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Energy averages and fluctuations in the decay out of superdeformed bands
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We derive analytic formulas for the energy average~including the energy average of the fluctuation contri-
bution! and variance of the intraband decay intensity of a superdeformed band. Our results may be expressed
in terms of three dimensionless variables:G↓/GS , GN /d, andGN /(GS1G↓). HereG↓ is the spreading width
for the mixing of a superdeformed~SD! stateu0& with the normally deformed~ND! statesuQ& whose spin is
the same asu0& ’s. TheuQ& have mean lever spacingd and mean electromagnetic decay widthGN whilst u0& has
electromagnetic decay widthGS . The average decay intensity may be expressed solely in terms of the variables
G↓/GS andGN /d or, analogously to statistical nuclear reaction theory, in terms of the transmission coefficients
T0(E) and TN describing transmission from theuQ& to the SD band viau0& and to lower ND states. The
variance of the decay intensity, in analogy with Ericson’s theory of cross section fluctuations, depends on an
additional variable, the correlation lengthGN /(GS1G↓)5(d/2p)TN /(GS1G↓). This suggests that analysis of
an experimentally determined variance could yield the mean level spacingd as does analysis of the cross
section autocorrelation function in compound nucleus reactions. We compare our results with those of Gu and
Weidenmu¨ller.

DOI: 10.1103/PhysRevC.66.064301 PACS number~s!: 21.60.2n, 24.60.2k
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I. INTRODUCTION

The basic feature to be explained in the decay out
superdeformed~SD! rotational bands@1–4# is that the inten-
sity of the collectiveg rays emitted during the cascade dow
an SD band remains constant until a certain spin is reac
whereafter it drops to zero within a few transitions. T
sharp drop in intensity is believed to arise from mixing of t
SD states with normally deformed~ND! states of identical
spin @5#. The model of Refs.@6–9# attributes the suddennes
of the decay out to the spin dependence of the barrier s
rating the SD and ND minima of the deformation potenti
References@10–12# discuss the effect of the chaoticity of th
ND states on the decay out.

In the present paper, we derive analytic formulas for
energy average~including the energy average of the fluctu
tion contribution! and variance of the intraband decay inte
sity of a superdeformed band in terms of variables wh
usefully describe the decay out@3,4,13,14#. We achieve this
using the MIT approach to statistical nuclear reaction the
@15–17#. The MIT approach tackles calculation of the flu
tuation cross section and other moments of theS matrix by
directly calculating averages of fluctuating functions of e
ergy.

In agreement with Gu and Weidenmu¨ller @13# ~GW! we
find that average of the total intraband decay intensity can
written as a function of the dimensionless variablesG↓/GS
andGN /d, whereG↓ is the spreading width for the mixing o
an SD state with normally ND states of the same spin,d is
the mean level spacing of the latter andGS (GN) are the
electromagnetic decay widths of the SD~ND! states. Our
formula for the variance of the total intraband decay inte
sity, in addition to the two dimensionless variables just m
tioned, depends on the dimensionless variableGN /(GS
1G↓). This additional variable is analogous to the corre
0556-2813/2002/66~6!/064301~10!/$20.00 66 0643
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tion width of the Ericson’s theory of cross section fluctu
tions. Its appearance suggests that measurement of the
ance of the decay intensity could yield the mean le
spacingd.

The paper is organized in the following manner. In Sec
we express the average decay intensity as an average
plus the average of a fluctuation term. In Sec. III the expr
sion for the average decay intensity obtained in Sec. I
evaluated approximately. In Sec. IV we calculate the va
ance of the intensity within the same approximation sche
as Sec. III. In Sec. V we interpret our results by analogy w
statistical nuclear reaction theory, expressing our result
terms of transmission coefficients and compare our res
with those of GW. In particular we suggest a reason why G
did not observe the variableGN /(GS1G↓) in their calcula-
tion of the variance. Finally in Sec. VI we make some co
cluding remarks including mention of the limitations of o
results.

II. ENERGY AVERAGES AND FLUCTUATIONS

The total intraband decay intensity has the fo
@12,13,18#

I in5~2pGS!21E
2`

`

dEuA00~E!u2, ~1!

where the intraband decay amplitude is given by

A00~E!5gS^0̃uG~E!u0&gS . ~2!

HeregS is the electromagnetic decay amplitude of super
formed stateu0& defined such thatGS5gS

2 . We assume tha
the amplitude feedingu0& is also given bygS . The total
Green’s functionG is given by
©2002 The American Physical Society01-1
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SARGEANT et al. PHYSICAL REVIEW C 66, 064301 ~2002!
G~E!5~E2H !21, ~3!

where the full nuclear Hamiltonian is denoted byH and has
a non-Hermitian part which accounts for coupling to t
electromagnetic field@see Eqs.~5!, ~18!, and ~19! below#.
The tilde is used to indicate the dual state or adjoint@15# of
u0&.

In what follows we employ the optical background repr
sentation introduced Kawai, Kerman, and McVoy@16#.
These authors investigated fluctuation cross sections usi
representation of theS matrix in which the backgroundS
matrix is chosen to be the energy average of theS matrix
itself, that is, theS matrix corresponding to the optical po
tential. Here we use the same idea to decompose the d
amplitude, Eq.~2!, into the sum of its Lorentzian energ
average~Lorentzian energy averaging intervalI ),

A00~E![A00~E1 i I /2!, ~4!

plus a fluctuating part.
We proceed by introducing Feshbach’s projection ope

tors @15#

P5u0̃&^0u and Q512P. ~5!

Let us introduce the notationG5PGP for the effective
Green’s function in theP space and letHPP5PHP, HPQ
5PHQ, etc. Using the techniques of Ref.@16# we obtain

G5Ḡ1G fl, ~6!

where the average effective Green’s functionḠ5G(E
1 i I /2) is given by

Ḡ5@E2H̄#21 ~7!

and the average effective Hamiltonian is given by

H̄5HPP1W̄PP , ~8!

where coupling to the eliminatedQ space is accounted for b

W̄PP5HPQ

1

E2HQQ1 i I /2
HQP5

22i

I
VPQVQP ~9!

and the energy dependent coupling potentialV introduced in
Ref. @16# is defined by

VPQ5HPQA i I /2

E2HQQ1 i I /2
,

VQP5A i I /2

E2HQQ1 i I /2
HQP .

The fluctuating part of the effective Green’s functionG is
given by

G fl5ḠVPQ

1

E2HQQ2WQQ
VQPḠ, ~10!
06430
-

a
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-

where coupling back to theP space is accounted for by

WQQ5VQPḠVPQ . ~11!

By constructionG fl50 in so much asḠ is unchanged by

reaveraging, that is ifḠ̄5Ḡ.
The corresponding decomposition of Eq.~2! for the tran-

sition amplitude is

A00~E!5A00~E!1A00
fl ~E!, ~12!

where the energy average of the transition amplitude is

A005gSḠ00gS ~13!

and the fluctuating part of the transition amplitude is

A00
fl 5gSG 00

fl gS . ~14!

Thus the average of Eq.~1! for the relative intensity may be
written as the incoherent sum

I in̄5I in
av1I in

fl , ~15!

where

I in
av5I in

av5~2pGS!21E
2`

`

dEuA00~E!u2 ~16!

and

I in
fl 5~2pGS!21E

2`

`

dEuA00
fl ~E!u2. ~17!

Up to this point no assumptions have been made except
the transition amplitude can be written in the form of Eq.~2!.
As will be made clear in Sec. III the meaning of this assum
tion is thatu0& is a doorway for the decay from the SD ban
to the ND states and vice versa. In the manipulations sub
quent to Eq.~2! we have put the average intensity in a for
consisting of a background term coming from the smo
energy dependence of the doorway plus a term resul
from fluctuations on this background.

The representation we have used is particularly suita
for approximation when the ND states are overlapping.
Sec. III we evaluate Eqs.~15!–~17! for the average decay
intensity I in assuming that this is the case. In Sec. IV w
calculate the variance which describes the way in whichI in

fluctuates aboutI in.

III. AVERAGE DECAY INTENSITY

Let us assume thatHPP satisfies the eigenvalue equatio

HPPu0&5~E02 iGS/2!u0& ~18!

andHQQ

HQQuQ&5~EQ2 iGN/2!uQ&. ~19!
1-2
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ENERGY AVERAGES AND FLUCTUATIONS IN THE . . . PHYSICAL REVIEW C 66, 064301 ~2002!
Here,E0 denotes the energy of SD stateu0&, GS it’s electro-
magnetic width for decay to the next lowest state in the
band,EQ (Q51, . . . ,N) the energy of theN ND statesuQ&
with the same spin asu0& andGN the common electromag
netic width of theuQ& for decay to ND states of lower spin

Further, let us write the matrix element ofWPP , Eq. ~9!,
as

W̄005^0uW̄PPu0&5D↓2 iG↓/2. ~20!

Here,D↓5ReW̄00 is an energy shift that we ignore andG↓

522 ImW̄00. Combining these definitions with Eqs.~7!,
~8!, and ~13! the average of the transition amplitude can
written as

A005
GS

E2E01 i ~GS1G↓!/2
. ~21!

We see that Eq.~21! exhibits the structure of an isolate
doorway resonance. The doorwayu0& has an escape widt
GS for decay to the SD state with next lower spin and
spreading widthG↓ for decay to the ND states with the sam
spin which are reached by tunneling through the barrier se
rating the SD and ND wells. The doorway structure of E
~21! is due to the assumption that the transition amplitu
can be written as in Eq.~2!. The most general expression fo
the transition amplitude has the formAab5gab
1(cc8gac^cuGuc8&gc8b , wheregac describes the coupling
of channelsa andc. In our doorway model thec andc8 stand
for u0& or uQ&, Q51, . . . ,N, i.e., (cuc&^cu5P1Q, and a
and b denote channels the~electromagnetic! coupling to
which is taken is accounted for by the non-Hermitian part
H @Eqs.~18! and~19!#, that is they denote the SD state abo
u0&, the SD belowu0&, and ND states whose spin is differe
from that of u0&. The direct coupling of channelsa and b,
gab , is taken to be zero.

In order to evaluateA00
fl it is useful to introduce eigenvec

tors and eigenvalues of the operatorHQQ1WQQ defined by

~HQQ1WQQ!uq&5~Eq2 iGq/2!uq&, q51, . . . ,N.
~22!

Then from Eq.~14! and Eq.~10! for G fl we obtain

A00
fl 5gSḠ00(

q

^0̃uVPQuq&^q̃uVQPu0&
E2Eq1 iGq/2

Ḡ00gS

5A00(
q

g0qgq0 /GS

E2Eq1 iGq/2
A00, ~23!
06430
a-
.
e

f

where

g0q5^0̃uVPQuq&, ~24!

gq05^q̃uVQPu0&. ~25!

We now employ some statistical assumptions which are
quently used in statistical nuclear reaction theory@15# to de-
rive an analytic formula for the decay intensityI in. We shall
assume that the Lorentzian and box energy averages an
average over the labelq are all approximately equal, i.e., tha
for a suitable functionf q(E) of q andE,

f q~E!5 f q~E1 i I /2!'
1

DEEE01DE/2

E01DE/2

dE8 f q~E8!

'
1

N (
q51

N

f q~E!. ~26!

The width of the box average,DE, is related to the width the
Lorentzian energy average byDE'pI /2 and to the mean
spacingd of the N ND states byDE'Nd. This approxima-
tion is good as long asG/d@1 @see Eq.~39! below for the
definition of G]. Within these assumptions we see from E
~9! that theg0q andgq0 are related toW̄00 by

W̄005
22i

I (
q

g0qgq0'
2p i

DE (
q

g0qgq0'
2p i

d
g0qgq0.

~27!

Thus the spreading with is given by

G↓5
2p

d
Re g0qgq0 ~28!

and the energy shift by

D↓5
p

d
Im g0qgq0. ~29!

From Eq.~23! we can calculate the amplitude autocorrelati
function
A00
fl ~E!A00

fl ~E8!* 5
1

GS
2
A00~E!2(

qq8

g0qgq0g0q8
* gq80

*

~E2Eq1 iGq/2!~E82Eq82 iGq8/2!
A00~E8!* 2 ~30!

5
1

GS
2
A00~ «̄1«/2!2(

qq8

g0qgq0g0q8
* gq80

*

~ «̄1«/22Eq1 iGq/2!~ «̄2«/22Eq82 iGq8/2!
A00~ «̄2«/2!* 2, ~31!
1-3
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where we have made the variable changes«5E2E8 and «̄5(E1E8)/2. Consider the middle factor in Eq.~31! which we
anticipate is a function of« only

a~«!5(
qq8

g0qgq0g0q8
* gq80

*

~ «̄1«/22Eq1 iGq/2!~ «̄2«/22Eq82 iGq8/2!
. ~32!

We interpret the energy average in Eq.~32! to be an average over«̄. Employing a box energy average

a~«!'
1

DE (
qq8

E
E02DE/2

E01DE/2

d«̄
g0qgq0g0q8

* gq80
*

~ «̄1«/22Eq1 iGq/2!~ «̄2«/22Eq82 iGq8/2!
. ~33!
th
g
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If DE is large compared to theGq but small enough for the
Eq andGq to be treated as constants then we may extend
limits of integration to6` and perform the integral usin
the calculus of residues to obtain

a~«!'
2p i

DE (
qq8

g0qgq0g0q8
* gq80

*

«1Eq82Eq1 i ~Gq81Gq!/2
. ~34!

Assuming that the phases of theg0q and thegq0 are ran-
domly distributed as a function ofq the double sum in Eq
~34! collapses to a single sum giving

a~«!'
2p i

DE (
q

ug0qgq0u2

«1 iGq
. ~35!

Then employing the definition of the average given by E
~26!

a~«!'
2p i

d F ug0qgq0u2

«1 iGq
G . ~36!

Assuming that the average of a ratio is equal to the ratio
the averages we get

a~«!'
G↓2

2p

id

«1 iG
, ~37!

with G↓ andG introduced according to Eq.~38! and Eq.~39!
below. The introduction ofG↓ is based on the assumptio
that

ug0qgq0u2'2ug0qgq0u2'2FG↓d

2p G2

. ~38!

The factor of 2 which appears in the first manipulation in E
~38! accounts for the self-correlation~present since the en
trance and exit channel are bothu0&) and is equal to the
elastic enhancement factor for compound elastic scatterin
the overlapping resonance region. In the second manip
tion in Eq. ~38! we have again ignored the energy shift@see
Eqs.~28! and ~29!#.

Equation~37! also introduces the correlation width
06430
e

.

f

.

in
la-

G'Gq ~39!

522 Im^q̃uHQQ1WQQuq& ~40!

5GN1G↑ ~41!

'GN , ~42!

where we used Eq.~19! for the electromagnetic width of the
uQ& and introduced

G↑522 Im^q̃uWQQuq&522 Im
gq0g0q

E2E01 i ~GS1G↓!/2

5
G↓d

2p

~GS1G↓!

~E2E0!21~GS1G↓!2/4
,

~43!

which is the width for their decay back tou0&. The approxi-
mations represented by Eqs.~39! and ~42! will be discussed
in Sec. V. Using Eq.~37! and approximation~42! we finally
obtain

A00
fl ~E!A00

fl ~E8!* '2~2pGN /d!21~G↓/GS!2A00~E!2

3
iGN

E2E81 iGN

A00~E8!* 2. ~44!

WhenE85E this reduces to

uA00
fl u252~2pGN /d!21

GS
2G↓2

@~E2E0!21~GS1G↓!2/4#2
,

~45!

which is the average of the fluctuation contribution to t
transition intensity.

The integrals in Eqs.~16! and ~17! for the average and
fluctuation contributions to the total decay intensity may n
be carried out using the calculus of residues. Substituting
~21! into Eq. ~16! we obtain

I in
av5

1

11G↓/GS

. ~46!
1-4
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Equation~46! is identical with the equivalent result in GW
~see also Ref.@14#!. Substituting Eq.~45! into Eq. ~17! we
obtain

I in
fl 52~pGN /d!21

~G↓/GS!2

~11G↓/GS!3
~47!

52~pGN /d!21I in
av~12I in

av!2 ~48!

for the average fluctuation contribution to the average de
intensity.

Equation~47! for I in
fl is plotted in Fig. 1 and for compari

son we have also plotted a fit formula which was obtained
GW,

I in
fl 5@120.9139~GN /d!0.2172#

3expH 2

F0.4343 lnS G↓

GS
D20.45S GN

d D 20.1303G2

~GN /d!20.1477
J .

~49!

Qualitative agreement is seen between the two formu
Note that Eq.~49! yields a negative intensity forGN /d
.1.51 which excludes its use in this regime. Our res
which is only strictly valid whenGN /d@1 is simply in-
versely proportional toGN /d. The exact result of GW forI in

fl

@Eq. ~24! in GW# which can be used for anyGN /d also
decreases monotonically with increasingGN /d.

The dependence ofI in
fl ~and that ofI in

av) on G↓/GS results
from the resonant doorway energy dependence of the d
amplitudeA00(E) @Eq. ~21!#. This energy dependence als
manifests itself in the average of the fluctuation contribut

FIG. 1. Average of the fluctuation contribution to the intraba
intensity I in

fl vs log10(bJ), wherebJ[G↓/GS . The solid lines were
calculated using Eq.~47! and the dotted lines by GW’s fit formula
Eq. ~49!. The variableGN /d took the value 0.1 for graph~a! and 1
for graph~b!.
06430
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to the transition intensityuA00
fl (E)u2 @Eq. ~45!#. GW include

precisely the same energy dependence in their calculatio
use of an energy dependent transmission coefficient to
scribe decay to the SD band@see Eq.~78! below and the
discussion in Sec. V C#. This is the reason for our qualitativ
agreement with GW concerningI in.

IV. VARIANCE OF THE DECAY INTENSITY

The error incurred in making the energy average is giv
by

DI in5I in2I in5I in
fl 2I in

fl 12 ReE
2`

`

dEA00~E!A00
fl ~E!* .

~50!

The average of the error vanishes:DI in50. A measure of the
dispersion of the calculatedI in is given by the variance

~DI in!25~ I in2I in!2. ~51!

In order to evaluate(DI in)
2 the averages indicated in Eq

~51! must be performedbeforethe integration which appear
in the definition ofI in , Eq. ~1!. We obtain

~DI in!2'~2pGS!22E
2`

`

dEE
2`

`

dE8$uA00
fl ~E!A00

fl ~E8!* u2

12 ReA00~E!* A00
fl ~E!A00

fl ~E8!* A00~E8!%. ~52!

In deriving Eq. ~52! we have used A00
fl (E)

5A00
fl (E)A00

fl (E8)50, A00
fl (E)A00

fl (E8)* Þ0 and

A00
fl (E) A00

fl (E) * A00
fl (E8) A00

fl (E8) * 5 uA00
fl (E) u2 uA00

fl (E8) u2

1uA00
fl (E)A00

fl (E8)* u2 and we have assumed that averages
terms containing odd powers ofA00

fl vanish.
Substituting Eqs.~44! and ~21! in Eq. ~52!, making the

changes of integration variable

E2E05~GS1G↓!x/2, ~53!

E82E05~GS1G↓!x8/2, ~54!

and using Eq.~46! and ~47! for I in
av and I in

fl we are able to
write (DI in)

2 in the form

~DI in!25I in
fl 2f 1~j!12I in

avI in
fl f 2~j!, ~55!

where the variablej is defined by

j[
GS1G↓

GN
~56!

5
GS

GN
~11G↓/GS!5

GS

GN
I in

av21 ~57!

5
G↓

GN
~11GS /G↓!215

G↓

GN
~12I in

av!. ~58!
1-5
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The functionsf 1 and f 2 which have been introduced in E
~55! are given by

f 1~j!5S 4

pj D 2E
2`

` dx

@x211#2

3E
2`

` dx8

@~x2x8!214/j2#@x8211#2

5
28

p2j
ImE

2`

` dx

@x211#2

3E
2`

` dx8

@x2x812i /j#@x81 i #2@x82 i #2
~59!

5
24

pj
ImE

2`

` dx

@x211#2 S 1

x1 i ~2/j11!

1
i

@x1 i ~2/j11!#2D ~60!

and

f 2~j!5
4

p2j
Rei E

2`

` dx

@x2 i #@x1 i #2

3E
2`

` dx8

@x2x812i /j#@x82 i #2@x81 i #
~61!

5
22

pj
ReE

2`

` dx

@x2 i #@x1 i #2@x1 i ~2/j11!#
.

~62!

Carrying out the second integrations in Eq.~60! and~62! we
obtain

f 1~j!5
1

~11j!
1

j

~11j!2
1

j2

2~11j!3
~63!

and

f 2~j!5
1

2~11j!
. ~64!

The integrations in the calculation off 1 and f 2 above were
again carried out using the calculus of residues and w
checked by numerical integration. The functionsf 1(j) and
f 2(j) are plotted in Fig. 2.

We have thus shown that a complete description of
decay out of a superdeformed band within the energy a
age approach requires three requires three dimension
variables,G↓/GS , GN /d, andGN /(GS1G↓). We find the fol-
lowing: ~1! The average contribution of the background
the intraband decay intensity,I in

av, @Eq. ~46!# depends only on
G↓/GS . ~2! The average of the fluctuation contribution,I in

fl ,
@Eq. ~47!# depends on two variables:G↓/GS and GN /d. ~3!
06430
re

e
r-
ss

The variance,(DI in)
2, @Eq. ~55!# depends on three variable

G↓/GS , GN /d, andGN /(GS1G↓).
Figure 3 shows a plot of the average intraband decay

tensity I in @Eq. ~15!# calculated using Eqs.~46! and ~47! for
I in

av and I in
fl . For comparison we also show theI in that results

when the GW fit formula@Eq. ~49!# is used forI in
fl instead of

FIG. 2. The functionsf 1(j) @Eq. ~63!# ~solid line! and f 2(j)
@Eq. ~64!# ~dotted line! plotted vs log10(j).

FIG. 3. Average intraband intensityI in vs log10(bJ) wherebJ

[G↓/GS . The filled circles were calculated using Eq.~15! together
with Eqs. ~46! and ~47!. The error bars for the filled circles show
A(DI in)

2 calculated using Eq.~55! with j in the form given by Eq.
~58!. The dotted lines were calculated in the same manner as
filled circles except that GW’s fit formula, Eq.~49!, was used in the
place of Eq.~47!. The variableGN /d took the following values: 0.1
in graphs~a!, ~b!, and~c!; 1 in graphs~d!, ~e!, and~f!; 10 in graphs
~g!, ~h!, and ~i!. The variableG↓/GN took the following values:
1023 in graphs~a!, ~d!, and~g!; 1 in graphs~b!, ~e!, and~h!; 103 in
graphs~c!, ~f!, and~i!.
1-6
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Eq. ~47!. The two curves are barely distinguishable f
GN /d51. The GW fit formula incorrectly gives intensitie
that are greater than unity whenGN /d50.1 as does our Eq
~47!. The exact formula of GW@Eq. ~24! in GW# does not
suffer from this problem. Our results are only strictly val
whenGN /d@1.

The error bars in Fig. 3 were calculated using Eq.~55!

with j in the form given by Eq.~58!. We calculateA(DI in)
2

for three values of the ratioG↓/GN ~see figure caption!. Since
(DI in)

2 is proportional toI in
fl it also increases monotonicall

to a maximum before decrease monotonically to zero a
function of G↓/GS . For the same reason the error increa
monotonically with decreasingGN /d. The error estimate
presented in GW exhibits the same trends withG↓/GS and
GN /d.

Since the variance depends only on (GS1G↓)/GN in ad-
dition to G↓/GS and GN /d, upon fixing the latter two vari-
ables the variance may be considered a function of anyone
of G↓/GN , GS /GN , G↓/d, or GS /d @see Eqs.~57! and~58!#.
In Fig. 3 we chose to use Eq.~58! for j and fixed the value
of G↓/GN . WhenGS /GN is fixed instead, a slightly differen
dependence onG↓/GS is obtained@compare Eqs.~57! and
~58!#. Figure 4 shows a plot of the standard deviatio
A(DI in)

2, @Eq. ~55!# as a function ofG↓/GN for fixed G↓/GS
and GN /d. Ultimately, the variance like the intensity is
function of the spin of the decaying nucleus and could p
vide an additional probe to the spin dependence of the ba
separating the SD and ND wells which is contained in
spreading widthG↓ @5–9#.

Our result for the variance of the decay intensity(DI in)
2

@Eq. ~55!# has a structure reminiscent of Ericson’s express
for the variance of the cross section@17#. This connection
will be fully explored in the Sec. V. For now we note on
that what distinguishes Eq.~55! from Ericson’s expression
for the variance of the cross section are the functionsf 1(j)
and f 2(j) which result from the energy integrations
Eq. ~52!.

FIG. 4. The standard deviation of the decay intensityA(DI in)
2

vs log10(cJ), wherecJ[G↓/GN plotted using Eq.~55! with j in the
form given by Eq.~58! for fixed bJ5G↓/GS andGN /d.
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V. VARIANCE OF THE DECAY INTENSITY VERSUS
AUTOCORRELATION FUNCTIONS OF STATISTICAL

NUCLEAR REACTION THEORY

A. Results familiar from statistical nuclear reaction theory

All moments of theS matrix, Sab(E), the quantities that
describe the way in whichSab(E) fluctuates about it’s aver
age,Sab(E), can be expressed in terms ofSab(E) itself @19#.
Normally, specific moments such as the amplitude and cr
section autocorrelation functions are expressed in term
transmission coefficients, defined to be

Ta5Taa , 0<Ta<1, ~65!

and their generalization

Tab512(
c

Sac Sbc* 5(
c

Sac
fl Sbc

fl * . ~66!

Here Sab
fl 5Sab2Sab is the fluctuating part of theS matrix.

The transmission coefficientTa is the probability of trans-
mission from a compound nucleus resonance to channa
and is obtained from the optical model.

In what follows we quote results for both the amplitud
and cross section autocorrelation functions in the overl
ping resonance region for the purpose of comparison w
our results for the decay intensity. The amplitude autoco
lation functioncab(E,E8) for amplitude

Aab5dab2 iSab , ~67!

is defined by

cab~E,E8!5Aab~E!Aab~E8!* 2Aab~E! Aab~E8!*
~68!

5Aab
fl ~E!Aab

fl ~E8!* ~69!

'sab
fl iG

E2E81 iG
. ~70!

The correlation widthG is given by

G5
d

2p (
a

Ta . ~71!

Derivation of Eq.~70! requires the assumption thatAab(E)
5Aab(E8). This assumption together with statistical a
sumptions equivalent to those employed in our treatmen
the factora(«) @Eq. ~32!# gives rise to acab(E,E8) which
depends solely on the difference of the two energiesE
2E8.

Equation ~44!, which is essentiallyc00(E,E8) does not
depend solely onE2E8. The background energy modulatio
in both E andE8 which is characteristic of an isolated doo
way resonance is explicit. In the present case it canno
assumed thatA00(E)ÞA00(E8) for arbitraryE andE8. The
double integral for the variance of the decay intensity@Eq.
1-7
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~52! and Eq.~77! below# is sensitive to this fact as it contain
products of the background amplitudes at arbitraryE andE8.

The amplitude autocorrelation function, Eq.~44!, contains
two distinct energy dependences, one characterized byGN
which is analogous to Ericson’s correlation width as defin
by Eq. ~71! and another characterized byGS1G↓ the width
of the doorway. Writing Eq.~44! in terms ofx andx8 defined
by Eqs.~53! and ~54!

c00~E,E8!5
16i

j
I in

avI in
fl 1

@x1 i #2@x2x812i /j#@x82 i #2
,

~72!

we see that it in fact depends only on the ratioGN /(GS
1G↓) and it is through Eq.~44! that this variable enters ou
calculation of the variance of the decay intensity.

The amplitude autocorrelation function is not an obse
able quantity. The correlation width, Eq.~71!, must be ex-
tracted from correlation analysis of the cross section. T
cross section autocorrelation function,Cab(E,E8), for cross
sectionsab5uAabu2 is defined by

Cab~E,E8!5sab~E!sab~E8!2sab~E! sab~E8! ~73!

'ucab~E,E8!u2

12 ReAab~E!* cab~E,E8!Aab~E8! ~74!

'@sab
fl 212sab

avsab
fl #

G2

~E2E8!21G2
.

~75!

Here,sab
av5uAabu2 is the background cross section. The flu

tuation contribution to the cross section in terms of the tra
mission coefficients is given by the Hauser-Feshbach
mula

sab
fl '

TaTb

(
c

Tc

, ~76!

or some modification of it designed to account of width flu
tuations, direct reactions, etc.@15,20#.

Equation~52! for the variance of the decay intensity ca
be written in terms of the cross section autocorrelation fu
tion defined by Eq.~74! as

~DI in!25~2pGS!22E
2`

`

dEE
2`

`

dE8C00~E,E8!. ~77!

The same comments concerning the energy independen
the background amplitude apply to the derivation of Eq.~75!
as applied to the derivation of Eq.~70!. LikewiseC00(E,E8)
in the case of the present paper@the integrand in Eq.~52!# is
distinguished from Eq.~75! by its explicit inclusion of the
energy dependence of the background. Equation~52! and
~74! assume that only pairwise correlations are present. B
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Eqs. ~70! and ~75! are valid when(aTa@1, that is, in the
strongly overlapping resonance region.

B. Expression of the decay intensity and variance in terms of
transmission coefficients

Following GW we introduce two transmission coeffi
cients,T0(E) andTN , where

T0~E!512uS00u25
GSG↓

~E2E0!21~GS1G↓!/4
~78!

5
4I in

av~12I in
av!

4~E2E0!2/~GS1G↓!11
~79!

describes transmission from theuQ& to the SD band and

TN52pGN /d ~80!

describes their transmission to ND states of lower spin.
have not derived Eq.~80!. For the purposes of the prese
paper it can be taken as the definition ofTN . The reader is
referred to the discussion in Sec. VIII H of Ref.@21# which
contrasts the relation of the correlation widthG to transmis-
sion coefficients with the the corresponding relation for t
average widthGq.

We have writtenT0(E) in the form given by Eq.~79! in
order to emphasise that it isnot simply a function of a single
dimensionless variable, the ratioG↓/GS . It is energy depen-
dent, the energy dependence being characterized byGS
1G↓, the total width of doorway stateu0&. Only it’s maxi-
mumT0(E0)54I in

av(12I in
av) can be expressed solely in term

of G↓/GS . Thus, a quantity sensitive to the gross ener
dependence ofT0(E) should depend onGS1G↓. Writing the
average decay intensity Eq.~15! in terms transmission coef
ficients

I in512~2pGS!21E
2`

`

dE$T0~E!22@T0~E!#2/TN%,

~81!

we see that it compares the total width of the doorwayu0&
with the width for the feeding ofu0& @thanks to inclusion of
the normalization factor 2pGS in the definition ofI in in Eq.
~1!#. The variance, Eq.~52!, may be written as

~DI in!2

'~2pGS!22E
2`

`

dEE
2`

`

dE8H 4T0~E!2T0~E8!2

@2p~E2E8!/d#21TN
2

14 Im
A00~E!T0~E!T0~E8!A00~E8!*

2p~E2E8!/d1 iTN
J . ~82!

As discussed in Sec. V A and made explicit by Eqs.~59! and
~61!, the integrand of Eq.~82! which clearly contains
1-8
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two characteristic energy scales in fact only depends on t
ratio, GN /(GS1G↓), the ratio of the correlation width to th
doorway width.

Equation~41! may also be expressed in terms of the tra
mission coefficientsT0(E) and TN . Using Eq.~43! for G↑

we get

G5
d

2p
TNF12

T0~E!/TN

I in
av G , ~83!

so that the neglect ofG↑ in G is justified whenT0(E)/TN

!I in
av<1. Let us also write the correlation lengthj, Eq. ~56!,

in terms of the transmission coefficients

j5~2p/TN!
GS1G↓

d
. ~84!

In the case of compound nucleus scattering, extraction oG
from a measurement of cross section autocorrelation fu
tion, using say Eq.~75!, permits the determination of th
density of compound nucleus states 1/d by application of Eq.
~71! @22#. A more recent example of energy-autocorrelati
analysis may be found in Ref.@23# where fluctuations in
dissipative binary heavy ion collisions are studied. In t
present case of the decay out of a superdeformed band
traction of j from the variance of the intensity, permits th
determination of the ratio (GS1G↓)/GN , or, given TN
~equivalently GN /d) determination of the ratio (GS
1G↓)/d.

C. Comparison with the results of Gu and Weidenmu¨ ller

GW also take inspiration from statistical nuclear react
theory but use the MPI approach@24#. The MPI approach is
concerned with the analytic calculation of ensemble av
ages, a procedure which is equivalent to the calculation
energy averages. Reference@24# use the supersymmetr
method of calculating ensemble averages to derive an e
expression forSab

fl (E)Scd
fl (E8). Their result is found to be

expressible in terms of the difference of the two energ
E2E8, and transmission coefficients. The transmission
efficients themselves are expressed as functions ofE
1E8)/2. The relationship between the results of@15–17# and
those of Ref.@24# is discussed in Refs.@20,25#. Several re-
sults of Refs.@15–17# can be obtained from that of Ref.@24#
by expanding in powers of the transmission coefficients
inverse powers of the sum of the transmission coefficie
@20#.

Calculation of the average of the fluctuation intensity
quires the energy integral of the average of the produc
two S-matrix elements at the same energy. GW use the
sults of Ref.@24# for uS00

fl (E)u2 to calculate the average deca
intensity. As was already noted in Sec. III, GW include t
energy dependence of the background amplitude charact
tic of an isolated doorway resonance in their calculation
using the energy dependent transmission coefficientT0(E),
Eq. ~78!, in their Eq. ~24! for I in

fl . The fact that we use the
same energy dependence as GW for the background is
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sponsible for the agreement we obtain with GW concern
I in’s dependence onG↓/GS . The differences between our re
sults and those of GW for the decay intensity stem from
assumptions we make which restrict our results toGN /d
@1.

Calculation of the variance of the intensity requires t
four-point function at two energies integrated over both e
ergies, that is, it requiresS00

fl (E)S00
fl (E)* S00

fl (E8)S00
fl (E8)*

integrated overE andE8. Calculation of the four-point func-
tion at two energies was carried out using the supersymm
method in Ref.@26#. Their result, like that of Ref.@24# for the
two-point function depends explicitly only onE2E8 and the
transmission coefficients which are again expressed as f
tions of (E1E8)/2. Within the assumption that only pairwis
correlations are important, as was assumed in Eqs.~52! and
~74!, the two-point function is enough to calculate the va
ance. Reference@20# showed numerically that the exact e
pression of Ref.@24# specialized to the amplitude autocorr
lation function confirms the correctness of Eq.~70! in the
region of strongly overlapping resonances. However, un
Eq. ~70!, the amplitude autocorrelation function as given
Eq. ~44! depends on the background amplitude at two diff
ent energies, that is, it depends onA00(E) and A00(E8).
WhenE5E8 it reduces to Eq.~45! which can be expresse
in terms of the transmission coefficientsT0(E) andTN . Thus
the decay intensity can be expressed in terms of these tr
mission coefficients as was done in Eq.~81!. The applicabil-
ity of Ref. @24# to calculation of the decay intensity owe
itself to the fact that the decay intensity may be expresse
terms of transmission coefficients.

Equation ~44! cannot be written in terms ofT0(@E
1E8#/2) and the same applies to the variance as is appa
from Eq.~82!. Thus it is not clear whether Ref.@24# serves as
a means to obtain results corresponding to Eqs.~44! and~82!
which are valid for arbitraryGN /d. It would be an interest-
ing challenge to derive an expression for the variance wh
could be used for any value ofGN /d since for the regions
which have been most frequently studied experimentally@2#,
the A'150 andA'190 regions,GN /d!1.

GW do not use the supersymmetry method to calcu
the variance. They instead estimate the variance by perfo
ing a numerical simulation. The analytic structure of the va
ance was not investigated in GW and their results make
reference to the variableGN /(GS1G↓). Given the close re-
semblance of the conclusions about the analytic structur
the decay intensity which may be inferred from the ex
result of GW and our approximate result forGN /d@1 it
seems probable that the dependence of the variance
GN /(GS1G↓) which we have found forGN /d@1 persists
for arbitraryGN /d.

VI. CONCLUSIONS

In conclusion, we have derived analytic formulas for t
energy average and variance of the intraband decay inten
of a superdeformed band in terms of variables which usef
describe the decay out. The formulas given by Eq.~47! for
the fluctuation contribution to the average intensityI in

fl and by
1-9
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Eq. ~55! for the variance(DI in)
2 were derived by making

assumptions and approximations which are strictly valid o
in the strongly overlapping resonance region,GN /d@1.
However, these formulas are seen from Figs. 2 and 3 to w
well when GN /d51 and provide a qualitative descriptio
even whenGN /d50.1. This means that Eq.~47! and Eq.
~55! cannot be applied to the mass 150 and 190 regi
whereGN /d;0.001 but they may prove themselves of pra
tical use in other mass regions. In any case our results cla
the analytic structure of the results obtained by GW. In p
ticular we have revealed that the variance of the decay in
n-

E.

cl.

M

06430
y

rk

s
-
ify
r-
n-

sity depends on the correlation lengthGN /(GS1G↓) in addi-
tion to the two dimensionless variablesG↓/GS andGN /d on
which the average of the decay intensity depends. Meas
ment of the variance of the decay intensity could yield t
mean level density of the ND states in analogy with autoc
relation analysis of cross sections.
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