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Neutron charge radius deduced from Bragg reflection technique
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The possibility of the determination of the neutron mean square charge radius from high-precision thermal-
neutron measurements of the nuclear scattering length and of the scattering amplitudes of Bragg reflections is
considered. Making use of the same Pendeif technique as ShuilPhys. Rev. Lett21, 1585(1968], the
scattering amplitudes of about eight higher-order Bragg reflections in silicon could be measured without
single-scattering contamination. This would provide a value of the neutron charge radius as precise as the
disagreeing Argonne-Garching and Dubna values, as well as a Debye-Waller factor of silicon ten times more
precise than presently available.
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I. INTRODUCTION II. DISCUSSION OF THE
NEUTRON-ELECTRON —SCATTERING-LENGTH VALUES

The so-called mean square charge radius of the neutron ' . . : .
o - . : : In a first theoretical estimaté,,. is expected to be given
(ry) is an important structure constant which reflects the iny :
y the Foldy scattering lengtl®],
ternal charge structure of the neutron. In terms of the gener-
ally used form factorsgrﬁ) is related to the derivative of the b;heeowz ~1.4679714)x 1073 fm, (3)
Sachs form factoGg at vanishing transferred momentu@
corresponding to the well-known value of the anomalous
magnetic moment of the neutrd6]. The actualb,. value
1 dGg can be deduced from low-energy neutron-atom scattering, for

(rﬁ>= 6 12 : (D) which the “scattering length” readgl]
dQ 0=0
b(Q):bnuclea_r_bneZ[l_f(Q)]

Low-energy neutron-atom scattering experiments have been
found useful1,2] to determing(r2) via high-precision mea-

electrostatic

surements of the neutron-electron scattering letgth = bructeus T 0neZf(Q) 5 %)
electrons
1 amc® _ . . ,
bne=§ e (re). (2)  where b,ear iS the nuclear-interaction scattering length,

bhuceusiS the neutron-nucleus scattering lengtiuclear and
electrostatic interactiofnsZ is the atomic number, an(Q)
wherem,, is the mass of the neutron. Because of the fundais the atomic form factor normalized to the forward direc-
mental importance of these quantities for our understandingon: f(0)=1. In Eq.(4), the Q-dependent electrostatic term
of the nucleon many ambitious experiments have been peis typically three orders of magnitude smaller than the con-
formed in the last decadésee, e.g., Ref3], and references stant nuclear term, hence it is reasonable to speak of “scat-
therein. tering length” despite th€ dependence. To get a sufficiently
Despite these efforts the determinationbg, is still un-  high sensitivity to this term scattering processesQat 0
satisfactory because there exist two sets of results which dithence 6<f(Q)<1] and highZ should be chosen.
fer more than three standard deviations from each other, as The best experimental values bf, (see, e.g., Table I in
explained in Sec. I1. In this paper we propose an independerRef.[7]) can be grouped into two sets. Those deduced from
method based on high-precision measurements of neutrdhermal-neutron angular scattering on noble gd#&gsand
Bragg reflections on silicon. The principle of the experimen-from thermal- and epithermal-neutron transmission on liquid
tal technique, proposed by Shull in 1968 but only applied tdead and bismuth3,9] agree on the value,.=—1.31(3)
the (111) reflection at that tim@4], is summarized in Sec. Ill. X 10~2 fm (Argonne-Garching The second set df, val-
In Sec. IV, we show that, by assuming for all higher-orderues obtained from another transmission experiment on Bi
reflections a precision similar to that achieved by Shull, ond10] and a measurement of thermal-neutron Bragg reflections
can solve the discrepancy in the valuesbgf. Concluding on tungsten monocrystal$ll] is centered aroundope
remarks are given in Sec. V. =—1.59(4)x10 2 fm (Dubna. There is a clear discrep-
ancy because thie,. values of the two sets differ more than
three standard deviations from each other. In addition they
*On leave from Université.ibre de Bruxelles, PNTPM-CP 229, differ about 10% fromb%e®”, one being smaller thaf'e°",
Campus de la Plaine, B-1050 Brussels, Belgium. the other larger. While the difference in thw, values ob-
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tained from the Bi-transmission experimen8&10] is well  tern is then measured as a function of the wavelength and

understood7,9,17, the Bragg-reflection method of R¢fll]  compared with the theoretical expression. This expression

has never been revisited. In the latter experiment, the valumay be obtained either by the Kato spherical-wave dynami-

of b, is extracted from the slope d&f(Q) as a function of cal theory[16] or by solving the Takagi-Taupin equations

1-1(Q) [see Eq(4)]. The fitted data are the forward value [6]. For a perfectly flat crystal and with infinitely-narrow

Phuciear Obtained from a Christiansen-filter experiment andslits, this intensity reads

the values for eight Bragg reflectiob$Qy,,), whereQy, is

the transferred momentum for the Bragg reflection with

Miller indices hkI. . LM%M Fra235
For two different crystals, two very different valuesinf,

were obtained in Ref[11], i.e., b,e=—1.06 and —2.2  wherel, is the incident intensity), is a Bessel function, and

% 10% fm, which led the authors to postulate the existencgF,, | is the unit-cell structure factor of the crystal. This ex-

of an additional scattering process. We rather consider thajression has to be slightly modified to take into account the

this discrepancy reveals the systematic uncertainty of the eXinite curvature of the crystal, which adds the curvature ra-

periment, whereb(Qp) is deduced from an integral- dius R (typically 20 km) as a parameter to be fitted to the

intensity measurement of the Bragg peak. This systematigata, and to take into account the finite opening of the slits

uncertainty has probably been underestimated in Réfl  [16]. Typically, 40 fringes are observed for neutrons ranging

for different reasonsti) extinction is neglected, an@i) the  the full spectrum of a thermal reactor. The structure factor

uncertainty on the temperature factarhich is shown below can then be deduced with high precision from the period of

to be of crucial importangeis neglected. Consequently, the these fringes. Shull’s method is thus in essence an interfero-

accuracies obtained f&(Qpy) (typically 0.01 fm) seem un-  metric method[17], which explains why it provides very

realistic as compared with accuracies generally obtained bgigh accuraciegcontrary to the integral-intensity method

this kind of measuremeritypically 0.1 fm) [13]. A hint to For a diamond-structure crystal such as silicon, the unit

our conjecture is also given by the strong disagreement beell consists of four elementary cells with two atoms. The

tween other resultgl4] obtainedinter alia with an integral-  corresponding structure factor redds]

intensity measurement on monocrystals, and the

Christiansen-filter results of Ref15] for W isotopes. Fria=4X (1+i" ) X bea Qi) (7)

t[Fhil
a3cosbhq(\)

(6)

whereb,,..{ Q) is related td(Q) through the Debye-Waller
temperature factgrl3]

brmead Q) =b(Q) X exf — B(Q/4m)?]. ®

Ill. THE BRAGG-REFLECTION TECHNIQUE

For thehkl Bragg reflection, the transferred momentum
reads

To get a precisd(Qyy) value, as needed to estimdig,,
Qnul4m=\Vh*+k*+1%/2a0=5in Oy I\, (5 one needs precise values of both the structure fagtgrand
the temperature parametBr For instance, for th€111) re-
wherea, is the side of the conventional cubic unit cele  flection on Si =14, a,=5.43072 A), Shull’s method pro-
only consider cubic crystals heredy, is the Bragg angle, vides [16] byeadQ117)=4.1053(8) fm. Using the Debye-
and\ is the wavelength. This equation shows thahust be  Waller factor obtained by measuring x-ray Pencsiiag
of the same order of magnitude ag. For neutrons, this fringes at room temperatufés],
corresponds to thermal energies.

Let us now consider the method proposed by Shull in Ref. B=0.461327) A?, 9)
[4], which aims at measurinig(Q,) for Bragg reflections
on monocrystals. We refer to Rd#] for details about the
experimental setup. A collimated full-spectrum incident _
beam is Bragg reflected on a monocrystal bldtigical b(Q11)=4.153811) fm, (10

thicknesst=1 cm) in Laue transmission geometry. The where three additional units in the error are due to the error
wavelength selection is made through the Bragg conditiomyn B. Equation(8) shows that this additional uncertainty in-
(5), the crystal and the detector being moved simultaneouslyregses exponentially witQ? (see Fig. L

to form angles# and 260, respectively, with the incident- Following the approach of Refl16], we can deduce
beam direction. As shown in the dynamical theory of Bragdh,,,cear from value (10) with Eq. (4), using the Argonne-
reflection for neutron$6,13], the reflected beam inside the Garching b,, and the atomic form factof19]: f(Qs1,)
crystal consists of two coherent waves, the so-cdfleddel-  —0.7526(a precise value of (Q) is actually not required
losung(pendulum solutions interfering with each other and [1]). This yieldsb,,cea™ 4.1495(11) fm(which slightly dif-
generating Pendeliaing oscillations. An entrance and scan-fers from the value of Ref.16] because of the more recent
ning gadolinium slits(width 0.13 mm are placed on both temperature factgy in agreement with the more precise

faces of the crystal to extract these fringes. Making use of thgaue obtained recently by non-dispersive-sweep neutron in-
symmetry of the interference pattern a very precise alignterferometry[20],

ment of the scanning slit with respect to the entrance slit is
possible. The intensity at the center of the interference pat- bhuclea=4-15072) fm. (12)

one gets
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0 Q 0 IV. PROPOSED EXPERIMENT
4.17 :
4,168-igngon"a"e'GarCh'ng g In Fig. 1, values(10) and (11) are represented as a func-
4166k T | tion of 1—f(Q). It is seen that thé111) reflection is not the
4164l ) optimal choice to calculate the slope of the line since it is
—~ close to the origin. Higher-order reflections are more appro-
c 4.162f 1 X ;
<, | Bnuciear ' | priate, as shown by the simulated data. The error bars of
3 4.16 lloffe et al] -~ these simulated points are calculated with the ewgr
= 4.158¢ : T =0.0027 & on the temperature fact¢®) only, assuming an
4.156 p simulation 1 ideal experiment with an infinite accuracy @m,c,s With
41848 / 27y 1 such large uncertainties, there is no hope to reach a high
4.1521/7 b(Q111) [Shull and Oberteuffer] - precision onb,e, in particular to distinguish between the
4.15 - s - . Argonne-Garchingsolid line in Fig. 2 and Dubnabroken
0 02 0.4 06 0.8 . : .
1—-£(Q) line) values. However, if enougtat least two reflections are

measuredpoth Bandb,, could be deduced from the data.

FIG. 1. ExperimentalbyqearOf Eq.(11) andb(Q111) of EQ.(10)  The precision of the extractd®landb,,, can be improved by
compared with the theoretigal curvéd) for bp,gea=4.1507 fm, increasing the number of reflections.
bpe=—1.31 (Argonne-Garching and —1.59<10"* fm (Dubna. Let us now determine the possibly observable reflections.
The simulated points correspond to the reflections of Table I; theyy giamond-structure crystal has a face-centered cubic lattice,
are calculated with the Argonne-Garching. value, with error bars \\hich implies that all Miller indices have to be either even or
only due to the uncertainty on the temperature faSpr odd [13]. Moreover, for a diamond structure, the structure
factor (7) leads to three types of reflection§) forbidden
whenh+k+1=2+4n, wheren is natural;(ii) weak when
h+k+1 is odd; and(iii) strong whenh+k+I=4+4n. A
Si . thermal-neutron beam has typically a maximum flux for

bre=—0.8932)x 10"~ fm. (12 =1.2 A and the accessible angular range of the setup is as-
sumed to be &26<110°. These conditions combined with

This value agrees with the Argonne-Garching value but doekq. (5) imply that sixteen reflections betweetill) and
not exclude the Dubna valusee Fig. 2 The same method (642 could be measured with reasonable intensities for Si.
applied to germanium (diamond structure with a, However, if the incident beam has a typical full spectrum
=5.6575 A) using  buea=8.1929(17) fm  [21], 0.8<A<2.5 A, contamination has to be taken into account.
Bmead Q117) = 8.0829(15) fm[22], B=0.57(1) & [23], and  Let us first consider contamination by single reflections. For
f(Q11)=0.8542 [19] leads to the valuebS=0.28(83) instance, while the(111) reflection is pure for 15%26
% 102 fm. Although measurements on GE+£32) could, =<45° thanks to the absence of tt#22) reflection which is
in principle, lead to a value df,, two-times more precise forbidden(hence the result of Ref§4,16]), (333 and(444)
than on Si Z=14), this advantage is compensated by thewould be measured on 452¢<110° and 61%26
two-times-larger scattering length, which implies a two-=<110°, respectively. This mixing implies that the reflected
times-larger absolute error d(Qy,), the relative accuracy intensity would not be described by E) and that no struc-
of Shull's method being 0.02% in both cases. Moreover, ndure factor could easily be extracted. Among the 16 consid-
bruciear Value for Ge of comparable precision to H4l) is  ered reflections, seven could be contaminated by single re-
available at present. Hence we only consider Si in the folflections. The remaining nine reflections are listed in Table I.

Conversely,b,. can be deduced from valug¢&0) and (11)
with Eq. (4), which provides(see Fig. 1

lowing. Besides this single-reflection contamination, multiple scatter-
ing should also be taken into account. Since the theoretical
-0.4 description of this effect is rather involvd@4] its impact
----- Theory [Foldy] must be evaluated for each specific experimental situation. In
-0.6 r——Experiments 7 general, however, the impact of this effect on the measure-
T -0.8f . ment can be minimized or even avoided experimentally by a
- proper orientation of the crystal with respect to the Ewald
7 -1F 1 sphere. We suppose that because of this possibility no con-
?, -1.2} Argonne-Garching 1 simulation sideration of this contamination was made in R¢fs16)].
¢ 14l i bre I | _ F_c_)r the scope of the present paper it seems_therefore well
S : justified to assume that E@6) is valid for the nine reflec-
-1.6f 1 . tions of Table I. However, this requires experimental verifi-
18 Dubna cation for each considered reflection in the actual measure-

ment. Three crystal blades would suffice to measure them all
FIG. 2. Comparison of the theoretich},, value (3) with the  [for instance, a crystal blade cut parallel to {220 planes
Argonne-Garching and Dubna experimental values and with th¢ould be used to measure th&ll), (422), (511, (533,
result (12). The simulated point has the Argonne-Garching value(711), and(551) reflectiong. Among these reflections, three
with an error bar of 0.08 10" 2 fm, as estimated in the text. are strong(underlined in Table)t the intensities range be-
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TABLE |. Weak and strong(underlined Bragg reflections precise than the most precise val(® and theb,, value

which could be measured with a thermal-neutron reactor without §,0uld be nearly as precise as the Argonne-Garching and
contamination problemhkl are the Miller indicesf(Qpy) is the Dubna valuegsee Fig. 2

atomic form factor(Ref. [19]), A the neutron-wavelength interval,
and 26 the corresponding angles between the incident and reflected
beams.|Fp,|? is the squared structure factor which provides the

reflection intensity through Eq7). In the present paper, we have proposed to extend the Pen-
dellosung technique of Ref§4,16] to higher-order Bragg

V. CONCLUSIONS

hkl f(Qnw) N A 20(°) [Fail* (A%) reflections. Temperature effect and single-reflection contami-
(112 0.7526 0.8-25 15-47 540 nation have been taken into account rigorously while mul-
(422) 0.4788 0.8-1.8 42-110 918 tiple scattering contamination is assumed to be avoidable
(511) 0.4600 08-17  45-110 " 448 through a proper experimental setup. The proposed experi-
(531) 0.4150 0.8-15 52-110 421 ment V\_/ould provide a precise value of the neutron-electr_on
(620) 0.3902 0.8-14 56-110 811 scattering length and hen_ce _of_the neutron charge radius.
(533 0.3764 08-14 58-110 " 306 Since the present method is similar to the Dubna method on
(551) 0.3432 0.8-1.2 63-110 372 W but much more precise because Qf its interferometric na-
(71D 0.3432 0.8-12 63-110 372 ;tjure_,dsutch k? nz\{v result WOli)Idtv(\:/erta"llﬁ/ bg OkI greZt help to

ecide the iscrepancy between the Dubna, Argonne-
(642) 0.3249 0.8-1.2 67-112 715 ne

Garching, and Foldy values. Moreover, an interesting by-
product of the proposed measurement would be a precise

tween 0.7 and 1.7 times the intensity of the already-measure¢ft!ue of the silicon temperature factor, an important quantity

; ; ; lid-state physics.
(111) weak reflection. Finally, Eq(6) allows to estimate the " SO .
number of fringes which would be measured for each of _1Nese results show that the measurement of Persueltp

them. For instance, 44 fringes would be observed for thdliNges in Bragg reflections is a very powerful technique.
(711) reflection ift=1 cm. This is known for x rayq 18,26 but generally ignored for

These considerations show that these higher reflection®€Utrons. By confirming Shull's pioneer conclusief]

should not be more complicated to measure than(114) “ ... the high sensitivity of the fringe positions
reflection already measured in Refd,16]. Hence, we can ...can be exploi...[for] exampe...in
reasonably assume that the precisiorbgp,swould be equal assessing the neutron-electron interaction
to that of Ref.[16]: 0.0008 A. With this assumption, the strengh . .. "

attainable precision fdB andb,. can be estimated. F&; we

apply the approximate linear relatif&gs.(4) and(8)] the present work opens new prospects for the fieldeaftron

5 Pendellsung interferometry
IN Bead Q)= IN bpyciear— B(Q/4)<, (13
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