 —IP,I% (13
< 2, &0 M,

Orpa= Ot > (AminYminYnja

A2\ >0) mi,nj
+Bmi,anmi,)\an,)\)
1

an expression which explicitly segregates out the contribu- — 5 > 2]_ Anioni(PriuQnip— Qi P -

tion from zero modes.

The above derivation of the RPA correlation energy
—2Tr(A)+3Tr(Q) is well known. We derive the RPA ex-

pectation value of any generator operafdn exactly analo-

gous fashion. Defind, B as in Egs.(2) and (3), respec-
tively, by replacing the Hamiltonian by the observalile
that is,

Anjmi( O)=(HFlc[c, [O,cheIIHF), (14
Bnmi(O)=(HF|[[O,clc;].creillHF), (15

and defineo,,;=(HF|[ c].c; ,O]|HF), which does not in gen-

;L(QM=O) mi,n
(19

We have confirmed numerically that E4.9) yields the same
values as Eq(17).

As we will see in the next section, E(L.7) reduces to that
derived by Rowe for one-particle densities in spherical nu-

clei [4,10). If O is a scalar, so that it is invariant under
rotation, translation, etc., then the above is sufficient. Non-
scalar observables require a little more thought. In particular,
consider observables that are angular momentum tensors

@K,M, with a nonzero rank. Hereu is the magnetic quan-
tum number. If one applies the generalized Bogoliubov trans-

eral vanish.(Because we restrict the Hartree-Fock state tdformation(9) then the linear terms in,,; do not vanish. The

real Slater determinants, B, ando are real Please note

linear terms proportional to the quasiboson operagrg’

that in computingd, B, ando one still uses the Hartree-Fock are transitions to excited states; but, for nonscalars, there will

state from minimizing the Hamiltoniafl, not from mini-
mizing &; we are finding the expectation valé) in the
vicinity of the minimum of(H).

The form of the operator in the harmonic oscillator

bosons is

,\ 1 . -
OB:OHF_ ETr A+(O,

[Db
0)‘(@)
b

)

By transforming to the collective quasibosof®, we

A B

B A

(16)

be terms also proportional t@, and to?,. Furthermore,

there will be quadratic terms, such g3, 88, etc., which
manifestly do not contribute to the ground state, but also

terms quadratic inQ, P. These terms arise from rotations
(and in the more general case, translations,):.eliecause
they correspond to zero-frequency modes, they connect only

to the ground state, but in a different orientationOif , is a
spherical tensor, we know how it transforms under a rotation,

and the linear and quadratic termsdh etc., are simply the
linear and quadratic terms for small rotation angles. None-
theless, the issue of nonscalar observables is not trivial, and
we leave it to future work.

To summarize a first result of the present work, we have
extended the usual expansion of the Hamiltonian operator in

again can trivially read off the quasiboson vacuum expectathe neighborhood of the HF solution to any operator, with the
tion value, which is the RPA ground-state expectation valuepurpose to incorporate RPA correlations in computation of

without explicit construction of a wave function:

1
Orpa= Ope— 2

~ 1
TrA+ ETrG), a7

expectation values of relevant observables. In the next sec-
tion we test the reliability of this formula in a nontrivial
model, that is, the shell-model restricted space using realistic
Hamiltonians.
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Ill. RPA vs SHELL MODEL FOR SCALAR OBSERVABLES TABLE |. The number of particles in thals,+s;, orbits
("=, orbit for “8Ca). An asterisk denotes nuclides with spherical
In this section we test the RPA expectation value found inHartree-Fock states.
Egs. (17), (19), against an exact numerical solution com-

puted by diagonalizing a Hamiltonian in a shell-model basisNucleus HF RPA SM
We work in complete B spaces where the valence par- 20y, 1.60 1.75 1.60
tlclc_es are rest_ncted_to the single-particle states of a single 22, 1.49 1.64 1.47
major harmonic oscillator shell, e.g.s4,-0d3,-0ds,, for _sd 24Mg 213 1.85 231
Or 1p1/-1p3/-0f5-0f7, for pf shell. The cores are inert, 2, 3.87 3.77 3.15
180 for thesd and “°Ca for thepf shell. In the the valence

space we use realistic interactions: Wildenthal “USD” in the 2°0 0.24 0.46 0.54
sd shell [15] and the monopole-modified Kuo-Brown 20 0.06 0.53 0.38
“KB3" in the pf shell[16]. Note that a @ @ model space  2°0* 0.00 0.67 0.54
does not admit any spurious center-of-mass motion, because*o* 2.00 2.50 2.25
the generators of center-of-mass motion ai@lin character 48cgt 8.00 7.73 7.78
17].

: ,]As mentioned in the Introduction, an operator one would >-Na 1.51 1.69 1.52
like to measure iSR?2. Unfortunately in a @ shell-model Al 2.29 2.51 2.18
space(R?) is trivial. The operatoR® has two pieces, a one- 19 102 110 152
body piecer?, which has a constant expectation value in a 21 0-84 0'56 0.87
single major harmonic oscillator shell, and a two-body piece 25\g 291 3.09 1.96

r(1)-r(2); butbecause is an odd-parity operator, the two-
body piece is honzero only across major shells. Therefore in

this paper we consider other one- and two-body operators.
cept for three cases with spherical Hartree-Fock st&fes,

240, and “*®ca[for which we instead tabulate(f,;)]. 2O
is weakly deformed and also shows a reasonable, albeit im-
‘?)erfect, improvement as one goes from the Hartree-Fock
Kalue to the RPA value.
To explore this issue further, we tod®Si and lowered
the ds, single-particle energy; eventually the Hartree-Fock
state changes from deformed to spherical. The results are
~ plotted in Fig. 1. Again we see reasonable agreement for the
quantum number.Here Ay nj= 8ijSmmdam and from Eq.  gpnerical region, but poor agreement in the deformed regime.
(19 To summarize our results for one-body operators: we re-
gain, for spherical Hartree-Fock states, Rowe’s one-particle
pm=> 2 [Yuial? (200 occupation numbers, and get improved values over the
Mo Hartree-Fock occupation numbers. For deformed nuclides,
which is Rowe’s result fosphericalHartree-Fock states. If however, the RPA value is genera_lly_worse than _the HF
alue. The fault does not appear to lie in the corrections due

the HF state is deformed, however, one has to take into ac: o X I
count zero modes. The second term in Ex®) can be sim- to zero modes; in the next section, we will find that the RPA

B 2 - -
plified if one sums over all particle statdk that is, the total  €XPectation value of” is more accurate in the deformed

number of particles excited above the Fermi surface; in thatt9'me than in the spherical regime.

case one can use E@) and find

A. One-body operators

Using the quasiboson approximation, Rowe derived th
RPA one-particle densities for spherical nu¢kil0]; related
formulas have been used to compute the isotope shift in ca
cium [8], ignoring the two-body contribution. Lepy
=(c/,cy) be the number of particles excited above the
Fermi surface into the particle stat (M is not a magnetic

1
2 =2 2 [Yminl? =5 Nz, (21)

where N,¢, is the number of zero modedl,,,~2 for an
axisymmetric Hartree-Fock state, such as f8¥e, and=3
for a triaxial state, found fo?“Mg. We find Eq.(21) often
leads to negative occupation numbers. Note, however, that
> pw is not an angular momentum scalar, nor even a spheri- e (MeV)
cal tensor of fixed rank, for deformed states. o

Instead we considered the only scalar one-body operators |G, 1. n(dsy) +N(sy) in 2Si as theds, single-particle energy
in our system, the occupation numbers of shell. Table | s lowered relative to the other single-particle energies. The solid
tabulates the Hartree-Fock, RPA, and exact shell-m@@M) line is the(exac) shell-model value, the dotted line the HF value,
values ofn(ds) +n(sy,). The results are rather poor, ex- and the dashed line the RPA value.
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TABLE 1. Ground-state expectation values 8f and L? for
several nuclei irsd andpf shells. For each observable we show the andQQ. The final column is the ratio of the RPA correlation energy
SM, HF, and RPA estimates. The nuclides have been grouped intm the shell-model correlation energy, ard when the RPA bind-

even-even, single-species, odd-odd, and Add-
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TABLE Ill. Ground-state expectation values Bf P (pairing

ing energy is equal to the exact binding energy.

Nucleus 53 L? Nucleus Pairing QQ Epe— Erpa
Eu—E
HF RPA  SM HF RPA  SM CE RPA SM HE RPA_ SM HE =SM
jzse 2'22 g'jg g'ég 12'22 _0'0231 0'%688 “Ne 299 547 6.81 715 825 793 0.75
2“MZ 139 138 103 2065 —117 103 2Ne 3.99 725 931 876 1007 944 0.97
26Mg 2'04 1'14 1'45 18'94 _0'34 1'45 Mg 5.99 10.14 11.72 1167 1263 1268 0.92
28 1' 62 1'28 1' 45 21' 50 _0'75 1' 45 Mg 6.99 11.51 14.56 1001 1104 1048 0.94
) ' ' ' ' ' ' Bgj 899 12.73 15.16 1304 1389 1214 0.90
:T ;'23 O'Zg o.gg 28.3: 72'38 o.gg 20 2.00 518 7.25 257 353 339 1.09
48c| 3' é ](;)lgg 11 20 29'777 - ga 1'1 70 20 3.00 583 6.20 163 277 270 1.67
' : ' ' : > : %0 400 652 658 122 194 191 1.83
20 150 045 075 6.80 092 0.75
220 240 -015 126  2.40 6.36  1.26 : i :
20 240 -027 129 239 6.06 129 Again we look at the transition from deformed to spheri-
: : : : : : cal in 28Si for (Q?) and (P'P), in Fig. 2, which clearly
20F 2.00 1.44 1.74 1421 8.09 3.55 shows the RPA values are in better agreement in the spheri-
2Na 2.20 1.90 214 21.32 9.08 8.07 cal regime than in the deformed regim@s it happens, of
264 3.14 1.96 145 2056 2014 145 the nuclides we investigatedSi, while convenient for com-
46\ 251 1.50 136 3539 16.33 1.36 paring spherical vs deformed regimes, is the only nuclide for
" which the RPA value of? is worse than the HF value, using
F 109 080 087 1261 439 022 the original Wildenthal single-particle energie$his is not
IF 211 076 152 1331 560 6.41 universal behavior; as seen in Table Il and will be seen in the
“INe 111 0.44 1.00 1755 1011  3.22 npext section ford?, the RPA expectation value for some op-
“Na 2.02 0.88 1.15 18.81 7.46 3.93 erators is better in the deformed regime.
Mg 204 038 173 2256 11.77 7.68 An obvious step will be to try quasiparticle-RPARPA),

B. Two-body operators

which may improve performance in the deformed regime.
On the other hand, we reran our calculations with all the
explicit pairing matrix elements set to zero, and found no
qualitative change in our results, much as was found for the

We now turn to two-body operators, or more properly ppa correlation energf13).
operators with both one- and two-body piec@dle investi-

gated the pure two-body pieces but found no qualitative dif-

IV. RESTORATION OF BROKEN SYMMETRIES?

ferences; the pure two-body pieces performed neither better

nor worse on the whole than the one-body pieces, which here

are linear combinations of number operatprs.
In Table Il we show results foB? (total spin and L2
(total orbital angular momentum The RPA expectation

The random phase approximation respects broken sym-
metries by separating out exactly, as zero modes, spurious

value is generally a significant improvement over the
Hartree-Fock value, relative to the exact result. On the other
hand, the RPA values, while closer to the mark, are not in
very good agreement with the exact shell-model values, and
sometimes overcorrect to negative, nonphysical expectation
values (this can happen because RPA does not respect the
Pauli exclusion principle

In Table 11l we consider the expectation value of the pair-
ing interaction,P'P where PT=3; . oa jaf . and of
Q2. We also show the ratio of correlation energigs]
which is a measure of how well the RPA binding energy
tracks the exact binding energy. There appears to be no cor-
respondence: a good RPA value for the binding energy does

</51><103

< 2

vV 5x10

5 14

=]

A= 12

&

\ 10
8

not correspond to a good RPA expectation value. In particu- FIG. 2. (Q?), (P'P) in %Si as theds), single-particle energy is

lar, note the single-speci€exygen results, where the RPA  |owered relative to the other single-particle energies. The solid line
binding energy is particularly bad; yet for these nuclidesis the (exac) shell-model value, the dotted line the HF value, and
(P'P) and(Q?) are very good.

the dashed line the RPA value.
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TABLE V. Ground-state expectation valugl?) for selected 3o 17 T~ 1
nuclides, grouped into even-even, single-species, odd-odd, and odd- -~ \ i
A. A 20 — ‘ ................ el
~ L ‘ -
'v A
Nucleus HF RPA SM 10— :l‘ ]
20Ne 16.06 ~0.45 0 ‘T T—T——=
2Ne 17.17 -1.16 0 -6 -5 -4
Mg 20.13 —2.52 0 €45 (MeV)
Mg 18.61 -1.72 0
28g; 20.89 ~1.99 0 FIG. 3.(J?) in %Si as theds, single-particle energy is lowered
44T, 31.65 ~3.10 0 relative to the other single-particle energies. The solid line is the
467 3153 ~500 0 (exac) shell-model value, the dotted line the HF value, and the
a8c, 29' 37 4'72 dashed line the RPA value.

0
%0 6.07 1.76 0 for the Hartree-Fock state due to time-reversal invariance.
220 0.00 7.99 0 The question then becomes whether or not for deformed
20 0.00 7.38 0 states the RPA corrections {d;) are also zero. In the near

5 future we will perform these calculations as evidence for or

20,

22': 18.46 12.41 against the restoration of rotational symmetry in the RPA.
26Na 25.57 14.57 12 An additional test of symmetry restoration would be com-

. Al 35.98 27.92 0 putation of the expectation value of other nonscalar observ-
v 39.56 20.00 0 ables, such as the magnetic dipole moment or electric quad-
190 15.12 5.52 0.75 rupole moment, for a deformed nucIeL_Js_WithJafo shel_l-

21 1551 9.47 8.75 model _ground _state. We hav<_—:- preliminary, unpublished
21Ne 19.05 12.68 375 calculations wh|ch_suggest Fhat mdleeq. the RPA ground state
23Na 19.42 11.87 375 of even-even nu_clldes retains a significant quadrqpqle mo-
2Mg 23.87 1451 8.75 ment, another piece of evidence that symmetry is incom-

pletely restored.

There are other observables one would like to compute
. L . ) . relevant to broken symmetries. Aside from the Casimir itself,
motion. This is sometimes interpreted as an “approximatghe dispersion of a Casimir would be a useful measure. For
restoration of the symmetryf’5]. The restoration cannot be example, consider quasiparticle REBRPA), where particle
exact, because the RPA wave function is valid only in thenymber is broken in the Hartree-Fock-Bogoliubov state. One

vicinity of the Hartree-Fock stafedl4] and cannot be extrapo- would like to see the QRPA value of the dispersi(d%h2>
lated to, for example, large rotation angles. ~ o
Still, we now have a tool to further explore symmetry —(N)° move close to zero. Another example would be

restoration, by computing Casimir operators of symmetryProton-neutron RPApnRPA or pnQRPA, allowing protons
groups. Specificially, we considég?). Ideally, if the RPA @nd neutrons to mix, so tha,=2Z—N is no longer an good
restores a broken symmetry, one might imagine that one efUantum ngmbqrz; this is applicable to beta decay. Here one
ther regains the exact ground state valuéJj or gets very ~Mmight consider T7)—(T,)%. Unfortunately, we suspect that
close to it. the dispersion would also signal incomplete symmetry resto-
We present our results in Table IV. The pattern is theration.
same as with other operatofs?) is generally better in RPA
than in Hartree-Fock but not always very close to the exact
shell-model value. Even worse are the cases with a closed
shell in HF, such a$*?%0: the HF value is correct, while the  We derived a expression for the ground-state expectation
RPA value is terrible. value of observables in the matrix formulation of RPA, using
To examine this issue more closely, in Fig. 3 we againthe quasiboson approximation, and tested it against exact
plot, for 28Si, (J%) versus theds, single-particle energy shell-model calculations for selected scalar operators. The
through the transition from deformed to spherical HF stateRPA value was in general an improvement over the Hartree-
The results are better for the deformed HF state, although weock value, but failed to be a consistent and reliable estimate
obtain slightly negative, and thus nonphysical, values obf the exact expectation value.
(J3%). There are a number of generalizations and modifications
Calculation of(J%) is not necessarily the only test of res- to the RPA: the number-operator method, renomalized RPA,
toration of symmetry. One would also expect, for nuclidesself-consistent RPA, modified RPA, e{d0,18-22. Rowe
with J=0 ground states, thdtl;=0, =x,y,z. This will be  [10] and other$23] compared the quasiboson approximation
an important test of the restoration of symmetry, budas  for occupation numbers with the number-operator method,
a nonscalar observable it is beyond the scope of the preseahd found the quasiboson overestimated the occupation num-
paper. Note, however, that for even-even nuclidds)=0 ber by a factor of 2. This factor of 2 is often attributed to

V. SUMMARY AND CONCLUSION
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double counting(but see footnote 15 of Refl0], which  rive expressions for a general scalar observable in the
suggests it may be due to the failure of the quasiboson aprumber-operator method, self-consistent RPA, and so on,
proximation to fully satisfy the Pauli principleOn the other and compare against nontrivial shell-model calculations.
hand, Dukelsky, Hirsch, and Schufk4] recently compared This we leave to future work.
the occupation number for the Lipkin model in the RPA, the
number-operator method, and the self-consistent RPA, and
found the latter gave consistently better results. ACKNOWLEDGMENTS
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