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Resolving the largeN. nuclear potential puzzle
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The largeN, nuclear potential puzzle arose because three- and higher-meson exchange contributions to the
nucleon-nucleon potential did not automatically yield cancellations that make these contributions consistent
with the general larg&{, scaling rules for the potential. Here it is proposed that the resolution to this puzzle is
that the scaling rules only apply for energy-independent potentials while all of the cases with apparent incon-
sistencies were for energy-dependent potentials. It is shown explicitly how energy-dependent potentials can
have radically different largél, behavior than an equivalent energy-independent one. One class of three-
meson graphs is computed in which the contribution to the energy-independent potential is consistent with the
general largeN, rules even though the energy-dependent potential is not.
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[. INTRODUCTION puzzling—why should such cancellations occur for two-
meson exchange for multiple channels and at the same time
The nature of the nucleon-nucleon interaction is at théail for three-or-higher meson exchange? The purpose of this
heart of nuclear physics. One traditional picture of nucleamote is to resolve this puzzle. As will be argued below, there
interactions at low energies is that they are mediated viés a reorganization of the analysis that yields precisely the
meson exchange. From the QCD perspective one can enwiype of conspiracy needed to resolve the puzzle.
sion the quarks and gluons organizing themselves into had- To begin with let us consider the background to the prob-
rons and then the baryons interact amongst themselves viam. LargeN, QCD[1,2] has proven to be a powerful tool to
the exchange of mesons. It is not immediately clear how onéarn about qualitative and semiquantitative features of had-
can test this picture of how nucleon-nucleon interactiongonic physics. In principle one may hope that it will also
emerge from QCD since we have mopriori method for  provide important insights into nuclear physics. The possible
deriving these interactions directly from QCD. In RE3] it implications of largeN; QCD for nuclear interactions were
was pointed out that largiz QCD can provide some insight already evident in Witten’s original paper on baryons in
into the issue. Since the meson-exchange picture of thirgeN, QCD. Witten pointed out thati) the nucleon-
nucleon-nucleon interaction if valid is justified on rather ge-nucleon interaction is characteristically of ordér, (ii) that
neric grounds, it should be expected to hold at Bpygreater nucleon-nucleon scattering observables had no smooth limit
than unity and hence should hold for laryg- However, as  as N.— if the nucleon momenta were of orddf, and
noted in Ref[3] it is by no means obvious that the meson- (i) for momenta of ordeN,, a relativistic time-dependent
exchange picture is in fact consistent with lafggcounting  Hartree formalism is appropriate and has a smooth Iakge-
rules. In particular, there is a threat that while a one mesonlimit. In practice, no such time-dependent Hartree calcula-
exchange description yields nucleon-nucleon interactionsions have been carried out, although recenfly it was
which are consistent with the lardé. counting rule§4,5], shown what type of observables are calculable in principle in
multiple-meson exchange graphs yield interactions which areéhis framework and the spin and isospin dependence of these
not. A consistent larg®, description requires a cancellation observables was deduced.
of all of these dangerous graphs. It was shown in Re&f. The problem of nucleon-nucleon interactions for mo-
that for all two-meson exchange such cancellations do in faghenta of ordeN? is of real significance. Kaplan and Mano-
occur, provided that the largé: scaling rules for the har[4] following the work of Kaplan and Savadé] have
nucleon-nucleon interaction are interpreted as applying for argued that useful information about the nucleon-nucleon po-
nucleon-nucleon potential for use in a Sdimger or tential can be extracted in this regime. In particular, they
Lippmann-Schwinger equatiofas opposed to a kernel in a suggest that the nucleon-nucleon potential can be associated
four dimensional Bethe-Salpeter-type equaltiorhis result  with quark-line connected diagrams between two color-
seems to support the traditional meson-exchange picture f@jinglet clusters oN, quark lines. This is motivated by Wit-
nucleon-nucleon potentials. Clearly, this support would been’s Hartree analysis. Combining this with the known con-
stronger if the cancellations seen for two-meson exchanggacted SW4) spin-flavor symmetry of two flavor QCD
also happen for general multiple-meson exchanges. [8—17 for the coupling to each cluster, this was used to
Unfortunately, in Ref[6] it was shown that the extension deduce that the largid; scaling behavior for the various spin

of the techniques of Ref3] does not automatically lead to and isospin contributions to the potential. The leading scal-
the types of cancellations seen for two-meson exchangefag behavior is given by

Thus in the absence of some type of conspiracy leading to
such cancellations there appears to be no way to justify the .
meson-exchange picture from larje-QCD. The result is Vis~Ne; Vigp~Ne o, (1)
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where the subscript indicates the quantum numbers of thmeson exchange. An analysis of certain multimeson ex-
exchange in the channel. It is worth noting that nucleon- change graphs was done in REf]. The diagrams involved
nucleon potentials which are fit to scattering data have &an get quite complicated. Accordingly, it was necessary to
pattern which is consistent with E€l) in the sense that the establish some bookkeeping rules. The basic method used
components which are ordél; in Eg. (1) are characteristi- was in many ways analogous to that used in R&f. First

cally significantly larger than those which are of ordell/ one identifies all two-baryon irreducible Feynman diagrams
[4,13]. Recently there have also been attempts to study thias contributing to the potential. Next one considers the two
regime from the perspective of effective field thepiyl]. baryon-reducible graphs and notes that such graphs all con-

The issue of consistency is studied in the following way.tain parts that have two baryon propagators between interac-
First one supposes that there exists some hadronic fielidons. These propagators are then expressed as the sum of
theory whose masses and couplings scale Witlaccording two parts—one where one of the nucleons is on-shell, and
to the standard largh; rules[15]. It was pointed out in the remainder. Next, one makes use of the fact the two
Refs.[3,13] that the largeN, scaling rules of meson-baryon baryon propagators with one baryon on-shell is identical to
couplings given by the contracted 81 spin-flavor symme- the propagator in the context of a Lippmann-Schwinger
try of two flavor QCD[8-10] yield a one-meson exchange equation(up to relativistic corrections that are suppressed by
potential and will satisfy Eq.1). At two-meson exchange the 1/N.). Thus these contributions will be included when iter-
key issue is that both the box graph and the crossed-boating the Lippmann-Schwinger equation the potential is iden-
graph are formally of ordemﬁ and hence individually cannot tified as coming from the two-baryon reducible graphs as the
be consistent with Eq1). It is straightforward to show, how- full graph minus the contributions arising from two propaga-
ever, that the box graph can be decomposed into twdors between interactions with one baryon on shell.
parts—a contribution arising from the nucleon poles and a This organization of the full problem into a potential and
contribution arising from the meson poles when the graph ighen its iteration via a Lippmann-Schwinger or Sdinger
evaluated via contour integration. The contribution arisingequation has a number of virtues. First, provided the problem
from the nucleon poles can be shown to be of exactly thés nonrelativistic, the scattering amplitude obtained by such a
same form as an iterate of the one-meson exchange potentjiocedure correctly reproduces the sum of all Feynman dia-
in a Lippmann-Schwinger equation. Thus the nucleon polgrams for on-shell scattering. Second, this procedure is well
contribution to the graph will be picked up when solving the suited to the study of ladder and crossed-ladder graphs in-
Schradinger or Lippmann-Schwinger equation and must notcluding various noncommuting couplings since the non-
be included as part of the potential in order to avoid doubléAbelian generalization of the eikonal formula of Refs.
counting. The meson-pole contributions to the box graph argl6,17 can be implemented for the sum of these graphs. The
retardation effects. The full contribution to the potential from non-Abelian generalization of the eikonal formula expresses
these graphs is the sum of the retardation part of the boshe sum of all meson and crossed-meson lines entering a
graph with the crossed box. single baryon in terms of commutators multiplyidgfunc-

In Ref.[3], it was shown that for all types of two-meson tion which correspond to an on-shell baryon. In the context
exchange there are cancellations between these two grapbt summing ladder and crossed-ladder contributions to
so that the sum is consistent with Ed). These cancellations baryon-baryon scattering it is straightforward to see which of
were highly nontrivial since a number of different spin andthese on-shell contributions correspond to iterates of the
isospin structures must all cancel. For example, two-piorlippmann-Schwinger equation.
exchange, for which both the box and crossed-box contribu- When this organizing principle was implemented for mul-
tions are of ordeNZ, contribute to, among other things, the timeson exchanges, however, it was found that the cancella-
isoscalar central potential, which is of ordég and requires tions needed for the potentials to maintain consistency with
cancellations of at least relative ordeN}/and to the isovec- Ed. (1) did not occur. This was seen for two classes of graphs
tor central potential, which is of order N/ and requires that were considergd. One class was the sum of ladders and
cancellations of a least relative ordeN§/ in order to main- ~ crossed ladders with noncommutating couplings. The most
tain consistency. By explicitly checking meson exchanges fofangerous type was where the meson coupled to baryonin a
all relevant spin and isospin couplings it was seen that all of €Ctor-isovector manner. The issue there was the emergence
the “dangerous” contributions that were inconsistent with ©f contributions in which one nucleon was on-shell but
Eqg. (1) canceled to the degree necessary to ensure consi&hich were not iterates of the potential as defined above. The
tency. This demonstration required explicit use of the con-9eneralized eikonial formulel6,17 implies that these yield
tracted SW4) algebra which in turn implied that intermediate contributions to the potential given in terms of commutators.
A states have to be kept as explicit degrees of freedom in thlthough the commutators typically yield aNi7 suppression
potential model to obtain consistency. and may be expected to induce a commutator on the other

The analysis of Ref[3] clearly helps justify the meson nucleon leg for another factor of I\IZ if the ladder has six
exchange picture of nucleon-nucleon forces. However, neungs or higher, the explicttli’2 associated with each meson-
general theorem was proved. Rather all of the relevant casesicleon vertex overwhelms the suppression and an inconsis-
for two-meson exchange were individually tested. Clearlytency with Eq.(1) is the result. A simpler case where an
one’s confidence in the generality of the result would in-inconsistency can be seen is the case of three scalar-isoscalar
crease if a number of examples of three- and higher-mesomeson exchange between nucleons where two of the mesons
exchange show the same type of cancellations seen in tw@ouple to one of the nucleons in a seagull-type vertex as

064003-2



RESOLVING THE LARGEN. NUCLEAR POTENTIAL PUZZLE PHYSICAL REVIEW C66, 064003 (2002

o R . degrees of freedom that are in the underlying problem. The
Y- A X ' procedure used in Ref6] described above to isolate the
— il potential from its iterates produces such an energy-dependent
(a) (b) {c) potential. Of course, at a fundamental level, there is nothing
wrong with energy-dependent potentials for use in a Schro
R NG Y dinger equation provided they correctly predict the physical
o A ” scattering amplitudes, and the procedure used in F&f.
— —. should reproduce the scattering amplitude. The notion that
(d) () ) the elimination of energy dependence to establish consis-

ency may remind one of the situation in NR QGonrel-
tivistic QCD where field redifintions are usgd8].

Since the correct physical amplitude is obtained, the fact
that the procedure used in RgB] produces an energy-

shown in Fig. 1. Again when the part representing an iteratéjependent potentiql might seem comple_tely inno_cuous. How-
of the potential using the organizing principle discusseoiever’tﬂf]e key [;]om_t |s|that thtet Iargr?_c-f]cahnggulzs_ in tEIqﬂl)
above is removed, the remaining contribution which contrip-S Not1or a physical quantity which can be directly mea-

Utes to the potential itself does not cancel and is of oNﬁer sured; rather it is for the potential. Moreover, it is possible
in violationpof Eq. (1). This inconsistency is the largé, for an energy-dependent potential to have radically different
potential puzzle q- {2 y ¢ N, scaling behavior from an energy-independent potential

In the remainder of this paper a resolution to the puzzleWhICh Is physically equivalent.
will be discussed. In the following section, it will be sug-
gested that the heart of the problem lies in the organizing ll. ATOY PROBLEM

tential obtained have explicit energy dependence. Followingonsider the following simple example: Begin with a simple
this a toy problem will presented to show how energy depengnergy-dependent potential operator,

dence can alter thdl; counting of a potential. Next a new

organizing principle is suggested which yields energy inde- V(E)=Vo+V(E—p4My), 2
pendent potentials. In the final section it is shown explicitly

that this new procedure, when applied to the case of threwhere the tilde is used to distinguish the potential from an

scalar-isoscalar meson exchange where two of the mesoeguivalent energy-independent ong; andV; have no en-
couple to one of the nucleons in a seagull-type veftéxthe  ergy dependenceso that all energy dependence is explicitly

type in Fig. 3, yields a potential consistent with E€. given), p denotes the relative momentum operator, Rhg2
is the reduced mass. The potential is not explicitly Hermitian
Il. ENERGY DEPENDENCE but this is not significant for the present purpose, which is
merely illustrative. This non-Hermitian form is used since it

In Ref.[6] various possible resolutions to the puzzle were. : . .
suggested. One possibility was that necessary cancellatioh%the simplest model which demonstrates the key point. The

might happen naturally and genericallyithout any special scattgrlng ampllt.udeT IS obtained via the L|ppmann—
conspiracies involving coupling constants of different me_Schwmger equation, which as an operator equation can be
song with a different organization of the problem. However, represented as

no plausible reorganization was su_gg_ested. The purpose of T=V+VG sT=V+VG V+VG VG V+ -

the present paper is to argue that this is the correct resolution
of the problem and to provide the needed reorganization. It
will then be shown explicitly that with this reorganization,

the contributions to the potential of the three-meson exiow suppose that we have another potentathich is en-
change graphs of Fig. 1 indeed give rise to the cancellationgrgy independent and has the same on-shell scattering ampli-
needed for the consistency with E@). tude as in Eq(2). By comparing the iterates of E¢B) for

The key to this reorganization is the realization that thethe two potentials, it is straightforward to see that
separation of the contributions into a potential and its iterates

in a Lippmann-Schwinger equation is not unique if one al- e e e e e o Siv
lows energy-dependent potentials: there are an infinite num- V=Vo+ViVo+ViViVot - 'j;(}w ViVo. @)
ber of ways to distribute the energy dependence between ’

explicit energy dependence of the potential and energy derng yoqycts of th&, andV, emerge inv from iterates of
pendence arising from iteration which yield identical scatter- he Li Schwi tion 5t the (E—h2/M
ing amplitudes. Of course, one often thinks of potentials ad"€ LIPPMann-Schwinger equation fof the E-p7My)

being energy independent. However, energy-dependent péactors accompanying; when multiplied byG, s give unity
tentials arise naturally when one suppresses explicit incluand thus correspond to an uniterated term in the Lippmann-
sion of degrees of freedom and in the present problem th&chwinger equation fov. Also, the E— p?/My) operators
final nucleon-nucleon potential suppresses explicit mesoannihilates the on-shell external state and thereby eliminates

FIG. 1. Three scalar-isoscalar meson exchange diagrams wit
one seagull-type coupling.

with G s=(E—p?My+ie) L. 3)
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many terms in the sum. Thus we see explicitly that energyhange in the two methods if one or the other external line
dependence reshuffles what goes into the potential and whgbes off-shell. However, external line can go off-shell only

is obtained via iteration. For the present context this is siginside larger graphs and the lowest order one can distinguish
nificant in terms of theN. behavior. From the form of Eq. between the two approaches is at the level of three-meson

(4), it is easy to see that the energy-dependent potelitial €xchange.
and the energy-independent potentiatannot both generi-

cally be of orderN,. If V is generically of ordeN, (i.e., V. TESTING THE N, SCALING OF

bothV, andV, are ordeiN,), then we see thaf contains all ENERGY-INDEPENDENT POTENTIALS

powers ofN... Conversely, iV andV, are each of ordeX,, The modification suggested in the previous section greatly
thenV, contains all powers o complicates the analysis. For involved cases, such as ladders

and crossed ladders with many rungs, it may require a con-
siderable effort to test the consistency of Ef) since the
IV. ANEW ORGANIZING PRINCIPLE non-Abelian generalization of the eikonal formula can no

We see from the preceding example that energy_Ionger be implemented in a straightforward way. However,

! the case of three scalar-isoscalar meson exchange between
dependent _potenuals need not have the sblm_dependence nucleons where two of the mesons couple to one of the
as energy-mdependent ones. The Idrgescalmlg rules of nucleons in a seagull-type vertex represented in Fig. 1 is
E.q.(l) were derived by associating the qga_rk-ll_ne connecte ractable. The diagrams in Fig. 1 include all contributions
dmgrams W'th. “.the pqtenUaI."’ This asspmaﬂon IS so.m.EWhatwhich has the seagull attached to one of the nucleon lines.
heuristic and it is not immediately obvious whethgr Itis SUPThere is an identical contribution which have the seagull
posed_to app_ly for energy-dependent or energy-lndependeghached to the other line. It is useful to group the diagrams
potentials. It is a reasonable hypothesis, however, that it aBhio two sets (@), (b), and(c) as one group ant®), (f), and
plies to energy-independent potentials. Thus it is plausibl S . G
that the failure of the analysis of Ré6] to reproduce thl, ?g) as the other. The cancellations needed to get consistency

i les for Eq(1) is b th fion int with Eqg. (1) can be shown to occur separately in these
;(C)?elgt?alr uare13 itgriterc;tes :Jsse(;e(i:r?Ltjr?ee anglyssﬁg?jfelsrr]\oltneon;?rOUpS' Now let us consider the contribution from the first
A : ree diagrams. The amplitude is given b
that the potential is energy independent. To see why the po- 9 P g y
tential so derived can depend on energy, consider the algo- 3 43k 3
rithm used in the analysis to isolate the potentials. One cal-j 4, C:g‘llmgmj 11 ! (277)35(3)( > k]-—q>
culates Feynman diagrams and subtracts off all contributions =1 (2m)3 =1
coming from places where one nucleon out of a pair that 3 4 3
separates interacting subdiagrams is on-shell. This removes wj
p g g X Jl:[ E(Zﬁ)a(;]. w;— (o

terms that look like Lippmann-Schwinger equation iterates.
The issue is simply that the remaining subdiagrams may,

3
o
j=1

themselves, be energy dependent. X G(p—k)[G(p+ky)G(p+ky+ky)+G(p

To test whether energy-independent potentials from mul- - - -
tiple meson exchange are consistent with the rules of Hg. +ka)G(p+ki+ky) +G(p+ky)G(p+kyt+Kka)],
we must first extract the contributions from energy- (5)

independent potentials from various meson exchanges

graphs. The basic algorithm is similar to the one used in Refwhere boldfaced indicates three vectors, and nonboldfaced
[6] with one modification. The potential contributions from four vectors, withk; = (o ,K;); g1m and gop, are the one-
two-particle irreducible diagrams will be taken as the staticmeson and two-meson coupling constants; the initial four-

limit (i.e., zero energy limjtof the diagram. For two-particle momenta of the two nucleons ane and 5 the four-
reducible graphs, one subtracts off all contributions cominqnomentum transfer iy, D(K)=(k%—m? Jrie,)*l is the
’ - m

from p'?‘ces Wh_ere one ljucleon out of a pair that sepa_ra_t eson propagator; and the fermion propagator is denoted by
interacting subdiagrams is on-shell, and where the remaining - simplicity we will work in the center of mass frame

subdiagrams are replaced by their static limits. ) o ~
It is worth noting at this point that at the level of two- With P=(p/(2My),p) andp=(p”/(2M,), —p). In fact, the
meson exchange, the organizing principle of Réf.and the graph as written is ultraviolet divergent. We will assume that
it is regulated by some short distance physics which acts to

present one both give results consistent with Elg. The . ) o
reason for this is quite simple. The two only differ in the cut off the momentum integrals. The details of how this is

treatment of the energy dependence of subdiagrams. In tHione is irre_Ievant for what follows, provided the same cutoff
case of two-meson exchange, the subdiagrams are single nf¥ocedure is used for all of the graphs. .

son exchanges which do have nontrivial energy dependence L€t us note theN, dl/ezpendenc% of the various inputs to
due to the poles in the meson propagators. However, whelfliS xpressiongsm~Ng™=, gom~Nc andMy~Nc; the me-

the external lines are on-shell, the two methods are identica§on Mass in the propagatdpsis of orderNg. Thus there is
both methods have the same cancellation between retardati@h overall prefactor oNg coming from the coupling con-
effects in the box diagram and the full crossed box. Ofstants; it is this factor which must somehow be canceled up
course, one can distinguish between the two-meson exo relative ordelN, * in order to get consistency with E€L).
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The kinematic regime of interest is intrinsically nonrelativis- 3 3L 3 ) 3

. . 0 . 1 . . . . 2 d kj da)] 3 (3)

tic sincep~N; while MN~N?. In this regime it is legiti- V,(K)=01192m H 3 H E(ZW) 1) Z Kj
mate to replace the full fermion propagator by i=1(2m)7) i=2 =2

3

—k) (277)5( 122 wj> D(kp)D(ks)

tS)

w2+i6.

Y L o(INyT, ©)

G =
(P) Po— P (2My) +ie 2

Note thatV; is a static one-meson exchange potential while

where the IN,, corrections come from the nonrelativistic re- V2 iS the static potential for the exchange of two mesons
duction. The propagator contains a recoil correction. ThigVith one seagull vertex. Thus the form of E§) is precisely

will be a LN, correction everywhere except in the vicinity of Part of an iterate of the Lippmann-Schwinger equation, with

the propagator’s pole. This pole correction is relevant onlyVl as the first iteration and, the second. The other ordering

for the piece which looks like a Lippmann-Schwinger equa—f:Omes frqm t_he graphée),2 .(f)' and _(g). Smcg the part of
tion iterate and hence we will drop the recoil correction ev—'Aa"f"C which is of qrderNc is a static potential iterate, one
erywhere except for this one contribution. These recoilles§OnCIudeS the contributions of these graphs to the potential is

; ecessarily of ordeN. or less and hence is consistent with
?;OTE?ETS depend only on the energy and are given b e N, scaling rules of Eq(1).
0 .

. . . Note that had one followed the organization of R
A tedious calculation yields there would have been a remaining contribution to the po-
tential of orderNﬁ. From this we see an explicit example
3 where the energy-dependent potentials extracted from a set
(277)35(3)( Z kj—Q) of Feynman graphs associated with multiple-meson ex-
=1 change using the algorithm of Réb] are inconsistent with
3 the largeN. counting rules of Refs[5,4] while energy-
E wj) independent ones are consistent. Thus we see the Narge-
i=1 nuclear potential puzzle has been resolved for this set of
- diagrams. Although we have not explicitly calculated other
XD (ky)[8(po— w1+ (p+ky)?(2My))G(p+ki)]  multiple-meson exchange graphs such as the sum of ladders
1 and crossed-ladders considered in R6f.due to their com-
plexity, it is highly plausible that consistency would be ob-
x D(kZ)D(kS)wﬁ wytie TOM), @ tained for the energy-dependent potentials for such cases.

) ) o In summary, it has been shown that energy-dependent po-
where theO(N,) corrections come from using nonrelativistic tentials can have differemt, scaling behavior than energy-
propagators and neglecting recoil. The combination in squargdependent potentials. It has been argued thalthscaling
brackets can easily be seen to be the delta function fiving rules of Eqg.(1) should apply only to energy-independent
times the Lippmann-Schwinger propagato6, s(p,E) potentials. With these energy-dependent potentials one ex-
=1/(E—p?/My+ie). pects consistency. From this perspective, the inconsistency of

Note that the delta function restricis; to being of order the three- and higher-meson exchange potentials in [REf.
Ngl for these kinematics. The expression in curly braces isvith Eg. (1) can be understood as arising from the fact that
sensitive to the infrared kinematics and depends on the fa¢he analysis used in that work yielded energy-dependent po-
that w, # 0. However, for all parts of the expression, settingtentials. This interpretation is highly plausible given the ex-

d
(2m)®

3
[ Aa,b,c: gimg2mf ]_1;[1

* do
et |
X j|=|1 27T(27T)5

, to zero will only induce an error of relative size ().  plicit demonstration of consistency for the case of the
Substituting zero fom, in all parts of Eq.(7) except for the energy-independent potential associated with three-scalar-
factor in square brackets gives meson exchange of the type seen in Fig. 1 despite the fact

that the energy-dependent potential was obtained using the
methods of Ref[6]

] d3k
iAabc= f —lvl(kl)GLs(kl JE)Va(q—ky) + O(Ny),
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