
PHYSICAL REVIEW C 66, 055210 ~2002!
Neutron charge radius deduced from Bragg reflection technique

J.-M. Sparenberg* and H. Leeb
Atominstitut der O¨ sterreichischen Universita¨ten, Technische Universita¨t Wien, Wiedner Hauptstraße 8-10, A-1040 Vienna, Austria

~Received 16 January 2002; published 27 November 2002!

The possibility of the determination of the neutron mean square charge radius from high-precision thermal-
neutron measurements of the nuclear scattering length and of the scattering amplitudes of Bragg reflections is
considered. Making use of the same Pendello¨sung technique as Shull@Phys. Rev. Lett.21, 1585~1968!#, the
scattering amplitudes of about eight higher-order Bragg reflections in silicon could be measured without
single-scattering contamination. This would provide a value of the neutron charge radius as precise as the
disagreeing Argonne-Garching and Dubna values, as well as a Debye-Waller factor of silicon ten times more
precise than presently available.
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I. INTRODUCTION

The so-called mean square charge radius of the neu
^r n

2& is an important structure constant which reflects the
ternal charge structure of the neutron. In terms of the ge
ally used form factors,̂r n

2& is related to the derivative of th
Sachs form factorGE

n at vanishing transferred momentumQ,

^r n
2&52

1

6

dGE
n

dQ2U
Q50

. ~1!

Low-energy neutron-atom scattering experiments have b
found useful@1,2# to determinê r n

2& via high-precision mea-
surements of the neutron-electron scattering lengthbne,

bne5
1

3

amnc
2

\c
^r n

2&, ~2!

wheremn is the mass of the neutron. Because of the fun
mental importance of these quantities for our understand
of the nucleon many ambitious experiments have been
formed in the last decades~see, e.g., Ref.@3#, and references
therein!.

Despite these efforts the determination ofbne is still un-
satisfactory because there exist two sets of results which
fer more than three standard deviations from each othe
explained in Sec. II. In this paper we propose an independ
method based on high-precision measurements of neu
Bragg reflections on silicon. The principle of the experime
tal technique, proposed by Shull in 1968 but only applied
the~111! reflection at that time@4#, is summarized in Sec. III
In Sec. IV, we show that, by assuming for all higher-ord
reflections a precision similar to that achieved by Shull, o
can solve the discrepancy in the values ofbne. Concluding
remarks are given in Sec. V.

*On leave from Universite´ Libre de Bruxelles, PNTPM-CP 229
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II. DISCUSSION OF THE
NEUTRON-ELECTRON –SCATTERING-LENGTH VALUES

In a first theoretical estimate,bne is expected to be given
by the Foldy scattering length@5#,

bne
theory521.467 971~4!31023 fm, ~3!

corresponding to the well-known value of the anomalo
magnetic moment of the neutron@6#. The actualbne value
can be deduced from low-energy neutron-atom scattering
which the ‘‘scattering length’’ reads@1#

~4!

where bnuclear is the nuclear-interaction scattering lengt
bnucleusis the neutron-nucleus scattering length~nuclear and
electrostatic interactions!, Z is the atomic number, andf (Q)
is the atomic form factor normalized to the forward dire
tion: f (0)51. In Eq.~4!, theQ-dependent electrostatic term
is typically three orders of magnitude smaller than the c
stant nuclear term, hence it is reasonable to speak of ‘‘s
tering length’’ despite theQ dependence. To get a sufficient
high sensitivity to this term scattering processes atQÞ0
@hence 0, f (Q),1] and highZ should be chosen.

The best experimental values ofbne ~see, e.g., Table I in
Ref. @7#! can be grouped into two sets. Those deduced fr
thermal-neutron angular scattering on noble gases@8# and
from thermal- and epithermal-neutron transmission on liq
lead and bismuth@3,9# agree on the valuebne521.31(3)
31023 fm ~Argonne-Garching!. The second set ofbne val-
ues obtained from another transmission experiment on
@10# and a measurement of thermal-neutron Bragg reflecti
on tungsten monocrystals@11# is centered aroundbne
521.59(4)31023 fm ~Dubna!. There is a clear discrep
ancy because thebne values of the two sets differ more tha
three standard deviations from each other. In addition t
differ about 10% frombne

theory, one being smaller thanbne
theory,

the other larger. While the difference in thebne values ob-
©2002 The American Physical Society10-1
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tained from the Bi-transmission experiments@3,10# is well
understood@7,9,12#, the Bragg-reflection method of Ref.@11#
has never been revisited. In the latter experiment, the v
of bne is extracted from the slope ofb(Q) as a function of
12 f (Q) @see Eq.~4!#. The fitted data are the forward valu
bnuclear, obtained from a Christiansen-filter experiment a
the values for eight Bragg reflectionsb(Qhkl), whereQhkl is
the transferred momentum for the Bragg reflection w
Miller indices hkl.

For two different crystals, two very different values ofbne
were obtained in Ref.@11#, i.e., bne521.06 and 22.2
31023 fm, which led the authors to postulate the existen
of an additional scattering process. We rather consider
this discrepancy reveals the systematic uncertainty of the
periment, whereb(Qhkl) is deduced from an integral
intensity measurement of the Bragg peak. This system
uncertainty has probably been underestimated in Ref.@11#
for different reasons:~i! extinction is neglected, and~ii ! the
uncertainty on the temperature factor~which is shown below
to be of crucial importance! is neglected. Consequently, th
accuracies obtained forb(Qhkl) ~typically 0.01 fm! seem un-
realistic as compared with accuracies generally obtained
this kind of measurement~typically 0.1 fm! @13#. A hint to
our conjecture is also given by the strong disagreement
tween other results@14# obtainedinter alia with an integral-
intensity measurement on monocrystals, and
Christiansen-filter results of Ref.@15# for W isotopes.

III. THE BRAGG-REFLECTION TECHNIQUE

For thehkl Bragg reflection, the transferred momentu
reads

Qhkl/4p5Ah21k21 l 2/2a05sinuhkl /l, ~5!

wherea0 is the side of the conventional cubic unit cell~we
only consider cubic crystals here!, uhkl is the Bragg angle,
andl is the wavelength. This equation shows thatl must be
of the same order of magnitude asa0. For neutrons, this
corresponds to thermal energies.

Let us now consider the method proposed by Shull in R
@4#, which aims at measuringb(Qhkl) for Bragg reflections
on monocrystals. We refer to Ref.@4# for details about the
experimental setup. A collimated full-spectrum incide
beam is Bragg reflected on a monocrystal blade~typical
thickness t51 cm) in Laue transmission geometry. Th
wavelength selection is made through the Bragg condi
~5!, the crystal and the detector being moved simultaneou
to form anglesu and 2u, respectively, with the incident
beam direction. As shown in the dynamical theory of Bra
reflection for neutrons@6,13#, the reflected beam inside th
crystal consists of two coherent waves, the so-calledPendel-
lösung~pendulum solutions!, interfering with each other and
generating Pendello¨sung oscillations. An entrance and sca
ning gadolinium slits~width 0.13 mm! are placed on both
faces of the crystal to extract these fringes. Making use of
symmetry of the interference pattern a very precise ali
ment of the scanning slit with respect to the entrance sl
possible. The intensity at the center of the interference
05521
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tern is then measured as a function of the wavelength
compared with the theoretical expression. This express
may be obtained either by the Kato spherical-wave dyna
cal theory @16# or by solving the Takagi-Taupin equation
@6#. For a perfectly flat crystal and with infinitely-narrow
slits, this intensity reads

I hkl~l!}I 0~l!l2uFhklu2J0
2F tuFhklu

a0
3cosuhkl~l!

lG , ~6!

whereI 0 is the incident intensity,J0 is a Bessel function, and
uFhklu is the unit-cell structure factor of the crystal. This e
pression has to be slightly modified to take into account
finite curvature of the crystal, which adds the curvature
dius R ~typically 20 km! as a parameter to be fitted to th
data, and to take into account the finite opening of the s
@16#. Typically, 40 fringes are observed for neutrons rang
the full spectrum of a thermal reactor. The structure fac
can then be deduced with high precision from the period
these fringes. Shull’s method is thus in essence an interf
metric method@17#, which explains why it provides very
high accuracies~contrary to the integral-intensity method!.

For a diamond-structure crystal such as silicon, the u
cell consists of four elementary cells with two atoms. T
corresponding structure factor reads@13#

Fhkl543~11 i h1k1 l !3bmeas~Qhkl!, ~7!

wherebmeas(Q) is related tob(Q) through the Debye-Waller
temperature factor@13#

bmeas~Q!5b~Q!3exp@2B~Q/4p!2#. ~8!

To get a preciseb(Qhkl) value, as needed to estimatebne,
one needs precise values of both the structure factorFhkl and
the temperature parameterB. For instance, for the~111! re-
flection on Si (Z514, a055.430 72 Å), Shull’s method pro
vides @16# bmeas(Q111)54.1053(8) fm. Using the Debye
Waller factor obtained by measuring x-ray Pendello¨sung
fringes at room temperature@18#,

B50.4613~27! Å2, ~9!

one gets

b~Q111!54.1538~11! fm, ~10!

where three additional units in the error are due to the e
on B. Equation~8! shows that this additional uncertainty in
creases exponentially withQ2 ~see Fig. 1!.

Following the approach of Ref.@16#, we can deduce
bnuclear from value ~10! with Eq. ~4!, using the Argonne-
Garching bne and the atomic form factor@19#: f (Q111)
50.7526 ~a precise value off (Q) is actually not required
@1#!. This yieldsbnuclear54.1495(11) fm~which slightly dif-
fers from the value of Ref.@16# because of the more recen
temperature factor!, in agreement with the more precis
value obtained recently by non-dispersive-sweep neutron
terferometry@20#,

bnuclear54.1507~2! fm. ~11!
0-2
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Conversely,bne can be deduced from values~10! and ~11!
with Eq. ~4!, which provides~see Fig. 1!

bne
Si520.89~32!31023 fm. ~12!

This value agrees with the Argonne-Garching value but d
not exclude the Dubna value~see Fig. 2!. The same method
applied to germanium ~diamond structure with a0
55.6575 Å) using bnuclear58.1929(17) fm @21#,
bmeas(Q111)58.0829(15) fm@22#, B50.57(1) Å2 @23#, and
f (Q111)50.8542 @19# leads to the valuebne

Ge50.28(83)
31023 fm. Although measurements on Ge (Z532) could,
in principle, lead to a value ofbne two-times more precise
than on Si (Z514), this advantage is compensated by
two-times-larger scattering length, which implies a tw
times-larger absolute error onb(Qhkl), the relative accuracy
of Shull’s method being 0.02% in both cases. Moreover,
bnuclear value for Ge of comparable precision to Eq.~11! is
available at present. Hence we only consider Si in the
lowing.

FIG. 1. Experimentalbnuclearof Eq. ~11! andb(Q111) of Eq. ~10!
compared with the theoretical curves~4! for bnuclear54.1507 fm,
bne521.31 ~Argonne-Garching!, and 21.5931023 fm ~Dubna!.
The simulated points correspond to the reflections of Table I; t
are calculated with the Argonne-Garchingbne value, with error bars
only due to the uncertainty on the temperature factor~9!.

FIG. 2. Comparison of the theoreticalbne value ~3! with the
Argonne-Garching and Dubna experimental values and with
result ~12!. The simulated point has the Argonne-Garching va
with an error bar of 0.0631023 fm, as estimated in the text.
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IV. PROPOSED EXPERIMENT

In Fig. 1, values~10! and ~11! are represented as a fun
tion of 12 f (Q). It is seen that the~111! reflection is not the
optimal choice to calculate the slope of the line since it
close to the origin. Higher-order reflections are more app
priate, as shown by the simulated data. The error bars
these simulated points are calculated with the errorsB

50.0027 Å2 on the temperature factor~9! only, assuming an
ideal experiment with an infinite accuracy onbmeas. With
such large uncertainties, there is no hope to reach a h
precision onbne, in particular to distinguish between th
Argonne-Garching~solid line in Fig. 1! and Dubna~broken
line! values. However, if enough~at least two! reflections are
measured,both B and bne could be deduced from the data
The precision of the extractedB andbne can be improved by
increasing the number of reflections.

Let us now determine the possibly observable reflectio
A diamond-structure crystal has a face-centered cubic latt
which implies that all Miller indices have to be either even
odd @13#. Moreover, for a diamond structure, the structu
factor ~7! leads to three types of reflections:~i! forbidden
when h1k1 l 5214n, wheren is natural;~ii ! weak when
h1k1 l is odd; and~iii ! strong whenh1k1 l 5414n. A
thermal-neutron beam has typically a maximum flux forl
51.2 Å and the accessible angular range of the setup is
sumed to be 0<2u<110°. These conditions combined wit
Eq. ~5! imply that sixteen reflections between~111! and
~642! could be measured with reasonable intensities for S

However, if the incident beam has a typical full spectru
0.8<l<2.5 Å, contamination has to be taken into accou
Let us first consider contamination by single reflections. F
instance, while the~111! reflection is pure for 15°<2u
<45° thanks to the absence of the~222! reflection which is
forbidden~hence the result of Refs.@4,16#!, ~333! and~444!
would be measured on 45°<2u<110° and 61°<2u
<110°, respectively. This mixing implies that the reflect
intensity would not be described by Eq.~6! and that no struc-
ture factor could easily be extracted. Among the 16 cons
ered reflections, seven could be contaminated by single
flections. The remaining nine reflections are listed in Tabl
Besides this single-reflection contamination, multiple scat
ing should also be taken into account. Since the theoret
description of this effect is rather involved@24# its impact
must be evaluated for each specific experimental situation
general, however, the impact of this effect on the measu
ment can be minimized or even avoided experimentally b
proper orientation of the crystal with respect to the Ewa
sphere. We suppose that because of this possibility no c
sideration of this contamination was made in Refs.@4,16#.

For the scope of the present paper it seems therefore
justified to assume that Eq.~6! is valid for the nine reflec-
tions of Table I. However, this requires experimental ver
cation for each considered reflection in the actual meas
ment. Three crystal blades would suffice to measure them
@for instance, a crystal blade cut parallel to the~220! planes
could be used to measure the~111!, ~422!, ~511!, ~533!,
~711!, and~551! reflections#. Among these reflections, thre
are strong~underlined in Table I!; the intensities range be

y

e
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J.-M. SPARENBERG AND H. LEEB PHYSICAL REVIEW C66, 055210 ~2002!
tween 0.7 and 1.7 times the intensity of the already-meas
~111! weak reflection. Finally, Eq.~6! allows to estimate the
number of fringes which would be measured for each
them. For instance, 44 fringes would be observed for
~711! reflection if t51 cm.

These considerations show that these higher reflect
should not be more complicated to measure than the~111!
reflection already measured in Refs.@4,16#. Hence, we can
reasonably assume that the precision onbmeaswould be equal
to that of Ref. @16#: 0.0008 Å. With this assumption, th
attainable precision forB andbne can be estimated. ForB, we
apply the approximate linear relation@Eqs.~4! and ~8!#

ln bmeas~Q!' ln bnuclear2B~Q/4p!2, ~13!

while for bne we use Eq.~4!. The uncertainty of a linear-fi
slope can be calculated from the abscissas of the experim
tal points and from their errors@25#. Measuring the three
strong reflections would givesB50.000 40 Å2 and sbne

50.1131023 fm, while with the eight new reflections o
Table I, one gets sB50.000 27 Å2 and sbne

50.06

31023 fm. The temperature factor would be ten times mo

TABLE I. Weak and strong~underlined! Bragg reflections
which could be measured with a thermal-neutron reactor witho
contamination problem.hkl are the Miller indices,f (Qhkl) is the
atomic form factor~Ref. @19#!, l the neutron-wavelength interva
and 2u the corresponding angles between the incident and refle
beams.uFhklu2 is the squared structure factor which provides t
reflection intensity through Eq.~7!.

hkl f(Qhkl) l (Å) 2 u (°) uFhklu2 (Å2)

~111! 0.7526 0.8–2.5 15–47 540
(422) 0.4788 0.8–1.8 42–110 918
~511! 0.4600 0.8–1.7 45–110 448
~531! 0.4150 0.8–1.5 52–110 421
(620) 0.3902 0.8–1.4 56–110 811
~533! 0.3764 0.8–1.4 58–110 396
~551! 0.3432 0.8–1.2 63–110 372
~711! 0.3432 0.8–1.2 63–110 372
(642) 0.3249 0.8–1.2 67–112 715
tte

.

n
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precise than the most precise value~9! and thebne value
would be nearly as precise as the Argonne-Garching
Dubna values~see Fig. 2!.

V. CONCLUSIONS

In the present paper, we have proposed to extend the
dellösung technique of Refs.@4,16# to higher-order Bragg
reflections. Temperature effect and single-reflection conta
nation have been taken into account rigorously while m
tiple scattering contamination is assumed to be avoida
through a proper experimental setup. The proposed exp
ment would provide a precise value of the neutron-elect
scattering length and hence of the neutron charge rad
Since the present method is similar to the Dubna method
W but much more precise because of its interferometric
ture, such a new result would certainly be of great help
decide thebne discrepancy between the Dubna, Argonn
Garching, and Foldy values. Moreover, an interesting
product of the proposed measurement would be a pre
value of the silicon temperature factor, an important quan
in solid-state physics.

These results show that the measurement of Pendello¨sung
fringes in Bragg reflections is a very powerful techniqu
This is known for x rays@18,26# but generally ignored for
neutrons. By confirming Shull’s pioneer conclusion@4#

‘‘ . . . the high sensitivity of the fringe positions
. . . can be exploited . . . @for# example . . . in
assessing the neutron-electron interaction
strength . . . ’’

the present work opens new prospects for the field ofneutron
Pendellösung interferometry.
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