PHYSICAL REVIEW C 66, 064301 (2002

Energy averages and fluctuations in the decay out of superdeformed bands
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We derive analytic formulas for the energy averdigeluding the energy average of the fluctuation contri-
bution) and variance of the intraband decay intensity of a superdeformed band. Our results may be expressed
in terms of three dimensionless variabl&s$/T'g, I'y/d, andI'y/(I's+T'!). HereI'! is the spreading width
for the mixing of a superdeforme@®D) state|0) with the normally deformedND) states Q) whose spin is
the same af0)’s. The|Q) have mean lever spacingand mean electromagnetic decay willtih whilst|0) has
electromagnetic decay widihs. The average decay intensity may be expressed solely in terms of the variables
I''/T'gandI'y/d or, analogously to statistical nuclear reaction theory, in terms of the transmission coefficients
To(E) and Ty describing transmission from tH&) to the SD band vigd0) and to lower ND states. The
variance of the decay intensity, in analogy with Ericson’s theory of cross section fluctuations, depends on an
additional variable, the correlation lengh, /(I's+ I'') = (d/2m) Ty /(I's+T'Y). This suggests that analysis of
an experimentally determined variance could yield the mean level spdcasydoes analysis of the cross
section autocorrelation function in compound nucleus reactions. We compare our results with those of Gu and

Weidenmllier.
DOI: 10.1103/PhysRevC.66.064301 PACS nunider21.60—n, 24.60—k
[. INTRODUCTION tion width of the Ericson’s theory of cross section fluctua-

tions. Its appearance suggests that measurement of the vari-

The basic feature to be explained in the decay out ofince of the decay intensity could yield the mean level
superdeformedSD) rotational band$1—4] is that the inten- ~ spacingd.
sity of the collectivey rays emitted during the cascade down  The paper is organized in the following manner. In Sec. II
an SD band remains constant until a certain spin is reachedle express the average decay intensity as an average term
whereafter it drops to zero within a few transitions. Theplus the average of a fluctuation term. In Sec. Il the expres-
sharp drop in intensity is believed to arise from mixing of thesion for the average decay intensity obtained in Sec. Il is
SD states with normally deformedD) states of identical €valuated approximately. In Sec. IV we calculate the vari-
spin[5]. The model of Refg.6—9] attributes the suddenness ance of the intensity within the same approximation scheme
of the decay out to the spin dependence of the barrier sep&s Sec. lIl. In Sec. V we interpret our results by analogy with
rating the SD and ND minima of the deformation potential.statistical nuclear reaction theory, expressing our results in
Reference§10—17 discuss the effect of the chaoticity of the terms of transmission coefficients and compare our results
ND states on the decay out. with those of GW. In particular we suggest a reason why GW

In the present paper, we derive analytic formulas for thedid not observe the variablEy/(I's+I'!) in their calcula-
energy averagéncluding the energy average of the fluctua- tion of the variance. Finally in Sec. VI we make some con-
tion contribution and variance of the intraband decay inten-cluding remarks including mention of the limitations of our
sity of a superdeformed band in terms of variables whichresults.
usefully describe the decay of8,4,13,14. We achieve this

using the MIT approach to statistical nuclear reaction theory Il. ENERGY AVERAGES AND FLUCTUATIONS

[15-17. The MIT approach tackles calculation of the fluc- ] ] )

tuation cross section and other moments of $hmatrix by The total intraband decay intensity has the form
directly calculating averages of fluctuating functions of en-[12,13,18

ergy. .

~ In agreement with Gu and Weidentiar [13] (GW) we |in:(27TFs)_1J dE|Ag(E)|2, (1)
find that average of the total intraband decay intensity can be —

written as a function of the dimensionless variablggl' g

andI'y/d, wherel'! is the spreading width for the mixing of Wwhere the intraband decay amplitude is given by

an SD state with normally ND states of the same sgiig 5

the mean level spacing of the latter afig (I'y) are the Ao(E)=y<(0|G(E)|0) ys. (2
electromagnetic decay widths of the SND) states. Our

formula for the variance of the total intraband decay inten-Here ys is the electromagnetic decay amplitude of superde-
sity, in addition to the two dimensionless variables just menformed statg0) defined such thal s= yé. We assume that
tioned, depends on the dimensionless variablg/(I's  the amplitude feeding0) is also given byys. The total
+T''). This additional variable is analogous to the correla-Green’s functionG is given by
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G(E)=(E—H) %, (3  where coupling back to thE space is accounted for by

where the full nuclear Hamiltonian is denoted Hyand has Woo=VorGVpo- (11
a non-Hermitian part which accounts for coupling to the

electromagnetic fieldsee Egs(5), (18), and (19) below]. By constructionG™=0 in so much ag; is unchanged by
The tilde is used to indicate the dual state or adjpird| of
|0).

In what follows we employ the optical background repre-
sentation introduced Kawai, Kerman, and McV§$6].
These authors investigated fluctuation cross sections using a ENT=NEIN |
representation of th& matrix in which the backgroun® Ao E) = AgoE) +Ago(E), (12)
matrix is chosen to be the energy average of $heatrix
itself, that is, theS matrix corresponding to the optical po-
tential. Here we use the same idea to decompose the decay A= v<C. (13)
amplitude, Eq.(2), into the sum of its Lorentzian energy LR CLe
averageLorentzian energy averaging intervg,

reaveraging, that is E=§
The corresponding decomposition of Eg) for the tran-
sition amplitude is

where the energy average of the transition amplitude is

and the fluctuating part of the transition amplitude is
Ao E)=Ag(E+il12), (4) Al = vysGhiys. (19

plus a fluctuating part.

. . . Thus the average of Eql) for the relative intensity may be
We proceed by introducing Feshbach’s projection oper g @ y may

yritten as the incoherent sum

tors[15]
P=|0){(0] and Q=1-P. (5 lin=lin* Tins (15
Let us introduce the notatiog=PGP for the effective where
Green’s function in the? space and leHpp=PHP, Hpq e 0
=PHQ, etc. Using the techniques of R¢L6] we obtain |8V= I;"Z(ZWFS)*lf dE|Ag(E)|? (16)
:_+ fl
G=G+g", (6) and
where the average effective Green's functigh=G(E . .
+il/2) is given by I{L:(ZwFS)*lfide|Ago(E)|2. 17
G=[E-H]* 7
G=[E-H] @ Up to this point no assumptions have been made except that
and the average effective Hamiltonian is given by the transition amplitude can be written in the form of E2).
As will be made clear in Sec. Il the meaning of this assump-
H=Hpp+Wpp, (8)  tionis that|0) is a doorway for the decay from the SD band

to the ND states and vice versa. In the manipulations subse-
where coupling to the eliminate@ space is accounted for by quent to Eq(2) we have put the average intensity in a form
consisting of a background term coming from the smooth
— [ energy dependence of the doorway plus a term resulting
Wep= HPQE_ HQQ+iI/2HQP: | VeqVor (9 from fluctuations on this background.
The representation we have used is particularly suitable
and the energy dependent coupling potendiamtroduced in  for approximation when the ND states are overlapping. In

Ref.[16] is defined by Sec. lll we evaluate Eqg15—(17) for the average decay
intensity |;, assuming that this is the case. In Sec. IV we
3 / i1/2 calculate the variance which describes the way in whigh
Veo=Heo VEC Hootil/2 fluctuates about;,.

Voo / i1/2 H Ill. AVERAGE DECAY INTENSITY
P NE—Hgg+il /2 %

Let us assume thaipp satisfies the eigenvalue equation
T_he fluctuating part of the effective Green’s functignis Hpp|0) = (Eg—iT'¢/2)[0) (18)
given by
andHgq

g Vaq +G, (10

f|:§V
POE—Hqq~Woq Hool Q)= (Eq—iTw/2)|Q). (19
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Here,E, denotes the energy of SD stdf®, I'git's electro-  where
magnetic width for decay to the next lowest state in the SD
band,Eq (Q=1, ... N) the energy of thé\ ND states Q)

with the same spin a9¥) andI'y the common electromag- 9oq=(0Veola), (24)

netic width of the|Q) for decay to ND states of lower spin.

. Further, let us write the matrix element ¥f,p, Eq. (9), gq0:<a|VQP|O>_ (25)
V_VOO=<0|V_VPP|O>=Ai—iFi/2. (200  We now employ some statistical assumptions which are fre-

o quently used in statistical nuclear reaction thefdy] to de-
Here, A'=ReW,, is an energy shift that we ignore amtl rive an analytic formula for the decay intenslty. We shall
=_2 |mV—Voo- Combining these definitions with Eq$7), assume that the Lorentzian and box energy averages and the
(8), and(13) the average of the transition amplitude can beaverage over the labglare all approximately equal, i.e., that

written as for a suitable functiorf,(E) of g andE,
A — I's 1) _ 1 (Eg+AER
00 E_EO+I(FS+F1)/2 fq(E):fq(E'i‘”/Z)NE E0+AE/2dE fq(E )
We see that Eq(21) exhibits the structure of an isolated 1
doorway resonance. The doorwfy) has an escape width N 2 fq(E). (26)

I's for decay to the SD state with next lower spin and a
spreading widtH™! for decay to the ND states with the same
spin which are reached by tunneling through the barrier separhe width of the box averagd\E, is related to the width the
rating the SD and ND wells. The doorway structure of Eq.Lorentzian energy average hyE~l/2 and to the mean
(21) is due to the assumption that the transition amplitudespacingd of the N ND states byAE~Nd. This approxima-
can be written as in Eq2). The most general expression for tion is good as long ak/d>1 [see Eq(39) below for the
the transition amplitude has the formA,,=vyap  definition of I']. Within these assumptions we see from Eq.
+ 2o va€|Glc") yerp, Where y,. describes the coupling (9) that theg,, andg,, are related taNy, by

of channelsa andc. In our doorway model theandc’ stand 0d a0 00
for |0) or |Q), Q=1,... N, i.e,, = c){c|]=P+Q, anda

— i

and b denote channels théeslectromagnetic coupling to — —2
which is taken is accounted for by the non-Hermitian part of Woo= 2 YoqGq0™ AE Eq: Yog9dao™ d g Joa9eo
H [Egs.(18) and(19)], that is they denote the SD state above (27)
|0), the SD below0), and ND states whose spin is different
from .that of |0). The direct coupling of channek and b, Thus the spreading with is given by
Yab, IS taken to be zero.
In order to evaluaté\l; it is useful to introduce eigenvec-
tors and eigenvalues of the oper +Wg o defined b 2m
g p a'H)éQ QQ y FLZFRQ J0q9q0 (28)
(HootWoo)|la)=(Eq—iT'¢/2)|a), q=1,... ,N.( :
22
and the energy shift by
Then from Eq.(14) and Eq.(10) for " we obtain
<0|VPQ|Q><Q|VQP|0>— 1T
Ao= 759002 E—Eq+il42 GooYs A dIm YoaTqo- 29
9oq9qo/T's — From Eq.(23) we can calculate the amplitude autocorrelation
AOOE E—Eq+il/2% @39 function
|
1 904990904 Iq
AT (E)AT (E')* = —A(E)? 09" "9'0 Aoy E')*2 (30)
oo &) A o % (E—Eq+iTy/2)(E'—Eq—iTq/2) oo
11— 909940904/ Jg/ —
=—A00(s+s/2)22 09290%09" "0 _ Age —&/2)*2, (31)
rs (e+el2— Eqt+ill /2)(8 el2—Eq —ily//2)
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where we have made the variable changesE—E’ and?=(E+ E’)/2. Consider the middle factor in E¢31) which we
anticipate is a function o only

J0q9q095q: I/
a(e)=2, m0=0q %0 —_ (32)
90 (s+8l2—Eq+iTy/2)(s—s/2—Eq —il /2)

We interpret the energy average in £E§2) to be an average over. Employing a box energy average

1 Eg+AER __ Joqd g* ,g*,
a(e)~— J C T T de— ~0474970q' 7a'0 : . (33)
AE 3 Jeg-aen  (e+8/2—Eq+iT/2)(e—el2—Eq —iT/2)
|
If AE is large compared to thE, but small enough for the r~T. (39
Eq andl’, to be treated as constants then we may extend the a

limits of integration to+c and perform the integral using _ ~
the calculus of residues to obtain 21m(q[Hoq+ Woola) (40
2 90q9q095q' 95 “her “

_ Tl 0gYq0 0q’9Yq’0

ale)~ 3 : . (39 ~Ty, (42)

_ where we used Eq19) for the electromagnetic width of the
Assuming that the phases of tlgg, and theg,, are ran- |Q) and introduced

domly distributed as a function af the double sum in Eq.
(34) collapses to a single sum giving S
= -2 Im(@Wogla)=—2 Im Ja090q
E—Eo+i(I's+I'hH/2

r'd (Ts+Th

T 27 (E-Eo)2+ (gt 124’
Then employing the definition of the average given by Eq. ( o)+ (T's )
(26) (43)

which is the width for their decay back t6). The approxi-

2 |90q9q0l®
E 1YogYq0l

ale)~3g et+ily (35

277'i:|ququ|2

a(s)~— : _ (36) mations represented by Eq89) and(42) will be discussed
d | e+ily in Sec. V. Using Eq(37) and approximatiori42) we finally
obtain
Assuming that the average of a ratio is equal to the ratio of
the averages we get AS(E)ASY(E")* ~2(27T y/d) H(TH T g)*Ago( E)?
r2 id iry ——
~— X ——————Ago(E")*2. 44
a(e)~ 27 eIl (37 E—E +ily oolE") (44)

with T't andT introduced according to E¢38) and Eq.(39)  WhenE'=E this reduces to
below. The introduction of’! is based on the assumption P
that AT 2=2(27T/d)~ S ,
[(E—Eg)?+(I's+T")%/4)?
(45)

rtd)?
|qugq0|2%2|90ng0|2%2{ﬁ} . (39
which is the average of the fluctuation contribution to the
transition intensity.

The integrals in Eqs(16) and (17) for the average and
fluctuation contributions to the total decay intensity may now
be carried out using the calculus of residues. Substituting Eq.

1) into Eq. (16) we obtain

The factor of 2 which appears in the first manipulation in Eq.
(38) accounts for the self-correlatioipresent since the en-

trance and exit channel are bo@)) and is equal to the

elastic enhancement factor for compound elastic scattering i
the overlapping resonance region. In the second manipula-
tion in Eqg. (38) we have again ignored the energy sh#ee 1
Egs.(28) and(29)]. [/ —— (46)

n

Equation(37) also introduces the correlation width 1+THTg
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- ! to the transition intensityAl(E)|? [Eq. (45)]. GW include
g 08| (@ ] precisely the same energy dependence in their calculation by
E o6 | i use of an energy dependent transmission coefficient to de-
5 o4 | 1 scribe decay to the SD barjdee Eq.(78) below and the
§ ' discussion in Sec. V £This is the reason for our qualitative
g 2] 1 agreement with GW concernirg,.

0

-3 3

IV. VARIANCE OF THE DECAY INTENSITY
04 The error incurred in making the energy average is given

Z 008 ® ] by
g
E 008 - ] e N ¥ *
5 Alin=lp—lin=li,— lint 2 Re dEAOO(E)A 0(E) .
£ 0.04
S 002 | ] (50)
L —

°3 3 The average of the error vanishéd;,=0. A measure of the

log, (b,) dispersion of the calculatdd, is given by the variance
FIG. 1. Average of the fluctuation contribution to the intraband (Al m) =1 _E)z_ (51)

intensityl_ifr': vs logio(b;), whereb,=T"'/T's. The solid lines were

calculated using E¢47) and the dotted lines by GW's fit formula, | order to evaluatdAl;,)? the averages indicated in Eq.
Eq. (49). The variablel'y /d took the value 0.1 for grapte) and 1 (51) must be performebeforethe integration which appears
for graph(b). in the definition ofl;,, Eq.(1). We obtain

Equation(46) is identical with the equivalent result in GW
(see also Refl14]). Substituting Eq(45) into Eq. (17) we (Al.n) ~(2wT'g) ™ Zj dEf dE'{|Al(E)AN(E")*|?
obtain

_ T g2 +2 RAx(E)* A E)AG(E)* Agl(E')}. (52
IT—2(aT /d)-l—( s (47)
in— N
(1+T4Tg)? In deriving Eg. (52 we have used AO(E)
! !
=2(wTy/d) (-1 4y “AWE)AWE)=0,  AWE)AE)*#0  and

Ao(E) Ado(E) * Ago(E") Age(E') * = [Age(E) |” [AGe(E")[?
for the average fluctuation contribution to the average decaM- |A O(E)Afolo(E’)* |2 and we have assumed that averages of
intensity. — o ~ terms containing odd powers @, vanish.

Equation(47) for Ij, is plotted in Fig. 1 and for compari-  Substituting Eqs(44) and (21) in Eq. (52), making the
son we have also plotted a fit formula which was obtained byhanges of integration variable
GW,

il E-Eo=(I's+T)x/2, (53
IM=[1-0.9139T"\/d)*?'3
r r 0130T E'—Eo=(I's+T")x'12, (54)
0.43431 0.45 — o
» { r( s) 5( d ) and using Eq(46) and (47) for 12 and I we are able to
&P (T /d)~ 01477 ' write (Al,)? in the form
(49) (Al 2=112f,(6)+ 21217 85(8), (55

Qualitative agreement is seen between the two formulas.
Note that Eq.(49) yields a negative intensity fof'y/d
>1.51 which excludes its use in this regime. Our result FetT!
which is only strictly valid whenl'y/d>1 is simply in- =_5
versely proportional td"y /d. The exact result of GW fd_rif,: I
[Eqg. (24) in GW] which can be used for an¥//d also T's
decreases monotonically with increasifig/d. =—(1+F1/Fs)— |aV— (57)
The dependence df (and that ofl ) on T'Y/T'g results I'y
from the resonant doorway energy dependence of the decay r! r!
amplitude Aoo(E) [EQ. (21)]. This energy dependence also = (14+Tg/TH I=—(1—12Y. (58)
manifests itself in the average of the fluctuation contribution I'n 'y "

Where the variabl€ is defined by

(56)
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The functionsf, and f, which have been introduced in Eq

(55) are given by

[ 4 2 (e dx
fl(g)_(ﬂ_ﬁ) f—w[x2+l]2

XJOC dx’
— [(x—X")2+4/E%][x"?+1]?

—8I J'w dx
:—m —_—
mE e X2+ 1)°

dx’

% f—oo [Xx—Xx'+2i/&][x" +i]’[x —i]? 9
_—4 ® dx 1
TwE" ) per 1\ X D
+'—)
[x+i(2/E+1)7]? (60)
and
f (f)—iReifx _dx
2T 2 ) e [x=ix+iT2
dx’

8 J',x, [X—Xx"+2i/E][x" —i]°[x" +i] 69

-2 ® dx

=—>Re .
wé —e[X—i][x+i][x+i(2/E+1)]
(62

Carrying out the second integrations in E60) and(62) we
obtain

B & &
fl(g)_(1+§)+(1+§)2+2(1+g)3 ©3
and
1
fz(f):m- (64)

The integrations in the calculation ¢f andf, above were

again carried out using the calculus of residues and were

checked by numerical integration. The functioing¢) and
fo(§) are plotted in Fig. 2.

We have thus shown that a complete description of th
decay out of a superdeformed band within the energy aver?
age approach requires three requires three dimensionle

variablesI'!/T'g, T'y/d, andl'y/(I's+I'"). We find the fol-

lowing: (1) The average contribution of the background to
the intraband decay intensity}, [Eq. (46)] depends only on

I''/Ts. (2) The average of the fluctuation contributid_rﬂ;,
[Eq. (47)] depends on two variable§!/T's and 'y /d. (3)

PHYSICAL REVIEW C 66, 064301 (2002

£,(6) and 1,(§)

FIG. 2. The functionsf,(£) [Eq. (63)] (solid line) and f,(&)
[Eq. (64)] (dotted ling plotted vs logy(£).

The variance(Al;,)?, [Eq. (55)] depends on three variables:
I'lITg, I'y/d, andl'y/(I's+Th).

Figure 3 shows a plot of the average intraband decay in-
tensitym [Eq. (15)] calculated using Eq$46) and (47) for
12 and 1. For comparison we also show th_ig_that results
when the GW fit formuld Eq. (49)] is used for ! instead of

25
2
1.5
1 4
0.5

0

1
08
06
04 | I { 1 % 1
0.3 i | Ih‘hk& | | h Y

i{iﬁs...

Average Intra-Band Intensity

1 140, RO ]

0.8 -

L 1 k1 1 & ]
0.6 . 'y X\
04 f I 1 ¥ + \ 1
0.2 ] T ¥ I N 1

< T K
0 I L I s L I I fini S9SN L L L T i
32101 2-3-2-1012-3-2-101 2 3

log,(b)) log,(b)) log(b,)

FIG. 3. Average intraband intensilﬁ vs logo(b;) whereb;,
=TI"}/T'5. The filled circles were calculated using Ed5) together
with Egs. (46) and (47). The error bars for the filled circles show

e —

(Al;,)? calculated using Eq(55) with & in the form given by Eq.

). The dotted lines were calculated in the same manner as the
illed circles except that GW's fit formula, E49), was used in the
place of Eq(47). The variabld" /d took the following values: 0.1

in graphs(a), (b), and(c); 1 in graphg(d), (e), and(f); 10 in graphs

(9), (h), and (i). The variableI''/T"y took the following values:
10 2 in graphs(a), (d), and(g); 1 in graphs(b), (e), and(h); 10% in
graphs(c), (f), and(i).
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0.24 . . T T T V. VARIANCE OF THE DECAY INTENSITY VERSUS

022 |- 4 AUTOCORRELATION FUNCTIONS OF STATISTICAL

02 ] NUCLEAR REACTION THEORY

0.18 i A. Results familiar from statistical nuclear reaction theory
Z 0.16 . All moments of theS matrix, S;(E), the quantities that
& 014 ] describe the way in whicB,,(E) fluctuates about it's aver-
% . ] age,S,,(E), can be expressed in terms®y,,(E) itself [19].
@ Normally, specific moments such as the amplitude and cross
3 0.1 ] section autocorrelation functions are expressed in terms of
S 008 1 transmission coefficients, defined to be

0.06
0.04
0.02

0 1 Il Il 1 1 1 1 Il
-5 4 -3 -2 - 0 1 2 3 4 5

10g,4(c) Tap=1- 2 Sac Stie= 2 SISt (66)

c

To=Taa, O=<T <1, (65)

. and their generalization

FIG. 4. The standard deviation of the decay intensiAl;,)? - . . .
vs log;(c;), wherec;=T"}/T plotted using Eq(gS) with ??n Tr)le Here Sgb: S_ab__ Sap IS the_ fluctgatlng part of.t.héS matrix.
form given by Eq.(58) for fixed b,=T'\/T's and Ty /d. The transmission coefficient, is the probability of trans-

mission from a compound nucleus resonance to chaanel
Eg. (47). The two curves are barely distinguishable forand is obtained from the optical model.
I'y/d=1. The GW fit formula incorrectly gives intensities  |n what follows we quote results for both the amplitude
that are greater than unity whéty /d=0.1 as does our Eq. and cross section autocorrelation functions in the overlap-
(47). The exact formula of GWEQq. (24) in GW] does not ~ ping resonance region for the purpose of comparison with

suffer from this problem. Our results are only strictly valid oy results for the decay intensity. The amplitude autocorre-

whenT'y/d=1. lation functionc,,(E,E’) for amplitude
The error bars in Fig. 3 were calculated using Esp) an(E.E") p
with ¢ in the form given by Eq(58). We calculatey (Al ;,)? Aap=S8ap—1Sap, (67)

for three values of the ratib /T (see figure caption Since

(Al,,)? is proportional tol " it also increases monotonically is defined by

to a maximum before decrease monotonically to zero as a

function of I'Y/T's. For the same reason the error increases  Cap(E,E') =Aan(E)Aan(E')* —Aap(E) Aap(E")*

monotonically with decreasindg’/d. The error estimate (68)

presented in GW exhibits the same trends withI'g and

I'y/d. = AL E)AL(E)* (69)
Since the variance depends only dhgf-I'")/T"y in ad-

dition to I'Y/T'g and 'y /d, upon fixing the latter two vari- T

ables the variance may be considered a function ofarey %ggb—_ (70)

of YTy, I's/Ty, I'l/d, orT's/d [see Eqs(57) and(58)]. E-E'+il

In Fig. 3 we chose to use E¢68) for ¢ and fixed the value _ _ o

of I''/Ty. WhenT's/Ty is fixed instead, a slightly different The correlation widtH" is given by

dependence of'!/T'g is obtained[compare Eqs(57) and )

(58)]. Figure 4 shows a plot of the standard deviation, F:EE T,. (71)

V(Al;,)?, [Eq. (55)] as a function of*}/T" for fixed I''/T'g
and I'y/d. Ultimately, the variance like the intensity is a
function of the spin of the decaying nucleus and could proDerivation of Eq.(70) requires the assumption thag,(E)
vide an additional probe to the spin dependence of the barrier A;p(E’). This assumption together with statistical as-
separating the SD and ND wells which is contained in thesumptions equivalent to those employed in our treatment of
spreading widtH™! [5-9]. the factora(e) [Eq. (32)] gives rise to ac,,(E,E’') which

Our result for the variance of the decay intengiv;,)?>  depends solely on the difference of the two enerdies
[Eq. (55)] has a structure reminiscent of Ericson’s expression E'.
for the variance of the cross sectifh7]. This connection Equation (44), which is essentiallyco(E,E") does not
will be fully explored in the Sec. V. For now we note only depend solely o —E’. The background energy modulation
that what distinguishes Eq55) from Ericson’s expression in bothE andE’ which is characteristic of an isolated door-
for the variance of the cross section are the functibyfg) way resonance is explicit. In the present case it cannot be
and f,(&) which result from the energy integrations in assumed thaf\yo(E)# Ag(E’) for arbitraryE andE’. The
Eq. (52. double integral for the variance of the decay intengify.
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(52) and Eq.(77) below] is sensitive to this fact as it contains Eqgs. (70) and (75) are valid when=,T,>1, that is, in the
products of the background amplitudes at arbitfagndE’. strongly overlapping resonance region.

The amplitude autocorrelation function, Eg4), contains
two distinct energy dependences, one characterizef by g Expression of the decay intensity and variance in terms of

which is analogous to Ericson’s correlation width as defined transmission coefficients
by Eq.(71) and another characterized by+I'! the width ) ) o ]
of the doorway. Writing Eq(44) in terms ofx andx’ defined ~ Following GW we introduce two transmission coeffi-
by Egs.(53) and (54) cients,To(E) and Ty, where

rgr

- To(E)=1- |Sf?= 78
[X+i13x—x"+2i/£][x" —i]?’ (E—Eg)2+ ([g+T)/4

(72

16—
coo(E,E')=?|;V|{'n

41(1—12
4E-Ep(I'g+TH+1

we see that it in fact depends only on the rafiq/(I's (79)
+T'1) and it is through Eq(44) that this variable enters our
calculation of the variance of the decay intensity. . o

The amplitude autocorrelation function is not an observ-describes transmission from th@) to the SD band and

able quantity. The correlation width, EGZ1), must be ex-

tracted from correlation analysis of the cross section. The Tn=2wI\/d (80)
cross section autocorrelation functidd,,(E,E"), for cross
sectiono,p,=|A,p|? is defined by describes their transmission to ND states of lower spin. We

have not derived Eq(80). For the purposes of the present
Can(E.E")=0ap(E)0ap(E") = ap(E) oap(E’) (73)  paper it can be taken as the definitionT. The reader is
referred to the discussion in Sec. VIIIH of R¢21] which
~|cau(E,EN|? contrasts the relation of the correlation widthto transmis-
sion coefficients with the the corresponding relation for the
+2 RA,L(E)* Can(E,E")As(E") (74)  average width’.
We have writtenTo(E) in the form given by Eq(79) in

o o 2 order to emphasise that it ot simply a function of a single
~[ohpl+ 2030 —— dimensionless variable, the ratig/I's. It is energy depen-
(E-E)*+T dent, the energy dependence being characterized’ by

(79 41!, the total width of doorway state®). Only it's maxi-
a2 ) mum T (Ep) =415(1—1%) can be expressed solely in terms
Herg,oab—|Aab|_ is the background cross section. The fluc- ¢ I'l/Ts. Thus, a quantity sensitive to the gross energy
tuation contribution to the cross section in terms of the transdependence GFo(E) should depend ofis+ T\, Writing the
mission coefficients is given by the Hauser-Feshbach foréverage decay intensity E€6L5) in terms transmission coef-
mula ficients
fl__ TaTp (76) _ %
Tap™ ST ' Im=1—(27-rl“s)‘1J dE{To(E)—2[To(E) 1% Ty},
c — o0

c (81)

or some modification of it designed to account of width fluc-ye see that it compares the total width of the doonj@y
tuations, direct reactions, efd5,20. with the width for the feeding of0) [thanks to inclusion of

Equation(52) for the variance of the decay intensity can e normalization factor 21 in the definition off;, in Eg.
be written in terms of the cross section autocorrelation func-(l)]_ The variance, Eq552), may be written as

tion defined by Eq(74) as

0 ) (Alln)z
Ali)?=27l'g) 2| dE| dE'CoE,E"). (7
(Alp)?=(2aT9) f f ol EE). (77 P

[2m(E—E")/d]?+ T

m(zwrs)*zf dEf dE’
The same comments concerning the energy independence of o o

the background amplitude apply to the derivation of &&) AAEVTA(EVTA(ENAE )
as applied to the derivation of E(70). Likewise CooE,E") +41m o E)To(E)To(E') _00( ) ] (82)
in the case of the present pagpére integrand in Eq(52)] is 2m(E—E'")/d+iTy

distinguished from Eq(75) by its explicit inclusion of the
energy dependence of the background. Equats®) and  As discussed in Sec. V A and made explicit by E&®) and
(74) assume that only pairwise correlations are present. Botf61), the integrand of Eq.(82) which clearly contains
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two characteristic energy scales in fact only depends on thegponsible for the agreement we obtain with GW concerning
ratio, I'y/(I's+T'!), the ratio of the correlation width to the m’s dependence ofi!/T'g. The differences between our re-
doorway width. sults and those of GW for the decay intensity stem from the
Equation(41) may also be expressed in terms of the transyssumptions we make which restrict our resultsTg/d
mission coefficientsTo(E) and Ty. Using Eq.(43) for I'! >1.
we get Calculation of the variance of the intensity requires the
four-point function at two energies integrated over both en-
’ (83  ergies, that is, it requiresgo(E)Sgo(E)*Sgo(E’)SgO(E’)*
integrated oveE andE’. Calculation of the four-point func-
tion at two energies was carried out using the supersymmetry
so that the neglect of ' in T is justified whenTo(E)/Ty  method in Ref[26]. Their result, like that of Ref24] for the
<I{y<1. Let us also write the correlation lengthEq. (56),  two-point function depends explicitly only da—E’ and the
in terms of the transmission coefficients transmission coefficients which are again expressed as func-
tions of (E+ E')/2. Within the assumption that only pairwise
IstT (84) correlations are important, as was assumed in Exf3.and
d - (74), the two-point function is enough to calculate the vari-
ance. Referencg20] showed numerically that the exact ex-
In the case of compound nucleus scattering, extractioll of pression of Ref[24] specialized to the amplitude autocorre-
from a measurement of cross section autocorrelation fungation function confirms the correctness of Eg0) in the
tion, using say Eq(75), permits the determination of the yegion of strongly overlapping resonances. However, unlike
density of compound nucleus stated by application of Eq.  Eq. (70), the amplitude autocorrelation function as given by
(71) [22]. A more recent example of energy-autocorrelationgq. (44) depends on the background amplitude at two differ-
analysis may be found in Ref23] where fluctuations in o energies, that is, it depends Bqy(E) and Agy(E’).
dissipative binary heavy ion collisions are studied. In the\yhenE=E’ it reduces to Eq(45) which can be expressed
present case of the decay out of a superdeformed band e {oms of the transmission coefficierfts(E) andTy . Thus
traction of ¢ from the variance of the intensity, permits the o gecay intensity can be expressed in terms of these trans-
determination of the ratio ls+I'")/T'y, or, given Ty nission coefficients as was done in E81). The applicabil-
(equivalently I'y/d) determination of the ratio Ils jy of Ref. [24] to calculation of the decay intensity owes

F—dT 1
=5-Tn

To(E)ITy

I av
in

!
E=(27ITy)

+T)/d. itself to the fact that the decay intensity may be expressed in
terms of transmission coefficients.
C. Comparison with the results of Gu and Weidenmier Equation (44) cannot be written in terms off4([E

: i . )
GW also take inspiration from statistical nuclear reactiont E'1/2) and the same applies to the variance as is apparent

theory but use the MPI approag24]. The MPI approach is from Eq.(82). Th_us it is not clear whether RdR4] serves as
concerned with the analytic calculation of ensemble aver® Means to obtain results corresponding to 4. and(82)
ages, a procedure which is equivalent to the calculation ofhich are valid for arbitrary"y/d. It would be an interest-
energy averages. Referenf@4] use the supersymmetry N9 challenge to derive an expression for the variance which

method of calculating ensemble averages to derive an exai‘if?:j'l‘:1 Ee usgd for am{ fvalue d’LN/ dt Sdincg for the re%;?lns
. e ) . which have been most frequently studied experimenfally
expression forS,,(E)S.4(E"). Their result is found to be the A~150 andA~190 regions['y /d<1.

expressible in terms of the difference of the two energies, GW do not use the supersymmetry method to calculate
E—E’, and transmission coefficients. The transmission co; . . persy y met

- . the variance. They instead estimate the variance by perform-
efficients themselves are expressed as functions Bf (

: . ing a numerical simulation. The analytic structure of the vari-
+E’)/2. The relationship between the result§ tH—17 and : : : :
those of Ref[24] is discussed in Ref§20.25. Several re- ance was not investigated in GW and their results make no

. reference to the variablEy/(I's+T'!). Given the close re-
sults of Refs[15 11 can be obtained frqm_that of R.@A'] semblance of the conclusions about the analytic structure of
by expanding in powers of the transmission coefficients ot . i . :
: oo ..~ " the decay intensity which may be inferred from the exact
inverse powers of the sum of the transmission coefficients d )
[20] result of GW and our approximate result fog /d>1 it

Calculation of the average of the fluctuation intensity re->C€MS probable that the dependence of the variance on

. . /(F +Fi) which we have found fol™y/d>1 persists
h % N S N
quires the energy mtegral of the average of the product o) r arbitr ryFN/ |

two S-matrix elements at the same energy. GW use the re-
sults of Ref[24] for | Sy E)|? to calculate the average decay
intensity. As was already noted in Sec. Ill, GW include the
energy dependence of the background amplitude characteris- In conclusion, we have derived analytic formulas for the
tic of an isolated doorway resonance in their calculation byenergy average and variance of the intraband decay intensity
using the energy dependent transmission coefficlg(E), of a superdeformed band in terms of variables which usefully
Eq. (79), in their Eq.(24) for Tﬂ; The fact that we use the describe the decay out. The formulas given by &) for
same energy dependence as GW for the background is réae fluctuation contribution to the average inteni_;ﬁyand by

VI. CONCLUSIONS

064301-9



SARGEANT et al. PHYSICAL REVIEW C 66, 064301 (2002

Eq. (55) for the variance(Al,)2 were derived by making Sity depends on the correlation lendth /(I's+T'") in addi-
assumptions and approximations which are strictly valid onlytion to the two dimensionless variabl&s/T's and 'y /d on

in the strongly overlapping resonance regidh,/d>1. which the average of the decay intgnsity erends. Measure-
However, these formulas are seen from Figs. 2 and 3 to worRent of the variance of the decay intensity could yield the
well whenT'y/d=1 and provide a qualitative description Mean level density of the ND states in analogy with autocor-
even whenl'y/d=0.1. This means that Eq47) and Eq. 'elation analysis of cross sections.

(55 cannot be applied to the mass 150 and 190 regions

wherel’y/d~0.001 but they may prove themselves of prac-

tical use in other mass regions. In any case our results clarify ACKNOWLEDGMENTS
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