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Boson-mapping-based extension of the random-phase approximation in a three-level Lipkin mode
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Working within an exactly solvable three level model a boson Hamiltonian is defined via a mapping
procedure and its expansion truncated at four-boson terms. The resulting spectrum is found in good agreement
with the exact one. We discuss an extension of the random-phase approximation~RPA! based on this boson
formalism. Nonlinear RPA-type equations are constructed and solved iteratively. The new solutions gain in
stability with respect to the RPA ones. We perform diagonalizations of the boson Hamiltonian in restricted
spaces; approximate spectra exhibit an improved quality with increasing the size of these spaces. Special
attention is addressed to the problem of the anharmonicity of the spectrum.
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I. INTRODUCTION

The most commonly used microscopic approach for
study of collective vibrational states in many-fermion sy
tems is the random-phase approximation~RPA! @1#. In this
theory the lowest collective excitations result from the act
of phonon operatorsQn

† on a stateuRPA& which is defined by
the condition thatQnuRPA&50. This state represents th
ground state of the system. It is a distinctive feature of R
that multiphonon states, i.e., states obtained by repeated
tions of phonon operators on the ground state, are eigens
of the Hamiltonian with energies forming a harmonic spe
trum. The existence of states which can be approxima
described as corresponding to the multiple excitation of lo
lying and/or high-lying phonons is well established in atom
nuclei. However, deviations from the harmonic picture a
also observed and their influence on several processes
been analyzed@2#.

In a standard derivation of the RPA equations a cruc
point is represented by the so called quasiboson approx
tion ~QBA!. This is a rather crude approximation whic
causes the operatorsQn

† to behave as boson operators in sp
of their ~composite! fermionic structure. Overcoming this ap
proximation has represented the starting point of many
tempts aiming at improving RPA@3–22#. One of the line of
research in such a context has been based on a reformul
of the whole theory in a boson formalism@16–22#. In other
words, the operatorsQn

† have been defined from the begi
ning in terms of true boson operators and all the ferm
operators of interest have been replaced by their boson
ages via a mapping procedure. The RPA-type equations
one constructs in this formalism depend on the degree
expansion of the boson Hamiltonian. Truncating this exp
sion at the lowest order, i.e. at two-boson terms only, gi
the boson counterpart of RPA. Including higher-order ter
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in the boson image of the Hamiltonian provides a natu
way to reach a higher level of approximation. In addition
that, the inclusion of these terms has another important
fect: it leads to a coupling among multiphonon states. Sta
which result from a diagonalization in am-phonon space are
therefore superpositions of zero-, one-,. . . , m-phonon
states. Such a diagonalization is expected to lead to a fur
improved degree of approximation as well as to cause an
monicities in the spectrum.

Calculations in this boson formalism have been p
formed in the recent past for atomic nuclei@19,20# consider-
ing a Hamiltonian truncated at four-boson terms and dia
nalizing it in the space of one- and two-phonon states. T
resulting anharmonicities have not been found large es
cially in 208Pb. In particular, the anharmonicity associat
with states whose main component is a double giant re
nance has been found of the order of a few hundred k
This is certainly related to the fact that RPA gives a go
description of giant resonances especially in heavy clo
shell nuclei.

In metallic clusters the dipole plasmon is a strongly c
lective state which corresponds to the oscillation of the
localized electrons of the cluster against the positiv
charged ions. The experimental evidence for states co
sponding to the double excitation of the plasmon has
been confirmed@23#. From the theoretical point of view the
situation is also quite unclear. On the one hand, in Ref.@24#
a purely harmonic spectrum for the multiple excitation of t
plasmon has been predicted. On the other hand, by using
same approach as in Refs.@19,20# huge anharmonicities in
the two-plasmon states have been found@25#. An important
difference with respect to the case of atomic nuclei is tha
metallic clusters the two-body interaction is very lon
ranged. This is probably the main reason why the R
ground state is very different from the Hartree-Fock one a
the RPA backward amplitudes are quite large. Of course,
may cause that the same level of truncation in the bo
expansion is not adequate both in the case of nuclei an
metal clusters.

In principle, configuration mixing calculations can give
clear, model independent, indication on the existence of s
©2002 The American Physical Society03-1
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GRASSO, CATARA, AND SAMBATARO PHYSICAL REVIEW C66, 064303 ~2002!
two-phonon states and on their degree of anharmonicity.
fortunately, since the states one looks for are quite high
energy, the number of configurations required to get sta
results is huge. In Ref.@26# such a study has been perform
for a very simple case: two interacting electrons moving i
uniform positive charge distribution. This is a kind of pr
cursor of a metal cluster in the jellium approximation a
allows for a numerically exact calculation. Important dev
tions from the harmonic limit have been found. More sp
cifically, in addition to an almost perfectly harmonic vibr
tional band based on the ground state, other states ap
which have a much lower degree of harmonicity.

In this paper we will analyze the anharmonicities pres
in the low-lying spectrum of a three-level solvable mod
@27# by providing at the same time an interesting test fo
boson-mapping-based extension of RPA. We will shed so
light on the limits of the approach adopted in Refs.@20# and
@25#. The analysis we are going to present is very similar
that made in Ref.@21# where a two-level model was consid
ered and the parameters were adjusted in such a way to m
ick the multiple excitation of giant resonance. Of course,
three-level model is richer. In particular, since there are t
single particle states above the Fermi surface~particle states!
and one below~hole!, two different elementaryp-h configu-
rations and, correspondingly, two different phonons can
excited. Therefore, one can better simulate the situation
countered in nuclei which generally present one high-ly
and one low-lying collective modes for each multipolari
Also, matrix elements of the interaction connecting
particle-hole state with a two-particle one can be included
a natural way as well as those involving four-particle sta
or four-hole states. These terms are present in a generic
body interaction and are very important since the form
couple states having numbers of phonons differing by
while the latter couple states having the same numbe
phonons.

The paper is organized as follows. In Sec. II we will d
scribe the model and analyze the anharmonicities of its e
excitation spectrum. In Sec. III we will introduce the boso
mapping technique and construct the image of the ferm
Hamiltonian. In Sec. IV we will present an extension of RP
and show the results obtained by diagonalizing the bo
hamiltonian. Finally, in Sec. V we will draw some conclu
sions.

II. THE MODEL AND THE EXACT SPECTRUM

The model @27# consists of three 2V-fold degenerate
single-particle shells which are occupied by 2V particles.
Therefore, in the absence of interaction, the lowest leve
completely filled while the others are empty. This lowe
state represents the ‘‘Hartree-Fock’’~HF! state of the system
and is denoted byu0&. A single-particle state is specified b
a set of quantum numbers (j ,m), wherej stands for the shel
( j 50,1,2) andm specifies the 2V substates within the shel
The creation and annihilation operators of a fermion in
state (j ,m) are defined byajm

† andajm , respectively.
Let us define the operators
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m51

2V

aim
† ajm ~ i , j 50,1,2!. ~2.1!

These operators satisfy the commutation relations

@Ki j ,Kkl#5d jkKil 2d i l Kk j ~2.2!

thus forming a U~3! algebra. With the additional constrain
that fixes the total number of particles, the operatorsK be-
come the generators of the algebra SU~3!.

The Hamiltonian of the model is written in terms of th
generatorsKi j only and contains up to two-body interaction
Its most general form is

HF5 (
i 51,2

e~ i !Kii 1 (
i , j 51,2

V0~ i , j !Ki0K0 j

1 (
i , j 51,2

V1~ i , j !~Ki0K j 01K0 jK0i !

1 (
i , j ,k51,2

V2~ i , j ,k!~Ki0K jk1Kk jK0i !

1 (
i , j ,k,l 51,2

V3~ i , j ,k,l !Ki j Kkl1V4K00K00, ~2.3!

with real coefficients. The eigenstates and the eigenvalue
HF can be constructed either by using the properties of
algebra SU~3! or by diagonalizingHF in the following space:

F5H un1n2&5
1

ANn1n2

~K10!
n1~K20!

n2u0&J
0<n11n2<2V

,

~2.4!

whereNn1n2
are normalization factors.

We simplify the calculations by assuming the coefficien
of the interaction terms independent of the levels, i
V0( i , j )5V0 , V1( i , j )5V1 , V2( i , j ,k)5V2 , V3( i , j ,k,l )
5V3, and proportional to one parameterx which is ex-
pressed in units of energy. We have chosen all the coe
cients negative, assuming in this way that all the interat
terms are attractive. We set the first two coefficientsV0 and
V1, which involve only particle-hole excitations, equal to
common value2x. For the remaining coefficients we hav
considered smaller values: in a first case they have been
all equal to 2x/10 and in a second case they have be
doubled. We have chosen the energies of the three le
equal to 0,e and 2.5e wheree is expressed in units of en
ergy. Therefore the two sets of parameters used in the ca
lations are

e~0!50, e~1!5e, e~2!52.5e,

V052x, V152x, V252x/10,

V352x/10, V452x/10 ~2.5!

and
3-2
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BOSON-MAPPING-BASED EXTENSION OF THE . . . PHYSICAL REVIEW C 66, 064303 ~2002!
e~0!50, e~1!5e, e~2!52.5e,

V052x, V152x, V252x/5,

V352x/5, V452x/5. ~2.6!

For both sets of parameters we have chosen 2V520.
We show in the upper part of Figs. 1 and 2 some exc

tion energies calculated by diagonalizing the fermion ham
tonian HF in the space F, Eq.~2.4!, with the two sets of
parameters~2.5! and ~2.6!, respectively, as function of th
parametert[2Vx/e. We report only the energies of thos
states which are pure 1p21h and 2p22h states att50; in
this way, we simplify our analysis looking only at thos
states that in RPA are pure one-phonon (un&) and two-
phonon (un1n2&) states. One can observe that the two
ported spectra are slightly different. In the second case,
stronger attractive interaction terms in the three-partic

FIG. 1. Top: exact excitation energies in units ofe for the one-
phonon and two-phonon states as function of the strengtht for the
set of parameters~2.5!. Bottom: ratiosRn1n2

, Eq. ~2.7!, for the
two-phonon states and the same set of parameters.

FIG. 2. Same as in Fig. 1 for the set of parameters~2.6!.
06430
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one-hole (V2), four particle (V3), and four hole (V4) chan-
nels have the general effect~except for the stateu2&) of
pushing the excitation energies towards higher values.
observed that the results do not depend on the sign ofV2,
due to the structure of the matrix to be diagonalized. Cha
ing the signs of the interaction termsV3 and V4 we got a
lowering of the excitation energies; in particular, the te
with strengthV3 starts to be important at high values of th
strengtht, while the term with strengthV4 is important al-
ready at low values oft. This is related to the fact that th
four hole term affects the ground state energy also when
correlations are absent or small, while the other term is
fective only when the correlations are well developed.

Although not clearly visible at a first glance, the spec
of Figs. 1 and 2 show marked anharmonicities. In order
quantify these, in the lower part of Figs. 1 and 2 we show,
the two sets of parameters, respectively, the following rat

Rn1n2
5

En1n2
2~En1

1En2
!

En1
1En2

, ~2.7!

where byEn and En1n2
we mean the exact excitation ene

gies of the statesun& andun1n2&. One notices a well differen
behavior of the plotted ratios. In both figures the ratioR is
very small for the statesu12& and u22& showing that the cor-
responding exact states can be quite well described as
two-phonon states for all the considered values of the par
eter t. On the contrary, the ratioR11 changes rapidly with
increasingt showing stronger anharmonicities for the sta
u11&. Thus, for both sets of parameters the spectrum is fo
to exhibit some levels with a clear harmonic nature and ot
levels which do not display this nature and whose anharm
nicities depend on the strength of the interaction terms of
Hamiltonian. These results resemble to some extent thos
Ref. @26# where a realistic two-electron system was exa
ined. The existence of anharmonicities represents an evi
limit to the harmonic picture of RPA that cannot be a go
approximation to reproduce the multiphonon spectrum of
model.

III. THE BOSON MAPPING

Let us define the space

B[H un1n2)5
1

An1!n2!
~b1

†!n1~b2
†!n2u0)J

0<n11n2<2V

,

~3.1!

where the operatorsbi
† obey the standard boson commutati

relations

@bi ,bj
†#5d i j , @bi ,bj #50 ~3.2!

and u0) is the vacuum of thebi ’s operators. A one-to-one
correspondence exists between the states ofF and B, the
boson operatorsbi

† playing the role of the excitation opera
tors Ki0 and the boson vacuumu0) replacing the HF state
u0&.
3-3
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GRASSO, CATARA, AND SAMBATARO PHYSICAL REVIEW C66, 064303 ~2002!
The mapping procedure to construct boson images of
mion operators is the same discussed in previous works~see,
for instance, Ref.@18#! and, due to the orthonormality o
both sets of statesun1 ,n2& andun1 ,n2), it is simply based on
the requirement that corresponding matrix elements inF and
B be equal. Therefore, the procedure is of Marumori ty
We refer to Refs.@18,28# for more details. Here, we simpl
say that, in correspondence with the HamiltonianHF ~2.3!,
we introduce a hermitian boson HamiltonianHB which con-
tains up to four-boson terms and whose general form is

HB5a1(
i

b i~bi
†1H.c.!1(

i j
g i j bi

†bj

1(
i< j

f i j ~bi
†bj

†1H.c.!1(
i< j

(
k

e i jk~bi
†bj

†bk1H.c.!

1(
i< j

(
k< l

d i jkl bi
†bj

†bkbl

1 (
i< j <k

(
l

r i jkl ~bi
†bj

†bk
†bl1H.c.!, ~3.3!

with the coefficients depending on the paramet
e( i ),V0 ,V1 ,V2 , V3 , V4 of Eq. ~2.3!.

For the two sets of parameters, Eqs.~2.5! and ~2.6!, we
show in Figs. 3 and 4, respectively, the comparison betw
the exact excitation energies and those obtained by diago
izing HB in the spaceB in order to check the validity of the
four-boson truncation of the boson Hamiltonian. We can
serve that the agreement between the two spectra is ra
good for both sets of parameters. Differences between bo
and fermion spectra start to be significant only for rath
large values oft (*0.35) and are more evident for the s
~2.6!. This means that in the chosen range of values oft the
considered truncation of the Hamiltonian is sufficient. W

FIG. 3. Comparison between the exact one-phonon and t
phonon spectrum and the corresponding one obtained by diag
izing HB in the whole boson spaceB for the set of parameters~2.5!.
The energies are expressed in units ofe.
06430
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have also verified that the inclusion of an additional fiv
boson term of the typeb†b†b†bb considerably reduces th
above differences in the spectra but we have neverthe
preferred to keep the boson Hamiltonian in the form~3.3!
since this more closely reflects a realistic case~where the
evaluation of the five-boson term would likely become rath
difficult and would therefore be avoided!.

In the next section we will show and comment some
sults obtained by diagonalizingHB in restricted spaces, con
taining up to two, three, and four bosons. The quality of t
results will be judged by comparing them with those o
tained by diagonalizingHB in the full boson spaceB. We
will denote the latter as reference spectrum.

IV. EXTENSION OF RPA AND DIAGONALIZATION OF H B

IN RESTRICTED SPACES

The calculation in the full bosonic spaceB is not feasible
for realistic many-body systems and one has to resort to
stricted spaces where only states containing up to a ce
number of bosons are considered. In Fig. 5 we compare
reference spectrum for the set of parameters~2.5! with those
obtained by limiting the number of bosons to two, three, a
four. These calculations correspond to diagonalizations
spaces constructed by acting with two-particle–two-ho
three-particle–three-hole, and four-particle–four-hole exc
tion operators on the Hartree-Fock stateu0&. We see that the
results obtained by limiting the number of bosons to two
very poor even for those states which at zero interact
strength are pure 1 boson states. Enlarging the space
quality of the results improves. However, even for the larg
space it is satisfactory only for strengtht<0.25. One may
expect that by introducing collective bosons~phonons! the
agreement becomes better.

Let us now introduce the operators

Qn
†5(

i
~Xi

(n)bi
†2Yi

(n)bi !, ~4.1!

and let the stateuC0) satisfy the condition

o-
al-

FIG. 4. Same as in Fig. 3 for the set of parameters~2.6!.
3-4
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QnuC0)50. ~4.2!

By using the equations of motion method@29# one finds that
the amplitudesX andY are solutions of

S A B

2B* 2A* D S X(n)

Y(n)D 5v (n)S X(n)

Y(n)D , ~4.3!

where

Ai j 5~C0u@bi ,@HB ,bj
†##uC0!, ~4.4!

Bi j 52~C0u@bi ,@HB ,bj ##uC0!. ~4.5!

As anticipated in Sec. I, the form of Eqs.~4.3! is strictly
related to the degree of truncation of the boson Hamilton
In the hypothesis thatHB contains up to two-boson terms
the double commutators in Eqs.~4.4! and~4.5! are just num-
bers which, therefore, are also the values of the matriceA
andB. This is the simplest case which can be realized in t
formalism and represents the boson counterpart of the s
dard RPA. One limitation of RPA is that it collapses at
given strength of the interaction and imaginary energies
found. This problem is not present in spherical closed s
nuclei, while it shows up in other many-body systems as,
example, in metallic clusters. This degree of approximat
can be improved by introducing a Hamiltonian with highe
order terms such as, for instance, Eq.~3.3!. These terms
originate on one hand from those parts of the fermio

FIG. 5. Comparison between the reference spectrum and t
obtained by limiting the bosonic space up to two, three, and f
bosonsb for the set of parameters~2.5!. The energies are expresse
in units of e.
06430
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Hamiltonian, proportional toV2 , V3, andV4, which do not
enter in the RPA equations. On the other hand, they take
account some corrections to the violation of the Pauli pr
ciple. In this case the double commutators are operators
order to calculate their expectation values inuC0), as re-
quired in Eqs.~4.4! and~4.5!, one can express the operato
b andb† in terms ofQ andQ†, by reversing Eq.~4.1! ~and
its adjoint! and using the orthonormality conditions

dnn85(
i j

~Xi
nXj

n82Yi
n8Yj

n!. ~4.6!

This procedure gives, however, matricesA andB which de-
pend on theX andY amplitudes and, consequently, equatio
of motion ~4.3! which are nonlinear. In what follows this
nonlinear extension of RPA will be called ERPA@16#.

Having determined the amplitudesX andY within RPA or
ERPA, one can express the HamiltonianHB in terms of the
operatorsQ andQ†. In the case of RPA, namely, when th
boson Hamiltonian Eq.~3.3! is truncated at two-boson term
only, HB can be rewritten simply as

HB5E01(
n

v (n)Qn
†Qn , ~4.7!

wherev (n) are the energies solutions of the RPA equatio
~4.3!. This Hamiltonian obviously does not mix states wi
different phonon numbers and so its eigenstates are
zero-, one-,. . . , m-phonon states. For a higher-level trunc
tion in the boson Hamiltonian, such as for instance, that
Eq. ~3.3!, HB acquires instead the more general form

HB5E01H10~Q†1H.c.!1H11Q
†Q1H20~Q†Q†1H.c.!

1H21~Q†Q†Q1H.c.!1H30~Q†Q†Q†1H.c.!

1H22Q
†Q†QQ1H31~Q†Q†Q†Q1H.c.!

1H40~Q†Q†Q†Q†1H.c.!, ~4.8!

FIG. 6. Excitation energies of the statesun& and un1n2& calcu-
lated within RPA~dotted lines! and ERPA~dashed lines! compared
with the corresponding reference states~full lines! for the set of
parameters~2.5!. The energies are in units ofe.
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GRASSO, CATARA, AND SAMBATARO PHYSICAL REVIEW C66, 064303 ~2002!
where the coefficientsHi j are functions ofX andY ~for sim-
plicity, we have dropped all the indices!. Also in this case, as
in RPA, the termH20 as well as the nondiagonal termsH11
vanish, as can be easily shown using the fact that the am
tudesX andY are solutions of the ERPA equations. Howev
the remaining terms of Eq.~4.8! mix different multiphonon
states so that the eigenstates of the full Hamiltonian bec
combinations of these states. This fact introduces an evi
difference with RPA since the energies which result from

FIG. 7. Same as in Fig. 6 for the set of parameters~2.6!.

FIG. 8. Comparison between the reference spectrum and t
obtained by diagonalizingHB in the spaces containing up to two
three and four ERPA phonons for the set of parameters~2.5!. The
energies are expressed in units ofe.
06430
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ERPA equations are not eigenvalues of the boson Ha
tonian in the phonon space as it is in the case of RPA~where
they provide the excitation energies of the one-phonon eig
states!.

With the chosen parameters RPA collapses att50.24. On
the contrary, we found real solutions of the ERPA equatio
of motion in the whole considered strength range. Moreov
the so obtained energies for the statesu1& andu2& are in good
agreement with the reference ones for strength up tot
50.3. This shows that these states can be quite well
scribed as pure one-phonon states. However, we wan
stress that this does not imply a harmonic spectrum. Inde
as already shown in Figs. 1 and 2, anharmonicities
present fort>0.2. We show in Figs. 6 and 7, for the two se
of parameters~2.5! and~2.6!, respectively, the excitation en
ergies of the statesun& andun1n2& calculated within RPA and
ERPA. They are compared with the corresponding refere
states.

In Figs. 8 and 9 we show the spectra obtained by dia
nalizing HB in spaces containing up to two, three, and fo
ERPA phonons. By comparing them with the reference
sults ~shown as full lines! one sees that the agreement im
proves by enlarging the space and is satisfactory in the wh
range of the interaction strength when the mixing of states
to four phonons is taken into account. It is worthwhile noti
that the results with the phononsQ are much better than
those obtained with the bosonsb. The comparison is shown
in Fig. 10 in the case of the largest spaces and with
parameters~2.5!.

V. CONCLUSIONS

In this paper we have analyzed some of the lowest exc
states of the spectrum of a solvable three-level mod

se

FIG. 9. Same as in Fig. 8 for the set of parameters~2.6!.
3-6
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BOSON-MAPPING-BASED EXTENSION OF THE . . . PHYSICAL REVIEW C 66, 064303 ~2002!
namely, those that in RPA would be described as one-
two-phonon states. We have worked in a boson formali
As a preliminary step we have constructed a boson imag
the fermion Hamiltonian whose expansion has been tr
cated at four-boson terms. The procedure followed in suc

FIG. 10. Comparison between the reference spectrum, that
tained by limiting the boson space up to four bosonsb and that
obtained by limiting the space up to four ERPA phonons for the
of parameters~2.5!. The energies are in units ofe.
ys

ys
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nd

ys
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derivation has been of Marumori type. The quality of t
boson Hamiltonian has been tested by comparing its eig
values with the exact ones. Within the considered range
variation of the interaction strength the agreement betw
fermion and boson energies has always been found ra
good.

By making use of this boson Hamiltonian we have intr
duced an extension of the RPA. The resulting equations
motion have the same form as the RPA ones but are non
ear. They have been solved iteratively. The new soluti
have gained in stability with respect to the RPA ones and
particular, around the RPA collapse point the new energ
have exhibited a good agreement with the exact ones. T
extension of RPA, while introducing corrections to the Pa
principle violations present in RPA, naturally leads to
Hamiltonian which mixes states with a different number
phonons. We have performed diagonalizations in spaces
taining up to two-, three-, and four-phonon states and
served an improved quality of the approximate spectra w
increasing the size of the spaces.

Special attention has also been addressed to the pro
of the anharmonicity of the spectrum. This has been fou
relevant for the state which, in RPA, is described as
double excitation of the lowest one-phonon state. On
contrary, for the other states, a less pronounced anharmo
ity has been found. These findings agree with those of R
@26# and point to the necessity of considering together all
possible elementary excitations of a many-body system w
discussing the anharmonicity of its spectrum.
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