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Axial-vector current in nuclear many-body physics
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Weak-interaction currents are studied in a recently proposed effective field theory of the nuclear many-body
problem. The Lorentz-invariant effective field theory contains nucleons, pions, as well as isoscalar, scalar (s)
and vector (v) fields, and isovector, vector (r) fields. The theory exhibits a nonlinear realization of SU(2)L

3SU(2)R chiral symmetry and has three desirable features: it uses the same degrees of freedom to describe the
axial-vector current and the strong-interaction dynamics, it satisfies the symmetries of the underlying theory of
quantum chromodynamics, and its parameters can be calibrated using strong-interaction phenomena, like
hadron scattering or the empirical properties of finite nuclei. Moreover, it has recently been verified that for
normal nuclear systems, it is possible to systematically expand the effective Lagrangian in powers of the meson
fields ~and their derivatives! and to reliably truncate the expansion after the first few orders. Here it is shown
that the expressions for the axial-vector current, evaluated through the first few orders in the field expansion,
satisfy both PCAC and the Goldberger-Treiman relation, and it is verified that the corresponding vector and
axial-vector charges satisfy the familiar chiral charge algebra. Explicit results are derived for the Lorentz-
covariant, axial-vector, two-nucleon amplitudes, from which axial-vector meson-exchange currents can be
deduced.
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I. INTRODUCTION

Although quantum chromodynamics~QCD! is known to
be the fundamental theory of the strong interaction, it
much more efficient to use hadronic degrees of freedom
describe few- and many-body nuclear systems at low e
gies. Considerable effort over the last 30 years has sh
that models based on baryons and mesons can provi
realistic description of the nucleon-nucleon (NN) interac-
tion, nuclear matter saturation, and the bulk and sing
particle properties of finite nuclei.~For reviews, see, for ex
ample, Refs.@1–5#.! The hadrons are described by effecti
fields whose interactions are determined by a local, Lore
invariant Lagrangian. The modern viewpoint@6,7# is that the
resulting relativistic, quantum, effective field theory provid
the most general way to parametrize anS matrix ~or other
observables@8#! that is consistent with the constraints
quantum mechanics, special relativity, unitarity, causal
cluster decomposition, and the desired internal symmet
Thus there is no reason that relativistic quantum field the
should be reserved for ‘‘elementary’’ particles only. We w
refer to Lorentz-covariant, relativistic effective field theori
based on hadrons asquantum hadrodynamicsor QHD
@4,5,9–11#.

It has also been known for many years that an accu
description of electroweak interactions in nuclei require
consideration of mesonic degrees of freedom~i.e., ‘‘fields’’ !
in addition to the nucleons.~For a review, see Refs.@12–14#.
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An example of more recent work is Ref.@15#.! The mesons
are responsible for the forces between the nucleons and
lead to meson-exchange currents~MEC! that contribute to
electroweak processes. A desirable theory of the axial-ve
current should satisfy the following three conditions.

~1! It should use the same degrees of freedom to desc
the axial current and the strong-interaction dynamics (pN
scattering,NN scattering, and nuclear structure!; the basic
phenomenological features of the latter are well known.

~2! It should satisfy the same internal symmetries as
underlying theory of QCD: the discrete symmetries of t
strong interaction, and~approximate! isospin and chiral sym-
metries, with the last being spontaneously broken. The
forcement of the continuous symmetries is necessary to
sure the conservation of the vector, isovector current~CVC!
and the partial conservation of the axial-vector, isovec
current~PCAC!.

~3! It should be possible to calibrate the parameters of
theory using strong-interaction phenomena, likepN scatter-
ing and the properties of finite nuclei, so that one can ded
well-defined and unambiguous currents to be used in
calculation of electroweak processes. This is especially
portant in effective field theories, because these contain
~nonredundant! interaction terms that are consistent with t
underlying symmetries@5,7#.

In discussing MEC for the weak interaction, CVC implie
that the vector part of the current can be determined by p
forming an isospin rotation on the isovector part of the el
tromagnetic current@3#. Thus the vector parts of the wea
exchangecurrents can be derived from the isovector part
the corresponding electromagneticexchangecurrents, which
have been determined accurately over the last two deca
In contrast, the axial-vector parts of the exchange curre
©2002 The American Physical Society02-1
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require additional theoretical input.
There have been many attempts to describe axial-ve

exchange currents~AXC! in models based on hadronic d
grees of freedom. An important, early contribution was ma
by Kubodera, Delorme, and Rho@16#, who predicted the
dominant long-range piece of the AXC using current alge
and the assumption of pion-exchange dominance, wh
yield the leading-order terms in an expansion in inverse p
ers of the nucleon mass. Some interesting recent approa
include a description of AXC using all the degrees of fre
dom contained in the phenomenologicalNN potential@17–
20#, a model based on ‘‘hard pions’’@21–24#, and the appli-
cation of chiral perturbation theory~ChPT! @25–28#.

While these approaches enjoyed several succe
@20,29#, they all contain shortcomings that make them un
sirable, at least according to the criteria presented above
particular, current-algebra techniques are difficult to exte
to multipion contributions or to mesons other than the pi
Models based on a phenomenologicalNN potential do not
explicitly incorporate chiral symmetry and do not explicit
include AXC that arise from the direct interaction of th
exchanged mesons with the axial current. Hard-pion mod
use a linear realization of the chiral symmetry; thus, inc
sion of ther meson necessitates the inclusion of its chi
partner, thea1, which is known to be relatively unimportan
in the NN interaction and in nuclear structure@30#. More-
over, the strong, mid-rangeNN attraction, which arises pre
dominantly from correlated two-pion exchange, and which
crucial for an accurate description ofNN phase shifts and
nuclear matter properties@1,5,10,31#, is difficult to generate
in models with linear chiral symmetry without also gener
ing unrealistic many-nucleon forces@32#. In contrast, when
the chiral symmetry is realizednonlinearly, the mid-range
attraction can be efficiently simulated by introducing an
fective, scalar, isoscalar, chiral singlets meson with a mass
of roughly 500 MeV@33,34#.

Finally, models based on ChPT attempt to explain all
the dynamics using nucleons and pions alone; this makes
description of theNN interaction and of nuclear structur
very complicated, since one must generate much of
strong-interaction dynamics using multipion loop proces
@35–39#. These shortcomings motivate the search for al
native descriptions of the AXC.

In Ref. @40#, a Lagrangian-based model that containsp,
s, andv meson fields was used to construct the AXC. T
model incorporates the desirable qualities enumerated
lier; it contains the mesons responsible for the dominant
tures of theNN interaction, it respects both isospin symm
try and ~approximate! spontaneously broken chira
symmetry, and~in principle! its parameters can be calibrate
to the properties of nuclei by using the mean-field appro
mation for the meson fields. Nevertheless, the impleme
tion of the chiral symmetry in this model~which is based on
the well-knowns model @3,41,42#! turns out to be too re-
strictive. In particular, it is impossible to satisfy both PCA
and the Goldberger-Treiman relation without destroying
familiar chiral charge algebra. It is also impossible to rep
duce the empirical equilibrium point of nuclear matter in t
mean-field approximation@32,43#. Moreover, the linear real
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ization of the chiral symmetry makes it cumbersome to
clude ther meson@30#. A viable description of the AXC
requires a more general implementation of the chiral symm
try.

In the present work, we derive the axial-vector curre
using a recently proposed QHD Lagrangian@5,34# that con-
tains nucleons andp, s, v, andr mesons. This Lagrangian
has alinear realization of the SU(2)V isospin symmetry and
a nonlinear realization of the spontaneously broken SU(2L

3SU(2)R chiral symmetry~when the pion mass is zero!. It
was shown in Refs.@11,34,44# that by using Georgi’s naive
dimensional analysis~NDA! @45# and the assumption o
naturalness~namely, that all appropriately defined, dime
sionless couplings are of order unity!, it is possible to trun-
cate the Lagrangian at terms involving only a few powers
the meson fields and their derivatives, at least for system
normal nuclear densities. It was also shown that a mean-fi
approximation to the Lagrangian could be interpreted
terms of density functional theory@5,46,47#, so that calibrat-
ing the parameters to observed bulk and single-part
nuclear properties incorporates~approximately! many-body
effects that go beyond mean-field theory.1 Explicit calcula-
tions of closed-shell nuclei provided such a calibration a
verified the naturalness assumption@44#. This approach
therefore embodies the three desirable features needed f
description of the axial-vector current in the nuclear man
body problem.

This effective field theory~EFT! also overcomes the dif
ficulties found in Ref.@40#. The chiral symmetry guarantee
that the PCAC condition will hold for the one- and two-bod
axial currents and pion-production amplitudes, as we dem
strate explicitly below. Moreover, thepN coupling strength
gA enters as afree parameterthat can be chosen so that th
Goldberger-Treiman relation is satisfied at the tree lev
without any rescaling of the fields. This result, together w
the chiral symmetry, ensures that the conserved vector
axial-vector charges obey the familiar algebra. Thus all th
required constraints can be satisfied simultaneously in
present framework. Moreover, the pion-pion and pio
nucleon parts of the Lagrangian are exactly the same as t
of chiral perturbation theory@49–51#.

It is important to note that in our EFT, only the pions an
nucleons~the stable particles! can appear on external line
with timelike four-momenta. The heavy non-Goldston
bosons appear only on internal lines~with spacelikefour-
momenta! and allow us to parametrize the medium- a
short-range parts of the nucleon-nucleon interaction, as w
as the electromagnetic form factors of the hadrons@33,34#.
The heavy bosons are also convenient degrees of freedom
describing nonvanishing expectation values of biline

1Since our Lagrangian contains the four most important mes
used in boson-exchange models of theNN interaction@1,2#, as well
as all of the relevant meson-nucleon couplings, it should also p
vide a reasonable description of theNN data, albeit with different
parameter values@48#. Thus the parameters could also be sensi
calibrated toNN data, which should be more useful for studyin
exchange currents in few-nucleon systems.
2-2
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nucleon operators, such asN̄N andN̄gmN, which are impor-
tant in nuclear many-body systems@4,5#.

The remainder of this paper is organized as follows.
Sec. II, the effective QHD Lagrangian is introduced and
scribed briefly, and the vector and axial-vector currents
derived for the interaction terms that contain only one
rivative of the pion field. The currents arise directly fro
Noether’s theorem and contain the pion field to all orders
Sec. III, the matrix elements of the one- and two-body ax
currents and the pion-production amplitude arising fro
these contributions are computed, and PCAC and
Goldberger-Treiman relation are verified. It is also demo
strated that in the chiral limit, the conserved charges co
sponding to these currents reproduce the desired alge
Sections IV and V extend the analysis to the terms in
Lagrangian that are bilinear in derivatives of the pion fie
and Sec. VI discusses the leading contributions containin
r meson. The isoscalars and v meson contributions are
given in Sec. VII. Section VIII contains a summary.

II. EFFECTIVE FIELD THEORY LAGRANGIAN

The EFT Lagrangian considered in the present paper
proposed in Ref.@34#. As discussed in that paper, the nonli
m
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of the fields and their derivatives. To each interaction te
we assign an index

n[d1
n

2
1b, ~1!

where d is the number of derivatives,n is the number of
nucleon fields, andb is the number of non-Goldstone boso
fields in the interaction term. Derivatives on the nucle
fields are not counted ind because they will typically intro-
duce powers of the nucleon massM, which will not lead to
small expansion parameters@34#.

It was shown in Refs.@32,34# that for finite-density appli-
cations at and below nuclear matter equilibrium density, o
can truncate the effective Lagrangian2 at terms withn<4. It
was also argued that by making suitable definitions of
nucleon and meson fields, it is possible to write the Lagra
ian in a ‘‘canonical’’ form containing familiar noninteractin
terms for all fields, Yukawa couplings between the nucle
and meson fields, and nonlinear meson interactions@8#. See
Refs.@5,34# for a more complete discussion.

If we keep terms withn<4, the chirally invariant La-
grangian can be written as3
LEFT5LN1L41LM

5N̄~ igm@]m1 ivm1 igrrm1 igvVm#1gAgmg5am2M1gsf!N2
f rgr

4M
N̄rmnsmnN

2
f vgv

4M
N̄VmnsmnN2

kp

M
N̄vmnsmnN1

4bp

M
N̄NTr~amam!1L41

1

2
]mf]mf1

1

4
f p

2 Tr~]mU]mU†!

2
1

2
Tr~rmnrmn!2

1

4
VmnVmn2grpp

2 f p
2

mr
2 Tr~rmnvmn!1

1

2 S 11h1

gsf

M
1

h2

2

gs
2f2

M2 Dmv
2VmVm

1
1

4!
z0gv

2~VmVm!21S 11hr

gsf

M Dmr
2Tr~rmrm!2ms

2f2S 1

2
1

k3

3!

gsf

M
1

k4

4!

gs
2f2

M2 D , ~2!
ce
where the nucleon, pion,s, v, andr fields are denoted by
N, p, f, Vm , and rm[ 1

2 t•rm , respectively,Vmn[]mVn

2]nVm , and smn[( i /2)@gm,gn#. The trace ‘‘Tr’’ is in the
232 isospin space. The pion field enters through the co
binations

U[exp~ i t•p/ f p!, j[exp~ i t•p/2 f p!, ~3!

am[2
i

2
~j†]mj2j]mj†! ~4!

'
1

2 f p
t•]mp1

1

12f p
3 @p•~]mp!t•p

2p2t•]mp#1O~p4]mp!, ~5!
-

vm[2
i

2
~j†]mj1j]mj†! ~6!

'
1

4 f p
2 t•@p3]mp#1O~p3]mp!, ~7!

2Two terms of ordern55 involving bilinear derivatives of thes
andv fields are of minor, but non-negligible, numerical importan
and were included in Ref.@34#. We will not be concerned with such
details in this work.

3We use the conventions of Refs.@4,5,34#.
2-3
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vmn[]mvn2]nvm1 i @vm ,vn#52 i @am ,an# ~8!

'
1

2 f p
2 t•@]mp3]np#1O@p2~]mp!~]np!#.

~9!

The r meson enters through the covariant field tensor

rmn5Dmrn2Dnrm1 i ḡr@rm ,rn#, ~10!

where the covariant derivative is defined by

Dmrn[]mrn1 i @vm ,rn#, ~11!

and ḡr is a free parameter@5,34#. L4 containspp andpN
interactions of ordern54, which are not needed in thi
work. A numerically insignificantn54 term proportional to
f2Tr(rmrm) has been omitted.

This EFT Lagrangian provides a consistent framework
explicitly calculating the two-body exchange currents ori
nating from meson-nucleon interactions in nuclei. Accord
to NDA, all of the coupling parameters are written in dime
sionless form and should be of order unity, if the theo
obeys naturalness; this has been verified for the param
that are relevant for mean-field nuclear structure calculati
@34,44#. Moreover, all the constants entering the Lagrang
~2! are assumed to be determined from calibrations
nuclear and nucleon structure data, hadronic decays, andpN
scattering observables@34,50#.

The familiar axial-vector, exchange-current results are
produced by then52 terms, when they are expanded
leading order in the pion field. In addition, then53 terms
lead to new contributions to the axial-vector current that w
be calculated explicitly and shown to preserve the corr
charge algebra.

The same sequence of steps is used to calculate the a
vector current from both then52 andn53 terms. First, we
calculate canonical momenta and identify the Noether ve
and axial-vector currents for the effective Lagrangian to
given order inn. Next, we demonstrate that the correct chi
charge algebra holdsto all orders in the pion fieldin each
case~except for contributions involving ther meson, simply
in the interest of brevity!. This result differs from that ob-
tained in thesv model with a linear representation of th
chiral symmetry. Here it follows as a direct consequence
the nonlinear implementation of the chiral symmetry in th
EFT Lagrangian. One then calculates for all contributions
one-body matrix elements of the axial current, the ax
current, pion-production amplitude on a single nucleon, a
the two-body matrix elements of the axial current. PCAC
verified for each of these amplitudes, the soft-pion limit
investigated for pion production, and the two-body, axi
current matrix elements can be used to identify the co
sponding nuclear AXC.

A. The pionic part of the Lagrangian

We begin by considering thepN part of the EFT La-
grangian. This consists of a purely pionic part and a part
involves pions interacting with nucleons. We will first co
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analyze contributions from additional terms withn53.
The n52 terms involving only pions and nucleons can
written as4

L25Lp1LpN , ~12!

where

Lp5
f p

2

4
$Tr~]mU]mU†!1mp

2 Tr~U1U†22!% ~13!

and

LpN5N̄H igmF]m1
1

2
~j†]mj1j]mj†!G

2
i

2
gAgmg5~j†]mj2j]mj†!2M J N, ~14!

with U andj defined in Eq.~3!.
In this Lagrangian, the SU(2)V isovector symmetry is

represented linearly, while the SU(2)L3SU(2)R chiral sym-
metry is realized in a nonlinear fashion@52,53#. Transforma-
tions of the fields are defined by

U~x!→LU~x!R†,

j~x!→Lj~x!h†~x!5h~x!j~x!R†,

N~x!→h~x!N~x!. ~15!

A vector SU(2)V transformation with infinitesimal group pa
rametersb is specified by

L5exp~ i b•t/2!5R5h~x!, ~16!

while an axial transformation of these fields with infinites
mal parametersa is given by

L5exp~ i a•t/2!, R5exp~2 i a•t/2!,

h~x!5exp@ i g~x!•t/2#. ~17!

The isovector functiong(x) is defined implicitly by Eq.~15!.
By making use of the algebraic properties of thet matrices,
one can find an expression for the matrixh(x), which deter-
mines axial transformations of the fields, to lowest order ina
but to all orders in the pion field:

ga52eabcabp̂c tanS p

2 f p
D1O~a2!. ~18!

Note thatp[upu everywherein this paper~i.e., p is nevera
shorthand for 3.141 59 . . .!, p̂[p/p, and we use latin indi-
ces a,b,c, . . . ,l ,m, . . . to denote the isospin component

4Thef andVm fields are isoscalar chiral singlets, and the terms
L2 involving these fields do not contribute to the currents.
2-4
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When expanded to lowest order in the pion field, this res
produces a familiar expression@34#,

ga52
1

2 f p
@a3p#a1O~a2,p3!. ~19!

We turn now to theLp part of the Lagrangian, which
contains only pion fields. By writing theU matrix as

U5expS i

f p
t•pD5cosS p

f p
D1 i t•p

1

p
sinS p

f p
D , ~20!

one can calculate the canonical momentum conjugate to
pion field to all orders inp:

Pp
a [

]Lp

]~]0pa!
5@A1

2~p!~dab2p̂ap̂b!1p̂ap̂b#]0pb,

~21!

where

A1~p![F f p

p
sinS p

f p
D G . ~22!

Equation~21! can be inverted to obtain]0pa in terms of the
canonical momentumPp

a , which is required for evaluating
the charge algebra:

]0pa5F 1

A1
2~p!

~dab2p̂ap̂b!1p̂ap̂bGPp
b . ~23!

Next one can write out Noether currents corresponding
theLp Lagrangian in terms of theU matrices. Here Noethe
currents are defined according to@54#

J am[2
]L~f8,]f8!

]„]mea~x!…
, ~24!

where ea(x) is a set of local, infinitesimal transformatio
parameters.

The Lagrangian~13! produces the following currents:
vector current

Vp
am52 i

f p
2

4
Tr$ta~U]mU†1U†]mU !% ~25!

and an axial-vector current

Ap
am52 i

f p
2

4
Tr$ta~U]mU†2U†]mU !%. ~26!

@These are both conserved if the pion mass is zero. For fi
pion mass, one can derive PCAC from Eq.~24!.# The corre-
sponding Noether charge densities can be calculated in te
of the pion canonical momentum by substituting the expr
sion ~20! into the general expressions for the currents~25!
and ~26!, and by rewriting the time derivative of the pio
field in terms of the canonical momentum according to E
~23!. One obtains, for the vector charge density,
05550
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Vp
a05A1

2~p!@p3]0p#a5@p3Pp#a. ~27!

Note that when written in terms of the canonical momentu
the expression for the vector charge is identical to that i
linear representation of the chiral symmetry@4,30#. The ex-
pression for the axial charge density is more complicated

Ap
a052@B0~p!~dab2p̂ap̂b!1 f pp̂ap̂b#Pp

b , ~28!

where

B0~p![p cotanS p

f p
D . ~29!

By utilizing the usual boson commutator to quantize t
pion field,

@Pp
b ~x,t !,pa~y,t !#52 idabd (3)~x2y!, ~30!

and by calculating the commutators of the vector and a
charges,

Qa[E d3xVa0, Q5
a[E d3xAa0, ~31!

one finds, after some algebra, the familiar results:

@Qa,Qb#5 i eabcQc, ~32!

@Qa,Q5
b#5 i eabcQ5

c , ~33!

@Q5
a ,Q5

b#5 i eabcQc. ~34!

It is interesting to note that the explicit form ofB0(p) is
needed to prove only the last relation~34!. The evaluation of
the vector charge commutator~32! is identical to that in the
linear theory, while the second relation~33! illustrates that
the axial-vector charge is an isovector. Both of these res
hold because the SU(2)V symmetry is represented linearly i
the present approach.

B. Pion-nucleon terms with nÄ2

Let us now include nucleons in the analysis. At ordern
52 in the NDA counting scheme, the additional piece in t
Lagrangian is given in Eq.~14!. The corresponding extra
piece in the pion canonical momentum is

]LpN

]~]0pa!
5eabcpb

1

p2
sin2S p

2 f p
DN†tcN

1
1

2 f p
gA@A1~p!~dab2p̂ap̂b!

1p̂ap̂b#N†g5tbN, ~35!

whereA1(p) is defined in Eq.~22!. ~The nucleon canonica
momentum isiN†, as usual.! The full pion canonical mo-
mentum becomes
2-5
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Pp
a [

]Lp

]~]0pa!
1

]LpN

]~]0pa!
, ~36!

and one can invert this relation using the same projecto
before@see Eq.~23!#. The resulting expression for]0pa is

]0pa5F 1

A1
2~p!

~dab2p̂ap̂b!1p̂ap̂bGPp
b

2eabc
1

A1
2~p!

pb
1

p2 sin2S p

2 f p
DN†tcN

2
1

2 f p
gAF 1

A1~p!
~dab2p̂ap̂b!1p̂ap̂bGN†g5tbN.

~37!

We will see that the substitution of this expression into
relations for the charges makes the latter look simple.

ThepN contributions to the Noether currents can be w
ten in terms of thej matrix as

VpN
am 5

1

4
N̄gm@jtaj†1j†taj#N

1
1

4
gAN̄gmg5@jtaj†2j†taj#N, ~38!

ApN
am 52

1

4
N̄gm@jtaj†2j†taj#N

2
1

4
gAN̄gmg5@jtaj†1j†taj#N, ~39!

which include the pion field to all orders. By substituting
expression forj, analogous to Eq.~20!, and by performing
some algebra, we find

VpN
am 5N̄gm

tb

2
NFcosS p

f p
D ~dab2p̂ap̂b!1p̂ap̂bG

1gAeabcp̂b sinS p

f p
D N̄gmg5

tc

2
N, ~40!

ApN
am 52eabcp̂b sinS p

f p
D N̄gm

tc

2
N

2gAN̄gmg5

tb

2
NFcosS p

f p
D ~dab2p̂ap̂b!1p̂ap̂bG .

~41!

One can combine these results with those in Eqs.~25! and
~26! to construct the currents

V2
am[Vp

am1VpN
am , ~42!

A2
am[Ap

am1ApN
am . ~43!

By utilizing the new expression for the pion canonic
momentum, including the pion-nucleon interaction contrib
05550
as

e

-

l
-

tions, the corresponding charge densities can be express
terms of canonical momenta. The vector charge densit
again precisely as in the linear model:

V2
a05@p3Pp#a1N†

ta

2
N. ~44!

The expression for the axial charge density is a bit m
complicated:

A2
a052@B0~p!~dab2p̂ap̂b!1 f pp̂ap̂b#Pp

b

2B1~p!eabcp̂bN†
tc

2
N, ~45!

whereB0(p) is defined in Eq.~29! and

B1~p![tanS p

2 f p
D . ~46!

Canonical quantization is carried out using the commu
tor ~30! for the pion and the anticommutator

$Na~x,t !,Nb
†~y,t !%5dabd (3)~x2y! ~47!

for the nucleon fields. The conserved charges are define
above, and after some algebra, one can prove that the s
correct chiral charge algebra given in Eqs.~32!–~34! holds.
We note that, as before, only the proof of the commutator
two axial charges requires the explicit forms ofB0(p) and
B1(p).

III. INTERACTION AMPLITUDES

Here we consider interaction amplitudes originating fro
then52 terms in the Lagrangian of Eq.~12!. One can write
out the interaction vertices resulting from this Lagrangia
which are important for calculating one- and two-body cu
rent matrix elements and pion-production amplitudes.

The lowest-order strong-interactionpN vertices originate
from the following interaction terms in the Lagrangian~14!:

Lint'2
1

4 f p
2 eabcpaN̄~]”pb!tcN1

gA

2 f p
N̄~]”pa!g5taN.

~48!

The analytic forms for these vertices are

FIG. 1. The pion-pion-nucleon vertex from Eq.~49!. Here
qm[pi

m2pf
m2km, in terms of the initial and final nucleon four

momenta and the outgoing-pion four-momentumkm.
2-6
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1

4 f p
2

eabcq” tc,
gA

2 f p
g5q” ta, ~49!

respectively; these are to be used in the Feynman rules
the calculation of theS matrix @4,54,55#. Diagrammatically,
these interaction vertices can be represented as in Figs. 1
2, where the solid lines denote the nucleons and the do
lines are the pions.

To lowest order in the pion field, the Noether axial curre
due toL2 takes the form

A2
am52

1

f p
eabcpbN̄gm

tc

2
N2gAN̄gmg5

ta

2
N2 f p]mpa

1O~p2!. ~50!

To determine the Feynman rules for the axial-current ve
ces, we consider a Lagrangian density

Lext~x!5Aam~x!Sam
ext~x!, ~51!

where Sam
ext is an external source that could originate fro

leptons, for example. The scattering matrixSf i can then be
written to first order in the external source as

FIG. 2. The pion-nucleon vertex from Eq.~49!. Here qm[pi
m

2pf
m .

FIG. 3. The nucleon-pion vertex in the axial current~50!, from
Eq. ~53!. The crossed circle shows where and how to attach

external sourceS̃am
ext(k).
05550
or
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i-

Sf i
(1)5S )

bosons

1

~2vbV!1/2D S )
fermions

1

~2EfV!1/2D
3Mam~k!S̃am

ext~k!, ~52!

which definesthe covariant amplitudeMam(k). Herevb are
the boson energies,Ef are the fermion energies, andV is the
quantization volume; these factors specify the normalizat
to be used on external lines. The fermion spinors are
cluded inMam, which is to be computed using the Feynm
rules with the axial-current vertices given below; we assu
overall four-momentum conservation~as well as four-
momentum conservation at every vertex!, and we adopt the
covariant spinor normalizationū(p)u(p)52 v̄(p)v(p)
52M .

The vertices arising from Eqs.~50!–~52! are given by

2
i

f p
eabcgm

tc

2
, 2 igAgmg5

ta

2
, f pkmdab, ~53!

and they are represented diagrammatically in Figs. 3, 4,
5, respectively.

The one-body, axial-current matrix element to lowest
der in 1/f p is given by

Mam~1!5 igAū~p8!g5H gm2k”
km

k22mp
2 J ta

2
u~p!. ~54!

The two relevant Feynman diagrams are drawn in Fig.
wherekm is theoutgoingmomentum on the pion line. Note
that the multiplicative factor ofgA in the amplitude implies
that no additional current renormalization is required.Here
gA enters as an overall factor, which was missing in t
tree-diagram amplitude calculated in thesv model of Ref.
@40#:

e

FIG. 4. The vertex for the nucleon-only term in the axial curre
~50!, from Eq. ~53!.

FIG. 5. The vertex for the pionic contribution to the axial cu
rent ~50!, from Eq. ~53!.
2-7
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ANANYAN, SEROT, AND WALECKA PHYSICAL REVIEW C 66, 055502 ~2002!
Mam~1!5gAMsv
am ~1!. ~55!

The interaction amplitude~54! satisfies PCAC automatically
due to the presence of the projection operator in braces:

kmMam~1! →
mp→0

0. ~56!

The amplitude for axial-current pion production on
single nucleon is represented by the diagrams of Fig. 7
can be written as

2 f pMabm~p!5ū~p8!H gA
2Fq”g5

1

~p” 81q” !2M
g5

3S gm2k”
km

k22mp
2 D tbta

2

1S gm2k”
km

k22mp
2 Dg5

1

~p”2q” !2M
g5q”

tatb

2 G
1 i eabc

tc

2 F ~k”2q” !
km

k22mp
2 22gmG J u~p!,

~57!

where qm is the outgoing four-momentum of the emitte
pion, andpm and p8m are the initial and final nucleon four
momenta, respectively. It is easy to verify that this amplitu
satisfies PCAC~for an on-shell nucleon!.

FIG. 6. The leading-order, one-body, axial-vector current. N

that the external sourceS̃am
ext(k) ‘‘extracts’’ the momentumkm from

both diagrams:explicitly when the pion leaves the diagram an
implicitly when the source attaches directly to the nucleon line.

FIG. 7. The amplitude for axial-current pion production on
single nucleon@Eq. ~57!#. Again, note thatkm is extracted by the
external source, so thatpm5p8m1km1qm.
05550
d

e

In the soft-pion limit (q,k→0) and to leading order in
1/M ,

1

V~2E2E8!1/2 iM abm~p!→ 1

f p
eabc

tc

2
dm0, ~58!

where E'E8'M are the initial and final energies of th
nucleons, and the arrow signifies that we have removed
external nonrelativistic wave functions~including a factor of
1/AV) to arrive at a first-quantized operator. This amplitu
reproduces the result of Kubodera, Delorme, and Rho~KDR!
@16# obtained in the current-algebra approach and solves
problem of an extra factor ofgA

2 found in Ref.@40#.
Next we consider amplitudes for the axial current th

involve two nucleons. The relevant diagrams to this orde
n are presented in Fig. 8~with a similar set of diagrams whe
the external source interacts with the second nucleon! and
produce an amplitude of the form

Mam~2!5Mabm~p!
i

q22mp
2

gA

f p
ū~p28!q”g5

tb

2
u~p2!

1~direct!21cross terms. ~59!

Here ‘‘(direct)2’’ denotes the terms where the external sour
hits nucleon 2, and ‘‘cross terms’’ denotes similar diagra
with the fermion lines crossed in the final state.

This amplitude satisfies PCAC becauseMabm(p) does.
The corresponding two-body nuclear AXC can be identifi
to lowest order in the inverse nucleon massM from an ex-
pression for theS-matrix element:5

Aeff
am~2![2

1

~2MV!2 iM am~2!. ~60!

By performing a nonrelativistic reduction of the direct term
in the resulting current, and by removing factors for the e
ternal nonrelativistic wave functions, one obtains6

5In this paper, we do not discuss the details of the derivation~from
the covariant amplitudes! of the axial-vector exchange currents th
are to be used with relativistic, mean-field, four-component Di
wave functions@34#. For some of the issues that are involved, s
for example, Refs.@3,12,15,40#.

6The ‘‘cross terms’’ will be included when one takes matrix el
ments of this first-quantized, two-body operator between antis
metrized many-fermion wave functions.

e
FIG. 8. Two-nucleon contributions to the axial current. Here t

vertexM (p) @Eq. ~57!# represents all possible ways that the ext
nal source can couple to the left-hand nucleon line~to the order we
are working!, as illustrated in Fig. 7.
2-8
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Aeff
a0~q,Q!→ gA

4 f p
2 i @t~1!3t~2!#a

3H s~2!•q

q21mp
2 2

s~1!•Q

Q21mp
2 J , ~61!

where the exchanged momenta are defined byq[p282p2 and
Q[p82p.

This is the same two-body, axial charge density obtain
by KDR @16# in the current-algebra approach. Here, ho
ever, this result has been calculated as the lowest-orde
proximation to an EFT Lagrangian. The Lagrangian a
proach allows us to explicitly calculate addition
contributions to this AXC from the next-to-leading-order (n
53) terms in the NDA counting scheme.

IV. RELEVANT TERMS WITH nÄ3

We now concentrate on the contributions from then53
terms in the Lagrangian. Since our ultimate objective is
identify axial-vector exchange currents arising from Eq.~2!
to lowest order in the meson fields, we consider only ter
that contribute to the vector and axial-vector currents to
order inn. These terms are bilinear in derivatives of the pi
field itself, but contain the field to all orders. We obtain t
n53 Lagrangian7

L35d1L1d2L, ~62!

where

d1L[2
kp

M
N̄vmnsmnN ~63!

and

d2L[
4bp

M
N̄NTr~amam!, ~64!

with vmn given by Eq.~8!, andam given by Eq.~4!. The final
term contributing to the two-body axial current at releva
order inn involves ther meson field:

Lr[2grN̄rmgmN2
f rgr

4M
N̄rmnsmnN2

1

2
Tr~rmnrmn!

2grpp

2 f p
2

mr
2 Tr~rmnvmn!1mr

2Tr~rmrm!, ~65!

wherermn is defined in Eqs.~10! and~11!. Here the first and
last terms are of ordern52, the second term is of ordern
53, and the third and fourth terms are of ordern54. The
fourth term is included inLr because it is the lowest-orde
term that involvesrp interactions, which are thought to b
relevant in AXC originating from heavy mesons@21#. We
first consider the terms in Eqs.~63! and~64!, which describe

7We omit an53 term with an antisymmetrized derivative on th
nucleon fields@50# because it is effectively of the ordern54.
05550
d
-
p-
-
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t

the interaction of nucleons with pions, and then return
calculate the additional contributions due to ther meson
field in Sec. VI.

One can calculate the change inL3 under vector or axial-
vector transformations. These quantities are required for
culating the respective Noether currents according to
definition ~24!.

dL35
2ikp

M
N̄@dam ,an#smnN

1
8bp

M
N̄NTr~damam!1O„~da!2

…, ~66!

wheredam is different for the~local! vector and axial-vector
transformations:

dam5
1

4
~j†taj2jtaj†!]mba ~vector!, ~67!

dam5
1

4
~j†taj1jtaj†!]maa ~axial vector!. ~68!

These variations produce the following Noether currents
defined in Eq.~24!:

V3
am52

ikp

2M
N̄smn@j†taj2jtaj†,an#N

2
2bp

M
N̄NTr@~j†taj2jtaj†!am#, ~69!

A3
am52

ikp

2M
N̄smn@j†taj1jtaj†,an#N

2
2bp

M
N̄NTr@~j†taj1jtaj†!am#. ~70!

For future reference, we exhibit some often-encountered
pressions as functions of the pion field:

~j†taj1jtaj†!52tbS cosS p

f p
D @dab2p̂ap̂b#1p̂ap̂bD ,

~71!

~j†taj2jtaj†!522eabcp̂btcsinS p

f p
D , ~72!

am5
1

2 f p
tc]mpd$A1~p!@dcd2p̂cp̂d#1p̂cp̂d%, ~73!

where A1(p) is defined in Eq.~22!. By substituting these
relations into Eq.~69!, the extra vector current can be writte
in terms of pion fields as
2-9
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V3
am5

1

pM
eabcp̂b]npmsin2S p

f p
D H 2kpecdnS @ddm2p̂dp̂m#

1
1

A1~p!
p̂dp̂mD N̄smntnN14bpdcmN̄NgmnJ . ~74!

For the additional axial current~70!, one obtains

A3
am5

1

f pM
$kpebcdN̄tdsmnN24bpdbcN̄Ngmn%

3]npmS cosS p

f p
D @dab2p̂ap̂b#1p̂ap̂bD

3$A1~p!@dcm2p̂cp̂m#1p̂cp̂m%. ~75!

Now one can construct the corresponding total cha
densities used to check the chiral algebra of charges. Fo
vector charge density, one finds

Va05Vp
a01VpN

a0 1V3
a0

5A1
2~p!eabcpbS 11

4bp

f p
2 M

N̄ND ]0pc

1N†
tb

2
NFcosS p

f p
D ~dab2p̂ap̂b!1p̂ap̂bG

1gAeabcp̂bsinS p

f p
DN†g5

tc

2
N

2
kp

f p
2 M

eabcpbA1
2~p!] ip

mecdn

3S @ddm2p̂dp̂m#1
1

A1~p!
p̂dp̂mD N̄s0itnN, ~76!

while the corresponding axial-vector charge density is

Aa05Ap
a01ApN

a0 1A3
a0

52 f p
2 S 11

4bp

f p
2 M

N̄ND ]0pbH 1

p
sinS p

f p
D cosS p

f p
D

3~dab2p̂ap̂b!1
1

f p
p̂ap̂bJ 2eabcp̂bsinS p

f p
DN†

tc

2
N

2gAN†g5

tb

2
NFcosS p

f p
D ~dab2p̂ap̂b!1p̂ap̂bG

1
kp

f pM
ebcdN̄s0itdN] ip

mS cosS p

f p
D @dab2p̂ap̂b#

1p̂ap̂bD $A1~p!@dcm2p̂cp̂m#1p̂cp̂m%. ~77!

The factor (114bpN̄N/ f p
2 M ) in the first term of both den-

sities represents the net effect of thed2L term in the La-
grangianL3, which is proportional tobp . It is interesting
that the same factor times]0pa can be readily expressed i
05550
e
he

terms of the pion canonical momentum, when one inverts
full expression for the momentum, including the contrib
tions of the new pion-nucleon terms in the Lagrangian. Th
one finds

S 11
4bp

f p
2 M

N̄ND ]0pa5F 1

A1
2~p!

~dab2p̂ap̂b!1p̂ap̂bGPp
b

2eabc
1

A1
2~p!

pb
1

p2sin2S p

2 f p
DN†tcN

2
1

2 f p
gAF 1

A1~p!
~dab2p̂ap̂b!

1p̂ap̂bGN†g5tbN1
kp

f p
2 M S eanc

2
A1~p!21

A1~p!
eabcp̂bp̂n1@A1~p!

21#ebncp̂ap̂bD ] ip
nN̄s0itcN, ~78!

and the additional Lagrangiand2L proportional tobp hasno
effecton the full charges, when they are written in terms
canonical momenta.

By substituting the relation~78! into Eqs.~76! and ~77!
for the vector and axial-vector charge densities and by c
rying out the necessary algebra, one remarkably arrive
precisely the same expressions for the charge densitie
terms of the canonical momenta@Eqs.~44! and~45!# as those
obtained with non53 terms included. Thus the expressio
for the Noether charges in terms of canonical momenta
not influenced by the presence of the term proportional tokp

either. Note, however, that thesen53 termswill generally
influence the three-vector currents.

Since Eqs.~44! and ~45! are known to satisfy the correc
chiral charge algebra, we conclude that then53 pion-
nucleon terms in the Lagrangian do not influence the cha
algebra whatsoever.8

V. INTERACTION AMPLITUDES TO ORDER nÄ3

To lowest order in the pion field, the Noether axial curre
~75! can be written as

A3
am'

kp

f pM
eabc]npbN̄tcsmnN2

4bp

f pM
N̄N]mpa1•••.

~79!

We calculate additional contributions to the interaction a
plitudes originating from the Lagrangians~63! and~64! sepa-
rately. We first need to find the corresponding interact
vertices, and we begin by consideringd1L. Recall that to
lowest order in the pion field,

8This conclusion is certainly plausible, given the form of then
53 terms in the EFT Lagrangian~2!.
2-10
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an'
1

2 f p
t•]np1•••, ~80!

vmn'
1

f p
2 eabc]mpa]npb

tc

2
1•••. ~81!

The extra term produces a new lowest-order, stro
interaction vertex that looks exactly like the one in Fig.
but which corresponds now to an analytical expression9

2ikp

f p
2 M

eabc
tc

2
kmqnsmn. ~82!

The one-nucleon, axial-current interaction vertex due
d1L ~see Fig. 9! follows from the first term in Eq.~79!:

2
2kp

f pM
eabcqnsmn

tc

2
. ~83!

This vertex gives an additional amplitude for axial-curre
pion production on a single nucleon that resembles the
two diagrams in Fig. 7 and corresponds to the expressio

Mabm~p!5 2
1

f p

2kp

M
eabc

3H gm
l2

kmkl

k22mp
2 J qnū~p8!sln

tc

2
u~p!.

~84!

This amplitude satisfies PCAC because

kmMabm~p!}H kl2
k2

k22mp
2 klJ →

mp→0
0. ~85!

By combining all of the previous results, one can calc
late an additional two-nucleon, axial-current interaction a
plitude due to thed1L term ~see Fig. 10!:

9Note that Eqs.~82! and~88! contain a symmetry factor of 2; thus
Feynman diagrams including these vertices need to be drawn
once.

FIG. 9. The vertex for the one-body axial current arising fro
d1L. Herepm5qm1km1p8m.
05550
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Mam~2!52 i
gA

f p
2

2kp

M
eabcH gm

l2
kmkl

k22mp
2 J

3F ū~p18!sln
tc

2
u~p1!

qnqs

q22mp
2 ū~p28!gsg5

tb

2
u~p2!

1~direct!21cross termsG . ~86!

Here (direct)2 again denotes contributions from diagram
where the axial-current vertex resides on the second nucl
which can be obtained from the first term by the repla
mentsp1↔p2 , p18↔p28 , andq→Q, and cross terms denote
similar diagrams in which the fermion lines are crossed
the final state. This amplitude produces the first additio
contribution to the nuclear AXC originating from theL3
terms in the EFT Lagrangian.

Now recall that there is yet another term~64! in the n
53, pion-nucleon Lagrangian, which can be written to lo
est order in the pion field as

d2L'
2bp

f p
2 M

N̄N]mpa]mpa. ~87!

The corresponding vertex again looks like that in Fig. 1 b
now represents an analytical expression

2
4ibp

f p
2 M

kmqmdab. ~88!

The one-nucleon, axial-current interaction vertex looks
same as in Fig. 9 and can be deduced from the second
in Eq. ~79! to be

4bp

f pM
qmdab. ~89!

It is easy to write out a corresponding axial-current, pio
production amplitude~again resembling the last two dia
grams in Fig. 7!:

Mabm~p!5
4bp

f pM H qm2
km

k22mp
2 k•qJ dabū~p8!u~p!.

~90!

This amplitude also satisfies PCAC:

kmMabm~p!}H k•q2
k2

k22mp
2 k•qJ →

mp→0
0. ~91!ly

FIG. 10. Two-nucleon, axial-current amplitude originating fro
d1L @Eq. ~86!#.
2-11
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The corresponding two-nucleon, axial-current interaction
lows one to identify additional contributions to the axial tw
body amplitude originating from thed2L term in the La-
grangian.~They also look like Fig. 10.! One obtains

Mam~2!5 i
gA

f p
2

4bp

M H qm2
km

k22mp
2 k•qJ qs

q22mp
2

3 F ū~p18!u~p1!ū~p28!gsg5

ta

2
u~p2!

1~direct!21cross termsG . ~92!

The sum of the amplitudes~86! and~92! constitutes the tota
contribution of the pion-nucleonn53 terms in the EFT La-
grangian to the AXC.

VI. r-MESON TERMS IN THE EFT LAGRANGIAN

A. Currents and canonical momenta

An additional piece in the EFT Lagrangian~65! contains
the r-meson field

rm~x![
1

2
t•rm~x!, ~93!

which behaves under a chiral transformation as

rm8 ~x!5h~x!rm~x!h†~x!. ~94!

In principle, one can confirm the same chiral charge alge
as before to all orders in the pion field. This follows just as
the case of the pionic interactions: the contributions of ex
pieces in the Lagrangian are absorbed in the modified p
canonical momentum. To simplify the subsequent equatio
however, we present the proof only to lowest order in
pion field.

For infinitesimal vector transformations,

]~drm
c !

]ba 52eabcrm
b , ~95!

while for infinitesimal axial transformations,

]~drm
f !

]aa 5
1

2 f p
eabcecd fpbrm

d . ~96!

One also recalls that to lowest order in pion fields,

vm'
1

2 f p
2 eabcpa]mpb

tc

2
. ~97!

Additional terms in the EFT Lagrangian due to the pre
ence of ther meson are given byLr in Eq. ~65!. To lowest
relevant order in the meson fields, one obtains the follow
strong-interaction vertices for ther meson:

2 igr

tc

2 S gl1
f r

2M
iqnsnlD ~98!
05550
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and

grpp

mr
2 eabc2~k•pql2q•pkl!, ~99!

wherekl and ql are outgoingpion momenta, and Eq.~99!
includes a symmetry factor of 2. These are shown in Figs
and 12.

Next, one can calculate the total additional Noether c
rents using the traditional definition@see Ref.@4#, Eq. ~7.5!#

dJ a
l52

]~Lr!

]~]lj!

]~dj!

]ea 2
]~Lr!

]~]lj†!

]~dj†!

]ea

2
]~Lr!

]~]lrm
d !

]~drm
d !

]ea [dj1j†J a
l1drJ a

l , ~100!

where thee are global infinitesimal parameters (a or b).
The partial derivative of the Lagrangian~65! with respect to
the r field is

]~Lr!

]~]mrl
d!

52
f rgr

4M
N̄smltdN2Tr~tdrml!

2grpp

2 f p
2

mr
2 Tr~tdvml!. ~101!

Thus, to lowest order in the meson fields, the part of
Noether vector current due to differentiating with respect
the r field is

drVa
l52eabcrn

bH f rgr

4M
N̄slntcN1] [lrc

n]1O~p2!J ,

~102!

FIG. 11. The r-nucleon vertex from Eq. ~98!. Here
qm5pi

m2pf
m .

FIG. 12. Therpp vertex from Eq.~99!. Here pm1km1qm

50.
2-12
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where the brackets around the superscripts signify the a
symmetric combination, and repeated isospin indices
summed over, regardless of their~vertical! position. The cor-
responding axial current is

drAa
l5

1

2 f p
eabcecd fpbrn

dH f rgr

4M
N̄slnt fN1] [lr f

n]1O~p2!J .

~103!

The canonical momentum for ther field is, to lowest
order,10

~Pr!l f[
]~Lr!

]~]0rl
f !

52
f rgr

4M
N̄s0lt fN2] [0r f

l]1O~p2!,

~104!

which implies

drVa05eabcrn
b~Pr!nc ~105!

and

drAa052
1

2 f p
eabcecd fpbrn

d~Pr!n f . ~106!

Consider now a derivative of the Lagrangian~65! with
respect to thej field. To lowest order in the fields, the co
responding axial current is

dj1j†Aa
l' 2

1

2 f p

f rgr

4M
eabcecd fpbrn

dN̄slnt fN

1grpp

2 f p

mr
2 eabc]npb] [lrc

n] , ~107!

and thus thetotal additional axial current is

dAa
l5grpp

2 f p

mr
2 eabc]npb] [lrc

n]1O~r2p,rp3!.

~108!

It is now clear why we kept therpp coupling of ordern
54: then53 contributions to the axial-vector current canc
out. The vertex arising from the interaction of this curre
with the external source can be calculated as in Eqs.~51! and
~52!, with the result~see Fig. 13!

10Observe that (Pr)0 f50 for this massive vector meson.

FIG. 13. The vertex contribution from the axial current~108!, as
given in Eq.~109!.
05550
ti-
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2 i
2 f pgrpp

mr
2 eabc~pmql2p•qgml!. ~109!

Similarly, one finds for the corresponding vector curre

dj1j†Va
l'

1

2 f p
2

f rgr

4M
eabcecd fe f mlpbpdrn

mN̄slnt lN

2
2grpp

mr
2 eabcecd fpb]npd] [lr f

n] . ~110!

These terms are of higher order in the fields@namely,
O(rp2)] than those in Eq.~102! and thus are not considere
in the sequel.

B. The corresponding chiral algebra

The terms in the additionalr-meson Lagrangian~65! that
involve derivatives of fields can be written to lowest order
the pion field as

dL]'2
f rgr

4M
]mrn

aN̄smntaN

1
1

2 f p
2

f rgr

4M
eabcecd fpa]mpbrn

dN̄smnt fN

2
1

2
]mrn

a] [mra
n]2ḡreabcrm

a rn
b]mrc

n

2
grpp

mr
2 eabc]mpa]npb] [mrc

n] . ~111!

Hence,

]~dL]!

]~]lpa!
52

1

2 f p
2

f rgr

4M
eabcecd fpbrn

dN̄slnt fN

2
2grpp

mr
2 eabc]npb] [lrc

n] . ~112!

Moreover, again to lowest order,

dj1j†Aal52 f p

]~dL]!

]~]lpa!
~113!

and

dj1j†Aa052 f pdPp
a . ~114!

This term has the same form as the pionic contribution in
~28!, when the latter is expanded to leading order in the p
field. Thus, when the full axial-vector charge density is e
pressed in terms of the total pion canonical momentum,the
pion terms look the same as they did before. This implies that
the axial-vector piecedj1j†Aa0 does not influence the chira
charge algebra. One also recalls that the vector cur
dj1j†Val in Eq. ~110! is of higher order in the meson field
and does not influence the chiral charge algebra to the o
that we consider here.
2-13
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The only remaining pieces to consider for the proof of t
chiral charge algebra aredrVa0 anddrAa0. We can write the
total charge densities as

Vtot
a0[Va01drVa0, ~115!

Atot
a0[Aa01drAa0. ~116!

Here Va0 and Aa0 are taken from Eqs.~76! and ~77! ex-
panded to lowest order in the meson fields.

First, consider the commutator of the total axial cha
densities

@Atot
a0,Atot

b0#5@Aa0,Ab0#1@Aa0,drAb0#1@drAa0,Ab0#

1@drAa0,drAb0#. ~117!

The first commutator in this expression is known:11

@Aa0,Ab0#} i eabcVc0, ~118!

while the second and third terms are equal to

@Aa0,drAb0#'2
1

2 f p
eblcecd f~2 f p!rn

d~Pr!n f@Pp
a ,p l #.

~119!

Thus, to lowest order in the meson fields,

@Aa0,drAb0#1@drAa0,Ab0#} i eabcecd frn
d~Pr!n f

5 i eabcdrVc0. ~120!

The final commutator is of third order in the meson fields

@drAa0,drAb0#}O~rp2!, ~121!

and does not contribute to the charge algebra to the orde
are working. By combining the results in Eqs.~118! and
~120!, we find that the first relation of the charge algeb
holds in the presence of the additional terms in the Lagra
ian:

@~Q5
a! tot ,~Q5

b! tot#5 i eabcQtot
c . ~122!

Next, consider the commutator of vector charge densi

@Vtot
a0,Vtot

b0#5@Va0,Vb0#1@Va0,drVb0#

1@drVa0,Vb0#1@drVa0,drVb0#. ~123!

As before, the first commutator is known:

@Va0,Vb0#} i eabcVc0, ~124!

while the second and third commutators vanish because p
nucleon, andr factors commute with each other. The fin
commutator can be written as

11The two sides of this relation are proportional to each ot
because we have omitted the spatial integrations~that define the
charges! andd functions for brevity. There are no other numeric
factors, and the charges are indeed normalized correctly.
05550
e
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n,

@drVa0,drVb0#'eadcebmn@rn
d~Pr!nc,rm

m~Pr!mn#,
~125!

or, after some algebraic manipulation,

@drVa0,drVb0#} i eabcecdnrn
d~Pr!nn5 i eabcdrVc0.

~126!

Thus the second relation of the chiral algebra,

@Qtot
a ,Qtot

b #5 i eabcQtot
c , ~127!

also holds.
Finally, consider the commutator of axial and vect

charge densities:

@Atot
a0,Vtot

b0#5@Aa0,Vb0#1@Aa0,drVb0#1@drAa0,Vb0#

1@drAa0,drVb0#. ~128!

The first commutator is known:

@Aa0,Vb0#} i eabcAc0. ~129!

The second commutator vanishes because pion and nuc
fields commute withr fields. The third commutator can b
written as

@drAa0,Vb0#}2
i

2 f p
ealcecd febnlpnrn

d~Pr!n f . ~130!

The final commutator is

@drAa0,drVb0#

'2
1

2 f p
ea f le ldcebmnp f@rn

d~Pr!nc,rm
m~Pr!mn#,

~131!

which, after some algebra, becomes

r FIG. 14. Two-nucleon, axial-current amplitudes containingr
meson exchange. The notation in the first two diagrams implies
the external source can couple to the nucleon line in two ways, a
Fig. 6.
2-14
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@drAa0,drVb0#}2
i

2 f p
eanle lbcecd fpnrn

d~Pr!n f .

~132!

By using the relation

ealcebnl1eanle lbc5eabmemnc, ~133!

one can show that the sum of the third and fourth commu
tors is

@drAa0,Vb0#1@drAa0,drVb0#

} i eabcS 2
1

2 f p
ecnpepd fpnrn

d~Pr!n f D . ~134!
m

tio

e
wo

i

05550
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The term in the parentheses is justdrAc0. Thus

@~Q5
a! tot ,Qtot

b #5 i eabc~Q5
c! tot , ~135!

and therefore all of the relations constituting the chi
charge algebra hold in the presence of the included e
terms in the QHD Lagrangian.

C. Two-nucleon, axial-current amplitudes

The two-body, axial-current amplitudes involving ther
meson are given by the diagrams in Fig. 14. The diagram
the first row of this figure originate from the terms of ord
n<3 in ther meson Lagrangian~65!, while the diagrams in
the second row correspond to then54 terms. Thus
Mam~2!' igAgr
2
~gla2qlqa /mr

2!

q22mr
2 S gm

s2
kmks

k22mp
2 D ū~p28!S ga2

f r

2M
iqbsbaD tc

2
u~p2!ū~p18!H g5gs

1

~p” 12q” !2M

3S gl1
f r

2M
iqnsnlD ta

2

tc

2
1S gl1

f r

2M
iqnsnlD 1

~p” 181q” !2M
g5gs

tc

2

ta

2 J u~p1!

1
2gAgrgrpp

mr
2

eabcū~p28!g5q”
tb

2
u~p2!ū~p18!S gl2

f r

2M
ir nsnlD tc

2
u~p1!

~gla2r lr a /mr
2!

r 22mr
2

1

q22mp
2

3H r mqa2~r •q!gma1
km

k22mp
2 @~q•r !ka2~k•r !qa#J 1~direct!21cross terms. ~136!

The terms proportional togr
2 satisfy PCAC by themselves, precisely as in the nonlinear realization of thes model. The terms

proportional togrpp also satisfy PCAC separately because

kmH r mqa2~r •q!gma1
km

k22mp
2 @~q•r !ka2~k•r !qa#J →

mp→0
0. ~137!
on

es
e

One can identify the corresponding additional AXC fro
these amplitudes.

VII. CONTRIBUTIONS FROM s AND v MESONS

Now one can easily add thes andv contributions in the
present EFT. The corresponding lowest-order interac
terms can be deduced from the full Lagrangian~2!:

L s
int'gsfN̄N1hr

gsmr
2

M
fTr~rmrm!2

k3

3!

gsms
2

M
f3.

~138!

The final two terms involve interactions that are of high
order in the meson fields than we consider here for the t
body axial current, so we will not discuss them further. Sim
larly,
n

r
-

-

L v
int'2gvVmN̄gmN2

f vgv

4M
] [mVn]N̄smnN

1
1

2
h1

gsmv
2

M
fVmVm. ~139!

Again, the final term above is of higher order in the mes
fields and does not contribute here.

We obtain the following new strong-interaction vertic
that look exactly like the one in Fig. 2, but with the pion lin
replaced bys and v lines, respectively~see Ref. @4#,
Fig. 29!:

igs , ~140!

2 igvS gl1
f v

2M
iqnsnlD . ~141!
2-15
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Both s and v mesons are chiral scalars and thus do
contribute to the Noether axial-vector current.

The amplitudes for the two-body, axial-vector currents
volving s and v meson exchange are represented by d
grams analogous to those in the first row of Fig. 14. They
given by the first term in Eq.~136!, with the appropriate
meson propagator substituted for ther propagator, and with
the expression~98! for the r-nucleon vertex replaced by th
s-nucleon vertex~140! or the v-nucleon vertex~141!,
respectively.

VIII. SUMMARY

In this work, we compute the axial-vector current bas
on a recently proposed hadronic Lagrangian with a nonlin
realization of chiral symmetry@34#. The effective Lagrangian
provides a systematic framework for calculating both nucl
exchange currents and nuclear wave functions. The Lagr
ian is truncated by working to a fixed order in the parame
n, which essentially counts powers of ratios of particle m
menta to the nucleon massM or of mean meson fields to th
nucleon mass@34,56#. Practically speaking, in the nuclea
many-body problem, the expansion is in powers ofkF /M ,
wherekF is the Fermi wave number at equilibrium nucle
density; this ratio provides a small parameter for ordin
nuclei and for electroweak processes at modest momen
transfers.

The present framework has several advantages. First
cause of the nonlinear realization of the chiral symmetry,
axial coupling constantgA'1.26 appears naturally as a p
rameter in the Lagrangian. Second, the explicit enforcem
of the symmetry ensures that the axial current is conserve
the chiral limit ~and that PCAC holds for finite pion mass!,
and that the familiar SU(2)L3SU(2)R chiral algebra is sat-
isfied by the vector and axial-vector charges. The symm
also implies that there will be AXC involving nonlinear me
son couplings. Third, since the same degrees of freedom
used to describe the axial-vector current and the nuclear
namics, the parameters of the theory can be calibrated u
empirical nuclear and hadronic properties~or two-nucleon
bound-state and scattering data!, together with pion-nucleon
scattering observables. Thus there are no unknown cons
in the axial-current amplitudes. To our knowledge, these
sirable properties have not been included simultaneousl
earlier models of the AXC.

The axial currents are derived here by keeping all relev
terms in the Lagrangian through ordern53 ~andn54 in the
r-meson case!.12 In the chiral limit, the correct chiral charg
algebra is proved explicitly to all orders in the pion field f
terms involving pions and nucleons, and to lowest order
the pion field for terms involving pions, nucleons, andr

12The D resonance can also be included as an explicit degre
freedom in the EFT Lagrangian, in a manner that maintains ch
symmetry@50,57#. An explicit D would modify our expressions fo
the currents and covariant amplitudes, but it would not change
mean-field results for even-even nuclei@5,34#. We leave the explicit
inclusion of theD for a future project.
05550
t

-
-
e

d
ar

r
g-
r
-

y
m

e-
e

nt
in

ry

re
y-
ng

nts
-

in

nt

n

mesons. For finite pion mass, it is also shown that PC
holds for the one- and two-body axial-current amplitudes,
well as for the amplitude for pion production on a sing
nucleon. The AXC can be deduced from the two-nucle
amplitudes, although we do not derive them in this pap
@We do, however, compute the leading~nonrelativistic! cor-
rection to the axial charge density in Eq.~61!.#

Since our analysis of the axial-vector current in t
nuclear many-body problem is performed by splitting o
EFT Lagrangian into numerous pieces, it is useful to su
marize here our most important results and expressions.
complete vector and axial-vector currents are given in E
~25!, ~26!, ~38!, ~39! @or Eqs.~40! and ~41!#, ~69!, and ~70!
@or Eqs.~74! and~75!#, ~102!, and~108!. Thus, for example,
the complete currents are

Vtot
am52 i

f p
2

4
Tr$ta~U]mU†1U†]mU !%

1
1

4
N̄gm@jtaj†1j†taj#N1

1

4
gAN̄gmg5@jtaj†

2j†taj#N2
ikp

2M
N̄smn@j†taj2jtaj†,an#N

2
2bp

M
N̄NTr@~j†taj2jtaj†!am#

2eabcrn
bH f rgr

4M
N̄smntcN1] [mrc

n]1O~p2!J ~142!

and

Atot
am52 i

f p
2

4
Tr$ta~U]mU†2U†]mU !%2

1

4
N̄gm@jtaj†

2j†taj#N2
1

4
gAN̄gmg5@jtaj†1j†taj#N

2
ikp

2M
N̄smn@j†taj1jtaj†,an#N

2
2bp

M
N̄NTr@~j†taj1jtaj†!am#

1H grpp

2 f p

mr
2 eabc]npb] [mrc

n]1O~r2p,rp3!J .

~143!

We also derived expressions for the following amplitud
the scattering of a nucleon by an external source@Eqs.~54!,
~83!, and ~89!#, one-pion production by an external sour
@Eqs.~57!, ~84!, and~90!#, and nucleon-nucleon scattering
the presence of an external source@Eqs.~59!, ~86!, ~92!, and
~136!#. All of these results were evaluated at the ‘‘tree’’ leve
with no pion loops. This is because we computed the s
tering matrices to lowest order in the external sourceSam

ext ,
and we expanded the interaction Lagrangian to leading
ders in the pion field. As noted above, since our expans
proceeds in powers of pion momenta~or mp) relative to the

of
al

e
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nucleon massM ~or a similar ‘‘heavy’’ mass scale!, these
tree-level expressions are valid for modest external pion
menta and momentum transfers between nucleons. Ou
sults become exact in the soft-pion limit~with mp50).

At order n52, our EFT Lagrangian generates famili
pion-exchange contributions to the AXC. These are the sa
as those calculated by Kubodera, Delorme, and Rho@16# in
the current-algebra approach. We reiterate the cause o
difficulty in Ref. @40#, and how that problem is resolved b
the EFT Lagrangian~2!: in a linear realization of the
SU(2)L3SU(2)R chiral symmetry, the nucleon axial-vecto
coupling gA is constrained to beunity. Changing this cou-
pling ‘‘by hand’’ is equivalent to rescaling the fields in th
theory and leads to a chiral charge algebra that is incorr
In contrast, in anonlinear realization of the symmetry,gA
becomes a free parameter, which allows the Goldber
Treiman relation, PCAC, and the correct chiral charge al
bra to be satisfied simultaneously. This is explicit eviden
that chiral symmetry is realizednonlinearly in low-energy
QCD.

In future work, we will show that the dominant contribu
tions to the axial-vector current come from one- and tw
body amplitudes involving pion exchange and are th
model independent@25#. The relevant set ofn53 AXC will
be written in covariant form for use with relativistic, mea
field Dirac wave functions, and the dominantn53 terms
will also be given in nonrelativistic form for use with mor
traditional ~e.g., harmonic oscillator! nucleon wave func-
tions. We now have the effective Lagrangian and correspo
ing Noether currents, and the problem is therefore well
fined; however, as emphasized in Refs.@15,40#, any
application to the many-body problem must proceedconsis-
cs

ys

.

-
.
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tently in terms of wave functions, the interactions that det
mine those wave functions, and the current operators to
used within that framework.

We also plan to derive the meson-exchange correction
the electromagnetic current that are implied by this effect
Lagrangian @34#. These meson-exchange corrections c
then be used to compute selected electroweak process
nuclei. This will allow, for example, for an investigation o
the following interesting issue: It is known that calibratin
the relevant parameters to nuclear properties using m
field nuclear wave functions corresponds to a dens
functional approach@5,34,47#. In this approach, bulk and
single-particle nuclear observables are used to define a s
quasiparticle, single-nucleon wave functions, which impl
that exchange and correlation corrections are~approxi-
mately! included implicitly in the parameters. Within thi
quasiparticle, single-nucleon framework, we expect that
PCAC relations derived here will remain valid. In the calc
lation of exchange-current amplitudes, however, one sam
two-nucleonwave functions inside the nucleus. It remains
be seen whether the calibration procedure described ab
leads to realistic results for two-body, exchange-current m
trix elements, or if some more complicated calibration p
cedure ~that also includes two-body observables! must
be used.
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