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Scalar ground-state observables in the random phase approximation
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We calculate the ground-state expectation value of scalar observables in the matrix formulation of the
random phase approximation~RPA!. Our expression, derived using the quasiboson approximation, is a straight-
forward generalization of the RPA correlation energy. We test the reliability of our expression by comparing
against full diagonalization in 0\v shell-model spaces. In general the RPA values are an improvement over
mean-field~Hartree-Fock! results, but are not always consistent with shell-model results. We also consider
exact symmetries broken in the mean-field state and whether or not they are restored in RPA.
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I. INTRODUCTION

Mean-field theory is the starting point for most micr
scopic models of many-body systems such as nuclei. In f
for global studies of nuclear properties, such as nuclear bi
ing energies, mean-field theory in the form of Hartree-Fo
~HF! and related approximations is still the only viable m
croscopic approach@1#; otherwise one turns to semiclassic
methods such as the liquid drop@2# and Thomas-Fermi meth
ods @3#.

Unfortunately, mean-field theory ignores particle-ho
correlations and can break fundamental symmetries suc
rotational and translational invariance. The next logical s
beyond the static mean field is known as the random ph
approximation~RPA! which can be derived in the small am
plitude limit of time-dependent mean-field theory, and whi
implicitly allows for small correlations in the ground sta
@4–6#.

The main applications of RPA have been to transit
strengths and excitation spectra. One can also calculate
correction to the ground state energy due to RPA corr
tions, which was the basis of a recent proposal to use m
field 1 RPA to compute global binding energy systemat
@7#.

There are other potential quantities of interest, namely,
ground state expectation value of observables other than
Hamiltonian. An important application is the root-mea
square radius. Any global fit of nuclear systematics involv
both binding energies and nuclear radii. Indeed, most glo
fits to binding energies and radii with nonrelativistic ph
nomenological interactions such as Skyrme require dens
dependent forces, although we will not deal specifically w
that issue in this paper. Further challenges to mean-field
culations are isotopic shifts in the charge radius@8#, and
parity-violating electron scattering, which is sensitive to t
difference between the neutron and proton rms radii@9#.

In Sec. II of this paper we present an expression for

*On leave from National Institute for Physics and Nuclear En
neering – Horia Hulubei, Bucharest, Romania.
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ground-state expectation value of a general observabl
RPA. This expression is derived using the quasiboson
proximation, in exact analogy with the RPA correlation e
ergy, and is a generalization of the RPA one-particle den
derived by Rowe@4,10#. Because the RPA ground state
approximated by a quasiboson vacuum, one can read of
rectly the expectation value without having to construct
explicit wave function. Other, more recent work@11# dis-
cusses briefly the computation of RPA observables using
response-function formalism, but does not make any syst
atic study.

Having an expression is not sufficient. Does it produ
useful and reliable results? After all, RPA is an approxim
tion, and because it violates the Pauli exclusion princi
RPA is not even variational. Despite this, rigorous tests of
accuracy of RPA calculations have been spotty. For exam
although the RPA correlation energy has been in the lite
ture for decades, the only tests were in toy models@12#.
Recently we compared the RPA correlation energy aga
exact shell-model results@13#. We found that generally RPA
gave very good agreement—albeit with some significant f
ures which reduce the reliability of RPA binding energies

We continue this program by computing the ground-st
expectation value of observables both in exact shell-mo
calculations and in RPA. As discussed below, in this pa
we limit ourselves to scalar operators. Unfortunately in 0\v
harmonic oscillator model spaces^R2& is trivial, so we in-
stead compute and compare the expectation values of a
body operator: the number of particles outside the 0d5/2 or-
bit; and several two-body operators:S2, L2, Q2, and the
pairing HamiltonianHpair5P†P.

The results are found in Sec. III. In general, RPA offers
improvement over the mean-field~HF! expectation values
This is not always the case, however, and even when
1RPA is closer to the exact shell-model results than
values, the improved agreement is sometimes still unsatis
tory. ~The situation is reminiscent of variational calculation
where one typically gets much better agreement in ene
than in the wave function. But again, RPA is not a variation
theory.!

In Sec. IV we turn to another issue of relevance to RP
-
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the restoration of symmetries, such as rotational invarian
broken by the mean field. We compute the expectation va
of J2 and compare the exact shell-model result against
Hartree-Fock and RPA values. If RPA ‘‘restores’’ the brok
symmetry then one expects that either one regains the co
ground state value ofJ2 or gets a much better value than th
Hartree-Fock value. We find that, although often^J2& is im-
proved by RPA corrections, one does not always regai
very good estimate of the ground state angular moment
We interpret this to mean that RPA only approximately
stores broken symmetries.

Nonetheless, we consider our results relevant. The RP
not new, but we remind the reader that for global approac
to nuclear structure the state of the art is still mean-fi
theory; ab initio methods can only be applied to very lig
nuclei, and shell model diagonalization can only be appl
piecewise. Consistent calculations using HF1RPA through-
out the nuclides is conceiveable, however, and this pape
part of a larger program to rigorously test the reliability
RPA as an approximation to much larger microscopic cal
lations.

II. CORRECTIONS TO A GENERAL OPERATOR IN RPA

Before we derive the expectation value of an operato
RPA, we first begin with a brief pedagogical review of th
derivation of the RPA correlation energy, including prop
treatment of zero modes that correspond to broken sym
tries. The RPA expectation value of a general operator t
follows naturally.

There are many ways to derive RPA@5,6#. One approach
is to expand the energy about the Hartree-Fock miminu
Let uHF& be the Hartree-Fock Slater determinant, and
uC(ZW )&5exp((miZmi* ĉm

† ĉi)uHF& be small perturbations from
the Hartree-Fock state. We follow the usual convent
wherem,n denote single-particle states above the Fermi s
face in the Hartree-Fock state, or ‘‘particle’’ states, whilei , j
denote ‘‘hole’’ states below the Fermi surface. Then one
expand the energy surfaceE(ZW ) in the vicinity of the
Hartree-Fock minimum in terms of the particle-hole amp
tudes$Zmi% up to second order:

E~ZW !5EHF1zW†AzW1
1

2
zW†BzW* 1

1

2
zWTBzW, ~1!

where

An j ,mi[^HFu@ ĉ j
†ĉn ,@Ĥ,ĉm

† ĉi ##uHF&, ~2!

Bn j ,mi[^HFu@@Ĥ,ĉn
†ĉ j #,ĉm

† ĉi #uHF&. ~3!

We restrict ourselves to real wave functions, so thatA, B are
also real. There is no linear term in Eq.~1! because

^HFu@Ĥ,ĉm
† ĉi #uHF&50 by the definition of the Hartree-Foc

state. This quadratic surface can be mapped to a harm
oscillator, replacing theZmi by boson operatorsbmi

†

ĤB5EHF1bW †AbW 1
1

2
bW †BbW †1

1

2
bW BbW , ~4!
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which has analogous commutation relations, e.g.,An j ,mi

5(0u@ b̂n j ,@ĤB ,b̂mi
† ##u0), etc. The boson Hamiltonian can b

written in matrix form, which induces an additional consta
term

HB5EHF2
1

2
Tr A1

1

2
~bW †bW !S A B

B AD S bW

bW †D . ~5!

We want to put Eq.~5! into diagonal form, the first step o
which is to solve the well-known RPA matrix equation

S A B

2B 2AD S XW

YW
D 5VS XW

YW
D . ~6!

The solutions have normalizationXW 22YW 251.
Before going on one must treat carefully the case of z

modesVn50. Zero modes arise in RPA when an exact sy
metry is broken. Suppose the HF state is deformed. The
energy will not change as the orientation is rotated; this
variance is reflected inE(ZW ) and resurfaces as RPA zer
modes.~This is also a good check of one’s RPA codes. O
expects three zero-frequency modes for triaxially deform
states, and two zero modes for an axisymmetric deform
state: rotation about an axis of symmetry takes one to
same, indistiguishable state. If one’s model space adm
spurious center-of-mass motion, then one would expect th
additional zero modes as well.! One cannot define properl
normalizedXW ,YW for zero modes. Instead one introduces c
lective coordinatesQW n and conjugate momentaPW n @4,5,14#,
which satisfy

APW n2BPW n* 5 iM nVn
2QW n ,

AQW n2BQW n* 52
i

M n
PW n . ~7!

Here M n is a constant, interpretable as mass or momen
inertia but whose value depends on the normalization
P,Q, which are only constrained by

QW l* •PW n2QW l•PW n* 5 idln . ~8!

Now one obtains a generalized Bogoliubov transformation
the boson operatorsb̂, b̂†, not only to quasibosonsb̂, b̂†,
but also to the zero-mode collective coordinate operatorQ̂n

and conjugate momentum operatorP̂n :

b̂mi5 (
l,Vl.0

~Xmi,lb̂l1Ymi,lb̂l
†!

2 i (
n,Vn50

~Pmi,nQ̂n2Qmi,nP̂n!. ~9!

Application of Eq.~9! and its Hermitian conjugate to Eq
~5! puts it in diagonal form:
4-2
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HB5ERPA1(
l

Vlbl
†bl1 (

n,Vn50

P̂n
2

2M n
. ~10!

The ground state is the quasiboson vacuum, and one
easily read off the RPA ground state energy, which is just
zero-point energy

ERPA5EHF2
1

2
Tr~A!1

1

2
Tr~V!. ~11!

One can expand

A5XVX†1PM21P†, ~12!

where the second term is restricted to zero modes, and
obtain an expression equivalent to Eq.~11!,

ERPA52(
l

VluYW lu22
1

2 (
n,Vn50

1

M n
uPW nu2, ~13!

an expression which explicitly segregates out the contri
tion from zero modes.

The above derivation of the RPA correlation energ
2 1

2 Tr(A)1 1
2 Tr(V) is well known. We derive the RPA ex

pectation value of any generator operatorÔ in exactly analo-
gous fashion. DefineÃ, B̃ as in Eqs.~2! and ~3!, respec-
tively, by replacing the Hamiltonian by the observableO,
that is,

Ãn j ,mi~O![^HFuĉ j
†ĉn ,@Ô,ĉm

† ĉi ##uHF&, ~14!

B̃n j ,mi~O![^HFu@@Ô,ĉn
†ĉ j #,ĉm

† ĉi #uHF&, ~15!

and defineomi5^HFu@cm
† ci ,O#uHF&, which does not in gen-

eral vanish.~Because we restrict the Hartree-Fock state
real Slater determinantsÃ, B̃, and o are real.! Please note
that in computingÃ, B̃, ando one still uses the Hartree-Foc
state from minimizing the HamiltonianĤ, not from mini-
mizing Ô; we are finding the expectation value^Ô& in the
vicinity of the minimum of^Ĥ&.

The form of the operator in the harmonic oscillat
bosons is

ÔB5OHF2
1

2
Tr Ã1~oW , oW !•S bW

bW †D
1

1

2~bW †, bW !•S Ã B̃

B̃ Ã
D •S bW

bW †D . ~16!

By transforming to the collective quasibosons~9!, we
again can trivially read off the quasiboson vacuum expe
tion value, which is the RPA ground-state expectation va
without explicit construction of a wave function:

ORPA5OHF2
1

2
Tr Ã1

1

2
Tr Q, ~17!
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Q5XT
•Ã•X1YT

•Ã•Y1XT
•B̃•Y1YT

•B̃•X. ~18!

Substitution of Eq.~6! with A, B derived from the Hamil-
tonian immediately regains the RPA binding energy~11!. It is
important to emphasize again that theX, Y used here are
those calculated from Eq.~6! using theoriginal A, B matri-
ces~from the Hamiltonian!; one doesnot computeX, Y using
Ã, B̃.

As before we can rewrite Eq.~17! into an expression with
explicit segregation of the zero modes

ORPA5OHF1 (
l(Vl.0)

(
mi,n j

~Ãmi,n jYmi,lYn j ,l

1B̃mi,n jYmi,lXn j ,l!

2
1

2
i (
m(Vm50)

(
mi,n j

Ãmi,n j~Pmi,m* Qn j ,m2Qmi,m* Pn j ,m!.

~19!

We have confirmed numerically that Eq.~19! yields the same
values as Eq.~17!.

As we will see in the next section, Eq.~17! reduces to that
derived by Rowe for one-particle densities in spherical n
clei @4,10#. If Ô is a scalar, so that it is invariant unde
rotation, translation, etc., then the above is sufficient. N
scalar observables require a little more thought. In particu
consider observables that are angular momentum ten
Ôk,m , with a nonzero rankk. Herem is the magnetic quan
tum number. If one applies the generalized Bogoliubov tra
formation~9! then the linear terms inomi do not vanish. The
linear terms proportional to the quasiboson operatorsb̂, b̂†

are transitions to excited states; but, for nonscalars, there
be terms also proportional toQ̂n and to P̂n . Furthermore,
there will be quadratic terms, such asb̂†b̂, b̂b̂, etc., which
manifestly do not contribute to the ground state, but a
terms quadratic inQ̂, P̂. These terms arise from rotation
~and in the more general case, translations, etc.!: because
they correspond to zero-frequency modes, they connect
to the ground state, but in a different orientation. IfÔk,m is a
spherical tensor, we know how it transforms under a rotati
and the linear and quadratic terms inQ̂, etc., are simply the
linear and quadratic terms for small rotation angles. No
theless, the issue of nonscalar observables is not trivial,
we leave it to future work.

To summarize a first result of the present work, we ha
extended the usual expansion of the Hamiltonian operato
the neighborhood of the HF solution to any operator, with
purpose to incorporate RPA correlations in computation
expectation values of relevant observables. In the next
tion we test the reliability of this formula in a nontrivia
model, that is, the shell-model restricted space using real
Hamiltonians.
4-3
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III. RPA vs SHELL MODEL FOR SCALAR OBSERVABLES

In this section we test the RPA expectation value found
Eqs. ~17!, ~19!, against an exact numerical solution com
puted by diagonalizing a Hamiltonian in a shell-model bas
We work in complete 0\v spaces where the valence pa
ticles are restricted to the single-particle states of a sin
major harmonic oscillator shell, e.g., 1s1/2-0d3/2-0d5/2 for sd
or 1p1/2-1p3/2-0 f 5/2-0 f 7/2 for p f shell. The cores are iner
16O for thesd and 40Ca for thep f shell. In the the valence
space we use realistic interactions: Wildenthal ‘‘USD’’ in th
sd shell @15# and the monopole-modified Kuo-Brow
‘‘KB3’’ in the p f shell @16#. Note that a 0\v model space
does not admit any spurious center-of-mass motion, bec
the generators of center-of-mass motion are 1\v in character
@17#.

As mentioned in the Introduction, an operator one wo
like to measure isR2. Unfortunately in a 0\v shell-model
spacê R2& is trivial. The operatorR2 has two pieces, a one
body piecer 2, which has a constant expectation value in
single major harmonic oscillator shell, and a two-body pie
r (1)•r (2); but becauser is an odd-parity operator, the two
body piece is nonzero only across major shells. Therefor
this paper we consider other one- and two-body operato

A. One-body operators

Using the quasiboson approximation, Rowe derived
RPA one-particle densities for spherical nuclei@4,10#; related
formulas have been used to compute the isotope shift in
cium @8#, ignoring the two-body contribution. LetrM

5^cM
† cM& be the number of particles excited above t

Fermi surface into the particle stateM. (M is not a magnetic
quantum number.! Here Ãmi,n j5d i j dmMdnM and from Eq.
~19!

rM5(
l

(
i

uYMi ,lu2, ~20!

which is Rowe’s result forsphericalHartree-Fock states. I
the HF state is deformed, however, one has to take into
count zero modes. The second term in Eq.~19! can be sim-
plified if one sums over all particle statesM, that is, the total
number of particles excited above the Fermi surface; in
case one can use Eq.~8! and find

(
M

rM5(
l

(
Mi

uYMi ,lu22
1

2
Nzero, ~21!

where Nzero is the number of zero modes,Nzero52 for an
axisymmetric Hartree-Fock state, such as for20Ne, and53
for a triaxial state, found for24Mg. We find Eq.~21! often
leads to negative occupation numbers. Note, however,
(rM is not an angular momentum scalar, nor even a sph
cal tensor of fixed rank, for deformed states.

Instead we considered the only scalar one-body opera
in our system, the occupation numbers of aj shell. Table I
tabulates the Hartree-Fock, RPA, and exact shell-model~SM!
values ofn(d3/2)1n(s1/2). The results are rather poor, e
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cept for three cases with spherical Hartree-Fock states,22O,
24O, and 48Ca @for which we instead tabulaten( f 7/2)].

21O
is weakly deformed and also shows a reasonable, albeit
perfect, improvement as one goes from the Hartree-F
value to the RPA value.

To explore this issue further, we took28Si and lowered
the d5/2 single-particle energy; eventually the Hartree-Fo
state changes from deformed to spherical. The results
plotted in Fig. 1. Again we see reasonable agreement for
spherical region, but poor agreement in the deformed regi

To summarize our results for one-body operators: we
gain, for spherical Hartree-Fock states, Rowe’s one-part
occupation numbers, and get improved values over
Hartree-Fock occupation numbers. For deformed nuclid
however, the RPA value is generally worse than the
value. The fault does not appear to lie in the corrections
to zero modes; in the next section, we will find that the R
expectation value ofJ2 is more accurate in the deforme
regime than in the spherical regime.

TABLE I. The number of particles in thed3/21s1/2 orbits
(†5 f 7/2 orbit for 48Ca). An asterisk denotes nuclides with spheric
Hartree-Fock states.

Nucleus HF RPA SM

20Ne 1.60 1.75 1.60
22Ne 1.49 1.64 1.47
24Mg 2.13 1.85 2.31
28Si 3.87 3.77 3.15

20O 0.24 0.46 0.54
21O 0.06 0.53 0.38
22O* 0.00 0.67 0.54
24O* 2.00 2.50 2.25
48Ca* † 8.00 7.73 7.78

22Na 1.51 1.69 1.52
26Al 2.29 2.51 2.18

19F 1.02 1.10 1.52
21F 0.84 0.56 0.87
25Mg 2.21 3.09 1.96

FIG. 1. n(d3/2)1n(s1/2) in 28Si as thed5/2 single-particle energy
is lowered relative to the other single-particle energies. The s
line is the~exact! shell-model value, the dotted line the HF valu
and the dashed line the RPA value.
4-4
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B. Two-body operators

We now turn to two-body operators, or more prope
operators with both one- and two-body pieces.~We investi-
gated the pure two-body pieces but found no qualitative
ferences; the pure two-body pieces performed neither be
nor worse on the whole than the one-body pieces, which h
are linear combinations of number operators.!

In Table II we show results forS2 ~total spin! and L2

~total orbital angular momentum!. The RPA expectation
value is generally a significant improvement over t
Hartree-Fock value, relative to the exact result. On the o
hand, the RPA values, while closer to the mark, are no
very good agreement with the exact shell-model values,
sometimes overcorrect to negative, nonphysical expecta
values~this can happen because RPA does not respect
Pauli exclusion principle!.

In Table III we consider the expectation value of the pa
ing interaction,P†P where P†5( j ,m.0aj ,m

† aj ,2m
† , and of

Q2. We also show the ratio of correlation energies@13#
which is a measure of how well the RPA binding ener
tracks the exact binding energy. There appears to be no
respondence: a good RPA value for the binding energy d
not correspond to a good RPA expectation value. In part
lar, note the single-species~oxygen! results, where the RPA
binding energy is particularly bad; yet for these nuclid
^P†P& and ^Q2& are very good.

TABLE II. Ground-state expectation values ofS2 and L2 for
several nuclei insd andp f shells. For each observable we show t
SM, HF, and RPA estimates. The nuclides have been grouped
even-even, single-species, odd-odd, and odd-A.

Nucleus S2 L2

HF RPA SM HF RPA SM

20Ne 0.35 0.33 0.26 15.90 20.25 0.26
22Ne 1.48 0.48 0.88 16.76 0.31 0.88
24Mg 1.39 1.38 1.03 20.65 21.17 1.03
26Mg 2.04 1.14 1.45 18.94 20.34 1.45
28Si 1.62 1.28 1.45 21.50 20.75 1.45
44Ti 1.03 0.75 0.64 30.34 22.48 0.64
46Ti 2.24 1.20 1.36 29.72 22.94 1.36
48Cr 3.12 0.99 1.70 29.77 5.38 1.70

20O 1.50 0.45 0.75 6.80 0.92 0.75
22O 2.40 20.15 1.26 2.40 6.36 1.26
24O 2.40 20.27 1.29 2.39 6.06 1.29

20F 2.00 1.44 1.74 14.21 8.09 3.55
22Na 2.20 1.90 2.14 21.32 9.08 8.07
26Al 3.14 1.96 1.45 29.56 20.14 1.45
46V 2.51 1.50 1.36 35.39 16.33 1.36

19F 1.09 0.80 0.87 12.61 4.39 0.22
21F 2.11 0.76 1.52 13.31 5.60 6.41

21Ne 1.11 0.44 1.00 17.55 10.11 3.22
23Na 2.02 0.88 1.15 18.81 7.46 3.93
25Mg 2.04 0.38 1.73 22.56 11.77 7.68
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Again we look at the transition from deformed to sphe
cal in 28Si for ^Q2& and ^P†P&, in Fig. 2, which clearly
shows the RPA values are in better agreement in the sph
cal regime than in the deformed regime.~As it happens, of
the nuclides we investigated28Si, while convenient for com-
paring spherical vs deformed regimes, is the only nuclide
which the RPA value ofQ2 is worse than the HF value, usin
the original Wildenthal single-particle energies.! This is not
universal behavior; as seen in Table II and will be seen in
next section forJ2, the RPA expectation value for some o
erators is better in the deformed regime.

An obvious step will be to try quasiparticle-RPA~QRPA!,
which may improve performance in the deformed regim
On the other hand, we reran our calculations with all t
explicit pairing matrix elements set to zero, and found
qualitative change in our results, much as was found for
RPA correlation energy@13#.

IV. RESTORATION OF BROKEN SYMMETRIES?

The random phase approximation respects broken s
metries by separating out exactly, as zero modes, spur

to

TABLE III. Ground-state expectation values ofP†P ~pairing!
andQQ. The final column is the ratio of the RPA correlation ener
to the shell-model correlation energy, and51 when the RPA bind-
ing energy is equal to the exact binding energy.

Nucleus Pairing QQ EHF2ERPA

EHF2ESM

HF RPA SM HF RPA SM

20Ne 2.99 5.47 6.81 715 825 793 0.75
22Ne 3.99 7.25 9.31 876 1007 944 0.97
24Mg 5.99 10.14 11.72 1167 1263 1268 0.92
26Mg 6.99 11.51 14.56 1001 1104 1048 0.94
28Si 8.99 12.73 15.16 1304 1389 1214 0.90
20O 2.00 5.18 7.25 257 353 339 1.09
22O 3.00 5.83 6.20 163 277 270 1.67
24O 4.00 6.52 6.58 122 194 191 1.83

FIG. 2. ^Q2&, ^P†P& in 28Si as thed5/2 single-particle energy is
lowered relative to the other single-particle energies. The solid
is the ~exact! shell-model value, the dotted line the HF value, a
the dashed line the RPA value.
4-5



at
e
th
-

ry
tr

e

h

a
s

e

ai

te
w
o

s-
e

se

ce.
ed

r
or
.
m-
rv-
ad-

ed
tate

o-
m-

ute
elf,
For

ne

be

one
t
to-

tion
ng
xact
The
ee-
ate

ons
PA,

on
od,
um-
to

o

the
the

CALVIN W. JOHNSON AND IONEL STETCU PHYSICAL REVIEW C66, 064304 ~2002!
motion. This is sometimes interpreted as an ‘‘approxim
restoration of the symmetry’’@5#. The restoration cannot b
exact, because the RPA wave function is valid only in
vicinity of the Hartree-Fock state@14# and cannot be extrapo
lated to, for example, large rotation angles.

Still, we now have a tool to further explore symmet
restoration, by computing Casimir operators of symme
groups. Specificially, we consider^J2&. Ideally, if the RPA
restores a broken symmetry, one might imagine that one
ther regains the exact ground state value of^J2& or gets very
close to it.

We present our results in Table IV. The pattern is t
same as with other operators:^J2& is generally better in RPA
than in Hartree-Fock but not always very close to the ex
shell-model value. Even worse are the cases with a clo
shell in HF, such as22,24O: the HF value is correct, while th
RPA value is terrible.

To examine this issue more closely, in Fig. 3 we ag
plot, for 28Si, ^J2& versus thed5/2 single-particle energy
through the transition from deformed to spherical HF sta
The results are better for the deformed HF state, although
obtain slightly negative, and thus nonphysical, values
^J2&.

Calculation of^J2& is not necessarily the only test of re
toration of symmetry. One would also expect, for nuclid
with J50 ground states, that^Ji&50,i 5x,y,z. This will be
an important test of the restoration of symmetry, but asJi is
a nonscalar observable it is beyond the scope of the pre
paper. Note, however, that for even-even nuclides,^Ji&50

TABLE IV. Ground-state expectation valuêJ2& for selected
nuclides, grouped into even-even, single-species, odd-odd, and
A.

Nucleus HF RPA SM

20Ne 16.06 20.45 0
22Ne 17.17 21.16 0
24Mg 20.13 22.52 0
26Mg 18.61 21.72 0
28Si 20.89 21.99 0
44Ti 31.65 23.10 0
46Ti 31.53 25.00 0
48Cr 29.37 4.72 0

20O 6.07 1.76 0
22O 0.00 7.99 0
24O 0.00 7.38 0

20F 18.46 12.41 6
22Na 25.57 14.57 12
26Al 35.98 27.92 0
46V 39.56 20.00 0

19F 15.12 5.52 0.75
21F 15.51 9.47 8.75
21Ne 19.05 12.68 3.75
23Na 19.42 11.87 3.75
25Mg 23.87 14.51 8.75
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for the Hartree-Fock state due to time-reversal invarian
The question then becomes whether or not for deform
states the RPA corrections to^Ji& are also zero. In the nea
future we will perform these calculations as evidence for
against the restoration of rotational symmetry in the RPA

An additional test of symmetry restoration would be co
putation of the expectation value of other nonscalar obse
ables, such as the magnetic dipole moment or electric qu
rupole moment, for a deformed nucleus with aJ50 shell-
model ground state. We have preliminary, unpublish
calculations which suggest that indeed the RPA ground s
of even-even nuclides retains a significant quadrupole m
ment, another piece of evidence that symmetry is inco
pletely restored.

There are other observables one would like to comp
relevant to broken symmetries. Aside from the Casimir its
the dispersion of a Casimir would be a useful measure.
example, consider quasiparticle RPA~QRPA!, where particle
number is broken in the Hartree-Fock-Bogoliubov state. O
would like to see the QRPA value of the dispersion^N̂2&
2^N̂&2 move close to zero. Another example would
proton-neutron RPA~pnRPA! or pnQRPA, allowing protons
and neutrons to mix, so thatTz5Z2N is no longer an good
quantum number; this is applicable to beta decay. Here
might consider̂ T̂z

2&2^T̂z&
2. Unfortunately, we suspect tha

the dispersion would also signal incomplete symmetry res
ration.

V. SUMMARY AND CONCLUSION

We derived a expression for the ground-state expecta
value of observables in the matrix formulation of RPA, usi
the quasiboson approximation, and tested it against e
shell-model calculations for selected scalar operators.
RPA value was in general an improvement over the Hartr
Fock value, but failed to be a consistent and reliable estim
of the exact expectation value.

There are a number of generalizations and modificati
to the RPA: the number-operator method, renomalized R
self-consistent RPA, modified RPA, etc.@10,18–22#. Rowe
@10# and others@23# compared the quasiboson approximati
for occupation numbers with the number-operator meth
and found the quasiboson overestimated the occupation n
ber by a factor of 2. This factor of 2 is often attributed

dd-

FIG. 3. ^J2& in 28Si as thed5/2 single-particle energy is lowered
relative to the other single-particle energies. The solid line is
~exact! shell-model value, the dotted line the HF value, and
dashed line the RPA value.
4-6



a

he
a

le
in

de

the
on,
ns.

ga-

SCALAR GROUND-STATE OBSERVABLES IN THE . . . PHYSICAL REVIEW C 66, 064304 ~2002!
double counting~but see footnote 15 of Ref.@10#, which
suggests it may be due to the failure of the quasiboson
proximation to fully satisfy the Pauli principle!. On the other
hand, Dukelsky, Hirsch, and Schuck@24# recently compared
the occupation number for the Lipkin model in the RPA, t
number-operator method, and the self-consistent RPA,
found the latter gave consistently better results.

In this paper we have restricted ourselves to the simp
RPA approach, but considered a more general operator
more realistic model. Clearly the next step would be to
e

t.

t

ls

v
-

06430
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nd

st
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rive expressions for a general scalar observable in
number-operator method, self-consistent RPA, and so
and compare against nontrivial shell-model calculatio
This we leave to future work.
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