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Resolving the large-Nc nuclear potential puzzle

Thomas D. Cohen
Department of Physics, University of Maryland, College Park, Maryland 20742-4111

~Received 24 September 2002; published 30 December 2002!

The large-Nc nuclear potential puzzle arose because three- and higher-meson exchange contributions to the
nucleon-nucleon potential did not automatically yield cancellations that make these contributions consistent
with the general large-Nc scaling rules for the potential. Here it is proposed that the resolution to this puzzle is
that the scaling rules only apply for energy-independent potentials while all of the cases with apparent incon-
sistencies were for energy-dependent potentials. It is shown explicitly how energy-dependent potentials can
have radically different large-Nc behavior than an equivalent energy-independent one. One class of three-
meson graphs is computed in which the contribution to the energy-independent potential is consistent with the
general large-Nc rules even though the energy-dependent potential is not.
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I. INTRODUCTION

The nature of the nucleon-nucleon interaction is at
heart of nuclear physics. One traditional picture of nucl
interactions at low energies is that they are mediated
meson exchange. From the QCD perspective one can e
sion the quarks and gluons organizing themselves into h
rons and then the baryons interact amongst themselves
the exchange of mesons. It is not immediately clear how
can test this picture of how nucleon-nucleon interactio
emerge from QCD since we have noa priori method for
deriving these interactions directly from QCD. In Ref.@3# it
was pointed out that large-Nc QCD can provide some insigh
into the issue. Since the meson-exchange picture of
nucleon-nucleon interaction if valid is justified on rather g
neric grounds, it should be expected to hold at anyNc greater
than unity and hence should hold for large-Nc . However, as
noted in Ref.@3# it is by no means obvious that the meso
exchange picture is in fact consistent with large-Nc counting
rules. In particular, there is a threat that while a one mes
exchange description yields nucleon-nucleon interacti
which are consistent with the largeNc counting rules@4,5#,
multiple-meson exchange graphs yield interactions which
not. A consistent large-Nc description requires a cancellatio
of all of these dangerous graphs. It was shown in Ref.@3#
that for all two-meson exchange such cancellations do in
occur, provided that the large-Nc scaling rules for the
nucleon-nucleon interaction are interpreted as applying fo
nucleon-nucleon potential for use in a Scho¨dinger or
Lippmann-Schwinger equation~as opposed to a kernel in
four dimensional Bethe-Salpeter-type equation!. This result
seems to support the traditional meson-exchange picture
nucleon-nucleon potentials. Clearly, this support would
stronger if the cancellations seen for two-meson excha
also happen for general multiple-meson exchanges.

Unfortunately, in Ref.@6# it was shown that the extensio
of the techniques of Ref.@3# does not automatically lead t
the types of cancellations seen for two-meson exchan
Thus in the absence of some type of conspiracy leadin
such cancellations there appears to be no way to justify
meson-exchange picture from large-Nc QCD. The result is
0556-2813/2002/66~6!/064003~6!/$20.00 66 0640
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puzzling—why should such cancellations occur for tw
meson exchange for multiple channels and at the same
fail for three-or-higher meson exchange? The purpose of
note is to resolve this puzzle. As will be argued below, th
is a reorganization of the analysis that yields precisely
type of conspiracy needed to resolve the puzzle.

To begin with let us consider the background to the pro
lem. Large-Nc QCD @1,2# has proven to be a powerful tool t
learn about qualitative and semiquantitative features of h
ronic physics. In principle one may hope that it will als
provide important insights into nuclear physics. The possi
implications of large-Nc QCD for nuclear interactions wer
already evident in Witten’s original paper on baryons
large-Nc QCD. Witten pointed out that~i! the nucleon-
nucleon interaction is characteristically of orderNc , ~ii ! that
nucleon-nucleon scattering observables had no smooth
as Nc→` if the nucleon momenta were of orderNc

0 , and
~iii ! for momenta of orderNc , a relativistic time-dependen
Hartree formalism is appropriate and has a smooth largeNc
limit. In practice, no such time-dependent Hartree calcu
tions have been carried out, although recently@7# it was
shown what type of observables are calculable in principle
this framework and the spin and isospin dependence of th
observables was deduced.

The problem of nucleon-nucleon interactions for m
menta of orderNc

0 is of real significance. Kaplan and Mano
har @4# following the work of Kaplan and Savage@5# have
argued that useful information about the nucleon-nucleon
tential can be extracted in this regime. In particular, th
suggest that the nucleon-nucleon potential can be assoc
with quark-line connected diagrams between two col
singlet clusters ofNc quark lines. This is motivated by Wit
ten’s Hartree analysis. Combining this with the known co
tracted SU~4! spin-flavor symmetry of two flavor QCD
@8–12# for the coupling to each cluster, this was used
deduce that the large-Nc scaling behavior for the various spi
and isospin contributions to the potential. The leading sc
ing behavior is given by

VI 5J;Nc ; VIÞJ;Nc
21 , ~1!
©2002 The American Physical Society03-1
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THOMAS D. COHEN PHYSICAL REVIEW C66, 064003 ~2002!
where the subscript indicates the quantum numbers of
exchange in thet channel. It is worth noting that nucleon
nucleon potentials which are fit to scattering data hav
pattern which is consistent with Eq.~1! in the sense that the
components which are orderNc in Eq. ~1! are characteristi-
cally significantly larger than those which are of order 1/Nc
@4,13#. Recently there have also been attempts to study
regime from the perspective of effective field theory@14#.

The issue of consistency is studied in the following wa
First one supposes that there exists some hadronic
theory whose masses and couplings scale withNc according
to the standard large-Nc rules @15#. It was pointed out in
Refs.@3,13# that the large-Nc scaling rules of meson-baryo
couplings given by the contracted SU~4! spin-flavor symme-
try of two flavor QCD@8–10# yield a one-meson exchang
potential and will satisfy Eq.~1!. At two-meson exchange th
key issue is that both the box graph and the crossed-
graph are formally of orderNc

2 and hence individually canno
be consistent with Eq.~1!. It is straightforward to show, how
ever, that the box graph can be decomposed into
parts—a contribution arising from the nucleon poles an
contribution arising from the meson poles when the grap
evaluated via contour integration. The contribution aris
from the nucleon poles can be shown to be of exactly
same form as an iterate of the one-meson exchange pote
in a Lippmann-Schwinger equation. Thus the nucleon p
contribution to the graph will be picked up when solving t
Schrödinger or Lippmann-Schwinger equation and must
be included as part of the potential in order to avoid dou
counting. The meson-pole contributions to the box graph
retardation effects. The full contribution to the potential fro
these graphs is the sum of the retardation part of the
graph with the crossed box.

In Ref. @3#, it was shown that for all types of two-meso
exchange there are cancellations between these two gr
so that the sum is consistent with Eq.~1!. These cancellations
were highly nontrivial since a number of different spin a
isospin structures must all cancel. For example, two-p
exchange, for which both the box and crossed-box contr
tions are of orderNc

2 , contribute to, among other things, th
isoscalar central potential, which is of orderNc and requires
cancellations of at least relative order 1/Nc and to the isovec-
tor central potential, which is of order 1/Nc and requires
cancellations of a least relative order 1/Nc

3 , in order to main-
tain consistency. By explicitly checking meson exchanges
all relevant spin and isospin couplings it was seen that al
the ‘‘dangerous’’ contributions that were inconsistent w
Eq. ~1! canceled to the degree necessary to ensure co
tency. This demonstration required explicit use of the c
tracted SU~4! algebra which in turn implied that intermedia
D states have to be kept as explicit degrees of freedom in
potential model to obtain consistency.

The analysis of Ref.@3# clearly helps justify the meson
exchange picture of nucleon-nucleon forces. However,
general theorem was proved. Rather all of the relevant c
for two-meson exchange were individually tested. Clea
one’s confidence in the generality of the result would
crease if a number of examples of three- and higher-me
exchange show the same type of cancellations seen in
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meson exchange. An analysis of certain multimeson
change graphs was done in Ref.@6#. The diagrams involved
can get quite complicated. Accordingly, it was necessary
establish some bookkeeping rules. The basic method u
was in many ways analogous to that used in Ref.@3#: First
one identifies all two-baryon irreducible Feynman diagra
as contributing to the potential. Next one considers the t
baryon-reducible graphs and notes that such graphs all
tain parts that have two baryon propagators between inte
tions. These propagators are then expressed as the su
two parts—one where one of the nucleons is on-shell,
the remainder. Next, one makes use of the fact the
baryon propagators with one baryon on-shell is identica
the propagator in the context of a Lippmann-Schwing
equation~up to relativistic corrections that are suppressed
1/Nc). Thus these contributions will be included when ite
ating the Lippmann-Schwinger equation the potential is id
tified as coming from the two-baryon reducible graphs as
full graph minus the contributions arising from two propag
tors between interactions with one baryon on shell.

This organization of the full problem into a potential an
then its iteration via a Lippmann-Schwinger or Schro¨dinger
equation has a number of virtues. First, provided the prob
is nonrelativistic, the scattering amplitude obtained by suc
procedure correctly reproduces the sum of all Feynman
grams for on-shell scattering. Second, this procedure is w
suited to the study of ladder and crossed-ladder graphs
cluding various noncommuting couplings since the no
Abelian generalization of the eikonal formula of Ref
@16,17# can be implemented for the sum of these graphs. T
non-Abelian generalization of the eikonal formula expres
the sum of all meson and crossed-meson lines enterin
single baryon in terms of commutators multiplyingd func-
tion which correspond to an on-shell baryon. In the cont
of summing ladder and crossed-ladder contributions
baryon-baryon scattering it is straightforward to see which
these on-shell contributions correspond to iterates of
Lippmann-Schwinger equation.

When this organizing principle was implemented for mu
timeson exchanges, however, it was found that the canc
tions needed for the potentials to maintain consistency w
Eq. ~1! did not occur. This was seen for two classes of grap
that were considered. One class was the sum of ladders
crossed ladders with noncommutating couplings. The m
dangerous type was where the meson coupled to baryon
vector-isovector manner. The issue there was the emerg
of contributions in which one nucleon was on-shell b
which were not iterates of the potential as defined above.
generalized eikonial formula@16,17# implies that these yield
contributions to the potential given in terms of commutato
Although the commutators typically yield a 1/Nc

2 suppression
and may be expected to induce a commutator on the o
nucleon leg for another factor of 1/Nc

2 if the ladder has six
rungs or higher, the explicitNc

1/2 associated with each meson
nucleon vertex overwhelms the suppression and an incon
tency with Eq.~1! is the result. A simpler case where a
inconsistency can be seen is the case of three scalar-isos
meson exchange between nucleons where two of the me
couple to one of the nucleons in a seagull-type vertex
3-2
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RESOLVING THE LARGE-Nc NUCLEAR POTENTIAL PUZZLE PHYSICAL REVIEW C66, 064003 ~2002!
shown in Fig. 1. Again when the part representing an iter
of the potential using the organizing principle discuss
above is removed, the remaining contribution which contr
utes to the potential itself does not cancel and is of orderNc

2 ,
in violation of Eq. ~1!. This inconsistency is the large-Nc
potential puzzle.

In the remainder of this paper a resolution to the puz
will be discussed. In the following section, it will be sug
gested that the heart of the problem lies in the organiz
principle discussed above which has the feature that the
tential obtained have explicit energy dependence. Follow
this a toy problem will presented to show how energy dep
dence can alter theNc counting of a potential. Next a new
organizing principle is suggested which yields energy in
pendent potentials. In the final section it is shown explici
that this new procedure, when applied to the case of th
scalar-isoscalar meson exchange where two of the me
couple to one of the nucleons in a seagull-type vertex~of the
type in Fig. 1!, yields a potential consistent with Eq.~1!.

II. ENERGY DEPENDENCE

In Ref. @6# various possible resolutions to the puzzle we
suggested. One possibility was that necessary cancella
might happen naturally and generically~without any special
conspiracies involving coupling constants of different m
sons! with a different organization of the problem. Howeve
no plausible reorganization was suggested. The purpos
the present paper is to argue that this is the correct resolu
of the problem and to provide the needed reorganization
will then be shown explicitly that with this reorganizatio
the contributions to the potential of the three-meson
change graphs of Fig. 1 indeed give rise to the cancellat
needed for the consistency with Eq.~1!.

The key to this reorganization is the realization that
separation of the contributions into a potential and its itera
in a Lippmann-Schwinger equation is not unique if one
lows energy-dependent potentials: there are an infinite n
ber of ways to distribute the energy dependence betw
explicit energy dependence of the potential and energy
pendence arising from iteration which yield identical scatt
ing amplitudes. Of course, one often thinks of potentials
being energy independent. However, energy-dependent
tentials arise naturally when one suppresses explicit in
sion of degrees of freedom and in the present problem
final nucleon-nucleon potential suppresses explicit me

FIG. 1. Three scalar-isoscalar meson exchange diagrams
one seagull-type coupling.
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degrees of freedom that are in the underlying problem. T
procedure used in Ref.@6# described above to isolate th
potential from its iterates produces such an energy-depen
potential. Of course, at a fundamental level, there is noth
wrong with energy-dependent potentials for use in a Sch¨-
dinger equation provided they correctly predict the physi
scattering amplitudes, and the procedure used in Ref.@6#
should reproduce the scattering amplitude. The notion
the elimination of energy dependence to establish con
tency may remind one of the situation in NR QCD~nonrel-
ativistic QCD! where field redifintions are used@18#.

Since the correct physical amplitude is obtained, the f
that the procedure used in Ref.@6# produces an energy
dependent potential might seem completely innocuous. H
ever, the key point is that the large-Nc scaling rules in Eq.~1!
is not for a physical quantity which can be directly me
sured; rather it is for the potential. Moreover, it is possib
for an energy-dependent potential to have radically differ
Nc scaling behavior from an energy-independent poten
which is physically equivalent.

III. A TOY PROBLEM

To see how energy dependence can alter theNc scaling
consider the following simple example: Begin with a simp
energy-dependent potential operator,

Ṽ~E!5Ṽ01Ṽ1~E2 p̂2/MN!, ~2!

where the tilde is used to distinguish the potential from
equivalent energy-independent one;Ṽ0 and Ṽ1 have no en-
ergy dependence~so that all energy dependence is explicit
given!, p̂ denotes the relative momentum operator, andMN/2
is the reduced mass. The potential is not explicitly Hermit
but this is not significant for the present purpose, which
merely illustrative. This non-Hermitian form is used since
is the simplest model which demonstrates the key point. T
scattering amplitudeT is obtained via the Lippmann
Schwinger equation, which as an operator equation can
represented as

T5V1VGLST5V1VGLSV1VGLSVGLSV1•••

with GLS5~E2 p̂2/MN1 i e!21. ~3!

Now suppose that we have another potentialV which is en-
ergy independent and has the same on-shell scattering am
tude as in Eq.~2!. By comparing the iterates of Eq.~3! for
the two potentials, it is straightforward to see that

V5Ṽ01Ṽ1Ṽ01Ṽ1Ṽ1Ṽ01••• (
j 50,̀

Ṽ1
j Ṽ0 . ~4!

The products of theṼ1 and Ṽ0 emerge inV from iterates of
the Lippmann-Schwinger equation forṼ; the (E2 p̂2/MN)
factors accompanyingṼ1 when multiplied byGLS give unity
and thus correspond to an uniterated term in the Lippma
Schwinger equation forV. Also, the (E2 p̂2/MN) operators
annihilates the on-shell external state and thereby elimin

ith
3-3
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THOMAS D. COHEN PHYSICAL REVIEW C66, 064003 ~2002!
many terms in the sum. Thus we see explicitly that ene
dependence reshuffles what goes into the potential and
is obtained via iteration. For the present context this is s
nificant in terms of theNc behavior. From the form of Eq
~4!, it is easy to see that the energy-dependent potentiaṼ
and the energy-independent potentialV cannot both generi-
cally be of orderNc . If Ṽ is generically of orderNc ~i.e.,
bothṼ0 andṼ1 are orderNc), then we see thatV contains all
powers ofNc . Conversely, ifV andṼ1 are each of orderNc ,
then Ṽ0 contains all powers ofNc .

IV. A NEW ORGANIZING PRINCIPLE

We see from the preceding example that ener
dependent potentials need not have the sameNc dependence
as energy-independent ones. The large-Nc scaling rules of
Eq. ~1! were derived by associating the quark-line connec
diagrams with ‘‘the potential.’’ This association is somewh
heuristic and it is not immediately obvious whether it is su
posed to apply for energy-dependent or energy-indepen
potentials. It is a reasonable hypothesis, however, that it
plies to energy-independent potentials. Thus it is plaus
that the failure of the analysis of Ref.@6# to reproduce theNc
scaling rules for Eq.~1! is because the separation into
potential and its iterates used in the analysis does not en
that the potential is energy independent. To see why the
tential so derived can depend on energy, consider the a
rithm used in the analysis to isolate the potentials. One
culates Feynman diagrams and subtracts off all contribut
coming from places where one nucleon out of a pair t
separates interacting subdiagrams is on-shell. This rem
terms that look like Lippmann-Schwinger equation iterat
The issue is simply that the remaining subdiagrams m
themselves, be energy dependent.

To test whether energy-independent potentials from m
tiple meson exchange are consistent with the rules of Eq.~1!,
we must first extract the contributions from energ
independent potentials from various meson exchan
graphs. The basic algorithm is similar to the one used in R
@6# with one modification. The potential contributions fro
two-particle irreducible diagrams will be taken as the sta
limit ~i.e., zero energy limit! of the diagram. For two-particle
reducible graphs, one subtracts off all contributions com
from places where one nucleon out of a pair that separ
interacting subdiagrams is on-shell, and where the remain
subdiagrams are replaced by their static limits.

It is worth noting at this point that at the level of two
meson exchange, the organizing principle of Ref.@6# and the
present one both give results consistent with Eq.~1!. The
reason for this is quite simple. The two only differ in th
treatment of the energy dependence of subdiagrams. In
case of two-meson exchange, the subdiagrams are single
son exchanges which do have nontrivial energy depende
due to the poles in the meson propagators. However, w
the external lines are on-shell, the two methods are ident
both methods have the same cancellation between retard
effects in the box diagram and the full crossed box.
course, one can distinguish between the two-meson
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change in the two methods if one or the other external l
goes off-shell. However, external line can go off-shell on
inside larger graphs and the lowest order one can disting
between the two approaches is at the level of three-me
exchange.

V. TESTING THE Nc SCALING OF
ENERGY-INDEPENDENT POTENTIALS

The modification suggested in the previous section gre
complicates the analysis. For involved cases, such as lad
and crossed ladders with many rungs, it may require a c
siderable effort to test the consistency of Eq.~1! since the
non-Abelian generalization of the eikonal formula can
longer be implemented in a straightforward way. Howev
the case of three scalar-isoscalar meson exchange bet
nucleons where two of the mesons couple to one of
nucleons in a seagull-type vertex represented in Fig. 1
tractable. The diagrams in Fig. 1 include all contributio
which has the seagull attached to one of the nucleon lin
There is an identical contribution which have the seag
attached to the other line. It is useful to group the diagra
into two sets,~a!, ~b!, and~c! as one group and~e!, ~f!, and
~g! as the other. The cancellations needed to get consiste
with Eq. ~1! can be shown to occur separately in the
groups. Now let us consider the contribution from the fi
three diagrams. The amplitude is given by

iAa,b,c5g1m
4 g2mE )

j 51

3
d3kj

~2p!3
~2p!3d (3)S (

j 51

3

kj2qD
3E )

j 51

3
dv j

2p
~2p!dS (

j 51

3

v j2q0D S )
j 51

3

D~kj
2!D

3G~p2k1!@G~ p̃1k1!G~ p̃1k11k2!1G~ p̃

1k2!G~ p̃1k11k2!1G~ p̃1k2!G~ p̃1k21k3!#,

~5!

where boldfaced indicates three vectors, and nonboldfa
four vectors, withkj5(v j ,kj ); g1m and g2m are the one-
meson and two-meson coupling constants; the initial fo
momenta of the two nucleons arep and p̃; the four-
momentum transfer isq; D(k)[(k22mm

2 1 i e)21 is the
meson propagator; and the fermion propagator is denote
G. For simplicity we will work in the center of mass fram
with p5(p2/(2Mn),p) and p̃5(p2/(2Mn),2p). In fact, the
graph as written is ultraviolet divergent. We will assume th
it is regulated by some short distance physics which act
cut off the momentum integrals. The details of how this
done is irrelevant for what follows, provided the same cut
procedure is used for all of the graphs.

Let us note theNc dependence of the various inputs
this expression:g1m;Nc

1/2, g2m;Nc
0 andMN;Nc ; the me-

son mass in the propagatorsD is of orderNc
0 . Thus there is

an overall prefactor ofNc
2 coming from the coupling con-

stants; it is this factor which must somehow be canceled
to relative orderNc

21 in order to get consistency with Eq.~1!.
3-4
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The kinematic regime of interest is intrinsically nonrelativ
tic sincep;Nc

0 while MN;Nc
1 . In this regime it is legiti-

mate to replace the full fermion propagator by

G~p!5
1

p02p2/~2MN!1 i e

11g0

2
@11O~1/Nc!#, ~6!

where the 1/Nc corrections come from the nonrelativistic r
duction. The propagator contains a recoil correction. T
will be a 1/Nc correction everywhere except in the vicinity o
the propagator’s pole. This pole correction is relevant o
for the piece which looks like a Lippmann-Schwinger equ
tion iterate and hence we will drop the recoil correction e
erywhere except for this one contribution. These recoill
propagators depend only on the energy and are given
(p01 i e)21.

A tedious calculation yields

iAa,b,c5g1m
4 g2mE )

j 51

3
d3kj

~2p!3
~2p!3d (3)S (

j 51

3

kj2qD
3E )

j 51

3
dv j

2p
~2p!dS (

j 51

3

v j D
3D~k1!@d~p02v11~p1k1!2/~2MN!!G~ p̃1k1!#

3D~k2!D~k3!
1

v11v21 i e
1O~Nc!, ~7!

where theO(Nc) corrections come from using nonrelativist
propagators and neglecting recoil. The combination in squ
brackets can easily be seen to be the delta function fixingv1
times the Lippmann-Schwinger propagator,GLS(p,E)
51/(E2p2/MN1 i e).

Note that the delta function restrictsv1 to being of order
Nc

21 for these kinematics. The expression in curly brace
sensitive to the infrared kinematics and depends on the
that v1Þ0. However, for all parts of the expression, setti
v1 to zero will only induce an error of relative size (1/Nc).
Substituting zero forv1 in all parts of Eq.~7! except for the
factor in square brackets gives

iAa,b,c5E d3k1

~2p!3
V1~k1!GLS~k1 ,E!V2~q2k1!1O~Nc!,

V1~k!5
g1m

2

k21mm
2

,

. C
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V2~k!5g1m
2 g2mE )

j 51

3
d3kj

~2p!3E )
j 52

3
dv j

2p
~2p!3d (3)S (

j 52

3

kj

2kD ~2p!dS (
j 52

3

v j DD~k2!D~k3!
1

v21 i e
. ~8!

Note thatV1 is a static one-meson exchange potential wh
V2 is the static potential for the exchange of two meso
with one seagull vertex. Thus the form of Eq.~8! is precisely
part of an iterate of the Lippmann-Schwinger equation, w
V1 as the first iteration andV2 the second. The other orderin
comes from the graphs~e!, ~f!, and ~g!. Since the part of
iAa,b,c which is of orderNc

2 is a static potential iterate, on
concludes the contributions of these graphs to the potenti
necessarily of orderNc or less and hence is consistent wi
the Nc scaling rules of Eq.~1!.

Note that had one followed the organization of Ref.@6#
there would have been a remaining contribution to the
tential of orderNc

2 . From this we see an explicit examp
where the energy-dependent potentials extracted from a
of Feynman graphs associated with multiple-meson
change using the algorithm of Ref.@6# are inconsistent with
the large-Nc counting rules of Refs.@5,4# while energy-
independent ones are consistent. Thus we see the largNc
nuclear potential puzzle has been resolved for this se
diagrams. Although we have not explicitly calculated oth
multiple-meson exchange graphs such as the sum of lad
and crossed-ladders considered in Ref.@6# due to their com-
plexity, it is highly plausible that consistency would be o
tained for the energy-dependent potentials for such case

In summary, it has been shown that energy-dependent
tentials can have differentNc scaling behavior than energy
independent potentials. It has been argued that theNc scaling
rules of Eq. ~1! should apply only to energy-independe
potentials. With these energy-dependent potentials one
pects consistency. From this perspective, the inconsistenc
the three- and higher-meson exchange potentials in Ref@6#
with Eq. ~1! can be understood as arising from the fact th
the analysis used in that work yielded energy-dependent
tentials. This interpretation is highly plausible given the e
plicit demonstration of consistency for the case of t
energy-independent potential associated with three-sca
meson exchange of the type seen in Fig. 1 despite the
that the energy-dependent potential was obtained using
methods of Ref.@6#
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