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Thermal r and s mesons from chiral symmetry and unitarity
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We study the temperature evolution of ther ands mass and width, using a unitary chiral approach. The
one-looppp scattering amplitude in chiral perturbation theory atTÞ0 is unitarized via the inverse amplitude
method. Our results predict a clear increase withT of both ther ands widths. The masses decrease slightly
for high T, while therpp coupling increases. Ther behavior seems to be favored by experimental results. In
the s case, it signals chiral symmetry restoration.
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One of the outstanding phenomena related to heavy
collisions is the flatness of the dilepton spectrum near
mass of ther meson, which is so clearly visible in man
processes involving hadrons and electromagnetic pro
This flatness has been observed by the HELIOS and CE
collaborations@1,2# and has been the subject of widespre
discussion. Dileptons and photons provide neat signals o
early stages of the quark-gluon plasma and its subseq
evolution into a hadron gas@3#. In fact, the most credible
explanation of the absence of a prominent hill in the dilep
spectrum is a change in the mass and width of ther due to
its interactions with the hot hadron gas@4–7#. Since the
baryons, with a large forward momentum, have almost
caped the central collision region, this gas is compo
mainly of pions. Our aim is to study the thermal evolution
the r massM r and width Gr , from the first principles of
chiral symmetry and unitarity inpp scattering.

What happens to ther in extreme conditions is a hadron
physics problem, involving non perturbative physics, a
hence difficult to be treated. Prior to this work, a copio
number of models and estimations have appeared. In mo
them Gr increases with temperature, simply as a con
quence of stimulated emission in the pion thermal bath
equivalently, because the effective phase space incre
@8,9#. This behavior is often interpreted as a deconfining
fect, or hadron ‘‘melting.’’ As for the mass, vector meso
dominance~VMD ! implies thatM r changes very little at low
temperatures@8,10,11#. As T approaches the critical temper
ture, earlier works claimed thatM r increases@8,11,12# but
the analysis of experimental dilepton data seems to fav
decreasing behavior@5,7#. Let us remark that in all thes
works, ther is introduced as an explicit degree of freedo
and often a dilute pion gas is assumed, so that the the
effects appear, to leading order, only through the pion dis
bution function and not through the interaction details. Ot
approaches include the NJL model@13#, whereM r and Gr

slightly decrease~but there is a spurious quark threshold ne
M r) as well asqq̄ wave-function analysis in thep channel
yielding a decreasing width@14#.

In this work we will use a thermal treatment of the effe
tive degrees of freedom, the pions in the aftermath of
collision at moderate temperatures. The guiding fundame
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principles will be just chiral symmetry and unitarity. We wi
build on a previous work@15# where theTÞ0pp scattering
amplitude has been calculated to one loop in chiral pertur
tion theory~ChPT!. Demanding unitarity, we will construct a
nonperturbative amplitude reproducing the expected beh
ior for thermal resonances. Our amplitude has the cor
analytic structure, without spurious cuts, and resonances
not introduced by hand.

The most general framework comprising the QCD chi
symmetry breaking pattern is ChPT@16,17#, see@18# for re-
views, where observables are calculated as expansion
p/(4p f p), p denoting any pion energy scale~including the
temperature! and f p.92.4 MeV. Despite its success, ChP
is limited to low energies~usually, less than 500 MeV! and
low temperatures and it is not able to generate resonan
Thus, over the past few years, there has been a grow
interest to extend the ChPT applicability range to higher
ergies and to reproduce resonances within a unitary ch
approach, which we briefly review. AtT50, unitarity for the
S matrix (S†S51) implies the following relation for partia
waves:

Im aIJ~s!5s~s!uaIJ~s!u2, ~1!

for s.4mp
2 and below other inelastic thresholds, whe

s(s)5A124mp
2 /s is the two-pion phase space andaIJ de-

notes the projection of thepp elastic amplitude with isospin
I and total angular momentumJ in the center-of-mass~c.m.!
frame. Equation~1! is only satisfiedperturbativelywithin
ChPT, i.e., if we write the perturbative series for any part
wave asa5a21a41••• whereak is O(pk), then one has
Ima250, Ima45sa2

2 and so on. Hence, deviations from E
~1! are more severe at high energies, and in particular n
the resonance region, where the bounds imposed by unit
are saturated. The ChPT series, which essentially behave
a polynomial, is unbounded and cannot reproduce re
nances, which show up as poles of the amplitude in the c
plex plane.

In fact, from Eq.~1!, any partial wave should satisfya
51/(Re a212 is) on the real axis below inelastic thresh
olds. A unitarization method is just one way of approxima
ing Re a21, thus introducing some model dependency, b
since we want to ensure chiral symmetry, and the corr
©2002 The American Physical Society01-1
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low-energy behavior atT50, we will use the one-loop
ChPT result. This is called the inverse amplitude meth
~IAM ! at T50, which can be recast asaIAM5a2

2/(a22a4)
@19#. The single channel IAM amplitude satisfies Eq.~1! ex-
actly and at low energies it follows the ChPT result up to o
loop. In addition, the IAM reproduces the scattering data
real energies above the two-pion threshold up to 1 G
where the elastic approximation breaks down, and it can
continued into the complexs plane, yielding corrects andr
poles in the second Riemann sheet. We point out that
IAM is nothing but the@1,1# Padéapproximant of the ChPT
series in squared energy, mass, or temperature overf p

2 .
As long as they contain theO(p4) tree level terms, othe

chiral unitary approximations, both for SU~2! or SU~3!
ChPT, either based on the IAM with coupled channels@20#,
or the IAM with higher orders@21#, or inspired in Lippmann-
Schwinger or Bethe-Salpeter equations@22#, or mixed for-
malisms@23# yield equivalent results for ther ands chan-
nels. In particular, they reproduce the experimental ph
shifts with compatible sets of chiral parameters, and th
generate poles associated to thes and r resonances whos
position in the second Riemann sheet agrees for all the ab
mentioned methods, which therefore describe resona
with the same masses and widths. These unitarized
proaches also allow to study finite baryon density effects
the change of the sigma properties in the nuclear med
@24# that suggested a decrease on both the sigma mass
width as the nuclear density increases. As a consequenc
these effects, it is expected@25# a shift of strength of the
two-pion invariant mass distribution ingN→Np0p0, which
has been recently confirmed experimentally@26#. In particu-
lar, using a chiral unitary approach, this shift is interpreted
an in medium modification of thes pole towards lower
masses and widths. Nevertheless, since in this work we
interested in ther ands mesons it is enough to work with
the single channel IAM toO(p4) that we have just de
scribed.

Back to TÞ0, the thermal amplitude can be defined
consideringT50 initial and final asymptotic states and ca
culating theTÞ0 four-pion Green’s function@15#. To one
loop in ChPT, and in thepp c.m. frame~at rest with the
thermal bath! it satisfies theperturbativeunitarity relation
@15#,

Im a4~s;T!5sT~s!@a2~s!#2, ~2!

where

sT~s!5s~s!@112nB~As/2!# ~3!

is the thermal phase space andnB(x)5@exp(x/T)21#21 is the
Bose-Einstein distribution function. Recall that the lowe
ordera2 is T independent.

Therefore, the natural unitarized version of the therm
amplitude in ChPT should be

aIAM~s;T!5
a2

2~s!

a2~s!2a4~s;T!
, ~4!
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which satisfies the exact elastic unitarity condition

Im aIAM~s;T!5sT~s!uaIAM~s;T!u2, ~5!

and reproduces the low energy results of~thermal! ChPT in
Ref. @15#. Besides, as we will see below, it has the prop
analytical behavior and, for the appropriate values of
chiral parameters, it is able to reproduce resonances like
r as poles in the second Riemann sheet.

Some remarks are in order here: We are assuming tha
exact thermal version of Eq.~1! holds, feature reproduced b
the IAM in Eq. ~5!. This assumption will prove to be reason
able in view of the results shown below. Nevertheless, i
important to remark that such assumption implies, in parti
lar, that only two-pion states are available in the therm
bath. This is equivalent to a dilute gas approximation.
other words, thenB term in Eq.~3! must remain small com-
pared to one so that we can neglect higher orders in den
like O(nB

2) which would spoil the simple algebraic unitarit
relation given by Eq.~2! @15#. This implies, for instance tha
r2p scattering, which in our approach is regarded as
three-pion effect, would be suppressed by the low dens
Note that, alternatively, we can view Eq.~4! also as the@1,1#
Padéapproximant of ChPT when counting the powers
momenta, masses, or temperature overf p

2 , sinceT is O(p)
in the chiral expansion. Again, this counting would b
spoiled for largenB(As), which typically weights the ther-
mal corrections. Let us finally remark that the IAM has be
extended to deal with other intermediate states, describ
successfully theT50 data in all meson-meson channels
to 1.2 GeV, within a coupled channel formalism@20#. In such
a case, the amplitudes satisfy a matrix version of the unita
relation in Eq.~1!. This would be the natural extension of ou
approach in order to deal with other intermediate coup
states, likeK or h which could be relevant at high temper
tures @27#. However, it would require a thermal generaliz
tion of the matrix unitarity relation and the one-loop calc
lation of the additional coupled amplitudes, which lie beyo
the scope of this work.

Before proceeding to the detailed calculation of the IA
thermal amplitude in Eq.~4!, we will provide a simple argu-
ment as to why our method can actually give rise to
expected thermal behavior for ther width. As it is well
known, in most cases~like ther) a resonant behavior can b
reproduced on the real axis by means of a Breit-Wigner
rametrization of the partial waves:

aBW~s;T!5
RT~s!

s2MT
21 iGTMT

, ~6!

where MT and GT are the thermal mass and width of th
resonance@9# and RT(s) is a smooth real function nears
5MT

2 , which can be related to therpp vertex~see below!.
The parametrization in Eq.~6! applies only fors.MT

2 and
for narrow resonances (GT!MT). Comparing Eq.~4! with
Eq. ~6! at s5MT

2 one readily gets Rea4(MT
2)5a2(MT

2) ~the
resonance mass condition! and, using Eq.~5!, GTMT5
2RT(MT

2)sT(MT
2). Therefore, assuming that the therm
1-2
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corrections toRT and toMT are much smaller than those
GT , i.e., RT.R0 andMT.M0 we would get

GT.G0@112nB~M0/2!#. ~7!

Hence, in this limit the thermal IAM yields an increasin
resonance width driven only by the available thermal ph
space Eq.~3! for a r at rest@8,9#. The above result takes int
account the stimulated emissionr→pp and absorption
pp→r from the thermal bath@15# and gives the dominan
effect at very low temperatures, as our full analysis bel
confirms. This approximation indicates that the unitarity
quirements on the amplitude capture the qualitative ther
resonance behavior. Note that, from the resonance mass
dition, takingMT.M0 is equivalent to ignoring theT depen-
dence in Rea4(s;T).

Therefore, by using the full thermal amplitudea4(s;T) in
Ref. @15#, we will calculate below both theMT corrections
and the deviations from Eq.~7!. Moreover we will find the
analytic continuation of the amplitude to the complex pla
so that we can describe the resonances as poles of the
mal amplitude. This is particularly important for thes,
whose description in terms of Eq.~6! is not so appropriate
due to its large width.

Let us note that the breaking of Lorentz invariance of
thermal formalism allows for a definition of a ‘‘transversa
and a ‘‘longitudinal’’ mass, however, in our case, since
are working in the c.m. frame, where ther is at rest with the
thermal bath, both mass definitions coincide@11#.

In the c.m. frame, the thermal one-loop amplitude can
written in terms of the loop functions@15,32#:

DJ0
s~s;T!52

1

p2Emp

`

dE
AE22mp

2 nB~E!

s24E2
,

DJ0
tu~ t;T!5

1

4p2A2t
E

0

`

dq
qnB~Eq!

Eq
lnU2q1A2t

A2t22q
U ,

DJ2
tu~ t;T!5

1

4p2A2t
E

0

`

dqqEqnB~Eq!lnU2q1A2t

A2t22q
U ,

~8!

for real s.4mp
2 and real t,0, where DF(T)[F(T)

2F(0), Eq
25q21mp

2 , J0
s(s;0) is given in Ref.@17# ~after

the standardMS21 renormalization! and J0,2
tu (t;0) can be

written in terms ofJ0
s(t;0). Note that on the real axis th

only imaginary part comes from ImJ0
s(s1 i e;T)

5sT(s)/16p2 for s.4mp
2 , thus ensuring Eq.~2! @33#.

We have calculated the IAM amplitude, Eq.~4!, from the
one-loop thermala4(s;T). The phase shifts for differen
temperatures are shown for ther channelI 5J51 in Fig. 1.
Note the excellent agreement with scattering data atT50,
where we have fitted the SU(2) low-energy constants in
a00, a11, a20 channels, yielding the following values for th
standard dimensionless and scale independent SU~2! chiral
parameters defined in Refs.@17,18# l̄ 1520.3, l̄ 255.6, l̄ 3

53.4, andl̄ 454.3, compatible with the recent determinatio
05520
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in Ref. @28#. The r mass and width can now be estimat
using d11(M r)590o and Gr(s).M r(12s/M r

2)tand11 near
s5M r

2 @19#. Thus we obtain M05770 MeV and G0

5159 MeV. All finite T results are now predictions. AsT
increases,GT grows, as shown in Fig. 2. The curves a
shown only below the validity limit of our approach whic
naively is set by 2nB(M r/2),1 yielding T,300 MeV. We
remark that the validity of one-loop SU~2! ChPT has been
estimated to reach aboutT.150 MeV @27#, but with the
unitarization methods we are able to reach higher temp
tures, as long as the density factors remain small~see our
previous discussion!. To lie on the conservative side, we a
only showing results up to 200 MeV, where 2nB(M r/2)
.0.3. Let us still note that the deviations from the nai
phase space correction in Eq.~7! are clearly sizable alread
at T.100 MeV, precisely when thermal effects start bei
significant, the full calculation giving a higher value for th
width than Eq. ~7!. The mass changes little up toT
.200 MeV, consistently with previous analysis@7,8,10,12–
14#. It grows slightly up to T.100 MeV (M100
.775.5 MeV) and then decreases for higherT. In addition,
in the narrow resonance approximation~which becomes less
reliable asT increases! we haveRT5gT

2(4mp
2 2MT

2)/48p,
gT being the effective coupling in the VMDrpp vertex
@6,8# with a thermalr(g0.6.2). Therefore, from the IAM
GT ,MT we find the behavior ofgT plotted in Fig. 2. At low

FIG. 1. I 5J51 phase shift for different temperatures. For t
data see Ref.@19#, and references therein.

FIG. 2. Temperature evolution of ther mass, width, andrpp
coupling. The dashed line corresponds to Eq.~7!, the dotted line to
the real axis IAM, Eq.~4!, and the solid line is the IAM pole
position. TheM0 ,G0 ,g0 values are given in the text.
1-3
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T, gT&g0(g50/g0.0.9991) in agreement with the chira
low-T analysis in Ref.@6# and it grows for higherT. The
corrections are more important at finite density@29#.

Although the direct experimental measurement is
dilepton spectrum,pp scattering is still a very interestin
process since it is strongly constrained by unitarity. In p
ticular, this provides relevant information about ther pole
position, which has to be a common feature for all oth
processes where ther resonance appears. That is why w
now turn to study the analytic continuation of the amplitu
to the complex plane. The analytic continuation of theT
50 J0

s is straightforward@17,19#. However, due to the los
of Lorentz covariance in the thermal bath, we need the a
lytic continuations of Eqs.~8! which are somewhat mor
subtle. SinceDJ0

s(s;T) is already written as an analytic func
tion for Im sÞ0, the same expression is straightforward
continued to the complex plane. However, for the others
find

D6J0
tu~ t;T!5

1

4p2A2t
H E

0

`

dq
qnB~Eq!

Eq
lnF2q1A2t

A2t22q
G

6 ipT ln~12e2R(t)/T!J , ~9!

D6J2
tu~ t;T!5

1

4p2A2t
H E

0

`

dqqEqnB~Eq!lnF2q1A2t

A2t22q
G

6 ipT@R2~ t !ln~12e2R(t)/T!

22TR~ t !Li2~e2R(t)/T!22T2Li 3~e2R(t)/T!#J ,

~10!

whereR(t)5Amp
2 2t/4, D1(2) denote the analytic continu

ation for Im t.0(,0) and Lin(z) is the polylogarithmic
function, analytic except for a branch cut for realz.1 @30#.
It is not difficult to check thatDJ0,2

tu (t;T) coincides with Eq.
~8! at t6 i e with real t,0, and they have a branch cut on
for real t.4mp

2 . Thus, as it happened forT50, botha4 and
aIAM have a right~unitarity! cut for reals.4mp

2 and a left
cut for s,0 coming, respectively, fromDJ0

s andDJ0,2
tu @34#.

Finally, using Eq.~5!, the analytic continuation of the ampl
tudeaII into the second Riemann sheet across the right cu
given byaII (s;T)5aIAM(s;T)/@122isT(s)aIAM(s;T)#.

For I 5J51, we find the pole corresponding to ther
resonance. Its position on the complex plane as a functio
T is shown in Fig. 3. Let us recall that the definition of th
pole position in terms of the resonance mass and widt
spole5(M2 i G/2)2, which coincides with the pole of Eq.~6!
for a narrow resonance. In particular, atT50, we haveM0
5755 MeV andG05152 MeV. The results are also plotte
05520
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in Fig. 2, where we see that the evolution of the pole m
and width agrees with our previous real axis calculation. F
I 5J50, the observed pole corresponds to thes and is plot-
ted in Fig. 3, too. The width also increases, essentially by
increase of phase space andMs(T) decreases withT, as
expected from chiral symmetry restoration@31#. Once again,
the applicability of our approach is limited by 2nB(Ms/2)
.1, i.e.,T,180 MeV.

The main conclusions of this work are the following. W
have shown, using only chiral symmetry and unitarity, th
the thermal width of ther and s mesons at rest with the
thermal bath grow with temperature, while their therm
masses decrease slightly. They can be read off from the
and imaginary parts of the pole position of the thermalpp
elastic scattering amplitude in the corresponding chann
For that purpose, we have unitarized and calculated the
lytic continuation to the complex plane of the amplitude
the real axis above threshold analyzed in Ref.@15#. For the
case of ther we have also estimated its thermal mass, wid
and effectivepp coupling from the unitarized amplitude i
the real axis. At low temperatures, the thermal widths
crease slightly according to the thermal phase space, w
the masses and the effectiverpp vertex remain almost con
stant. For higherT, our analysis gives sizable decreasi
mass corrections, an increasing effective vertex, as wel
significant deviations from the phase space contributi
yielding higher thermal widths. Thes mass shows a decrea
ing behavior compatible with chiral symmetry restoratio
Our results agree with recent theoretical and experime
analysis, up to temperatures of 250 MeV and they shed l
on the dilepton spectrum problem in relativistic heavy i
collisions.

Work supported by the Spanish CICYT projects, Gra
Nos. FPA2000-0956, PB98-0782, and BFM2000-13
J.R.P. acknowledges support from the CICYT-INF
collaboration, Grant No. 003P 640.15, and E. Oset for use
comments.

FIG. 3. Position of ther ands poles in the complex plane, with
increasing temperature.
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