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Working within an exactly solvable three level model a boson Hamiltonian is defined via a mapping
procedure and its expansion truncated at four-boson terms. The resulting spectrum is found in good agreement
with the exact one. We discuss an extension of the random-phase approxifiR@énbased on this boson
formalism. Nonlinear RPA-type equations are constructed and solved iteratively. The new solutions gain in
stability with respect to the RPA ones. We perform diagonalizations of the boson Hamiltonian in restricted
spaces; approximate spectra exhibit an improved quality with increasing the size of these spaces. Special
attention is addressed to the problem of the anharmonicity of the spectrum.
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[. INTRODUCTION in the boson image of the Hamiltonian provides a natural
way to reach a higher level of approximation. In addition to
The most commonly used microscopic approach for thehat, the inclusion of these terms has another important ef-
study of collective vibrational states in many-fermion sys-fect: it leads to a coupling among multiphonon states. States
tems is the random-phase approximati®PA) [1]. In this  which result from a diagonalization inrephonon space are
theory the lowest collective excitations result from the actiontherefore superpositions of zero-, one-,, m-phonon
of phonon operator@f, on a statéRPA) which is defined by ~ states. Such a diagonalization is expected to lead to a further
the condition thatQ,|RPA)=0. This state represents the improved degree of approximation as well as to cause anhar-
ground state of the system. It is a distinctive feature of RPANONICities in the spectrum. _
that multiphonon states, i.e., states obtained by repeated ac- Calculations in this boson formalism have been per-
tions of phonon operators on the ground state, are eigenstati¥Med in the recent past for atomic nucl&b,2q consider-
of the Hamiltonian with energies forming a harmonic spec-'ng.a. Halmllltonlan truncated at four-boson terms and diago-
trum. The existence of states which can be approximatel allzllng I mhthe space of r(?ne- and Lwo-pf;onog Istates. The
described as corresponding to the multiple excitation of low- ?Slllj tlng Z%QPSrTOHICItt'.esl avti not heen o_u.rt1 arge .etspde-
lying and/or high-lying phonons is well established in atomicZ'aV N - !N particuiar, the anharmonicily associate
. L S with states whose main component is a double giant reso-
nuclei. However, dewa.tlo.ns from the harmonic picture aré nce has been found of the order of a few hundred keV.
gfgnoef)ns;;\;(ae%Z?nd their influence on several processes h?ﬁis is certainly related to the fact that RPA gives a good

o . . description of giant resonances especially in heavy closed
In a standard derivation of the RPA equations a cruciakpe|| nuclei.

point is represented by the so called quasiboson approxima- |5 metallic clusters the dipole plasmon is a strongly col-
tion (QBA). This is a rather crude approximation which |ective state which corresponds to the oscillation of the de-
causes the operatog¥, to behave as boson operators in spite|ocalized electrons of the cluster against the positively
of their (composit¢ fermionic structure. Overcoming this ap- charged ions. The experimental evidence for states corre-
proximation has represented the starting point of many atsponding to the double excitation of the plasmon has not
tempts aiming at improving RPE8—22. One of the line of  been confirmed23]. From the theoretical point of view the
research in such a context has been based on a reformulatigiuation is also quite unclear. On the one hand, in R
of the whole theory in a boson formalisf@6—22. In other  a purely harmonic spectrum for the multiple excitation of the
words, the operator®! have been defined from the begin- plasmon has been predicted. On the other hand, by using the
ning in terms of true boson operators and all the fermionrsame approach as in Refd9,20 huge anharmonicities in
operators of interest have been replaced by their boson inthe two-plasmon states have been folial]. An important
ages via a mapping procedure. The RPA-type equations thaifference with respect to the case of atomic nuclei is that in
one constructs in this formalism depend on the degree ametallic clusters the two-body interaction is very long
expansion of the boson Hamiltonian. Truncating this expanranged. This is probably the main reason why the RPA
sion at the lowest order, i.e. at two-boson terms only, giveground state is very different from the Hartree-Fock one and
the boson counterpart of RPA. Including higher-order termshe RPA backward amplitudes are quite large. Of course, this
may cause that the same level of truncation in the boson
expansion is not adequate both in the case of nuclei and of
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two-phonon states and on their degree of anharmonicity. Un- 20
fortunately, since the states one looks for are quite high in Kij= E afmajm (i1,j=0,1,2). (2.1
energy, the number of configurations required to get stable m=1
results is hgge. In Ref26] suph a Stl_de has been perfprmed These operators satisfy the commutation relations
for a very simple case: two interacting electrons moving in a
uniform positive charge distribution. This is a kind of pre- [Kij ,Kii]= 8K — 8 K (2.2
cursor of a metal cluster in the jellium approximation and
allows for a numerically exact calculation. Important devia-thus forming a W3) algebra. With the additional constraint
tions from the harmonic limit have been found. More spe-that fixes the total number of particles, the operatérse-
cifically, in addition to an almost perfectly harmonic vibra- come the generators of the algebra(3jU
tional band based on the ground state, other states appear The Hamiltonian of the model is written in terms of the
which have a much lower degree of harmonicity. generator«;; only and contains up to two-body interactions.

In this paper we will analyze the anharmonicities presenits most general form is
in the low-lying spectrum of a three-level solvable model
[27] by providing at the same time an interesting test for a He— 2 (K, + 2 Vo(i, ) KioKor
boson-mapping-based extension of RPA. We will shed some ) R = T R
light on the limits of the approach adopted in R¢f0] and
[25]. The analysis we are going to present is very similar to - 2 W
that made in Refl21] where a two-level model was consid- +i,j21,2 Va1 (KioKjot KojKor)
ered and the parameters were adjusted in such a way to mim-
ick the multiple excitation of giant resonance. Of course, the P e w
three-level model is richer. In particular, since there are two +i,j,kE:1,2 Vall.] k) (KioK it KigKor)
single particle states above the Fermi surfguaticle states
an(_JI one belowhole), two_different ele_mentary)-h configu- + V(i,j kDK K+ ViaK Koo, (2.3
rations and, correspondingly, two different phonons can be ij.kT=1,2
excited. Therefore, one can better simulate the situation en-
countered in nuclei which generally present one high-lyingwith real coefficients. The eigenstates and the eigenvalues of
and one low-lying collective modes for each multipolarity. Hr can be constructed either by using the properties of the
Also, matrix elements of the interaction connecting aalgebra SUB) or by diagonalizingH in the following space:
particle-hole state with a two-particle one can be included in
a natural way as well as those involving four-particle states
or four-hole states. These terms are present in a generic two- F=1[ning)= —/—(Klo)nl(KZO)n2|o> '

. NNy

body interaction and are very important since the former 0=n,+n,=20
couple states having numbers of phonons differing by one (2.9
while the latter couple states having the same number of o

phonons. whereJ\/nlnz are normalization factors.

The paper is organized as follows. In Sec. Il we will de- We simplify the calculations by assuming the coefficients
scribe the model and analyze the anharmonicities of its exaeif the interaction terms independent of the levels, i.e.,
excitation spectrum. In Sec. Il we will introduce the boson-Vo(i,j)=Vo, Vi(i,j])=Vi, Vo(i,j,K)=V,, Va(i,j, k)
mapping technique and construct the image of the fermior=V3;, and proportional to one parametgr which is ex-
Hamiltonian. In Sec. IV we will present an extension of RPApressed in units of energy. We have chosen all the coeffi-
and show the results obtained by diagonalizing the bosonients negative, assuming in this way that all the interation
hamiltonian. Finally, in Sec. V we will draw some conclu- terms are attractive. We set the first two coefficievisand
sions. V1, which involve only particle-hole excitations, equal to a

common value— y. For the remaining coefficients we have
considered smaller values: in a first case they have been set
Il. THE MODEL AND THE EXACT SPECTRUM all equal to—x/10 and in a second case they have been
) doubled. We have chosen the energies of the three levels
The model[27] consists of three Q-fold degenerate gqual to 0, and 2.5 wheree is expressed in units of en-

single-particle shells which are occupied byl Zparticles.  ergy. Therefore the two sets of parameters used in the calcu-
Therefore, in the absence of interaction, the lowest level i$ations are

completely filled while the others are empty. This lowest
state represents the “Hartree-FodtiF) state of the system €(0)=0, e(l)=¢, €(2)=2.5,
and is denoted by0). A single-particle state is specified by
a set of quantum numbers, (n), wherej stands for the shell Vo=—x, Vi=—x, V,=—x/10,
(j=0,1,2) andn specifies the  substates within the shell.
The creation and annihilation operators of a fermion in a V3=—x/10, V,=—x/10 (2.5
state {,m) are defined b)aij andaj,, respectively.
Let us define the operators and

064303-2



BOSON-MAPPING-BASED EXTENSION OF THE . ..

E
=N N I N -
T

S (=

Vo
v

- .

0 0.1 0.2 0.3 04 0.5

FIG. 1. Top: exact excitation energies in unitseofor the one-
phonon and two-phonon states as function of the strendtin the
set of parameters2.5. Bottom: ratiosR, ,,, Eq. (2.7), for the
two-phonon states and the same set of parameters.

€(0)=0, e(l)=e€ €(2)=25,
VOZ_Xv Vl:_Xv VZZ_X/SI

For both sets of parameters we have chos@r=20.

We show in the upper part of Figs. 1 and 2 some excita
tion energies calculated by diagonalizing the fermion hamil
tonian Hg in the space F, Eq(2.4), with the two sets of
parameterg2.5) and (2.6), respectively, as function of the
parameterr=2(Q) x/e. We report only the energies of those

states which are purept-1h and 20— 2h states at-=0; in

this way, we simplify our analysis looking only at those

states that in RPA are pure one-phondw)) and two-

phonon (»,v,)) states. One can observe that the two re-
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one-hole ¥,), four particle {/3), and four hole ¥,) chan-
nels have the general effeGexcept for the staté2)) of
pushing the excitation energies towards higher values. We
observed that the results do not depend on the sigyi,of
due to the structure of the matrix to be diagonalized. Chang-
ing the signs of the interaction ternms; and V, we got a
lowering of the excitation energies; in particular, the term
with strengthV; starts to be important at high values of the
strength7, while the term with strengt, is important al-
ready at low values of. This is related to the fact that the
four hole term affects the ground state energy also when the
correlations are absent or small, while the other term is ef-
fective only when the correlations are well developed.
Although not clearly visible at a first glance, the spectra
of Figs. 1 and 2 show marked anharmonicities. In order to
quantify these, in the lower part of Figs. 1 and 2 we show, for
the two sets of parameters, respectively, the following ratios:

Eyp,—(E,,+E,)

R E, +E, '
1 2

(2.7)

vivy

where byE, and E,,,, we mean the exact excitation ener-

gies of the statels’) and|»,v,). One notices a well different
behavior of the plotted ratios. In both figures the rd®ias

very small for the statel2) and|22) showing that the cor-
responding exact states can be quite well described as pure
two-phonon states for all the considered values of the param-
eter 7. On the contrary, the rati®,;; changes rapidly with
increasingr showing stronger anharmonicities for the state
111). Thus, for both sets of parameters the spectrum is found

to exhibit some levels with a clear harmonic nature and other
levels which do not display this nature and whose anharmo-
nicities depend on the strength of the interaction terms of the
Hamiltonian. These results resemble to some extent those of
Ref. [26] where a realistic two-electron system was exam-
ined. The existence of anharmonicities represents an evident
limit to the harmonic picture of RPA that cannot be a good
approximation to reproduce the multiphonon spectrum of the

ported spectra are slightly different. In the second case, thﬁﬁodel
stronger attractive interaction terms in the three-particle— '

[22>

nb\/
s |

o =+ N W A~ 0o

0 0.1 0.2 0.3 0.4 0.5
T

FIG. 2. Same as in Fig. 1 for the set of parameters).

Ill. THE BOSON MAPPING

Let us define the space

1
BE[ In1n) = ——=—=(b1)"1(b7)"|0) :
1- 2+

0=n;+n,<20

(3.9

where the operatort:ﬁT obey the standard boson commutation
relations

[bi.b/1=5;, [b;.b;]=0 (3.2
and |0) is the vacuum of thdy;’s operators. A one-to-one
correspondence exists between the state§ @ind B, the
boson operatorts)fr playing the role of the excitation opera-
tors Ko and the boson vacuur®) replacing the HF state

0).
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FIG. 3. Comparison between the exact one-phonon and two- FIG. 4. Same as in Fig. 3 for the set of parameter§).

phonon spectrum and the corresponding one obtained by diagonal- . . . .. .
izing Hg in the whole boson spadfor the set of parametef&.5). have also verified that the inclusion of an additional five-

The energies are expressed in unitseof boson term of the typ&'b'b'bb considerably reduces the
above differences in the spectra but we have nevertheless
The mapping procedure to construct boson images of fefPreferred to keep the boson Hamiltonian in the fo(@m3)
mion operators is the same discussed in pre\/ious WEHES, since this more Closely reflects a realistic castere the
for instance, Ref[18]) and, due to the orthonormality of €valuation of the five-boson term would likely become rather
both sets of staté®;,n,) and|n;,n,), it is simply based on difficult and would therefore be avoided
the requirement that corresponding matrix elemenfs &md In the next section we will show and comment some re-
B be equal. Therefore, the procedure is of Marumori typesults obtained by diagonalizingy in restricted spaces, con-
We refer to Refs[18,28 for more details. Here, we simply taining up to two, three, and four bosons. The quality of the
say that, in correspondence with the Hamiltontap (2.3),  results will be judged by comparing them with those ob-
we introduce a hermitian boson Hamiltonikig which con-  tained by diagonalizingig in the full boson spac®. We
tains up to four-boson terms and whose general form is Wil denote the latter as reference spectrum.

IV. EXTENSION OF RPA AND DIAGONALIZATION OF Hg

HB:a+2i Bi(bl+ H-C-)+i2j ¥iibib; IN RESTRICTED SPACES
The calculation in the full bosonic spaBeis not feasible
+> ¢ij(binjT+ Hc)+ 2> D Gijk(binijk+ H.c) for realistic many-body systems and one has to resort to re-
i<j iI<j k stricted spaces where only states containing up to a certain
number of bosons are considered. In Fig. 5 we compare the
> 5ijklbinijkbl reference spectrum for the set of paramet@rs) with those
i<j k=l obtained by limiting the number of bosons to two, three, and
four. These calculations correspond to diagonalizations in
+ > D> pijkl(bi’fbj’fblblJr H.c), (3.3  spaces constructed by acting with two-particle—two-hole,
isjsk 1 three-particle—three-hole, and four-particle—four-hole excita-

tion operators on the Hartree-Fock stHie. We see that the
, the — parametergggits obtained by limiting the number of bosons to two are
€(i),Vo,V1,V2, V3, V, of Eq. (2.3. very poor even for those states which at zero interaction
For the two sets of parameters, E¢8.5 and (2.6, we  gyength are pure 1 boson states. Enlarging the space the
show in Figs. 3 and 4, respectively, the comparison betweeg ity of the results improves. However, even for the largest
the exact excitation energies and those obtained by diagon pace it is satisfactory only for strengtk<0.25. One may

izing Hg in the spaceB in order to check the validity of the gynect that by introducing collective bosofshonons the
four-boson truncation of the boson Hamiltonian. We can o agreement becomes better.

serve that the agreement between the two spectra is rathel’| ot ;s now introduce the operators

good for both sets of parameters. Differences between boson

and fermion spectra start to be significant only for rather + Dt (o)

large values ofr (=0.35) and are more evident for the set szzi: (Xi"bi = Yi"by), (4.
(2.6). This means that in the chosen range of values thfe

considered truncation of the Hamiltonian is sufficient. Weand let the stat¢¥ ) satisfy the condition

with the coefficients depending on
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FIG. 6. Excitation energies of the states and|v,v,) calcu-
lated within RPA(dotted line$ and ERPA(dashed linescompared
with the corresponding reference statédl lines) for the set of
parameter$2.5). The energies are in units ef

Hamiltonian, proportional t&/,, V3, andV,, which do not
enter in the RPA equations. On the other hand, they take into

account some corrections to the violation of the Pauli prin-

FIG. 5. Comparison between the reference spectrum and thosg e 1, this case the double commutators are operators. In
obtained by limiting the bosonic space up to two, three, and fourorder to calculate their expectation values|ifiy), as re-

_bosoptsb f?r the set of parametef2.5). The energies are expressed quired in Eqs(4.4) and (4.5), one can express the operators
N units ot e. b andb’ in terms ofQ andQ", by reversing Eq(4.1) (and
its adjoiny and using the orthonormality conditions

Q,|Wg)=0. 4.2

By using the equations of motion meth{#B] one finds that Sy = ; (XPX] = YY), (4.6
the amplitudesX andY are solutions of
This procedure gives, however, matrickgnd B which de-
A B xX®) X pend on theX andY amplitudes and, consequently, equations
(—B* _A*)<Y(V)) o V)(Y(V)>, (4.3 of motion (4.3 which are nonlinear. In what follows this
nonlinear extension of RPA will be called ERPAG].

Having determined the amplitud&sandY within RPA or

where
ERPA, one can express the Hamiltonidg in terms of the
Aij=(Yo|[b; ,[Hg bIw,), (4.4  operatorsQ and Q'. In the case of RPA, namely, when the
boson Hamiltonian Eq3.3) is truncated at two-boson terms
Bij=—(Wo|[b; ,[Hg,bj1]|¥o). (4.5  only, Hg can be rewritten simply as
As anticipated in Sec. I, the form of Eq&1.3) is strictly HB:E0+E w(V)QIQw 4.7

related to the degree of truncation of the boson Hamiltonian.
In the hypothesis thatlz contains up to two-boson terms

. ) ' where »”) are the energies solutions of the RPA equations
the double commutators in Eqg.4) and(4.5) are just num- e 9 d

(4.3). This Hamiltonian obviously does not mix states with

be(rstw;\;]qh,_ trlﬁref(_)re,lar? also thﬁ \;]aluesbof thel_mz(ijt@c?ﬁ_ different phonon numbers and so its eigenstates are pure
andb. This 1S the simplest case which can be realized IS, q . gne_ - m-phonon states. For a higher-level trunca-

formalism and represents the boson counterpart of the Stallo 1 in the boson Hamiltonian. such as for instance. that of
dard RPA. One limitation of RPA is that it collapses at 2Eq. (3.3, Hg acquires instead 7the more general fornln

given strength of the interaction and imaginary energies are B
found. This problem is not present in spherical closed shell Hg=Eq+H;o(QT+H.c)+H;;QTQ+H,o(QTQT+H.c)
nuclei, while it shows up in other many-body systems as, for

example, in metallic clusters. This degree of approximation +H2(Q'QTQ+H.c)+Ha(Q'Q'Q"+H.c)

can be improved by introducing a Hamiltonian with higher- +H..0T0T00+H tofoto+H.c

order terms such as, for instance, E§.3. These terms 2QQIQQTHA(QRQRQ+H.C)

originate on one hand from those parts of the fermionic +H(Q'Q'QTQT+H.c), (4.9
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—— Diag. of Hbin B

FIG. 7. Same as in Fig. 6 for the set of paramet@rs).

where the coefficientsl;; are functions oX andY (for sim-
plicity, we have dropped all the indice#\Iso in this case, as
in RPA, the termH,, as well as the nondiagonal terrhk ;
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Diag. of Hbin B
upto2Q
—--upto3Q
— — uptodQ

0 0.1 0.2 0.3 0.4 0.5

vanish, as can be easily shown using the fact that the ampli- T

tudesX andY are solutions of the ERPA equations. However,

the remaining terms of Eq4.8) mix different multiphonon

FIG. 9. Same as in Fig. 8 for the set of paramet@rs).

states so that the eigenstates of the full Hamiltonian becomERPA equations are not eigenvalues of the boson Hamil-
combinations of these states. This fact introduces an evidef@nian in the phonon space as it is in the case of Riffere
difference with RPA since the energies which result from thethey provide the excitation energies of the one-phonon eigen-

Diag. of Hb in B i
--------- upto2Q i
—--uwpto3Q i
4 |——utodQ A

states.

With the chosen parameters RPA collapses=a0.24. On
the contrary, we found real solutions of the ERPA equations
of motion in the whole considered strength range. Moreover,
the so obtained energies for the stdtesand|2) are in good
agreement with the reference ones for strength uprto
=0.3. This shows that these states can be quite well de-
scribed as pure one-phonon states. However, we want to
stress that this does not imply a harmonic spectrum. Indeed,
as already shown in Figs. 1 and 2, anharmonicities are
present forr=0.2. We show in Figs. 6 and 7, for the two sets
of parameter$2.5 and(2.6), respectively, the excitation en-
ergies of the statds’) and|v,v,) calculated within RPA and
ERPA. They are compared with the corresponding reference
states.

In Figs. 8 and 9 we show the spectra obtained by diago-
nalizing Hg in spaces containing up to two, three, and four
ERPA phonons. By comparing them with the reference re-
sults (shown as full lines one sees that the agreement im-
proves by enlarging the space and is satisfactory in the whole
range of the interaction strength when the mixing of states up
to four phonons is taken into account. It is worthwhile noting
that the results with the phonor@ are much better than
those obtained with the bosobs The comparison is shown
in Fig. 10 in the case of the largest spaces and with the
parameterg2.5).

FIG. 8. Comparison between the reference spectrum and those V. CONCLUSIONS

obtained by diagonalizinglz in the spaces containing up to two,

three and four ERPA phonons for the set of paramegi@5. The
energies are expressed in unitseof

In this paper we have analyzed some of the lowest excited
states of the spectrum of a solvable three-level model,
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derivation has been of Marumori type. The quality of the
] boson Hamiltonian has been tested by comparing its eigen-
values with the exact ones. Within the considered range of
variation of the interaction strength the agreement between
fermion and boson energies has always been found rather
ood.
eeaat ’ By making use of this boson Hamiltonian we have intro-
wiodb duced an extension of the RPA. The resulting equations of
motion have the same form as the RPA ones but are nonlin-
ear. They have been solved iteratively. The new solutions
have gained in stability with respect to the RPA ones and, in
particular, around the RPA collapse point the new energies
have exhibited a good agreement with the exact ones. This
extension of RPA, while introducing corrections to the Pauli
principle violations present in RPA, naturally leads to a
Hamiltonian which mixes states with a different number of
0 01 0.2 0.3 0.4 05 phonons. We have performed diagonalizations in spaces con-
T taining up to two-, three-, and four-phonon states and ob-
_ served an improved quality of the approximate spectra with
FIG. 10. Comparison between the reference spectrum, that Ol?hcreasing the size of the spaces.
tained by limiting the boson space up to four bosanand that Special attention has also been addressed to the problem
obtained by limiting the space up to four ERPA phonons for the Sef¢ tha anharmonicity of the spectrum. This has been found
of parameter$2.5). The energies are in units ef relevant for the state which, in RPA, is described as the
double excitation of the lowest one-phonon state. On the
namely, those that in RPA would be described as one- andontrary, for the other states, a less pronounced anharmonic-
two-phonon states. We have worked in a boson formalismity has been found. These findings agree with those of Ref.
As a preliminary step we have constructed a boson image ¢26] and point to the necessity of considering together all the
the fermion Hamiltonian whose expansion has been trunpossible elementary excitations of a many-body system when
cated at four-boson terms. The procedure followed in such discussing the anharmonicity of its spectrum.
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