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Thermal p and o mesons from chiral symmetry and unitarity
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We study the temperature evolution of theand o mass and width, using a unitary chiral approach. The
one-loop7r 7 scattering amplitude in chiral perturbation theoryTa 0 is unitarized via the inverse amplitude
method. Our results predict a clear increase Withf both thep and o widths. The masses decrease slightly
for high T, while thep 7# coupling increases. The behavior seems to be favored by experimental results. In
the o case, it signals chiral symmetry restoration.
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One of the outstanding phenomena related to heavy ioprinciples will be just chiral symmetry and unitarity. We will
collisions is the flatness of the dilepton spectrum near théouild on a previous work15] where theT # 0 scattering
mass of thep meson, which is so clearly visible in many amplitude has been calculated to one loop in chiral perturba-
processes involving hadrons and electromagnetic probe§on theory(ChPT). Demanding unitarity, we will construct a
This flatness has been observed by the HELIOS and CERE®Nperturbative amplitude reproducing the expected behav-
collaborationg1,2] and has been the subject of widespreador for thermal resonances. Our amplitude has the correct
discussion. Dileptons and photons provide neat signals of thanalytic structure, without spurious cuts, and resonances are

early stages of the quark-gluon plasma and its subsequefft introduced by hand. o _
evolution into a hadron gaks]. In fact, the most credible 1 he most general framework comprising the QCD chiral

explanation of the absence of a prominent hill in the d”eptonsymmetry breaking pattern is ChRI6,17, see[18] for re-

spectrum is a change in the mass and width oftue to vve(\;vs,f V\;heredeontz)stienrvaak‘)rl‘es iirr? é:rii;?ulagec;;iliﬁani:gns in
its interactions with the hot hadron gé4-7]. Since the piamlz), P g any p gy 9

baryons, with a large forward momentum, have almost eSEemperatur)eandfwz 92.4 MeV. Despite its success, ChPT

d th ntral collision region. thi i m is limited to low energiegusually, less than 500 Me\and
cape € central cofision region, thiS gas IS COMPOseq,,, temperatures and it is not able to generate resonances.
mainly of pions. Our aim is to study the thermal evolution of

X : L Thus, over the past few years, there has been a growing
the p massM, and widthI,, from the first principles of jnierest to extend the ChPT applicability range to higher en-

chiral symmetry and unitarity inr scattering. ergies and to reproduce resonances within a unitary chiral
What happens to the in extreme conditions is a hadronic approach, which we briefly review. At=0, unitarity for the
physics problem, involving non perturbative physics, ands matrix (S'S=1) implies the following relation for partial
hence difficult to be treated. Prior to this work, a copiousyayes:
number of models and estimations have appeared. In most of
them I', increases with temperature, simply as a conse- Imay;(s)=o(s)|a;(s)|? 1)
guence of stimulated emission in the pion thermal bath or,
equivalently, because the effective phase space increast® s>4mZ and below other inelastic thresholds, where
[8,9]. This behavior is often interpreted as a deconfining ef-o(s) = \/1—4m27T/s is the two-pion phase space aag de-
fect, or hadron “melting.” As for the mass, vector meson notes the projection of the elastic amplitude with isospin
dominancgVMD) implies thatM , changes very little at low | and total angular momentuthin the center-of-masg.m.)
temperature§8,10,11. As T approaches the critical tempera- frame. Equation(1) is only satisfiedperturbatively within
ture, earlier works claimed thadl , increaseg8,11,13 but  ChPT, i.e., if we write the perturbative series for any partial
the analysis of experimental dilepton data seems to favor wave asa=a,+a,+ - -- wherea, is O(p¥), then one has
decreasing behavidi5,7]. Let us remark that in all these |ma,=0, |ma4:ga§ and so on. Hence, deviations from Eq.
works, thep is introduced as an explicit degree of freedom (1) are more severe at high energies, and in particular near
and often a dilute pion gas is assumed, so that the thermghe resonance region, where the bounds imposed by unitarity
effects appear, to leading order, only through the pion distriare saturated. The ChPT series, which essentially behaves as
bution function and not through the interaction details. Other polynomial, is unbounded and cannot reproduce reso-
approaches include the NJL modéB], whereM, andI",  nances, which show up as poles of the amplitude in the com-
slightly decreasébut there is a spurious quark threshold nearplex plane.
M,) as well asqq wave-function analysis in the channel In fact, from Eqg.(1), any partial wave should satisfy
yielding a decreasing widtfL4]. =1/(Re a 1—io) on the real axis below inelastic thresh-
In this work we will use a thermal treatment of the effec- olds. A unitarization method is just one way of approximat-
tive degrees of freedom, the pions in the aftermath of théng Re a™?, thus introducing some model dependency, but
collision at moderate temperatures. The guiding fundamentaince we want to ensure chiral symmetry, and the correct
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low-energy behavior aff=0, we will use the one-loop which satisfies the exact elastic unitarity condition
ChPT result. This is called the inverse amplitude method
(IAM) at T=0, which can be recast @"" =a3/(a,—ay) Ima'*M(s;T)=or(s)|a*M(s;T)/?, 5
[19]. The single channel IAM amplitude satisfies Ef). ex-
actly and at low energies it follows the ChPT result up to oneand reproduces the low energy resultstbierma) ChPT in
loop. In addition, the IAM reproduces the scattering data forRef. [15]. Besides, as we will see below, it has the proper
real energies above the two-pion threshold up to 1 Ge\@nalytical behavior and, for the appropriate values of the
where the elastic approximation breaks down, and it can behiral parameters, it is able to reproduce resonances like the
continued into the complesplane, yielding correc- andp ~ p @s poles in the second Riemann sheet.
poles in the second Riemann sheet. We point out that the Some remarks are in order here: We are assuming that the
IAM is nothing but the[1,1] Padeapproximant of the ChPT exact thermal version of E@l) holds, feature reproduced by
series in squared energy, mass, or temperature fgver the IAM in Eq. (5). This assumption will prove to be reason-
As long as they contain th@(p?) tree level terms, other gble in view of the results shown below. Nevertheless, it is
chiral unitary approximations, both for $2) or SU3) important to remark that such assumption implies, in particu-
ChPT, either based on the IAM with coupled chanrie®], lar, that _on_ly two-pion states are available in the thermal
or the IAM with higher order§21], or inspired in Lippmann- bath. This is equivalent to a dilute gas approximation. In
Schwinger or Bethe-Salpeter equatidi2g], or mixed for-  Other words, theg term in Eq.(3) must remain small com-
malisms[23] yield equivalent results for the and o chan-  Pared to one so that we can neglect higher orders in density
nels. In particular, they reproduce the experimental phastike O(ng) which would spoil the simple algebraic unitarity
shifts with compatible sets of chiral parameters, and theyelation given by Eq(2) [15]. This implies, for instance that
generate poles associated to thend p resonances whose p— 7 scattering, which in our approach is regarded as a
position in the second Riemann sheet agrees for all the aboveree-pion effect, would be suppressed by the low density.
mentioned methods, which therefore describe resonancéd¥ote that, alternatively, we can view E@) also as th¢1,1]
with the same masses and widths. These unitarized agadeapproximant of ChPT when counting the powers of
proaches also allow to study finite baryon density effects onnomenta, masses, or temperature dier sinceT is O(p)
the change of the sigma properties in the nuclear mediurin the chiral expansion. Again, this counting would be
[24] that suggested a decrease on both the sigma mass aspoiled for largeng(y/s), which typically weights the ther-
width as the nuclear density increases. As a consequence ofal corrections. Let us finally remark that the IAM has been
these effects, it is expectd@5] a shift of strength of the extended to deal with other intermediate states, describing
two-pion invariant mass distribution inN—N=°7°, which  successfully théf'=0 data in all meson-meson channels up
has been recently confirmed experimentafg]. In particu-  to 1.2 GeV, within a coupled channel formali$&0]. In such
lar, using a chiral unitary approach, this shift is interpreted as case, the amplitudes satisfy a matrix version of the unitarity
an in medium modification of ther pole towards lower relation in Eq.(1). This would be the natural extension of our
masses and widths. Nevertheless, since in this work we am@pproach in order to deal with other intermediate coupled
interested in the and o mesons it is enough to work with states, likeK or » which could be relevant at high tempera-
the single channel 1AM toO(p*) that we have just de- tures[27]. However, it would require a thermal generaliza-
scribed. tion of the matrix unitarity relation and the one-loop calcu-
Back to T#0, the thermal amplitude can be defined by lation of the additional coupled amplitudes, which lie beyond
consideringT =0 initial and final asymptotic states and cal- the scope of this work.
culating theT+#0 four-pion Green’s functiorf15]. To one Before proceeding to the detailed calculation of the IAM
loop in ChPT, and in therm c.m. frame(at rest with the thermal amplitude in Eq4), we will provide a simple argu-
thermal bath it satisfies theperturbative unitarity relation ~ment as to why our method can actually give rise to the
[15], expected thermal behavior for the width. As it is well
known, in most casedike the p) a resonant behavior can be
Imay(s;T)=or(s)[ay(s)]?, (20  reproduced on the real axis by means of a Breit-Wigner pa-
rametrization of the partial waves:
where
Rr(s)

P T)= ———,

o1(s)=a(S)[ 1+ 2n5(\5/2)] 3 ©

is the thermal phase space ang{x) =[exp/T)—1] *isthe ~ whereM; and I'y are the thermal mass and width of the
Bose-Einstein distribution function. Recall that the lowestresonancg9] and Ry(s) is a smooth real function near
ordera, is T independent. =M2, which can be related to ther vertex(see below.
Therefore, the natural unitarized version of the thermalpe parametrization in Eq6) applies only forS:N@ and
amplitude in ChPT should be for narrow resonanced ¢<M7). Comparing Eq/(4) with
, Eq.(6) ats=M? one readily gets Rea,(M32)=a,(M?2) (the
alAM(s:T) = a5(s) @ resonanzce mags conditjorand, using Eq.(5), T'tM;=

' ay(S)—ayu(s;T)’ —Ry(M7)o1(M7). Therefore, assuming that the thermal
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corrections taR; and toM; are much smaller than those to
I't, i.e.,, Ry=Ry andM+=M, we would get
I=T[1+2ng(My/2)]. (7)

Hence, in this limit the thermal IAM yields an increasing

resonance width driven only by the available thermal phaseE so |

space Eq(3) for ap at rest{8,9]. The above result takes into
account the stimulated emissign— 77 and absorption
77— p from the thermal batfil5] and gives the dominant

effect at very low temperatures, as our full analysis below
confirms. This approximation indicates that the unitarity re-
quirements on the amplitude capture the qualitative thermal 5 ¢ |-
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dition, takingM =M, is equivalent to ignoring th& depen-
dence in Reay(s;T).

Therefore, by using the full thermal amplitudg(s;T) in
Ref. [15], we will calculate below both th&1; corrections
and the deviations from Ed7). Moreover we will find the

analytic continuation of the amplitude to the complex plane,
so that we can describe the resonances as poles of the th

mal amplitude. This is particularly important for the,
whose description in terms of E¢) is not so appropriate
due to its large width.

Let us note that the breaking of Lorentz invariance of the
thermal formalism allows for a definition of a “transversal”

in Ref. [28]. The p mass and width can now be estimated
using 8;1(M,)=90" and I’ ,(s)=M ,(1—s/M )tan511 near
s=M? [19]. Thus we obtain My=770 MeV and I'o
—159 MeV. All finite T results are now predictions. AB
creasesI't grows, as shown in Fig. 2. The curves are
shown only below the validity limit of our approach which
naively is set by Bg(M ,/2)<1 yielding T<300 MeV. We
remark that the validity of one-loop $B) ChPT has been
estimated to reach abo(it=150 MeV [27], but with the
unitarization methods we are able to reach higher tempera-

and a “longitudinal” mass, however, in our case, since wellres, as long as the density factors remain srtsde our

are working in the c.m. frame, where thds at rest with the
thermal bath, both mass definitions coinc[dé].

In the c.m. frame, the thermal one-loop amplitude can be"

written in terms of the loop functionsl5,32:

A (s;T)= ——f dE mnB(E)'
s—4E?2
ans(Eq), 2q+J_\
AN T)= fd d
o(tiT) zr E, |Vt 2q'
2g++/—t

AJY = d |
I T) = ZFJ Q9ENs(Eqln = .

®)

for real s>4me and real t<0, where AF(T)=F(T)
—F(0), E2 -q°- 2+m?2, J5(s;0) is given in Ref[17] (after
the standardVIS 1 renormallzatloh and J; 0At;0) can be
written in terms ofJ3(t;0). Note that on the real axis the
only imaginary part comes from Ind3(s+ie;T)

= o1(s)/167? for s>4m?, thus ensuring Eq2) [33].

We have calculated the IAM amplitude, Ed), from the
one-loop thermala,(s;T). The phase shifts for different
temperatures are shown for thechannell=J=1 in Fig. 1.
Note the excellent agreement with scattering datd a0,

where we have fitted the SU(2) low-energy constants in the

ago, a11, Ay Channels, yielding the following values for the
standard dimensionless and scale mdependerﬁﬁ)&‘xthwal

parameters defined in Ref&l7,18 |,=—-0.3, 1,=5.6, |5
=3.4, andl, 4=4.3, compatible with the recent determination

previous discussionTo lie on the conservative side, we are
only showing results up to 200 MeV, wherengd M ,/2)
0.3. Let us still note that the deviations from the naive
phase space correction in EF) are clearly sizable already
at T=100 MeV, precisely when thermal effects start being
significant, the full calculation giving a higher value for the
width than Eg. (7). The mass changes little up t®
=200 MeV, consistently with previous analy$ig8,10,12—
14]. It grows slightly up to T=100 MeV (Mg
=775.5 MeV) and then decreases for highiiein addition,

in the narrow resonance approximatigrhich becomes less
reliable asT increaseswe haveRy=g3(4m%—M?3)/48,

gt being the effective coupling in the VMDpmm vertex
[6,8] with a thermalp(gy=6.2). Therefore, from the IAM
I't ,M+ we find the behavior ofj; plotted in Fig. 2. At low
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FIG. 2. Temperature evolution of the mass, width, angp 7=
coupling. The dashed line corresponds to &, the dotted line to
the real axis 1AM, Eq.(4), and the solid line is the 1AM pole
position. TheM,I',g, values are given in the text.
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T, 91=00(950/90=0.9991) in agreement with the chiral
low-T analysis in Ref[6] and it grows for highefT. The
corrections are more important at finite den$2g|.

Although the direct experimental measurement is the

dilepton spectrumgrzr scattering is still a very interesting

process since it is strongly constrained by unitarity. In par-

ticular, this provides relevant information about thepole

position, which has to be a common feature for all other

processes where the resonance appears. That is why we
now turn to study the analytic continuation of the amplitude
to the complex plane. The analytic continuation of the
=0 Jj is straightforward 17,19. However, due to the loss

of Lorentz covariance in the thermal bath, we need the ana

lytic continuations of Eqs(8) which are somewhat more
subtle. Since\ J§(s; T) is already written as an analytic func-
tion for Im s#0, the same expression is straightforwardly
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FIG. 3. Position of the ando poles in the complex plane, with
increasing temperature.

continued to the complex plane. However, for the others wen Fig. 2, where we see that the evolution of the pole mass

find

Ath“(t-T)z—1 deqqn
o ax? -t | Jo

+inTIn(l—e” RWT)] )

2q+/—t
J-t—-2q

B(Eq)

E In

q

©)

2q++-t

V=t-2q

1 ©
ASIN(tT)= FJ—_t{ fo dgqgEng(Eg)In

+iwT[R?(t)In(1—e RO

—2TR(t)Li,(e~ R(t)/T) —2T2Lj a(e” R(t)/T)]} ,

(10

whereR(t) = ym2—t/4, A*(") denote the analytic continu-
ation for Im t>0(<0) and Lj,(2) is the polylogarithmic
function, analytic except for a branch cut for reat 1 [30].
It is not difficult to check thaﬂJE,sz(t;T) coincides with Eq.
(8) att*ie with realt<0, and they have a branch cut only
for realt>4mf,. Thus, as it happened fdr=0, botha, and
a""M have a right(unitarity) cut for reals>4m? and a left
cut for s<0 coming, respectively, from J3 and AJy', [34].
Finally, using Eq(5), the analytic continuation of the ampli-
tudea' into the second Riemann sheet across the right cut i
given bya' (s;T)=a""M(s; T)/[1—2i o(s)a"M(s;T)].

For I=J=1, we find the pole corresponding to the

and width agrees with our previous real axis calculation. For
I=J=0, the observed pole corresponds to ¢hand is plot-

ted in Fig. 3, too. The width also increases, essentially by the
increase of phase space ahd,(T) decreases witlT, as
expected from chiral symmetry restorati@i]. Once again,
the applicability of our approach is limited byng(M ,/2)

=1, i.e.,T<180 MeV.

The main conclusions of this work are the following. We
have shown, using only chiral symmetry and unitarity, that
the thermal width of thep and o mesons at rest with the
thermal bath grow with temperature, while their thermal
masses decrease slightly. They can be read off from the real
and imaginary parts of the pole position of the thermat
elastic scattering amplitude in the corresponding channels.
For that purpose, we have unitarized and calculated the ana-
lytic continuation to the complex plane of the amplitude on
the real axis above threshold analyzed in R&&]. For the
case of thep we have also estimated its thermal mass, width,
and effectiverr coupling from the unitarized amplitude in
the real axis. At low temperatures, the thermal widths in-
crease slightly according to the thermal phase space, while
the masses and the effectiper vertex remain almost con-
stant. For highefT, our analysis gives sizable decreasing
mass corrections, an increasing effective vertex, as well as
significant deviations from the phase space contribution,
yielding higher thermal widths. The mass shows a decreas-
ing behavior compatible with chiral symmetry restoration.
Our results agree with recent theoretical and experimental
ﬁnalysis, up to temperatures of 250 MeV and they shed light
on the dilepton spectrum problem in relativistic heavy ion
collisions.

resonance. Its position on the complex plane as a function of

T is shown in Fig. 3. Let us recall that the definition of the
pole position in terms of the resonance mass and width i
Spote= (M —i I'/2)?, which coincides with the pole of E¢6)
for a narrow resonance. In particular, &0, we haveM,
=755 MeV andl’'y=152 MeV. The results are also plotted
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