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Axial-vector current in nuclear many-body physics
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Weak-interaction currents are studied in a recently proposed effective field theory of the nuclear many-body
problem. The Lorentz-invariant effective field theory contains nucleons, pions, as well as isoscalar,cgcalar (
and vector () fields, and isovector, vectop] fields. The theory exhibits a nonlinear realization of SY(2)

X SU(2)g chiral symmetry and has three desirable features: it uses the same degrees of freedom to describe the
axial-vector current and the strong-interaction dynamics, it satisfies the symmetries of the underlying theory of
qguantum chromodynamics, and its parameters can be calibrated using strong-interaction phenomena, like
hadron scattering or the empirical properties of finite nuclei. Moreover, it has recently been verified that for
normal nuclear systems, it is possible to systematically expand the effective Lagrangian in powers of the meson
fields (and their derivativesand to reliably truncate the expansion after the first few orders. Here it is shown
that the expressions for the axial-vector current, evaluated through the first few orders in the field expansion,
satisfy both PCAC and the Goldberger-Treiman relation, and it is verified that the corresponding vector and
axial-vector charges satisfy the familiar chiral charge algebra. Explicit results are derived for the Lorentz-
covariant, axial-vector, two-nucleon amplitudes, from which axial-vector meson-exchange currents can be
deduced.
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I. INTRODUCTION An example of more recent work is R¢fL5].) The mesons
are responsible for the forces between the nucleons and also
Although quantum chromodynami¢®CD) is known to  lead to meson-exchange curretldEC) that contribute to
be the fundamental theory of the strong interaction, it iselectroweak processes. A desirable theory of the axial-vector
much more efficient to use hadronic degrees of freedom taurrent should satisfy the following three conditions.
describe few- and many-body nuclear systems at low ener- (1) It should use the same degrees of freedom to describe
gies. Considerable effort over the last 30 years has showthe axial current and the strong-interaction dynamig$\ (
that models based on baryons and mesons can providesgattering,NN scattering, and nuclear structliréhe basic
realistic description of the nucleon-nucleoNN) interac- phenomenological features of the latter are well known.
tion, nuclear matter saturation, and the bulk and single- (2) It should satisfy the same internal symmetries as the
particle properties of finite nucle{For reviews, see, for ex- underlying theory of QCD: the discrete symmetries of the
ample, Refs[1-5].) The hadrons are described by effective strong interaction, anthpproximatgisospin and chiral sym-
fields whose interactions are determined by a local, Lorentzmetries, with the last being spontaneously broken. The en-
invariant Lagrangian. The modern viewpof6t7] is that the  forcement of the continuous symmetries is necessary to en-
resulting relativistic, quantum, effective field theory providessure the conservation of the vector, isovector curf@uC)
the most general way to parametrize @matrix (or other  and the partial conservation of the axial-vector, isovector
observabled8]) that is consistent with the constraints of current(PCAC).
guantum mechanics, special relativity, unitarity, causality, (3) It should be possible to calibrate the parameters of the
cluster decomposition, and the desired internal symmetriesheory using strong-interaction phenomena, likid scatter-
Thus there is no reason that relativistic quantum field theoryng and the properties of finite nuclei, so that one can deduce
should be reserved for “elementary” particles only. We will well-defined and unambiguous currents to be used in the
refer to Lorentz-covariant, relativistic effective field theories calculation of electroweak processes. This is especially im-
based on hadrons aguantum hadrodynamic®r QHD  portant in effective field theories, because these contain all
[4,5,9-1]. (nonredundantinteraction terms that are consistent with the
It has also been known for many years that an accuratanderlying symmetrief5,7].
description of electroweak interactions in nuclei requires a In discussing MEC for the weak interaction, CVC implies
consideration of mesonic degrees of freed@m., “fields”)  that the vector part of the current can be determined by per-
in addition to the nucleongFor a review, see Reff12-14. forming an isospin rotation on the isovector part of the elec-
tromagnetic currenf3]. Thus the vector parts of the weak
exchangecurrents can be derived from the isovector part of

*Electronic address: s.ananyan@megaputer.com the corresponding electromagnegixchangecurrents, which
"Electronic address: serot@iuct.indiana.edu have been determined accurately over the last two decades.
*Electronic address: walecka@physics.wm.edu In contrast, the axial-vector parts of the exchange currents
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require additional theoretical input. ization of the chiral symmetry makes it cumbersome to in-
There have been many attempts to describe axial-vectalude thep meson[30]. A viable description of the AXC
exchange currentédAXC) in models based on hadronic de- requires a more general implementation of the chiral symme-
grees of freedom. An important, early contribution was madery.
by Kubodera, Delorme, and RHd6], who predicted the In the present work, we derive the axial-vector current
dominant long-range piece of the AXC using current algebraising a recently proposed QHD Lagrang[&qy34] that con-
and the assumption of pion-exchange dominance, whickains nucleons and, o, w, andp mesons. This Lagrangian
yield the leading-order terms in an expansion in inverse poWhas alinear realization of the SU(2) isospin symmetry and
ers of the nucleon mass. Some interesting recent approachgsonjinear realization of the spontaneously broken SU(2)
include a description of AXC using all the degrees of free—xsu(z)R chiral symmetry(when the pion mass is zerdt
dom contained in the phenomenologi¢éN potential[17— a5 shown in Refs11,34,44 that by using Georgi's naive
20]3 a mode.l based on “hard pion$21-24, and the appli- dimensional analysi§NDA) [45] and the assumption of
cation of chiral perturbation theotfChPT) [25-28. naturalness(namely, that all appropriately defined, dimen-
While these approaches enjoyed several successggniess couplings are of order unitt is possible to trun-
[20,29, they all contain shortcomings that make them unde e the | agrangian at terms involving only a few powers of
sirable, at least according to the criteria presented above. lfe meson fields and their derivatives, at least for systems at
particular, current-algebra techniques are difficult to exten ormal nuclear densities. It was also shown that a mean-field
to multipion contributions or to mesons other than the pion'approximation to the Lagrangian could be interpreted in
Models based on a phenomenologitéN potential do not  ormq of density functional theof$,46,47, so that calibrat-
explicitly incorporate chiral symmetry and do not explicitly jq the parameters to observed bulk and single-particle
include AXC that arise from the direct mteracuqn of the nuclear properties incorporatéapproximately many-body
exchanged mesons with the axial current. Hard-pion modelgttects that go beyond mean-field thebrgxplicit calcula-
use a linear realization of the chiral symmetry; thus, inclu-jons of closed-shell nuclei provided such a calibration and
sion of thep meson necessitates the inclusion qf its chiralyarified the naturalness assumptifa4]. This approach
partner, thea,, which is known to be relatively unimportant herefore embodies the three desirable features needed for a
in the NN interaction and in nuclear structuf80]. More-  gescription of the axial-vector current in the nuclear many-
over, the strong, mid-rangeN attraction, which arises pre- o4y problem
dom?nantly from correlated twp-pion exchange, an.d whichis  This effective field theoryEFT) also overcomes the dif-
crucial for an accurate description bfN phase shifts and  ficyities found in Ref[40]. The chiral symmetry guarantees
nuclear matter propertigd,5,10,31, is difficult to generate hat the PCAC condition will hold for the one- and two-body
in models with linear chiral symmetry without also generat-ayia| currents and pion-production amplitudes, as we demon-
ing unrealistic many-nucleon forc¢82]. In contrast, when  girate explicitly below. Moreover, theN coupling strength
the chiral symmetry is realizedonlinearly, the mid-range ga enters as dree parametethat can be chosen so that the
attraction can be efficiently simulated by introducing an ef-Go|gperger-Treiman relation is satisfied at the tree level,
fective, scalar, isoscalar, chiral singletmeson with @ mass  ithout any rescaling of the fields. This result, together with
of roughly 500 MeV[33,34. _ the chiral symmetry, ensures that the conserved vector and
Finally, models based on ChPT attempt to explain all ofayia|-vector charges obey the familiar algebra. Thus all three
the dynamics using nucleons and pions alone; this makes thequired constraints can be satisfied simultaneously in the
description of theNN interaction and of nuclear structure present framework. Moreover, the pion-pion and pion-
very complicated, since one must generate much of thgcleon parts of the Lagrangian are exactly the same as those
strong-interaction dynamics using multipion loop processeg chiral perturbation theorj49—51.
[35-39. These shortcomings motivate the search for alter- |t js important to note that in our EFT, only the pions and
native descriptions of the AXC. _ nucleons(the stable particléscan appear on external lines
In Ref. [40], a Lagrangian-based model that contains with timelike four-momenta. The heavy non-Goldstone
o, andw meson fields was used to construct the AXC. Thispgsons appear only on internal linésith spacelikefour-
model incorporates the desirable qualities enumerated eagomenta and allow us to parametrize the medium- and
lier; it contains the mesons responsible for the dominant feaghort-range parts of the nucleon-nucleon interaction, as well
tures of theNN interaction, it respects both isospin symme- g5 the electromagnetic form factors of the hadri88;34.
try and (approximate spontaneously broken chiral The heavy bosons are also convenient degrees of freedom for

symmetry, andin principle) its parameters can be calibrated describing nonvanishing expectation values of bilinear
to the properties of nuclei by using the mean-field approxi-

mation for the meson fields. Nevertheless, the implementa———

tion of the chiral symmetry in this modéihich is based on  igjyce our Lagrangian contains the four most important mesons
the well-knowno model[3,41,42) turns out to be t00 re- geq in boson-exchange models of Nl interaction[1,2], as well
strictive. In particular, it is impossible to satisfy both PCAC g5 all of the relevant meson-nucleon couplings, it should also pro-
and the Goldberger-Treiman relation without destroying thejide a reasonable description of theN data, albeit with different
familiar chiral charge algebra. It is also impossible to repro-parameter valuept8]. Thus the parameters could also be sensibly
duce the empirical equilibrium point of nuclear matter in thecalibrated toNN data, which should be more useful for studying
mean-field approximatiof82,43. Moreover, the linear real- exchange currents in few-nucleon systems.
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nucleon operators, such BN andﬁyﬂN, which are impor-  €ar chiral Lagrangian can be organized in increasing powers

tant in nuclear many-body syster%5]. of the f_ields and their derivatives. To each interaction term
The remainder of this paper is organized as follows. InWe assign an index

Sec. ll, the effective QHD Lagrangian is introduced and de-

scribed briefly, and the vector and axial-vector currents are v=d+ E+b, 1)

derived for the interaction terms that contain only one de- 2

rivative of the pion field. The currents arise directly from ) o )

Noether’s theorem and contain the pion field to all orders. [fvhered is the number of derivatives) is the number of

Sec. IlI, the matrix elements of the one- and two-body axialnucleon fields, and is the number of non-Goldstone boson

currents and the pion-production amplitude arising fromf!elds in the interaction term. Denvatwgs on the nucleon

these contributions are computed, and PCAC and th&ields are not counted id because they will pru:ally intro-

Goldberger-Treiman relation are verified. It is also demon-duce powers of the nucleon malgs which will not lead to

strated that in the chiral limit, the conserved charges correSMall expansion parametel(34]. - _ _

sponding to these currents reproduce the desired algebra. It was shown in Refd.32,34 that for finite-density appli-

Sections IV and V extend the analysis to the terms in thesations at and below n'uclear matter eqwhbnum density, one

Lagrangian that are bilinear in derivatives of the pion field,Can truncate the effective Lagrangfat terms withv<4. It

and Sec. VI discusses the leading contributions containing ¥as also argued that by making suitable definitions of the

p meson. The isoscalar and @ meson contributions are nucleon and meson fields, it is possible to write the Lagrang-
given in Sec. VII. Section VIII contains a summary. ian in a “canonical” form containing familiar noninteracting

terms for all fields, Yukawa couplings between the nucleon
and meson fields, and nonlinear meson interactj@hsSee
Refs.[5,34] for a more complete discussion.

The EFT Lagrangian considered in the present paper was If we keep terms withv<4, the chirally invariant La-
proposed in Refl34]. As discussed in that paper, the nonlin- grangian can be written &s

Il. EFFECTIVE FIELD THEORY LAGRANGIAN

‘CEFT: £N+ [,4+ ﬁM

_ f
=N Y[, +iv,+10,p,+1,V, ]+ 0ay* ¥, — M+gsh)N— ”—g”NpWWN

4M
Bl s Ko BB P S o i
— ant Vo N= Nv 0N+ o ENNTH(@,8%) + Lot 59,604+ 2 12Tr(a,U0*UT)

2

1 SR T . o1 Jsb | 7> G50
- ETr(p,U.VpM )_ ZV,U,VVM _gpﬂrrﬂn'm_iTr(p,uva )+ E

2
1+ nlv'f‘ 7 M2 )vaMV’U“

—+

1 k3Osh K4 950’
2 31 M 4! M2 )

1 g5
+ 77408V, V4 2+ ( 1+ npﬁ) M Tr(p,p*) —mie?

where the nucleon, pionr, w, andp fields are denoted by [ ; ;
and p,=37-p,, respectively,V,,=d,V, V=" 580,64 69,8 (6)

Nl 71! (;b! V/J,y
—d,V,, anda*"=(i/2)[ y*,y"]. The trace “Tr" is in the
2X 2 isospin space. The pion field enters through the com-
binations 1
~ —ar. 3
U=expiralf,), c=explir m2f.), 3 4f377 [7Xd,m]+O(m%,m), (7
o t
a,=~ 5 (£'0,6~ £0,N (4)

2Two terms of orderw=5 involving bilinear derivatives of the
andw fields are of minor, but non-negligible, numerical importance

Tor " IuTt 153 L@ (0 m)7 a and were included in Ref34]. We will not be concerned with such
T details in this work.
— a7 d,m]|+O(7d,m), (5) 3We use the conventions of Refé,5,34.
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V=0,0,~d,0,+i[v,v,]=-i[a,,a,] (8) sider thev=2 terms in the NDA counting scheme and later
analyze contributions from additional terms with= 3.

1 ) The v=2 terms involving only pions and nucleons can be
® L2= Lot Loy, (12
The p meson enters through the covariant field tensor
where
p/.LV:D/.LpV_DVp;L+igp[pM’pV]7 (10) f2

S gt 2 t_
where the covariant derivative is defined by La 4 {Tr(o, VU +mTU+UT=2)) - (13

D,p,=d,p,Ti[v,.p,], (1)  and

andg, is a free parametd5,34]. £, containsm and 7N —
interactions of orderv=4, which are not needed in this Lan=Nyiy*
wgrk. A numerically insignificanv=4 term proportional to .
¢“Tr(p,p*) has been omitted. !

ThisﬂEFT Lagrangian provides a consistent framework for - §gA7M7’5(§*‘9u§_ faug) -M ] N, (14
explicitly calculating the two-body exchange currents origi-
nating from meson-nucleon interactions in nuclei. Accordingwith U and ¢ defined in Eq.(3).
to NDA, all of the coupling parameters are written in dimen-  In this Lagrangian, the SU(Z)isovector symmetry is
sionless form and should be of order unity, if the theoryrepresented linearly, while the SU(2J SU(2) chiral sym-
obeys naturalness; this has been verified for the parametensetry is realized in a nonlinear faship2,53. Transforma-
that are relevant for mean-field nuclear structure calculationions of the fields are defined by
[34,44). Moreover, all the constants entering the Lagrangian

1 T T
Gut 5 (€19,8+ 0,6

(2) are assumed to be determined from calibrations to U(x)—LUX)R',
nuclear and nucleon structure data, hadronic decaysyéhd
scattering observablé84,50. E)—LEXNT(x)=h(x) EX)RT,
The familiar axial-vector, exchange-current results are re-
produced by thev=2 terms, when they are expanded to N(X)—h(X)N(x). (15

leading order in the pion field. In addition, the=3 terms _ o
lead to new contributions to the axial-vector current that will A Vector SU(2), transformation with infinitesimal group pa-

be calculated explicitly and shown to preserve the correci@metersg is specified by

charge algebra. B . o
The same sequence of steps is used to calculate the axial- L=exp(i B 72) =R=h(x), (16

zgg&;&gtgg;:@g bmocfnghnet;sn?jr}g;;i?yt?r:;n;.oiltrr?é'rV\\/I:ctoWhile an axial transformation of these fields with infinitesi-
hal parameterg is given by

and axial-vector currents for the effective Lagrangian to a

given order inv. Next, we demons_trate tha_t the_ correct chiral L=exglia-72), R=exp—ia-72),
charge algebra hold® all orders in the pion fieldn each
case(except for contributions involving the meson, simply h(x)=exgi 9{(x) - #2]. 17)

in the interest of brevity This result differs from that ob-

taiped in thecw modell with a linear representation of the The isovector function/(x) is defined implicitly by Eq(15).
chiral symmetry. Here it follows as a direct consequence ogy making use of the algebraic properties of thenatrices,
the nonlinearimplementation of the chiral symmetry in the ,n6 can find an expression for the matix), which deter-

EFT Lagrangian. One then calculates for all contributions thenines axial transformations of the fields, to lowest ordein
one-body matrix elements of the axial current, the axialyt toall orders in the pion field:

current, pion-production amplitude on a single nucleon, and

the two-body matrix elements of the axial current. PCAC is R
verified for each of these amplitudes, the soft-pion limit is y2=— e3P 7C tar(
investigated for pion production, and the two-body, axial-

current matrix elements can be used to identify the COMeNte thatsr
sponding nuclear AXC.

ko

2f .

+0(a?). (18

=| 1| everywheren this paperi.e., 7 is nevera
shorthand for 3.141%...), m=ml, and we use latin indi-

cesa,b,c,...,|,m,... todenote the isospin components.
A. The pionic part of the Lagrangian P P

We begin by considering therN part of the EFT La-
grangian. This consists of a purely pionic part and a part that “The ¢ andV* fields are isoscalar chiral singlets, and the terms in
involves pions interacting with nucleons. We will first con- £, involving these fields do not contribute to the currents.
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When expanded to lowest order in the pion field, this result VfTOZA%(W)[,,x dom]2=[wXP,]2 27
produces a familiar expressi$84],
Note that when written in terms of the canonical momentum,
a_ _ i[ax 72+ 0(a2, %) (19) the expression for the vector charge is identical to that in a
Y f B linear representation of the chiral symmef#;30]. The ex-

pression for the axial charge density is more complicated:
We turn now to thel, part of the Lagrangian, which

contains only pion fields. By writing th& matrix as A= —[By(7)(8%°— w272+ 727PIP2, (298
i 1
U=exd - m| =cod — | +ir m—sin — . (20 where
fr fr T .
a
one can calculate the canonical momentum conjugate to the Bo(m)=m cotar{ f—)- (29
pion field to all orders inm: i
. By utilizing the usual boson commutator to quantize the
PL= Siaemm ~ AN = m*a) + ) dom”, pion field,
(21) [P2(x,t), 7(y,1)]= —i 626 (x—y), (30
where

and by calculating the commutators of the vector and axial
charges,

Ai(m)= (22

f. ([
;SII’I E
Equation(21) can be inverted to obtaif, 72 in terms of the

a o . .
canonical momentun®?,, which is required for evaluating one finds, after some algebra, the familiar results:
the charge algebra:

Qa= f dxVva0,  Qi= J d3xA20, (32

[Q%Q"]=i€e?*Q", (32
dome= (520 — 72 7P) + i gP Pb . (23
o T A () [Q?%,QY]=ieeQE, (33)
Next one can write out Noether currents corresponding to [Q2,Q%] =i e?beQe (34)
51517 .

the £, Lagrangian in terms of the matrices. Here Noether

currents are defined according[4] It is interesting to note that the explicit form & () is

IL(P' 0" needed to prove only the last relati@v). The evaluation of
JoH= — —a (24) the vector charge commutat@?) is identical to that in the
9(d,,€%(x)) linear theory, while the second relatig83) illustrates that

the axial-vector charge is an isovector. Both of these results
hold because the SU(g pymmetry is represented linearly in
the present approach.

where €%(x) is a set of local, infinitesimal transformation
parameters.
The Lagrangian13) produces the following currents: a

vector current . .
B. Pion-nucleon terms withv=2

2

f Let us now include nucleons in the analysis. At order
auw__ _ ;T a T T '
Vo =-l 4 T (UaHUT+U U} (29 =2 in the NDA counting scheme, the additional piece in the
Lagrangian is given in Eq(14). The corresponding extra
and an axial-vector current piece in the pion canonical momentum is
f2 LN
ap_ _; T a pppt_ 1t om 77 eaberb t.c
A i T{r(UauT=UTo"U)}. (26) oo™ sm2< )N °N
[These are both conserved if the pion mass is zero. For finite 1 sab_~asb
pion mass, one can derive PCAC from E24).] The corre- + EgA[Al(W)( -
sponding Noether charge densities can be calculated in terms
of the pion canonical momentum by substituting the expres- + 727PINT y5 7PN, (35

sion (20) into the general expressions for the curre(s)

and (26), and by rewriting the time derivative of the pion whereA;(w) is defined in Eq(22). (The nucleon canonical
field in terms of the canonical momentum according to Eqmomentum isiN®, as usua). The full pion canonical mo-
(23). One obtains, for the vector charge density, mentum becomes
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oL,
A(dom®)

LN
0"( 070’7Ta) '

pa (36)

and one can invert this relation using the same projector as

before[see Eq(23)]. The resulting expression fa7? is

(6%°— 727P) + i

domi= b|pb
% AL i

1

1 T
_abc__ T b T i o T ¢
€ A%(W)W 7TZSInZ(ZfW)N N

1
_EQA

(6%°— 2 7®) + 7272 [NT 5 °N.

Aq()
(37

We will see that the substitution of this expression into the

relations for the charges makes the latter look simple.

The 7N contributions to the Noether currents can be writ-

ten in terms of thet matrix as
Vim=ZN Ny [rE"+ £ 2¢IN
1 = ast 1, a
+ 79Ny 77T ETPEN, (38

= Eﬁw[&ag— £ 73¢IN
m 4

1 _—
— 2OVl EPET RGN, (39)

which include the pion field to all orders. By substituting an
expression forg, analogous to Eq(20), and by performing

some algebra, we find

— Tb
V?T‘,(,:NyﬂiN co

%fz)(éab—ﬂ' °) + 7P
C
+gpe abcwbsm(f )Ny 'y52 N, (40)

C
v T
AR = — abcwbsm( )Ny'“—N

b
—_ T
_gANY’WsEN

{ )(6ab—7:r °) + mamP
(41)

One can combine these results with those in ES) and
(26) to construct the currents

ViF=Va VIR (42

AZH= A3 N (43)

PHYSICAL REVIEW C 66, 055502 (2002
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b ....<.....< ....>.... a

/]

FIG. 1. The pion-pion-nucleon vertex from E@49). Here
gt=pl—pf—k*, in terms of the initial and final nucleon four-
momenta and the outgoing-pion four-momentlthn

tions, the corresponding charge densities can be expressed in
terms of canonical momenta. The vector charge density is
again precisely as in the linear model:

a

i
VE'=[ X P "+ NT=N. (44)

The expression for the axial charge density is a bit more
complicated:

AL = —[Bo(7)(8%°— m27P) + f  m27P]PP
C

~ T
—By(m) EabCWbNT_N, (45)
! 2

whereBy() is defined in Eq(29) and

(w)—tar( 27: ) (46)

Canonical quantization is carried out using the commuta-
tor (30) for the pion and the anticommutator

NE(Y. 1)} = 8,56 (x—y) (47)

for the nucleon fields. The conserved charges are defined as
above, and after some algebra, one can prove that the same
correct chiral charge algebra given in E¢32)—(34) holds.

We note that, as before, only the proof of the commutator of
two axial charges requires the explicit forms Bf( ) and

Bl(’TT)

{N,(x,1),

IIl. INTERACTION AMPLITUDES

Here we consider interaction amplitudes originating from
the v=2 terms in the Lagrangian of E¢L2). One can write
out the interaction vertices resulting from this Lagrangian,
which are important for calculating one- and two-body cur-
rent matrix elements and pion-production amplitudes.

The lowest-order strong-interactiarN vertices originate
from the following interaction terms in the Lagrangiéi®):

1
‘Cim%_ﬁéabc aN(l97T) CN+_2f N(ﬂﬂ' )ysTN.
(48)

By utilizing the new expression for the pion canonical
momentum, including the pion-nucleon interaction contribu-The analytic forms for these vertices are
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A q N
foverees @ o &

/N
/N

i FIG. 4. The vertex for the nucleon-only term in the axial current
FIG. 2. The pion-nucleon vertex from E(9). Here g#=p{ (50), from Eq. (53).

—pf.

= eabcq 7, & vl 72, (49) i

1 1
bosons(2wp V) 1/2) ( fermions (2E; V) 1/2)
X M2(K)S5(k), (52)

respectively; these are to be used in the Feynman rules for

the calculation of theS matrix [4,54,55. Diagrammatically, ~Which definesthe covariant amplitud& (k). Herew,, are
these interaction vertices can be represented as in Figs. 1 atite boson energieg; are the fermion energies, andis the

2, where the solid lines denote the nucleons and the dotteguantization volume; these factors specify the normalization

lines are the pions. to be used on external lines. The fermion spinors are in-
To lowest order in the pion field, the Noether axial currentcluded inM&*, which is to be computed using the Feynman
due toL, takes the form rules with the axial-current vertices given below; we assume

overall four-momentum conservatiofas well as four-
momentum conservation at every venteand we adopt the

C a i j—
Aau:_ieabcwbﬁyuT_N_g Ny~ T_N_f JH covariant spinor normalizationu(p)u(p)=—uv(p)v(p)
2 f’ﬂ 2 ANY™ Y5 2 T —oM
+0(?) (50) The vertices arising from Eq$50)—(52) are given by
. . . i 7° T
To determine the Feynman rules for the axial-current verti- — — Py — —igaytys—=, f krS?P, (53
ces, we consider a Lagrangian density fr 2 2
,Cext(x)=Aa”(x)S§ff(x), (51) and they are represented diagrammatically in Figs. 3, 4, and

5, respectively.

The one-body, axial-current matrix element to lowest or-
where S{ is an external source that could originate from der in 1f ; is given by
leptons, for example. The scattering mat8x can then be

written to first order in the external source as w

Maﬂ(n:igAU(p')ys{ ¥k }%u(p» (54)

2 2
ke—m:

/N The two relevant Feynman diagrams are drawn in Fig. 6,
wherek* is the outgoingmomentum on the pion line. Note
that the multiplicative factor ofj, in the amplitude implies
that no additional current renormalization is requiretiere
!_Ld ®’“">'"' b ga enters as an overall factor, which was missing in the
tree-diagram amplitude calculated in the model of Ref.

N [40]:

k
ua ®ooooo>ooo b
FIG. 3. The nucleon-pion vertex in the axial currés@), from
Eq. (53). The crossed circle shows where and how to attach the FIG. 5. The vertex for the pionic contribution to the axial cur-
external sourcégﬁ(k). rent (50), from Eq.(53).
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p’ P’ p’ p2,
\ «— X 3
Q sscacnesd b
< Ha® +  fedee@pua P a
o]
p p P 2

) ] FIG. 8. Two-nucleon contributions to the axial current. Here the
FIG. 6. The Ieadlng-order, one-body, axial-vector current. Noteertex M () [Eq. (57)] represents all possible ways that the exter-
that the external sourcE/(k) “extracts” the momentunk” from  nal source can couple to the left-hand nucleon (ioethe order we
both diagrams:explicitly when the pion leaves the diagram and are working, as illustrated in Fig. 7.
implicitly when the source attaches directly to the nucleon line.
In the soft-pion limit Q,k—0) and to leading order in

M2%(1)=gaMi(1). (55 1M,
C
The interaction amplitudé4) satisfies PCAC automatically, N abu L abe” oo
due to the presence of the projection operator in braces: \.7(2E2E’)”2|NI (m)— fwe 2 o (58)
kM2 (1) — 0. (56) whereE~E’'~M are the initial and final energies of the
m;—0 nucleons, and the arrow signifies that we have removed the

The amplitude for axial-current pion production on a external nonrelativistic wave functiorisicluding a factor of
single nucleon is represented by the diagrams of Fig. 7 andl/\/V) to arrive at a first-quantized operator. This amplitude
can be written as reproduces the result of Kubodera, Delorme, and fioR)

[16] obtained in the current-algebra approach and solves the
by 1 y problem of an extra factor aj3 found in Ref.[40].
(p'+¢)—M Next we consider amplitudes for the axial current that
involve two nucleons. The relevant diagrams to this order in

2fwMabﬂ<w>=U<p')|gi

b
x| Ak A v are presented in Fig. @ith a similar set of diagrams when
k2-m2) 2 the external source interacts with the second nug¢leoml
produce an amplitude of the form
ek k# 1 P
Y kZ_mET yS(p_q)_M ’YSq 2 Tb

[ Or— ,
M?3#(2)=M3P#( 1) - EU(Pz)Vﬁ%EU(pz)

7 ©
; _ab
+ie CE[(k_q)kz_mZ -2y }u(p), + (direct),+ cross terms. (59)
(57 Here “(direct),” denotes the terms where the external source

) ] ] hits nucleon 2, and “cross terms” denotes similar diagrams
where g is the outgoing four-momentum of the emitted \ijth the fermion lines crossed in the final state.

pion, andp* andp’# are the initial and final nucleon four-  This amplitude satisfies PCAC becaus® () does.
momenta, respectively. Itis easy to verify that this amplituderhe corresponding two-body nuclear AXC can be identified
satisfies PCAGfor an on-shell nucleon to lowest order in the inverse nucleon magsrom an ex-
b pression for theSmatrix elemenf
b P
%o, hCR }J.O b 1
E.. \:;.'. b.. “e g o A:#(Z)E - WIM ap’(2). (60)
+ + .F + L_-: ( V)
Ha 2 a @' Kk By performing a nonrelativistic reduction of the direct terms
p ua & ua in the resulting current, and by removing factors for the ex-
ternal nonrelativistic wave functions, one obt&ins
b, nag b
+ 2 T + k\‘:'-. + qF'- ua %In this paper, we do not discuss the details of the derivafimm
Kk 1:-_" q'L-L' the covariant amplitude®f the axial-vector exchange currents that
®' b‘.. are to be used with relativistic, mean-field, four-component Dirac
ua wave functiond34]. For some of the issues that are involved, see,

for example, Refs[3,12,15,40.
FIG. 7. The amplitude for axial-current pion production on a ®The “cross terms” will be included when one takes matrix ele-
single nucleor{Eg. (57)]. Again, note thak” is extracted by the ments of this first-quantized, two-body operator between antisym-
external source, so that‘=p’#+k*+q*. metrized many-fermion wave functions.
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the interaction of nucleons with pions, and then return to

Adt(a, Q)—>—2'|[T(1)><T(2)]a calculate the additional contributions due to themeson
field in Sec. VI.
o(2)-q o(1)-Q One can calculate the changegn under vector or axial-
7+ mi o2t mi } (61)  vector transformations. These quantities are required for cal-

culating the respective Noether currents according to the
where the exchanged momenta are definedsyp,—p, and ~ definition (24).
Q=p'—p.

This is the same two-body, axial charge density obtained

21K —
by KDR [16] in the current-algebra approach. Here, how- OLs= M N[da,.a,]o""N
ever, this result has been calculated as the lowest-order ap- 83
proximation to an EFT Lagrangian. The Lagrangian ap- aNT u
proach allows us to explicity calculate additional * M NNTr(5a,a") +O(( 5a)°). (66)
contributions to this AXC from the next-to-leading-order (
=3) terms in the NDA counting scheme. whereda,, is different for the(local) vector and axial-vector

transformations:
IV. RELEVANT TERMS WITH »=3

We now concentrate on the contributions from the 3
terms in the Lagrangian. Since our ultimate objective is to
identify axial-vector exchange currents arising from E2).
to lowest order in the meson fields, we consider only terms 1
that contribute to the vector and axial-vector currents to this 5aM:_(§T7-a§+ gTagT)auaa (axial vectoj.  (68)
order inv. These terms are bilinear in derivatives of the pion 4
field itself, but contain the field to all orders. We obtain the
v=23 Lagrangiah These variations produce the following Noether currents, as

defined in Eq.(24):

1 t_a agt a
=7 ('3, B (vectop, (67)

La=6,L+ 8,1, (62)
where VaH=— -2MNU"U“V[§T P¢— e3¢ a,IN
L= 0" %9 PNt (1 eghat), (69)
and
S,L= ﬁNNTr(a ak), (64) AF'=— -2M No#[€'7%+£r°¢"a,IN
with v, given by Eq.(8), anda,, given by Eq.(4). The final _ 'BWN NTI (&7 72¢+ 72Ty am]. (70)

term contributing to the two-body axial current at relevant
order inv involves thep meson field:
; 1 For future reference, we exhibit some often-encountered ex-
IND 9ot ressions as functions of the pion field:
£,==,Np, ¥*N=JNp, o N=STe(ppt) P P

2

2f t a ty_o.b Tl sab_~ash b
_gpwwm_;Tr(pﬂvvuv)+miTr(p,u,p'u)r (65) (‘f T §+§Ta§) 27 (CO{fﬂ)[é\a ’7T T ]+’7T T )
D

(71)

wherep ,, is defined in Eqs(10) and(11). Here the first and

last terms are of order=2, the second term is of order

=3, and the third and fourth terms are of order4. The (7% —¢77¢) = abcTH)TCS'”( fw) (72
fourth term is included inC, because it is the lowest-order

term that involvesp7r interactions, which are thought to be 1

relevant in AXC originating from heavy mesofigl]. We a,= 9 wd{Al(q-r)[acd—w 7+ 77, (73
first consider the terms in Eq&63) and(64), which describe 2f

where A, () is defined in Eq.(22). By substituting these
"We omit ar=3 term with an antisymmetrized derivative on the relations into Eq(69), the extra vector current can be written
nucleon fieldd50] because it is effectively of the order=4. in terms of pion fields as
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1 A ™ ~oin
au_ abc” b Mg _ cdn m_ ~d”-m
V3 ME T d,m SInz(fw) K € ([5d ekl
1 ... \— _
+ dem)Na‘”T”N+4 ~O0°™NN M} 74
e B "NNg*|.  (74)

For the additional axial currert70), one obtains
1 _ _
A= K a€ NN =4, " NNg"}

X (9,,77'“( CO{ fz) [ 520— 727P]+ 7 Wb)

X{Al(w)[écm—w 7Tm]+7T 77 m. (75)

Now one can construct the corresponding total charge
densities used to check the chiral algebra of charges. For the

vector charge density, one finds

a0 __\ /a0 a0 a0
V&=V "+ Vo + V3

B

=A%(7r) PP 1+WNN>aow

b

,
+NTEN

T . .
COS( f—)(éab— i )+7Ta77b}
T 7°
+gpe?CaPsinl — o NT'y5§N

K
_ 277 abc bAZ(ﬂ-)é’ 71_m cdn

foM

w

~

1(77)7T

while the corresponding axial-vector charge density is

ANCHER
- ) Jn

S{f )(5‘“—77 )+ 72 wb}

x| [ 89— 7d7™]+ dwm)NO'OiTnN, (76)

0_ pal a0 a0
A=A+ AT AT

| 3

=—f2 1+

—

N

N[,

X (80— 720 + abcﬂ'bsm(

Sha

+
—gaN 7’5 2

+ Kn €N 79Ng, 7™ co il [ 62°— 727P]
f M fr
+ %a%b) {AL(m)[ 8= 7Ca™+ wCa™). (77)
The factor (H4BﬁﬁleiM) in the first term of both den-

sities represents the net effect of thel term in the La-
grangianLs, which is proportional tg3... It is interesting

PHYSICAL REVIEW C 66, 055502 (2002

terms of the pion canonical momentum, when one inverts the
full expression for the momentum, including the contribu-
tions of the new pion-nucleon terms in the Lagrangian. Thus
one finds

yepm A b
1+f MNN Jome= AZ( )(5a_7T7T)+7Ta7Tb P>
g 1
1
abe_5— A" 2S|n2( )NTTCN
1 1 A
- b_ ~a_b
2fﬂ.gA A1(7T)(5a ™ )

+ 7P

NT)/ N+ ki eanc
° f2M
Ay(m)—1

_ Al(,n.) eabc b~ n+[A1(7T)

—1]ebnem? b)aiw“ﬁa"iTCN, (79)

and the additional Lagrangiaf £ proportional toB,. hasno
effecton the full charges, when they are written in terms of
canonical momenta.

By substituting the relatiori78) into Egs.(76) and (77)
for the vector and axial-vector charge densities and by car-
rying out the necessary algebra, one remarkably arrives at
precisely the same expressions for the charge densities in
terms of the canonical momer{tags.(44) and(45)] as those
obtained with nov=3 terms included. Thus the expressions
for the Noether charges in terms of canonical momenta are
not influenced by the presence of the term proportiona,to
either. Note, however, that these=3 termswill generally
influence the three-vector currents.

Since Eqs(44) and (45) are known to satisfy the correct
chiral charge algebra, we conclude that the3 pion-
nucleon terms in the Lagrangian do not influence the charge
algebra whatsoevér.

V. INTERACTION AMPLITUDES TO ORDER »=3
To lowest order in the pion field, the Noether axial current
(75) can be written as

'BI\ZNN(?“ﬂ-a+

K _
AdH~ — eabc&,,ﬂ'bN o*"N—
f7TM aa

(79

We calculate additional contributions to the interaction am-
plitudes originating from the Lagrangiaf3) and(64) sepa-
rately. We first need to find the corresponding interaction
vertices, and we begin by consideridgL. Recall that to
lowest order in the pion field,

8This conclusion is certainly plausible, given the form of the

that the same factor timeg7® can be readily expressed in =3 terms in the EFT Lagrangiai2).
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p’ Pr Py Py Py
k ud oo>oo b + IJ,Q ®..<¢o ro>ocl b
e “a ®o.oo.>.-. b q k q
q
Py Py Py Py
P FIG. 10. Two-nucleon, axial-current amplitude originating from

: . 3, L [Eq. (86)].
FIG. 9. The vertex for the one-body axial current arising from

61L. Herep*=qg*+k*+p'~.

OA 2K, KKy
. MaM(Z):_|f—2;WGabC|gM)\_ k2_m?ﬂ_
a,~-—7d,mt -, (80 - c - b
Sk X WP o S (1) pg) ¥ 75 - U(py)
2 q°—m: 2
b b7
Vun= fZ €T, 81) + (direct),+ cross term}s (86)

The extra term produces a new lowest-order strongHere (directy again denotes contributions from diagrams
interaction vertex that looks exactly like the one ir'1 Fig. 1 where the axial-current vertex resides on the second nucleon,

but which corresponds now to an analytical expression "which can be obtained from the first term by the replace-
mentsp,<+ Py, P1Ps, andg— Q, and cross terms denotes
similar diagrams in which the fermion lines are crossed in

H (o}
20Kk, eabCT—quVO'MV. (82) the fi.nal .state. This amplitude prodgc_es j[he first additional
fzﬂM 2 contribution to the nuclear AXC originating from thé,
The one-nucleon, axial-current interaction vertex due tderms in the EFT Lagrangian. .
5,L (see Fig. 9 follows from the first term in Eq(79): Now recall that there is yet another ter(®4) in the v
=3, pion-nucleon Lagrangian, which can be written to low-
c est order in the pion field as
ZK’T abc, ,uuT
TEME T (89 2B,
52£~ WNNﬁMWaﬁMWa. (87)

This vertex gives an additional amplitude for axial-current h _ in looks like that in Fi
pion production on a single nucleon that resembles the last!'® corresponding vertlex_ agllaln ooks like that in Fig. 1 but
two diagrams in Fig. 7 and corresponds to the expression NOW represents an analytical expression

48, 4 sab
) 1 2Kﬂ. ) _Wk”q 6%, (88)
MaM(W)Z—f—WeaC ™
" The one-nucleon, axial-current interaction vertex looks the
u KHky — A,,TC same as in Fig. 9 and can be deduced from the second term
X195 Tz | AP o S u(p). in Eq. (79 to be
(84) AB
T u sab
™ gH58°. (89

This amplitude satisfies PCAC because ) _ ) ) )
It is easy to write out a corresponding axial-current, pion-

K2 production amplitude(again resembling the last two dia-
k'uMab’“(W)“[k)\_ e z— k)\] 0. (85) grams in Fig. T.
pining all of the previous resuts, | ab AP K- 531 o’
By com ining all o the previous resu ts, one can calcu- M2 ()= M qt— R k-q; 82Pu(p’)u(p).
late an additional two-nucleon, axial-current interaction am- m 71'
plitude due to thes; £ term (see Fig. 10 (90

This amplitude also satisfies PCAC:

Note that Eqs(82) and(88) contain a symmetry factor of 2; thus, 2
Feynman diagrams including these vertices need to be drawn only |<M|\/|ab"(77)‘>c k-g— Wk'q — 0. (91
once. ™ m;—0
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The corresponding two-nucleon, axial-current interaction al-
lows one to identify additional contributions to the axial two- /
body amplitude originating from thé,L term in the La-

N q
grangian.(They also look like Fig. 10.0One obtains m }\.C
kM
N\

.gA 4ﬁ77 qo’
aun( o) — m_ .
MH(2)=1 2 [q k2—mf,k q} P?-m? /

fe M

a

— — T

X [ u(P)U(PU(P2) Y7 ¥5 75 U(P2)

FIG. 11. The p-nucleon vertex from Eq.(98). Here
, g“=pf—pf.
+ (direct), +cross term (92
and

The sum of the amplitudg86) and(92) constitutes the total
contribution of the pion-nucleon=3 terms in the EFT La- 9prr abe \ \
grangian to the AXC. oz € 2kpai-g-pkd), (99

P
VI. p-MESON TERMS IN THE EFT LAGRANGIAN wherek™ and g are outgoingpion momenta, and Eq99)
A. Currents and canonical momenta includes a symmetry factor of 2. These are shown in Figs. 11
and 12.

Next, one can calculate the total additional Noether cur-
rents using the traditional definitidisee Ref[4], Eq.(7.5)]

An additional piece in the EFT Lagrangi@65) contains
the p-meson field

1
Pu(X)= 57 pu(X), (93 (L) a(8E) AL, A&
A6 d€ AE) €
a(L,) A(5pf)

P (X)=h(x)p,(x)hT(x). (94) TS g = Ser et Ta+ 8,75, (100
y

which behaves under a chiral transformation as

In principle, one can confirm the same chiral charge algebra o

as before to all orders in the pion field. This follows just as inWhere thee are global infinitesimal parameters (or g).
the case of the pionic interactions: the contributions of extral N€ partial derivative of the Lagrangia65) with respect to
pieces in the Lagrangian are absorbed in the modified piothe p field is

canonical momentum. To simplify the subsequent equations,

however, we present the proof only to lowest order in the aL,) fo00— .\ 4 N
pion field. 3aph - am e TN T
. e . . . MEN
For infinitesimal vector transformations, ,
2f
¢ _ _m d . uN
a(dp},) __eabeyp ©5) o g m,% Tr(7v*"). (101
B3 me
while for infinitesimal axial transformations, Thus, to lowest order in the meson fi.elt'js, th'e part of the
Noether vector current due to differentiating with respect to
asp') 1 the p field is
50[: — FeabCECdfﬂprZ. (96)
[ f g -
N_ _ cabc b} _pPIpP \v_C [N, 7] 2
One also recalls that to lowest order in pion fields, SpVa=—€ p,,[ am o TN+ e +O(7) 1,
(102
1 abc__a b § 9
~— 9,m°—.
e ofzt TR o7 b, k
Additional terms in the EFT Lagrangian due to the pres- .\_'_%. P
ence of thep meson are given by, in Eq. (65). To lowest .-m Ac
relevant order in the meson fields, one obtains the following IL
strong-interaction vertices for the meson: a o a
L ]
_igpg( P+ Zf_l\‘;liq"o-m) (99) _OFIG. 12. Thepwm vertex from Eq.(99). Here p#+k*+qg*
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q p 2f7Tg mmT

b"”'é'@m Le —i— e (prgt —p-qg"h). (109

q p

K Similarly, one finds for the corresponding vector current,
FIG. 13. The vertex contribution from the axial curréb08), as
given in Eqg.(109 N 1 fpgp abegedf fmlb_d mNj \vl
' : Oy etVa=~ 2f2 amE € mm p,No""T'N
20077 _abe_cdf, b, _d N, 7]

_ o _ — ——— €% 79,9 prt (1109

where the brackets around the superscripts signify the anti- m,

symmetric combination, and repeated isospin indices are
summed over, regardless of théfertica) position. The cor- 1hese terms are of higher order in the fieltsamely,

responding axial current is O(p7?)] than those in Eq(102) and thus are not considered
in the sequel.
A\ 1 abc_cdf__b d ngP Ay _f [)\ V] 2
SpRa=op e € mp,) perNo TN+ I p+ O(79) 1. B. The corresponding chiral algebra
(103 The terms in the additiongl-meson Lagrangia(65) that

. o involve derivatives of fields can be written to lowest order in
The canonical momentum for the field is, to lowest  the pion field as

order®®
g
YR P AN
(P M= I(Lyp) _ pgp.\l O\ N = gl0pA + O(2), 7 am ‘wPrNT
P T dap))  AM L
(104 +2f ngeabc cdinag bpdNg# 7N
which implies
v b
S VaOZEabcpb(P )VC (105) - Eaﬂp,ﬂ ]—9 EabCpMp ﬂ’upc
p Wp
a.nd _ gp—zﬂéabcaﬂﬂaﬂv’ﬂbﬁ[”pg] . (111)
1 i
S5,A%0=— ffabCECdfTFng( P (1060  Hence,
M_ 1 ngP abc cdf b dNO_)\VTfN

Consider now a derivative of the Lagrangiéb) with =
respect to the field. To lowest order in the fields, the cor- (o m)  2f7 4AM
responding axial current is

2 I
——i‘]’z €%y, mPalpl. (112
1 f
5§+§TA2% 2f :I?/lp €3PCeCdipD dNO'}\VTfN _ ’
Moreover, again to lowest order,
2f .
+pmn—z €%, 70 pt (107) N I(5L,)
m ——f T
p 5§+ §TA f,n.a( (9)\7Ta) (113)
and thus thdotal additional axial current is and
2f . 0_ _ a
6A)\ gpw’n- m2 eabC&VTrba[)\pg]+O(p27T,p7T3). 5§+§TAa = f775P’7T‘ (114)
P

(108  This term has the same form as the pionic contribution in Eq.
(28), when the latter is expanded to leading order in the pion
It is now clear why we kept them coupling of ordery  field. Thus, when the full axial-vector charge density is ex-
=4: thev=23 contributions to the axial-vector current cancel pressed in terms of the total pion canonical momentiina,
out. The vertex arising from the interaction of this currentpion terms look the same as they did befdieis implies that
with the external source can be calculated as in Exfs.and  the axial-vector piecé, g’rAaO does not influence the chiral
(52), with the result(see Fig. 13 charge algebra. One also recalls that the vector current
8¢+ ¢tV in Eq. (110 is of higher order in the meson fields
and does not influence the chiral charge algebra to the order
%bserve that®,)°"=0 for this massive vector meson. that we consider here.
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The only remaining pieces to consider for the proof of the

PHYSICAL REVIEW C 66, 055502 (2002

[ 5pva0, 5pVb0] ~ Eadcebmr[pg( Pp) VCrP;T( pp),un]'

chiral charge algebra ar,V*° and 5,A%. We can write the (125
total charge densities as
or, after some algebraic manipulation,
Vin=Va0+ 5, v, (115
[5pVa0,5pVb0]0<i €abc6cdnpg( Pp)vn:ifabc5pvc0_

A=A+ 5 A%, (116) (126

Here V2 and A% are taken from Eqs(76) and (77) ex-  1hus the second relation of the chiral algebra,
anded to lowest order in the meson fields. .

P [Q?ot’Q:)ot] =ie2"Qpy, (127

First, consider the commutator of the total axial charge
densities

[AG ARG =[A, AT+ [A%, 5, A% +[ 5,A%, A%

also holds.

Finally, consider the commutator of axial and vector

charge densities:

+[68,A%0, 5 AP0 11

LoA™ 0A™ ] ; (0 [Af Vil =[A%0, VO] +[ A%, 5, V0] +[ 5,A%0, VPO

The first commutator in this expression is known: 0 bo
+[6,A%,6,V>]. (128
[A20, APO]ocj €200, (118 _ ,
The first commutator is known:
while the second and third terms are equal to [ A% \/b0]] (abCATO (129
, oie .

[A%,5,A%)~— %ﬁeb'%““( —tpY(PY [PS,7'].
(119
Thus, to lowest order in the meson fields,
[Aao,5pAbO]+[5pAaO,AbO]oci eabcecdfp(]ij( Pp)vf
=i€2P°s, V0. (120
The final commutator is of third order in the meson fields,

[8,A%,5,AP]O(p?), (121

and does not contribute to the charge algebra to the order we

are working. By combining the results in Eqd18) and
(120, we find that the first relation of the charge algebra

The second commutator vanishes because pion and nucleon
fields commute withp fields. The third commutator can be
written as

i
[5pAa0,Vb0:|OC _ F 6aICECdf6bn|7Tnp?,( Pp) I/f' (130)

m

The final commutator is

[5PAaO,5pvbO]

1
fl ldc _b fr d 7 m
méa € CE mn’7T [p,,(Pp) C,pM(Pp),U«n],

(131

holds in the presence of the additional terms in the Lagrangwhich, after some algebra, becomes

ian:
[(Q8) 101 (QB)1oll =1€™°Qf. (122
Next, consider the commutator of vector charge densities
[Vig Vi =[ V20, V201 + [V2, 5,v°]
+[8,VO VPO +[5,v30,5,V*0]. (123
As before, the first commutator is known:
[Va0,VP0] i e2POV0, (124

while the second and third commutators vanish because pion,
nucleon, andp factors commute with each other. The final
commutator can be written as

"The two sides of this relation are proportional to each other

r q r q
oo+ [T
7\,C Ha )\«C .k
&
La

FIG. 14. Two-nucleon, axial-current amplitudes containjng

because we have omitted the spatial integratiihat define the meson exchange. The notation in the first two diagrams implies that
chargeg and & functions for brevity. There are no other numerical the external source can couple to the nucleon line in two ways, as in
factors, and the charges are indeed normalized correctly. Fig. 6.
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i The term in the parentheses is jL@W’O. Thus
[5pAaO, 5pvb0]oc _ 7 Ganle‘leGCdf'ﬂnp?}( Pp) Vf_

! (132 [(Q8) o, Quord =1€2°(QE) ot (135

and therefore all of the relations constituting the chiral
charge algebra hold in the presence of the included extra
€PNl 4 ganlelbc— gabmgmne (133  terms in the QHD Lagrangian.

By using the relation

one can show that the sum of the third and fourth commuta- C. Two-nucleon, axial-current amplitudes

tors is
The two-body, axial-current amplitudes involving tpe
[8,A%,VP0]+[5,A%,5,V"0] meson are given by the diagrams in Fig. 14. The diagrams in
the first row of this figure originate from the terms of order
i edbe| — iecnpepdfﬂ_npd(P )yf>_ (134 v<3 in thep meson Lagrangia(65), while the diagrams in
2f, v the second row correspond to the=4 terms. Thus
|
(Ona— OnGa/M5) k“k, | — f ¢ 1
M3(2)~igags— 5| 9“5 Uu(pp)| ¥~ 571007 | Z-U(PIU(PL)| Y57 ————
" ge-m? 2—m2 2M 2 (Br—d)—M
f 7 7° f 1 < 2
X| M+ —piqya””)— =+ P+ 5,0 | ———— 5y —] u(p1)
2M 2 2 2M (Pi+d)—M 2 2
2079, 9077 api— ) ™ — ot ) (Gra—Tale/My) 1
+T§ea U(P2) ysd 5 U(PU(PL)| ¥ = 5 7ir, o™ |5 u(py) -~
k# .
X3 rtgqe—(r-q)g"*+ o [(g-r)k*—(k-r)q*]; +(direct,+ cross terms. (136
_m7T

The terms proportional tgf, satisfy PCAC by themselves, precisely as in the nonlinear realization of thedel. The terms
proportional tog,, . also satisfy PCAC separately because

Kk

2_ 2
ke—m:,

[(Q-f)k“—(k-r)qa]] — 0. (137

m,—0

kﬁ[ req—(r-q)ghe+

One can identify the corresponding additional AXC from - _ f,0, _
these amplitudes. Lao~=9g,V,Ny*N— mﬁ[MVV]NU’”N
gsm;
VIl. CONTRIBUTIONS FROM o AND w MESONS + Ean(/’V#VM' (139

Now one can easily add the and w contributions in the

present EFT. The corresponding lowest-order interactioq;\gain’ the final term above is of higher order in the meson
terms can be deduced from the full Lagrangi@n fields and does not contribute here.
We obtain the following new strong-interaction vertices
gem? Ky gm? that look exactly like the one in Fig. 2, but with the pion line
S P mwy_ 3 357s 3 replaced byo and w lines, respectively(see Ref.[4],
v P pup™) =37 ¢~ Fig. 29:

L£3'~gsdNN+7,
(138

igs, (140
The final two terms involve interactions that are of higher
order in the meson fields than we consider here for the two-
body axial current, so we will not discuss them further. Simi-
larly,

f,
’y)\+miq,,0'w\). (141)

_igv
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Both o and @ mesons are chiral scalars and thus do notmesons. For finite pion mass, it is also shown that PCAC
contribute to the Noether axial-vector current. holds for the one- and two-body axial-current amplitudes, as
The amplitudes for the two-body, axial-vector currents in-well as for the amplitude for pion production on a single
volving o and @ meson exchange are represented by diahucleon. The AXC can be deduced from the two-nucleon
grams analogous to those in the first row of Fig. 14. They areamplitudes, although we do not derive them in this paper.
given by the first term in Eq(136), with the appropriate [We do, however, compute the leadifrigpnrelativistig cor-
meson propagator substituted for thgropagator, and with rection to the axial charge density in E61).]
the expressioni98) for the p-nucleon vertex replaced by the  Since our analysis of the axial-vector current in the
o-nucleon vertex(140 or the w-nucleon vertex(141), nuclear many-body problem is performed by splitting our
respectively. EFT Lagrangian into numerous pieces, it is useful to sum-
marize here our most important results and expressions. The
complete vector and axial-vector currents are given in EQs.
ViIl. SUMMARY (25), (26), (38), (39) [or Egs.(40) and (41)], (69), and(70)
In this work, we compute the axial-vector current based " EAS-(74) and(75)], (102), and(108). Thus, for example,

on a recently proposed hadronic Lagrangian with a nonlineai"® COMPplete currents are

realization of chiral symmetr}34]. The effective Lagrangian §2

provides a systematic framework for calculating both nuclear va#=—j Z”Tr{ 2A(UoUT+UTo*U))
exchange currents and nuclear wave functions. The Lagrang-

ian is truncated by working to a fixed order in the parameter 1_ 1 _
v, which essentially counts powers of ratios of particle mo- +2N Y EPRET+ ETREIN+ 79N Y ys[ E72ET
menta to the nucleon mab4 or of mean meson fields to the
nucleon mas$34,56. Practically speaking, in the nuclear P
many-body problem, the expansion is in powerskpfM, —&TREIN- Z—R;ITNU’W[ETTaf—ETafT,aV]N
wherekg is the Fermi wave number at equilibrium nuclear
density; this ratio provides a small parameter for ordinary 2B, — ‘a aut
nuclei and for electroweak processes at modest momentum — v INTIL(&T = £m7¢h)a”]
transfers.
The present framework has several advantages. First, be- abe b) Fo9p 1 ¢ Lo o] 5
cause of the nonlinear realization of the chiral symmetry, the — €y g N TN+ 3 Hp +O(m) (142

axial coupling constang,~1.26 appears naturally as a pa-

rameter in the Lagrangian. Second, the explicit enforcemerand

of the symmetry ensures that the axial current is conserved in 2 1

the chiral limit (and that PCAC holds for finite pion mass au_ i T a Tt _N. +
and that the familiar SU(2)X SU(2)g chiral algebra is sat- Ao =17 THAUUT=UT#U)} 4N7M[§Ta§
isfied by the vector and axial-vector charges. The symmetry 1

also |mpI|(_es that there WI|| be AXC involving nonlinear me- — T REIN= S gaNy ye[ E77ET+ €1 REN
son couplings. Third, since the same degrees of freedom are 4

used to describe the axial-vector current and the nuclear dy- .

namics, the parameters of the theory can be calibrated using — 'ﬁﬁguv[g‘rTang et a IN

empirical nuclear and hadronic propertigs two-nucleon 2M Y

bound-state and scattering dat@bgether with pion-nucleon 28

scattering observables. Thus there are no unknown constants — “OINNTH (TR + er2Eh)a*)

in the axial-current amplitudes. To our knowledge, these de- M
sirable properties have not been included simultaneously in

) 2f
earlier models of the AXC. +{ Gy —z €2°%9, P H I+ O(p?m,pm) | .
The axial currents are derived here by keeping all relevant m,
terms in the Lagrangian through order 3 (andv=4 in the (143

p-meson case'? In the chiral limit, the correct chiral charge ) ) ) _
algebra is proved explicitly to all orders in the pion field for We also derived expressions for the following amplitudes:
terms involving pions and nucleons, and to lowest order irfhe scattering of a nucleon by an external soutegs. (54),

the pion field for terms involving pions, nucleons, apd (83, and(89)], one-pion production by an external source
[Egs.(57), (84), and(90)], and nucleon-nucleon scattering in

the presence of an external soufégs.(59), (86), (92), and
12The A resonance can also be included as an explicit degree 0(]<1.36)]. AII.of these resu!ts were evaluated at the “tree” level,
freedom in the EFT Lagrangian, in a manner that maintains chirafVith no pion loops. This is because we computed the scat-
symmetry[50,57). An explicit A would modify our expressions for tering matrices to lowest order in the external sougg,
the currents and covariant amplitudes, but it would not change th@nd we expanded the interaction Lagrangian to leading or-
mean-field results for even-even nudi8j34]. We leave the explicit ~ ders in the pion field. As noted above, since our expansion
inclusion of theA for a future project. proceeds in powers of pion momerita m_) relative to the
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nucleon masM (or a similar “heavy” mass sca)e these tentlyin terms of wave functions, the interactions that deter-
tree-level expressions are valid for modest external pion momine those wave functions, and the current operators to be
menta and momentum transfers between nucleons. Our resed within that framework.
sults become exact in the soft-pion linfiwith m_=0). We also plan to derive the meson-exchange corrections to
At order v=2, our EFT Lagrangian generates familiar the electromagnetic current that are implied by this effective
pion-exchange contributions to the AXC. These are the samkeagrangian [34]. These meson-exchange corrections can
as those calculated by Kubodera, Delorme, and RIgpin  then be used to compute selected electroweak processes in
the current-algebra approach. We reiterate the cause of thmiclei. This will allow, for example, for an investigation of
difficulty in Ref. [40], and how that problem is resolved by the following interesting issue: It is known that calibrating
the EFT Lagrangian(2): in a linear realization of the the relevant parameters to nuclear properties using mean-
SU(2), X SU(2) chiral symmetry, the nucleon axial-vector field nuclear wave functions corresponds to a density-
coupling g, is constrained to benity. Changing this cou- functional approact5,34,47. In this approach, bulk and
pling “by hand” is equivalent to rescaling the fields in the single-particle nuclear observables are used to define a set of
theory and leads to a chiral charge algebra that is incorrectjuasiparticle, single-nucleon wave functions, which implies
In contrast, in anonlinear realization of the symmetryg,  that exchange and correlation corrections adegproxi-
becomes a free parameter, which allows the Goldbergemately included implicitly in the parameters. Within this
Treiman relation, PCAC, and the correct chiral charge algequasiparticle, single-nucleon framework, we expect that the
bra to be satisfied simultaneously. This is explicit evidence®?CAC relations derived here will remain valid. In the calcu-
that chiral symmetry is realizedonlinearly in low-energy lation of exchange-current amplitudes, however, one samples
QCD. two-nucleorwave functions inside the nucleus. It remains to
In future work, we will show that the dominant contribu- be seen whether the calibration procedure described above
tions to the axial-vector current come from one- and two-leads to realistic results for two-body, exchange-current ma-
body amplitudes involving pion exchange and are thudrix elements, or if some more complicated calibration pro-
model independerj25]. The relevant set of=3 AXC will cedure (that also includes two-body observablesiust
be written in covariant form for use with relativistic, mean- be used.
field Dirac wave functions, and the dominant3 terms
will also be given in nonrelativistic form for use with more
traditional (e.g., harmonic oscillatprnucleon wave func-
tions. We now have the effective Lagrangian and correspond- We thank our colleagues R. J. Furnstahl and J. Piekare-
ing Noether currents, and the problem is therefore well dewicz for useful comments. This work was supported in part
fined; however, as emphasized in Refd5,40, any by the Department of Energy under Contract Nos. DE-FGO02-
applicationto the many-body problem must processhsis- 87ER40365 and DE-FG02-97ER41023.
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