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Improved variational calculations of nucleon matter

J. Morales, Jr., V. R. Pandharipande, and D. G. Ravenhall
Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801

~Received 14 June 2002; published 27 November 2002!

Variational calculations of nucleon matter, either symmetric nuclear or pure neutron matter, use Fermi
hypernetted chain and single-operator chain summation methods to sum approximately the contributions of
clusters of>3 nucleons to the energy expectation value. The cluster contributions summed by these methods
are discussed in detail, and it is shown that for realistic interactions the 3-body cluster contribution is larger
than the sum of>4-body contributions. We present a new method, based on representing cluster wave
functions by multidimensional vectors in spin-isospin space, as is common in quantum Monte Carlo calcula-
tions of light nuclei, to calculate exactly the 3-body cluster contribution including 3-body forces and all but
spin-orbit correlations. The variational energies obtained with the Argonnev18 2- and Urbana IX 3-nucleon
interactions, using the exact 2- and 3-body cluster contributions and the approximate>4-body contributions
summed with chain summation techniques are lower, closer to the empirical values for symmetric nuclear
matter than in previous calculations using the operator chain summation approximation for the large 3-body
cluster. In pure neutron matter the operator chain summation approximation is found to be fairly accurate for
the 3-body cluster; the present results are only slightly higher than the previous ones. We also report on the
results for the Argonnev14 2-nucleon interaction without any 3-body interaction. This case has been studied
with Brueckner’s method including 2, 3, and parts of 4-hole line terms by Day and Wiringa@Phys. Rev. C32,
1057 ~1985!#. Our results are significantly lower than theirs.

DOI: 10.1103/PhysRevC.66.054308 PACS number~s!: 21.65.1f, 26.60.1c
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I. INTRODUCTION

In the past few years it has been shown that the ener
of all the bound states of up to ten nucleons can be w
reproduced by essentially exact Green’s function Mo
Carlo ~GFMC! calculations with realistic models of 2- an
3-nucleon interactions@1–4#. The error in these calculation
is estimated to be less than 2% of the calculated energy.
computational effort in the GFMC calculations increases
ponentially with the number of nucleons; and with t
present computing resources12C may be the largest symme
ric nucleus that can be studied with this method.

The uniform nucleon matter problem has been stud
with realistic nuclear forces since the pioneering work
Brueckner, Bethe, and Goldsone in the 1950s as a step
wards a microscopic theory of large nuclei, and more
cently for studying the structure of neutron stars and sup
novas@5,6#. GFMC calculations of symmetric nuclear matt
~SNM! with equal number of neutrons and protons are
yet possible. However, Carlson has recently calculated e
gies for 14 neutrons in a periodic box with semirealistic
teractions@7# with the GFMC method, and attempts to e
tract the E(r) of pure neutron matter~PNM! from these
results are in progress. A new quantum Monte Carlo met
using auxiliary fields is also being developed by Schmidt a
Fantoni @8# with which it may be possible to address th
nucleon matter problem. At present, it is being used to st
PNM @9#.

All available calculations of SNM with realistic interac
tions use methods based on cluster expansions. In
Brueckner approach a hole line expansion is made forHI
5H2T2U, whereH is the full Hamiltonian,T is the ki-
netic energy operator,U is a single-particle potential to b
chosen, andH05T1U. 2- and 3-hole line terms of this ex
0556-2813/2002/66~5!/054308~13!/$20.00 66 0543
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pansion are calculated with 2-body forces@10# for two dif-
ferent choices ofU, and in his pioneering calculations Da
also estimated parts of 4-hole line terms@11#. In this ap-
proach one attempts to chooseU to improve convergence o
the expansion; however, higher-order terms are difficult
calculate. In most available calculations the 3-nucleon in
action is approximated with a density dependent 2-nucl
interaction@12#.

The variational method is conceptually much simpler a
3-nucleon interactions can be easily included in the Ham
tonian. However, with plausible variational wave functio
the cluster expansion of the energy expectation value d
not converge rapidly. In most calculations with realistic i
teractions@13–15#, the leading contributions of all cluster
are summed by Fermi-hypernetted chain~FHNC! and single-
operator chain~SOC! integral equations. For brevity we ca
this the chain summation method~CSM!. In this method
only the 2-body cluster contribution is exact, and alln>3
body cluster contributions are approximated, but the serie
not truncated.

In principle, variational calculations provide an upp
bound to the ground state energy. The bound is closer to
true energy when the variational wave function can well
produce the exact eigenfunction. In practice a correction
the variational energy is estimated to take into account
limitations of the variational wave function using either co
related basis theory@16,17# or simpler methods@14#.

In this paper we describe a new matrix method to cal
late the 3-body cluster contribution exactly for static cor
lations including 3-nucleon interactions. The small 3-bo
cluster contributions from momentum dependent spin-o
correlations are omitted from this exact calculation; they
estimated approximately. This method provides a test for
accuracy of the SOC approximation in CSM; the FHNC
©2002 The American Physical Society08-1
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exact forn53. We also present results for SNM and PN
using exact computations of 2- and 3-body clusters,
CSM approximation for the rest. The method is useful
Hamiltonians in which the part evaluated with the CSM a
proximation is relatively small.

The cluster expansion of nucleon matter energy is brie
described in Sec. II where we present CSM estimates
~2–5!-body cluster contributions for the Argonnev18
2-nucleon@18# and Urbana IX 3-nucleon interaction@19#.
The matrix method to calculate the 3-body cluster contri
tion is described in Sec. III, and the results are presente
Sec. IV. In earlier calculations of Akmal and Pandharipan
~AP! @14# with these interactions and the CSM, the energy
SNM at the empirical equilibrium density ofr0
50.16 fm23 was estimated to be212 MeV, about 25%
higher than the empirical value of216. With the present
method we obtain;214 MeV. The AP, as well as presen
estimates, include a perturbative correction of;22 MeV to
take into account the limitations of the variational wa
function @14#. The calculated equilibrium density is close
r0 in both the CSM and present calculations.

The CSM estimate of the 3-body cluster energy in PNM
found to be fairly accurate for this Hamiltonian. The prese
PNM results are only slightly above those of AP.

We also report on the results for SNM with the old
Argonne v14 interaction which has been used in ma
Brueckner and variational calculations. AtkF51.6 fm21 the
present method givesE;222.3 MeV, lower than Day’s es
timate of217.861.3 MeV. However, the CSM is found to
be less accurate for this Hamiltonian.

The combination ofv181U-IX interactions used here un
derbindsN;Z light nuclei like 7Li and 8Be by ,4% in
GFMC calculations with an error,2%. The more accurate
Illinois models of 3-nucleon interaction reproduce the e
perimental energies of light nuclei within the GFMC acc
racy. However, these models contain 3-pion exchange in
actions that have very complex spin-isospin dependence@2#.
The present method has been developed partly to perf
nucleon matter calculations with the Illinois models ofVi jk ,
which are in progress. Conclusions and outlook for m
accurate calculations of nucleon matter are given in Sec

II. CLUSTER EXPANSION OF NUCLEON MATTER
ENERGY

The Hamiltonian containing the Argonnev18 2-nucleon
and the Urbana IX 3-nucleon interaction is discussed in
tail by AP. Thev18 interaction has 14 isoscalar terms giv
by

v i j 5 (
p51,14

vp~r i j !Oi j
p . ~2.1!

The pair operators with odd values ofp are

Oi j
p5odd51, si•sj , Si j , L•S, L2, L2si•sj , ~L•S!2.

~2.2!
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HereSi j andL•S are the tensor and spin-orbit operators. T
operators with even values ofp are

Oi j
p5even5Oi j

p21ti•tj . ~2.3!

The remaining four operators in thev18 interaction break the
isopin symmetry. They do not contribute to the energy
SNM in first order, and are included in PNM calculations
described in Ref.@14#.

It is convenient to define the Hamiltonian as

H5TF1~T2TF!1(
i , j

~v i j
s 1v i j

b 1v i j
q !1 (

i , j ,k
Vi jk ,

~2.4!

where TF50.3kF
2/m is the Fermi-gas kinetic energy. Th

2-nucleon interaction is divided into its static partv i j
s con-

taining terms with momentum independent operat
Oi j

p51,6, the spin-orbit partv i j
b with Oi j

p57,8, and the qua-
dratic partv i j

q including terms havingOi j
p59,14. Different ap-

proximations are used to calculate the expectation value
these three parts ofv i j . The Urbana-IXVi jk is static and is
treated along with thev i j

s .
The variational wave function used in the above me

tioned calculations of nucleon matter is of the form

uCV&5FS)
i , j

Fi j G uFA~kF!&, ~2.5!

whereFi j are the pair correlation operators,

Fi j 5 (
p51,8

f p~r i j !Oi j
p , ~2.6!

anduFA(kF)& is the antisymmetric Fermi-gas wave functio
The Fi j do not commute withFik , hence it is necessary t
symmetrize their product. By convention, the spatial corre
tion f p51(r i j ) is denoted byf c(r i j ), and all the other corre-
lations, pÞc, have spin-isospin dependence. We divide
Fi j into its static (p51,6) and spin-orbit (p57,8) parts:

Fi j 5Fi j
s 1Fi j

b ; ~2.7!

they are treated separately.
The cluster expansion for the energy

E5TF1

K FA~kF!UFS)
i , j

Fi j G~H2TF!FS)
i , j

Fi j GUFP~kF!L
K FA~kF!UFS)

i , j
Fi j GFS)

i , j
Fi j GUFP~kF!L

~2.8!

is obtained by replacingFi j by @(Fi j 21)11# and expanding
in powers of (Fi j 21). The bra^FA(kF)u is antisymmetric,
while the ketuFP(kF)& is a simple product of single-particl
states in which nucleonsi , j , . . . occupy plane wave state
with momentak i ,k j , . . . , andspin-isospinx i ,x j , . . . . The
cluster expansion for the energy of nucleon matter@20# is
complicated by the presence of noncommuting spin-isos
8-2
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IMPROVED VARIATIONAL CALCULATIONS OF . . . PHYSICAL REVIEW C 66, 054308 ~2002!
correlations and interactions. The additional presence of
mentum dependent terms in theH andF makes it even more
complex@21,14#.

The simplest expansion is of the expectation values of
static potentialsv i j

s andVi jk including only the staticFs. The
spin-orbit correlations have gradient operators, theref
their contribution is more complex@21#. For brevity, we re-
view here only the cluster expansion for the expectat
value of v i j

s , with Fs correlations to introduce the notatio
and orient the readers. It contains connected diagr
formed with finite range correlation bonds„f c

2(r i j )21…,
2 f c(r i j ) f p(r i j ), and f p(r i j ) f q(r i j ), with indices p and q
Þc, and the spatial exchange correlation represented by
Slater functionl (r i j ):

l ~r !5
nst

r (
k,kF

eik•r53@sin~x!2x cos~x!#/x3. ~2.9!

Herex5kFr , r is the matter density, andnst54 and 2 is the
spin-isospin degeneracy of SNM and PNM, respectively.

For example, some of the direct cluster diagrams that c
tribute to the expectation value ofv i j

s are shown in Fig. 1.
The dots in these diagrams show nucleon positi

FIG. 1. Examples of direct diagrams illustrating various clus
contributions to the energy of nucleon matter.
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r i ,r j , . . . , and the thick line represents
f p(r i j )vq(r i j ) f r(r i j ) with p,q,r<6. The contribution of the
2-body direct diagramD.2 of Fig. 1 to the energy of SNM is
given by

@v i j
s 22b2dir#5

r

2 (
p,q,r 51,6

C@Oi j
p Oi j

q Oi j
r #

3E d3r i j f p~r i j !vq~r i j ! f r~r i j !.

~2.10!

Here C@Oi j
p Oi j

q Oi j
r # is the spin-isospin independent pa

called theC-part @20#, of the product of operators. Othe
parts of the operator product are linear in spins or isosp
and they do not contribute to the direct 2-body cluster
SNM.

The 3-body direct cluster contribution to the expectati
value of v i j

s with the staticFs correlation operator is given
@20# by

@v i j
s 23b2dir#5

r2

2

1

nst
3 (

x i ,x j ,xk

E d3r i j d
3r ik^x i

† ,x j
† ,x j

†u

3„Mv i j
s M2Fi j

s v i j
s Fi j

s ~F jk
s21Fki

s221!…

3ux i ,x j ,xk&, ~2.11!

whereM is the 3-body correlation operator

M5@SFi j
s F jk

s Fki
s #. ~2.12!

In addition to the symmetrized product of pair operators,M
can contain explicit 3-body operators@22# neglected here and
in variational wave function@Eq. ~2.5!#. This contribution
@Eq. ~2.11!# contains a sum over the possible spin-isos
statesx5n↑ and n↓ in PNM and n↑, n↓, p↑ and p↓ in
SNM. The densities of each spin-isospin species arer/nst ,
and the factor 1/nst

3 in the @v i j
s 23b2dir# takes that into

account. It includes the term

M v i j
s M2Fi j

s v i j
s Fi j

s ~2.13!

from the expansion of the numerator of the expectation va
@Eq. ~2.8!#, and the term

2Fi j
s v i j

s Fi j
s ~F jk

s21Fki
s222!, ~2.14!

in which the factor (F jk
s21Fki

s222) comes from the expan
sion of the denominator.

When theFs operators are approximated byf c(r ), the
spin-isospin sum gives a factornst

3 to cancel the 1/nst
3 , and

we can commute thef c’s in the M v i j
s M to form f c

2 . The
second term then cancels the separable parts, i.e., those
have only jk or ki correlation bonds, of the first, and w
obtain the well-known irreducible contribution:

r

8-3
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@v i j
s 23b2dir 2Jastrow#5

r2

2 E d3r i j d
3r ik f c

2~r i j !v i j
s

3„f c
2~r jk!21…„f c

2~r ki!21…,

~2.15!

appropriate for the Jastrow variational wave function,F
5 f c . This contribution is included in the diagram
D.3.FHNC in Fig. 1. The dashed lines in this diagram den
f c

2(r )21. It is contained in the FHNC@23# sum together
with all of its exchange terms without approximation.

In the SOC approximation theFi j
s multiplying thev i j

s are
not approximated, but only the leading terms with two sp
io

s
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c
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isospin correlations of the spectator nucleonk, having either
f p(r jk) f q(r ki) or f p(r jk) f q(r jk) or f p(r ki) f q(r ki) are calcu-
lated. These terms are denoted by diagramsD.3.SOC and
D.3.S in Fig. 1. In direct diagrams, terms with a single sp
isospin correlation ofk give zero contribution after summin
over the spin-isospin states of nucleonk. A single thin line,
as in diagramD.3.SOC, denotes 2f pÞcf c , while a double
thin line, as in diagramD.3.S, denotesf pÞcf qÞc .

In the SOC approximation the contribution of 3-bod
terms with f p(r ki) f q(r ki) are calculated exactly only in th
limit where jk correlations are neglected. In this limit th
contribution ofD.3.S is given by@20#:
@v i j
s 23b.S2dir#5r2 (

p,q,r ,s,t51,6
E d3r i j f p~r i j !vq~r i j ! f r~r i j !E d3r ik f s~r ik! f t~r ik!

3C@ 1
4 $Oi j

p ,Oik
s %Oi j

q $Oi j
r ,Oik

t %2Oi j
p Oi j

q Oi j
r Oik

s Oik
t #. ~2.16!
ns
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At least one of theOi j must not commute with theOik op-
erators for this contribution to be nonzero. The contribut
of the operator chain diagramD.3.SOC is given by@20#

@v i j
s 23b.SOC2dir#5

r2

2 (
p,q,r 51,6

(
s,tÞc

E d3r i j d
3r ik

3 f p~r i j !vq~r i j ! f r~r i j !

3@2 f c~r ik! f s~r ik!#

3@2 f c~r jk! f t~r jk!#

3C@ 1
4 $Oi j

p ,Oik
s %Oi j

q $Oi j
r ,Ojk

t %#.

~2.17!
Using the FHNC summation technique@23# it is possible

to sum many-body diagrams with@ f c
2(r )21# correlations,

such as those denoted byD.4.FHNC in Fig. 1. The diagram
summed by FHNC equations can have hypernetted cha
However, these equations do not sum elementary diagr
such asD.4.ELE in Fig. 1, having coupling between two o
more chains of correlations. For Jastrow correlations, d
grams with a coupling between two hypernetted chains
be summed by the FHNC/4 equations@24#; they are smaller
than those included in the FHNC. In contrast, the SOC eq
tions @20# sum only the single-operator chain or ring di
grams such asD.4.S,D.4.SOC in Fig. 1. TheC parts of the
operator products are particularly simple to calculate
these diagrams. However, the multiple-operator ch
~MOC! diagrams such asD.3.MOC andD.4.MOC are not
included in SOC sums. See Ref.@20# for a more complete
description of direct and exchange terms summed by
FHNC/SOC approximation denoted here by CSM.

The SOC approximation is valid when the spin-isosp
correlationsf pÞc are much less than 1. Nevertheless, su
n

s.
s

-
n

a-

r
n

e

h

correlations can give substantial many-body contributio
due to their long range. For example, the contribution
D.4.SOC can be comparable to that ofD.3.SOC when

rE d3r l@2 f c~r lk! f t~r lk!#@2 f c~r j l ! f t~r j l !#; f t~r jk!,

~2.18!

due to larger and/or the long range of the spin-isospin co
relations. Some of the 3-body terms omitted in the SOC
proximation have been estimated by Wiringa@25# and shown
to be smaller than those summed by SOC equations. Her
propose to sum them all exactly, as discussed in Sec. III

The complete 3-body cluster can have of order 50 diff
ent links on each side of the triangle formed byr i j ,r jk , and
r ki , producing of the order of 100 000 diagrams. Clust
with more than 3 bodies have an even larger number
terms. With the CSM@20,13,14# it is simpler to calculate the
sums of all the diagrams included in that approximation th
to separately sum the diagrams with a given number of p
ticles or spin-isospin correlation bonds. Therefore the in
vidual cluster contributions to the variational energy
nucleon matter were not calculated in previous studies. N
ertheless, they contain useful information.

The contributions to the expectation values fro
n-particle clusters with a specific number of spin-isopsin c
relations can be easily obtained from the total. WhenkF and
r are treated as independent variables, the contribution o
n-particle cluster to the matter energy per nucleon is prop
tional to r (n21). We calculate the total energy withr re-
placed byxr for several values ofx from 0 to 1. We also
calculate it replacingf pÞc(r ) by y fpÞc(r ) for several values
of y over the same interval. The calculated expectation va
Z(x,y) of any operator can be expanded in a polynomial ox
and y whose coefficients contain the required informatio
8-4
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The Slater functionl (r ) and the interaction operators a
kept fixed, while varyingx and y. In the present work we
calculate theE(x) at y51 to study the cluster expansion o
the energy expectation value.

In variational calculations the correlation functionsf p(r )
are obtained from 2-body Schro¨dinger-like equations with
healing distancesdt for tensor correlations anddc for all
others. The spin-isospin dependent parts of the 2-nuc
interaction are quenched in thef equations by a parametera.
The variational parametersdc , dt , anda are determined by
minimizing the energy with constraints imposing conser
tion of the number of nucleons and charge@13,14#. The cor-
relation functions naturally depend upon the density, the n
tron fraction of matter, and the assumed 2- and 3-nucl
interactions. Therefore the convergence of the cluster exp
sion also depends upon all these variables. In Tables I–V
report on the cluster expansion of the energy of SNM a
PNM at densities of 0.5r0, 1 and 1.5r0 for Hamiltonian
containing thev18 andU-IX interactions. TheE(x) is cal-
culated using the CSM used by AP. Minor improvements
the CSM are described later. Only the 2-body cluster con
butions listed in these tables are exact; the values repo
for n>3 are sums of thosen-body diagrams that are in
cluded in CSM. Tables VII and IX give results for PNM a
2r0, where AP find evidence for a phase transition.

The CSM variational energy and parameters are give
the table captions. The columns of the tables give contri
tions of clusters with 2–5 nucleons, the sum of all clust
with more than 5 nucleons, and the sum of all clusters. T
row labeledv i j

s lists contributions ofvs with only staticFs.
These large contributions are obtained by summing all di
and exchange FHNC and SOC diagrams. Similarly, theTs
gives the contribution of onlyFs correlations to (T2TF).
All terms with eitherFb and/orvb are included in the row
v i j

b 1Tb . They include the expectation value ofvb, which
occurs mostly viaFb correlations, and the changes in th
static interaction and kinetic energies due toFb correlations.
A restricted set of diagrams is included in the calculation
the effect ofL•S correlations on kinetic and potential ene
gies, due to the gradient operator inFb. Both Ts andTb are
calculated with the Pandharipande-Bethe@26# expression for
the kinetic energy.

The rowsv i j
q and Vi jk , respectively, give the contribu

tions of these terms in the Hamiltonian. The 3-body con
bution tov i j

q is comparable to that of 2-body clusters. This
on account of new terms in the 3-body cluster in which
¹ i

2 in v i j
q operate onFik . In the earlier calculations of AP

and APR~Ref. @15#!, only the leading terms of the 3-bod
cluster contribution tov i j

q were calculated. In the pre
sent work we have dressed this contribution w
exp@Gdd(rij)Gdd(r jk)Gdd(rki)#, whereGdd(r i j ) represent centra
direct-direct FHNC sums@20#. But, as can be seen from th
tables, these do not give large.3-body cluster contributions
to thev i j

q expectation value. The contribution ofFb correla-
tions ton>3 clusters ofvq is neglected. There are also ne
4-body terms in the expectation value ofv i j

q having“ iFik

and“ iFil . They are expected to be small, and have not
been estimated.
05430
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It is obvious from the tables that the cluster expansion
nucleon matter energy is not rapidly convergent with t
optimum variational wave functions used here. In the case
SNM ~Tables I and III! we evaluate the energyE(x) at each
density at 14 values ofx and fit E(x)2TF2E-body(x) by a
polynomial having up tox12 to extract the~3–5!-body con-
tributions with an accuracy of;0.1 MeV. The cluster ex-
pansion for PNM atr<r0 ~Tables IV and V! converges
more slowly than that for SNM. At higher-densities, PN
has two sets of minima indicating a phase transition. T
higher-density phase~HDP! is expected to have neutral pio
condensation@14#. The cluster expansion does not appear
be convergent in high-density neutron matter. The low
density PNM results shown in Tables IV and V are obtain
as for SNM and have similar accuracy, while those atr
>1.5r0 use polynomials having up tox16. The 3- and
4-body contributions in Tables VI–IX have accuracies
;0.1 MeV, while the 5- and.5-body cluster contributions
may have errors up to 0.5 MeV. However, their sum is c
rect within ;0.1 MeV in the FHNC/SOC approximation.

The contributions tov i j
s and Ts alternate in sign as the

number of bodies in the cluster increases, as expected f
the chain equations. However, this is not necessarily the c
for contributions to eitherv i j

q or Vi jk . As mentioned earlier,
there are additional 3-body terms that contribute tov i j

q , and
the short- and long-range parts ofVi jk have different behav-
iors, as will be discussed in Sec. IV.

In the present work we calculate the 3-body contributio
apart from the smallv i j

b and Tb terms, by an exact metho
described in the following section. It provides a direct test
the accuracy of SOC approximation forn53. In nucleon
matter, the 3-body cluster contribution is larger than the s

TABLE I. Cluster contributions calculated with CSM: SNM a
r50.5r0 , a50.60,dc52.23 fm anddt58.93 fm; TF513.9 MeV
andEv

CSM527.1 MeV.

n 2 3 4 5 .5 Total

v i j
s 236.5 7.4 24.9 2.6 20.9 232.3

Ts 10.0 21.6 1.4 20.7 0.1 9.2
v i j

q 1.2 0.8 0.0 0.0 0.0 1.9
Vi jk 0.6 0.1 0.1 0.0 0.7
v i j

b 1Tb 20.6 0 0 0 0 20.6
Ev

CSM2TF 225.9 7.2 23.4 2.0 20.8 221.0

TABLE II. Cluster contributions calculated with CSM: SNM a
r5r0 , a50.80,dc51.80 fm, anddt54.80 fm, TF522.1 MeV,
andEv

CSM528.9 MeV.

n 2 3 4 5 .5 Total

v i j
s 266.7 11.1 26.9 3.4 21.1 260.2

Ts 20.3 22.0 2.4 21.1 0.4 20.0
v i j

q 4.5 3.5 0.2 0.0 0.0 8.1
Vi jk 1.9 1.0 0.3 20.1 3.1
v i j

b 1Tb 21.8 20.1 20.1 0 0 22.0
Ev

CSM2TF 243.7 14.4 23.4 2.6 20.8 231.0
8-5
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of all clusters withn>4. Therefore we can hope that a
improvement in the accuracy of the calculated energy can
achieved by using exact values of 2- and 3-body cluster
ergies, together with the CSM estimate forn>4.

The main cause of the poor convergence of the PN
cluster expansion atr<r0 is the longnn scattering length.
As shown in Fig. 1 of AP, the energy of PNM at small de
sity is very insensitive to the range of correlations, but
cluster expansion depends strongly on the range. Thus
possible to use anF with smallerdc and dt and obtain es-
sentially the same energy with a more convergent expans
as will be discussed in more detail in Ref.@27#.

III. EXACT CALCULATION OF 3-BODY CLUSTER
CONTRIBUTION

Variational Monte Carlo calculations of light nuclei do n
use an expansion in powers of spin-isospin correlati
f pÞc . In that method@4# the 3-nucleon wave function i
represented by a vector in spin-isospin space, and theFs and
vs are matrix functions of interparticle distances. We fi
discuss the simpler case of PNM. We can eliminate the is
pin dependence ofv and F in PNM by setting allti•tj
51. The 3-neutron wave function is a vector of dimensi
2358, whose components describe the amplitudes for e
spin state, such as↑↑↑,↑↑↓, . . . . Thev i j

s , Fi j
s , F jk

s , andFki
s

are 838 matrices, and Eq.~2.11! becomes

@v i j
s 23b2dir#5

r2

2

1

8E d3r i j d
3r ikTr„Mv i j

s M

2Fi j
s v i j

s Fi j
s ~F jk

s21Fki
s221!…. ~3.1!

TABLE III. Cluster contributions calculated with CSM: SNM a
r51.5r0 , a50.89,dc51.50 fm, anddt53.99 fm; TF529.0 and
Ev

CSM523.3 MeV.

n 2 3 4 5 .5 Total

v i j
s 292.1 10.9 26.2 2.8 20.9 285.5

Ts 28.7 20.5 2.5 20.8 0.2 30.1
v i j

q 9.9 8.0 0.6 20.1 20.1 18.4
Vi jk 4.7 2.7 0.8 20.3 7.9
v i j

b 1Tb 22.7 20.3 20.1 0 0 23.1
Ev

CSM2TF 256.2 22.8 20.5 2.7 21.1 232.3

TABLE IV. Cluster contributions calculated with CSM: PNM a
r50.5r0 , a50.95,dc52.88 fm, anddt56.14 fm; TF522.1 and
Ev

CSM510.1 MeV.

n 2 3 4 5 .5 Total

v i j
s 226.7 11.8 29.4 7.2 23.2 220.3

Ts 7.3 24.5 3.6 22.8 1.3 4.9
v i j

q 4.3 0.1 20.2 0.1 0.0 4.4
Vi jk 1.5 21.1 0.7 20.1 1.0
v i j

b 1Tb 22.0 0 0.1 0 0 21.9
Ev

CSM2TF 217.0 8.9 27.0 5.2 22.0 212.0
05430
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In uniform matter, the above six-dimensional spatial integ
can be reduced to a three-dimensional integral overr i j ,r jk ,
andr ki , and evaluated using mesh points; in finite nuclei it
more convenient to use Monte Carlo methods for the spa
integrals. The above equation gives the sum ofall 3-body
direct diagrams containingvs andFs.

The antisymmetric brâFA(kF)u in the expectation value
@Eq. 2.8# is obtained by applying exchange operators to
^FP(kF)u. Therefore in the contribution of exchange di
grams, the spin exchange operators,

ei j 52
1

2
~11si•sj !, ~3.2!

appear to the left of all theFs operators. Note thatei j is also
an 838 matrix in the spin vector space. The sum ofall
3-body diagrams with nucleonsi j exchanged is given by

@v i j
s 23b2ei j #5

r2

2

1

8E d3r i j d3r ik l 2~r i j !

3Tr„ei j Mv i j
s M2ei j Fi j

s v i j
s Fi j

s

3~F jk
s21Fki

s221!…. ~3.3!

The Slater function takes into account the spatial excha
of each particle.

The diagrams withjk or ik exchanged give identical con
tribution. Their sum is given by

TABLE V. Cluster contributions calculated with CSM: PNM a
r5r0 , a50.95,dc52.74 fm, and dt54.39 fm; TF535.1 and
Ev

CSM519.0 MeV.

n 2 3 4 5 .5 Total

v i j
s 248.5 17.8 214.4 12.5 26.0 238.6

Ts 12.6 26.6 5.3 24.8 2.3 8.8
v i j

q 12.9 1.3 20.3 0.2 20.1 14.0
Vi jk 7.2 23.4 2.4 20.6 5.6
v i j

b 1Tb 25.9 0.2 0 0 0 25.8
Ev

CSM2TF 229.0 19.9 212.8 10.3 24.4 216.1

TABLE VI. Cluster contributions calculated with CSM: PNM a
r51.5r0 , a50.83,dc52.99 fm, anddt53.30 fm; TF546.0 and
Ev

CSM533.4 MeV.

n 2 3 4 5 .5 Total

v i j
s 268.9 25.5 224.6 30.0 217.0 255.0

Ts 17.6 29.3 8.5 210.6 5.8 12.0
v i j

q 22.2 3.9 20.5 0.4 20.1 25.9
Vi jk 19.3 29.2 7.5 22.6 15.0
v i j

b 1Tb 210.1 0 20.2 0.2 20.2 210.4
Ev

CSM2TF 239.2 39.4 226.0 27.5 214.1 212.5
8-6
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@v i j
s 23b2~ejk1eki!#5r2

1

8E d3r i j d
3r ikl 2~r ik!

3Tr„ekiMv i j
s M2Fi j

s v i j
s Fi j

s ekiFki
s2
….

~3.4!

In addition, there are two 3-body circular exchange d
grams. The^FP(kF)uejkei j produces the state in whic
nucleoni occupies the state ofj in uFP(kF)&, j that ofk, and
k that of i. We denote this exchange byi→ j→k→ i . The
^FP(kF)uei j ejk produces the other cyclic exchange in whi
i→k→ j→ i . Both cyclic exchanges give the same contrib
tion. Their sum is

@v i j
s 23b2cir#5r2

1

8E d3r i j d
3r ikl ~r i j !l ~r jk!l ~r ki!

3Tr„ejkei j Mv i j
s M2ei j Fi j

s v i j
s Fi j

s eki

3~Fki
s221!…. ~3.5!

Here we have used

^FP~kF!uejkei j 5^FP~kF!uei j eki . ~3.6!

The entire 3-body cluster contribution to the expectat
value of vs including only Fs correlations is given by the
sum of the direct,ei j , ejk , eki and circular exchange contr
butions given abovewithout any approximation.

The 3-body cluster contribution tôVi jk& is rather simple
in this representation. Since it is the leading term, there
no subtractions as in Eqs.~3.1! and ~3.3!–~3.5! for @v i j

s

TABLE VII. Cluster contributions calculated with CSM: PNM
at r52r0 , a50.87,dc52.86 fm, anddt52.86 fm; TF555.7 and
Ev

CSM555.0 MeV.

n 2 3 4 5 .5 Total

v i j
s 286.5 22.9 221.9 26.8 214.5 273.2

Ts 21.4 27.6 6.9 29.0 4.7 16.4
v i j

q 34.4 8.4 0.5 0.2 0.0 43.5
Vi jk 33.2 29.2 11.1 25.6 29.5
v i j

b 1Tb 215.6 20.3 20.9 0.4 20.4 216.8
Ev

CSM2TF 246.2 56.6 224.6 29.5 215.8 20.6

TABLE VIII. Cluster contributions calculated with CSM: PNM
HDP at r51.5r0 , a51.36, dc51.70 fm, anddt54.94 fm; TF

546.0 andEv
CSM535.2 MeV.

n 2 3 4 5 .5 Total

v i j
s 269.7 13.7 215.0 10.9 26.2 266.3

Ts 19.4 24.0 6.1 23.3 2.0 20.2
v i j

q 28.0 6.6 0.3 21.1 20.2 33.6
Vi jk 7.3 20.2 2.5 20.7 8.9
v i j

b 1TB 29.3 0.6 0.9 0.5 0.1 27.2
Ev

CSM2TF 231.6 24.2 27.9 9.5 25.0 210.8
05430
-

-
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23b#. The@Vi jk23b# contributions are obtained by keepin
only the first term in the traces in these equations, and
placing thev i j

s by Vi jk /3.
The kinetic energy has terms containing¹ i

2M, and
“ iM•“ i uFP(kF)&. The uFP(kF)& is an eigenstate of¹ i

2 .
The sum of all terms having¹ i

2uFP(kF)& gives the Fermi-
gas kinetic energyTF . Therefore these terms are not in
cluded in the cluster expansion ofE2TF . It can be verified
that all the terms having¹ i

2M are obtained from Eqs.~3.1!
and ~3.3!–~3.5!, with the substitutions

v i j
s M→22@S~¹ i

2 Fi j
s !F jk

s Fki
s #

22@S~“ iFi j
s !•~“ iFki

s !Fki
s # ~3.7!

in the first term of the trace and

v i j
s Fi j

s →22~¹ i
2Fi j

s !, ~3.8!

in the second term. Terms containing“ iFi j
s
•“ iFki

s are de-
noted byu, while those with¹ i

2 Fi j
s are included inw in

FHNC-SOC calculations@20#.
Terms containing“ i uFP(kF)&5 ik i uFP(kF)& give zero

contribution in direct diagrams after summation overk i .
These terms contribute only via exchange diagrams in wh
the ( i ik ie

iki•r i j gives l 8(r i j ) r̂ i j , where r̂ i j denotes the unit
vector. The“ iM•“ i uFP(kF)& contributions are classified a
follows @20#. Let “ i operate onFi j

s in M; this defines the
nucleonj. Exchange diagrams in whichi→ j are calledwF ;
they containl 8(r i j ) r̂ i j , and give

@wF23b2ei j #52
1

m

r2

8 E d3r i j d
3r kil ~r i j !l 8~r i j ! r̂ i j

3Tr„ei j M@S~“ iFi j
s !F jk

s Fki
s #

2ei j ~Fi j
s
“ iFi j

s !~F jk
s21Fki

s221!…, ~3.9!

@wF23b2cir#52
1

m

r2

8 E d3r i j d
3r kil ~r jk!l ~r ki!l 8~r i j ! r̂ i j

3Tr„ejkei j M@S~“ iFi j
s !F jk

s Fki
s #

2ei j ~Fi j
s
“ iFi j

s !ekiFki
s2
…. ~3.10!

TABLE IX. Cluster contributions calculated with CSM: PNM
HDP at r52r0 , a51.26, dc51.68 fm, and dt54.48 fm; TF

555.7 andEv
CSM552.6 MeV.

n 2 3 4 5 .5 Total

v i j
s 289.4 11.2 211.6 7.0 24.9 287.7

Ts 23.1 22.8 4.4 21.3 1.4 24.8
v i j

q 40.3 13.1 1.0 21.8 2.5 52.1
Vi jk 15.9 2.0 4.9 23.1 19.7
v i j

b 1Tb 213.3 20.3 0.5 0.7 0.3 212.1
Ev

CSM2TF 239.3 37.1 23.7 9.5 26.8 23.1
8-7
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These contain subtracted terms from the denominator ex
sion, since wF has a 2-body cluster contribution from
ei j l (r i j ) l 8(r i j ) r̂ i j •(Fi j

s
“ iFi j

s ).
The contribution of terms in whichi→kÞ j in the ex-

change loop are calleduF, and

@uF23b2eki#52
1

m

r2

8 E d3r i j d
3r kil ~r ki!l 8~r ki! r̂ ki

3Tr„ekiM@S~“ iFi j
s !F jk

s Fki
s #

2ekiFi j
s
“ iFi j

s ~Fik
s221!…, ~3.11!

@uF23b2cir#52
1

m

r2

8 E d3r i j d
3r kil ~r i j !l ~r jk!l 8~r ik! r̂ ik

3Tr„ei j ejkM@S~“ iFi j
s !F jk

s Fki
s #

2ei j ~Fi j
s
“ iFi j

s !ejk…. ~3.12!

The uF diagrams must have at least three nucleons,i , j , and
k. There are no 2-bodyuF diagrams, and thus there are n
denominator subtractions inuF23b. The subtracted terms in
the above two equations are, in fact, zero; that in Eq.~3.11!
has zero integral over the angle betweenr ki and “ iFi j

s ,
while that in Eq. ~3.12! has uncorrelated nucleonk in an
exchange loop. However, the subtractions help to restrict
domain of integrals overr jk and r ki which are otherwise
large.

The equations for thevq23b contributions are given in
Appendix A, and the numerical methods used for the ex
calculation of 3-bodyv i j

s , Ts , Vi jk , andv i j
q are described in

Appendix B.
The PNM formalism can also be used for SNM. Howev

the number of 3-nucleon spin-isospin states is 64, and
all the F ’s and interactions are 64364 matrix functions of
the r i ,r j , and r k in this formalism. In PNM they are only
838 matrix functions. A more efficient way to calculate th
3-body cluster in SNM is as follows.

The pair correlations and the interactions can be separ
into parts that contain and do not contain isospin operator
follows:

Fi j
s 5Fi j

0 1Fi j
t ti•tj ,

Fi j
0 5 f i j

c 1 f i j
s si•sj1 f i j

t Si j ,

Fi j
t 5 f i j

t 1 f i j
stsi•sj1 f i j

ttSi j . ~3.13!

Both F0 and Ft operate only on the spins and are 838
matrix functions. Innnn andppp clusters,ti•tj51. These
clusters have only eight spin-isospin states, and there co
butions are calculated as in PNM usingFi j

0 1Fi j
t in place of

Fi j
0 .
Clusters with two neutrons and a proton have three is

pin states denoted bynnp,npn, andpnn. In these clusters
we treat theFi j

s as a 333 matrix whose elements are com
binations of 838 matrix functionsF0 andFt. For example,
the 333 matrix representation ofFi j

s is
05430
n-

e

ct

,
us

ed
as

ri-

s-

Fi j
s 5S Fi j

0 1Fi j
t 0 0

0 Fi j
0 2Fi j

t 2Fi j
t

0 2Fi j
t Fi j

0 2Fi j
t
D . ~3.14!

This matrix operates on the wave function vector:

C i jk5S c i jk 5nnp~r i ,r j ,r k!

c i jk 5npn~r i ,r j ,r k!

c i jk 5pnn~r i ,r j ,r k!
D , ~3.15!

wherec i jk 5nnp(r i ,r j ,r k), for example, is an eight compo
nent spin wave function in whichi and j are neutrons andk
is a proton. We need to calculate only the 3-neutron and
2-neutron–1-proton cluster contributions in SNM since th
do not change on interchanging all protons with neutrons

IV. RESULTS

The results of exact 3-body cluster contributions in SN
and PNM are compared with those obtained with the CSM
Tables X and XI. The FHNC sums include all the contrib
tions containing central correlations without approximatio
however, the 3-body contribution is dominated by sp
isospin correlations. The difference between the exact
the CSM results is entirely due to truncations in the num
of spin-isospin correlations included in the SOC. In SNM t
3-body estimate of CSM is larger than the exact result
44%, 33%, and 22% at 0.5r0 , 1.0r0, and 1.5r0, while in the
low-density phase of PNM it is smaller by only 8%, 6%, a
4% at these densities. At higher densities the chain diagr
become more important and the CSM becomes more a
rate. This is rather fortunate because in high-density PN
the cluster expansion is not convergent, and one has to
on integral equations to sum all of the clusters. The lar
error in CSM in SNM is due to the strong tensor correlatio
in T50,S51 channels. When the tensor correlations a
switched off, the 3-body CSM and exact energies are 8.4
7.7 MeV at r0. However, in this case theEV.0, since
nuclear matter is not bound in the absence of tensor corr
tions.

There is a large cancellation between the two terms of
Urbana IXVi jk in SNM. The spin-isospin independent ter
VR is repulsive and CSM estimates its contribution fair
accurately. In contrast, the Fujita-Miyazawa interactionVi jk

2p

TABLE X. The 3-body cluster contribution fromFs correlations
calculated exactly and with CSM for SNM in MeV.

0.5r0 r0 1.5r0

Exact CSM Exact CSM Exact CSM

Ts 21.8 21.6 22.5 22.0 21.1 20.5
v i j

s 5.7 7.4 9.3 11.1 10.4 10.9
v i j

q 0.9 0.8 3.2 3.5 6.3 8.0
Vi jk

R 1.7 1.6 6.3 6.0 13.7 13.3
Vi jk

2p 21.6 21.0 25.4 24.1 210.2 28.6
Total 3b 5.0 7.2 10.9 14.5 19.0 23.1
8-8
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TABLE XI. The 3-body cluster contribution fromFs correlations calculated exactly and with CSM fo
PNM in MeV.

0.5r0 r0 1.5r0

Exact CSM Exact CSM Exact CSM

Ts 24.2 24.5 26.3 26.6 29.4 29.3
v i j

s 11.8 11.8 17.9 17.8 25.7 25.5
v i j

q 0.3 0.1 1.3 1.3 4.3 3.9
Vi jk

R 1.4 1.4 6.6 6.5 16.7 16.3
Vi jk

2p,FMA 0.5 0.2 1.4 0.7 3.9 2.9
Total 3b 9.8 9.0 20.9 19.7 41.1 39.4

2r0 HDP 1.5r0 HDP 2r0

Exact CSM Exact CSM Exact CSM
Ts 28.2 27.6 23.1 24.0 21.9 22.8
v i j

s 23.2 22.9 14.0 13.7 11.6 11.2
v i j

q 7.3 8.4 5.8 6.6 10.0 13.1
Vi jk

R 29.0 28.7 11.4 11.6 21.4 21.7
Vi jk

2p,FMA 5.6 4.4 22.4 24.3 23.6 25.8
Total 3b 56.8 56.9 25.6 25.0 37.4 38.6
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is entirely spin-isospin dependent, and the CSM is less a
rate in calculating its 3-body contribution. Thus the totalVi jk
expectation value can have a relatively large error in
CSM.

As can be seen from Table XI, the 3-body cluster con
bution increases rapidly with density in the low-dens
phase of PNM in which theVi jk

2p is repulsive. In the HDP,
Vi jk

2p becomes attractive and reduces the 3-body contribu
significantly. The CSM has fair accuracy in evaluating t
3-body cluster contribution in both the phases of PNM.

We can hope to get more accurate evaluations of the
ergy expectation value by summing the Fermi kinetic ene
TF , the 2-body, and the matrix 3-body cluster energi
These terms are large and are calculated exactly. The rem
der, denoted byDE, includes>4-body clusters withFs cor-
relations and>3-body clusters withvb and/or Fb, and is
estimated with CSM. The variational energies obtained
this way are listed in Tables XII and XIII. In SNM they ar
significantly below the results obtained earlier using CS
for all n>3-body ~3b! cluster. The new PNM energies a
closer to the older results. The approximately calculatedDE
is relatively small for the sum of Argonnev181Urbana IX
interactions, and if the error inDE is less than 25%~the
accuracy of CSM for 3-body cluster!, the calculatedEV’s

TABLE XII. Variational energy of SNM obtained with the exac
3-body cluster contribution in MeV. The last column gives the va
obtained with CSM.

r TF E-2b E-3b-Fs DE EV EV
CSM

0.5r0 13.9 225.9 4.9 22.2 29.3 27.1
r0 22.1 243.7 10.9 21.7 212.4 28.9
1.5r0 29.0 256.2 19.1 0.8 27.3 23.3
05430
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n

will have less than 10% error. However, it is difficult t
estimate the error inDE since there are cancellations b
tween the contributions of 4-, 5- and.5-body clusters.

V. CONCLUSIONS AND OUTLOOK

At present we can calculate the 1-, 2-, and most of 3-bo
cluster contributions,TF , E-2b andE-3b-Fs to the energy of
nucleon matter exactly with realistic variational wave fun
tions. However, the cluster expansion is not rapidly conv
gent in variational theories of nucleon matter, and it is n
essary to use CSM to estimate the rest of the contributi
denoted byDE. For example, at the equilibrium density, th
1–5-body cluster contributions to the energy of SNM a
22.1,243.7, 10.8,23.4, and 2.6 MeV, while those withn
.5 give 20.8 MeV. Of these the first three are now calc
lated exactly, apart from the small 3-body spin-orbit cont
bution ~see Table III!. Then>4-body are approximate CSM
estimates; they add up to21.6 MeV.

For some Hamiltonians, such as the present one,TF , E-2b
and E-3b are all comparable to or larger in magnitude th

TABLE XIII. Variational energy of PNM obtained with the ex
act 3-body cluster contribution in MeV. The last column gives t
value obtained with CSM.

r TF E-2b E-3b-Fs DE EV EV
CSM

0.5r0 22.1 217.0 9.8 23.8 11.1 10.1
r0 35.1 229.0 20.9 26.7 20.3 19.0
1.5r0 46.0 239.2 41.2 212.6 35.4 33.4
2r0 55.7 246.2 56.8 211.2 55.1 55.0
1.5r0 HDP 46.0 231.5 25.6 22.8 37.3 35.2
2r0 HDP 55.7 239.3 37.4 21.3 52.5 52.6
8-9
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EV . For these it is probably essential to calculate theE-3b
exactly. The error inEV is then due to that in the CSM
estimate ofDE. It is not well known, however, the fractiona
error in the CSM estimate ofDE is likely to be larger than
that in the CSM estimate ofE-3b, which is;33% in SNM at
r0 ~Table X!.

We obtain significantly more binding for SNM with th
present calculations. In the earlier CSM calculations,
SNM EV

CSM(r0)529.4 MeV ~see Table II of AP!. The
present value ofEV

CSM(r0)528.9 MeV, listed in Table II, is
higher due to the chain dressings added to 3-body diagr
with vq. The E(r0)5212.0 MeV estimated by AP is ob
tained by adding to theEV

CSM(r0) half the difference of the
kinetic energies obtained with the Pandharipande-Bethe
Jackson-Feenberg@28# expressions (520.6), and a pertur-
bative correction (521.9 MeV) for the limitations of the
present variational wave function. Adding the perturbat
correction to the presentEV(r0)5212.4 ~Table XII!, we
obtain E(r0);214 MeV, much closer to the empirica
value of 216 MeV. It now appears possible that accura
calculations of SNM with more realistic interaction mode
including 3-pion exchange terms inVi jk @2#, can provide
adequate binding to SNM.

It is interesting to note that Fabrociniet al. @29# also find
that the FHNC/SOC calculations underestimate the bind
energy of 16O nucleus by;1 MeV per nucleon, compare
with the energy obtained with the cluster Monte Ca
method @30#. In the latter method contributions of up t
4-body clusters are calculated exactly, except for spin-o
correlations.

The CSM calculations are computationally simple:
takes only;10 sec to calculate the SNMEV

CSM on a work-
station operating at;150 MFLOPS. The present calculatio
of EV takes;10 min instead. Using Monte Carlo integratio
methods, as in the calculation of16O @30#, it may be possible
to calculate 4- and possibly 5-body clusters with negligi
errors usingFs alone. Such calculations will include th
leading elementary diagrams, and will be valuable for SN
near equilibrium density, where the contribution of.5-body
clusters is estimated to be very small with the presentCV .
They will need much larger computational resources, wh
are fortunately now available.

Near the indicated phase transition in PNM, the contrib
tion of .5-body clusters is not small. Here the cluster e
pansion does not appear to be convergent. If we defineDEn
as the sum of all clusters with.n bodies, from Table IX we
obtain the CSM estimates ofDEn536.2, 20.9, 2.7, and
26.8 MeV for n52,3,4, and 5. Fortunately, in this case t
CSM estimate ofE-3b-Fs of 38.6 MeV is close to the exac
value of 37.4 MeV~Table X!. An exact calculation ofE-4b
may not improve the accuracy of the totalEV here, although
it will provide an important additional test of the accuracy
CSM.

It is also necessary to have improved estimates of con
butions of clusters withvb and/orFb for better accuracy of
the calculatedEV . Even though the present estimates
.2-body contributions ofvb andFb are rather small~Tables
I–IX !, these are more approximate. For example, they do
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include all the FHNC/SOC diagrams summed in CSM.
The cluster expansion depends sensitively on the Ha

tonian. For example, the problem of SNM has been stud
by many groups using the older Argonnev14 interaction
without any Vi jk . In his classic Brueckner theory calcula
tions, Day@11# obtained an energy of217.861.3 for SNM
at kF51.6 fm21 or r51.73r0. The present calculation give
a lower energy in this case. The values obtained forTF ,
E-2b, E-3b-Fs, andDE are, respectively, 31.9,261.2, 10.2,
and23.2, giving a total of222.3 MeV. However, the CSM
is not very accurate in this case. The estimate ofE-3b-Fs

with CSM is 19.0 MeV, too large by a factor of 2. The CS
estimate ofDE could also have a large error in this case.
such cases it is probably necessary to have complete ca
lations of 4- and possibly 5-body clusters to obtain relia
estimates ofEV .
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APPENDIX A: EXPECTATION VALUES OF QUADRATIC
INTERACTIONS

Interactions containingL2 or (L•S)2 operators are ex-
pressed in the form

vL2,p~r 12!O12
p L25~r123“8!•X12

p ~r123“ !, ~A1!

X12
p 5vL2,p~r 12!O12

p , ~A2!

v (L•S)2,p~r 12!O12
p ~L•S!25~“8•S3r12!Y12

p ~S3r12•“ !,
~A3!

Y12
p 5v (L•S)2,p~r 12!O12

p . ~A4!

Here“5(“12“2)/2 operates to the right on theC, while
“8 operates to the left on theC†. TheOp in L2 terms can be
(1,s1•s2) ^ (1,t1•t2), while those in (L•S)2 terms can only
be 1 ort1•t2. TheX12

p andY12
p are known matrix functions

of r 12.
The “ can operate on either the correlation operators

the plane waves inF. For brevity, we define

“M5M“85M . ~A5!

On the right-hand, side we use a simple productFP , and

“FP5
i

2
~k12k2!FP . ~A6!

However, theFA
!
“8 depends upon the exchange pattern. T

essential problem in computing these contributions is tha
summing over thek i 51,2,3 in the exchange diagrams. All th
contributions can be expressed as
8-10
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r2

2

1

8E d3r i j d3r ikTrI X, ~A7!

whereX5D for direct, C for circular exchange,A for e12,
andB for e13 ande23 pair exchange diagrams. EachI X can
be expressed as

I X5I FF
X 1I FK

X 1I KK
X , ~A8!

where the subscriptsFF, FK, and KK denote terms in
which both, one, and none of the gradients operate on
correlation operators. InFF terms, the sums over momen
k i 51,2,3 can be easily zcarried out to obtain Slater functio
The FK terms are zero for the direct ande12 diagrams, and
were neglected in the earlier calculations of AP and APR
these andKK terms, one obtains derivatives of Slater fun
tions or kF

2 from sums over plane wave momenta. We gi
below theI for PNM. Those for SNM have a similar struc
ture.

1. Direct diagrams

In these diagramsF!
“85F!(2 i )(k12k2)/2. The I D

for L2 terms are given by

I FF
D 5~r123M !•X12

p ~r123M !2~r123“F12
s !•X12

p

3~r123“F12
s !~F23

s21F31
s221!, ~A9!
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I FK
D 50, ~A10!

I KK
D 5

1

5
r 12

2 kF
23„MX12

p M2F12
s X12

p F12
s ~F23

s21F31
s221!…,

~A11!

while those for the (L•S)2 are

I FF
D 5~M•S3r12!•Y12

p ~S3r12•M !

2~“F12
s
•S3r12!•Y12

p ~S3r12•“F12
s !

3~F23
s21F31

s221!, ~A12!

I FK
D 50, ~A13!

I KK
D 5

1

10
kF

2
„M~S3r12!•Y12

p ~S3r12!M

2F12
s ~S3r12!•Y12

p ~S3r12!

3F12
s ~F23

s21F31
s221!…. ~A14!

2. Pair exchange diagrams

In e12 diagrams,F!
“85F!( i )(k12k2)/2. TheI A for L2

terms are given by
that
I FF
A 5e12l

2~r 12!„~r123M !•X12
p ~r123M !2~r123“F12

s !•X12
p ~r123“F12

s !~F23
s21F31

s221!…, ~A15!

I FK
A 50, ~A16!

I KK
A 5e12r 12l ~r 12!l 8~r 12!3„M X12

p M2F12
s X12

p F12
s ~F23

s21F31
s221!…, ~A17!

while those for the (L•S)2 are

I FF
A 5e12l

2~r 12!„~M•S3r12!•Y12
p ~S3r12•M !2~“F12

s
•S3r12!•Y12

p ~S3r12•“F12
s !~F23

s21F31
s221!…, ~A18!

I FK
A 50, ~A19!

I KK
A 5e12

l ~r 12!l 8~r 12!

2r 12
3„M ~S3r12!•Y12

p ~S3r12!M2F12
s ~S3r12!•Y12

p ~S3r12!F12
s ~F23

s21F31
s221!…. ~A20!

In e13 diagrams,F!
“85F!(2 i )(k32k2)/2. In the following equations, their contribution is doubled to take into account

of e23 diagrams. TheI B for L2 terms are given by

I FF
B 52e13l

2~r 13!„~r123M !•X12
p ~r123M !…22~r123“F12

s !•X12
p ~r123“F12

s !e13F13
s2 l 2~r 13!, ~A21!

I FK
B 5e13

l ~r 13!l 8~r 13!

r 13
„~r123M !X12

p
•~r123r13!M1M~r123r13!X12

p
•~r123M !…2

l ~r 13!l 8~r 13!

r 13
„~r123“F12

s !

3X12
p
•~r123r13!F12

s 2F12
s ~r123r13!X12

p
•~r123“F12

s !…e13F13
s2 , ~A22!
8-11
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I KK
B 52e13r 12

2 S 1

10
kF

2 l 2~r 13!1
1

4
l 82 ~r 13!@12~ r̂12• r̂13!

2# D ~M X12
p M!2F12

s X12
p F12

s r 12
2 S l 2~r 13!

5
kF

22
1

2
l 9~r 13!l ~r 13!

3@12~ r̂12• r̂13!
2#2

l 8~r 13!l ~r 13!

2r 13
@11~ r̂12• r̂13!

2# De13F13
s2 , ~A23!

while those for (L•S)2 terms are given by

I FF
B 52e13l

2~r 13!~M•S3r12!•Y12
p ~S3r12•M !22~“F12

s
•S3r12!•Y12

p ~S3r12•“F12
s !e13l

2~r 13!F13
s2 , ~A24!

I FK
B 5e13

l ~r 13!l 8~r 13!

r 13
„~M•S3r12!Y12

p ~S3r12•r13!M1M~r13•S3r12!Y12
p ~S3r12•M !…2

l ~r 13!l 8~r 13!

r 13

3„~“F12
s
•S3r12!Y12

p ~S3r12•r13!F12
s 2F12

s ~r13•S3r12!Y12
p ~S3r12•“F12

s !…e13F13
s2 , ~A25!

I KK
B 5

1

10
e13l

2~r 13!kF
2M~S3r12!•Y12

p ~S3r12! M1
1

2
e13l 8

2~r 13!@M ~S3r12• r̂13!Y12
p ~S3r12• r̂13! M#

2F12
s ~S3r12!•Y12

p ~S3r12!F12
s S 1

10
kF

2 l 2~r 13!2
l 8~r 13!l ~r 13!

2r 13
De13F13

s21
1

2
F12

s ~S3r12• r̂13!Y12
p ~S3r12• r̂13!F12

s

3S l 9~r 13!2
l 8~r 13!

r 13
D3 l ~r 13!e13F13

s2 . ~A26!

3. Circular exchange diagrams

The two circular exchanges,e23e12 and e13e12, give identical contributions. We calculate that ofe23e12 and double the
result. Ine23e12 diagrams,F!

“85F!(2 i )(k32k1). TheI C for L2 terms are given by

I FF
C 52e23e12l ~r 13!l ~r 23!l ~r 12!~r123M !•~r123M !22e2@r123“F12

s #•@r123“F12
s # l ~r 12!l ~r 23!l ~r 13!e13~F13

s221!,
~A27!

I FK
C 5e23e12l ~r 12!l ~r 23!l ~r 31!X@r123M #X12

p
•@r123 r̂32#M

l 8~r 23!

l ~r 23!
1M@r123 r̂13#X12

p
•@r123M #

l 8~r 13!

l ~r 13!
C

2e12l ~r 12!l 8~r 23!l ~r 31!~@r123“F12
s #X12

p
•@r123 r̂32#F12

s 1F12
s @r123 r̂32#X12

p
•@r123“F12

s # !e13~F13
s221!, ~A28!

I KK
C 5e23e12Xl 8~r 13!l 8~r 23!l ~r 12!

2r 13r 23
~r123r31!•~r123r23!1r 12l ~r 13!l ~r 23!l 8~r 12! C3~MX12

p M!

2
e12

2
F12

s X12
p F12

s F2r 12l 8~r 12!l ~r 23!1r 12
2 l ~r 12!3S l 9~r 23!@12~ r̂12• r̂23!

2#1
l 8~r 23!

r 23
@11~ r̂12• r̂23!

2# D G l ~r 13!e13~F13
s221!,

~A29!

while those for the (L•S)2 terms are given by

I FF
C 52e23e12l ~r 12!l ~r 23!l ~r 13!@M•S3r12#Y12

p @S3r12•M #22e12@“F12
s
•S3r12#Y12

p @S3r12•“F12
s # l ~r 12!l ~r 23!l ~r 13!

3e13~F13
s221!, ~A30!

I FK
C 52e23e12X@M•S3r12#Y12

p @S3r12• r̂23#M
l 8~r 23!

l ~r 23!
1M@ r̂31•S3r12#Y12

p @S3r12•M #
l 8~r 13!

l ~r 13!
Cl ~r 12!l ~r 23!l ~r 13!

1e12„@“F12
s
•S3r12#Y12

p @S3r12• r̂23#F12
s 1F12

s @S3r12• r̂23#Y12
p @S3r12•“F12

s #…l ~r 12!l 8~r 23!l ~r 13!e13~F13
s221!,

~A31!
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I KK
C 5

1

2
e23e12MXl ~r 12!l 8~r 23!l 8~r 13!@S3r12• r̂31#Y12

p @S3r12• r̂23#1
l 8~r 12!

r 12
l ~r 23!l ~r 13!@S3r12#Y12

p
•@S3r12# CM

2
1

2
e12F12

s X@S3r12#Y12
p
•@S3r12#F l 8~r 12!

r 12
l ~r 23!l ~r 13!1

l 8~r 23!

r 23
l ~r 12!l ~r 13!G1@S3r12• r̂23#Y12

p @S3r12• r̂23#F l 9~r 23!

2
l 8~r 23!

r 23
G l ~r 12!l ~r 13! CF12

s 3e13~F13
s221!. ~A32!

APPENDIX B: COMPUTATIONAL METHODS

In Sec. III and Appendix A, the entire 3-body cluster contribution fromFs correlations is expressed as a sum of integr
over j(r i j ,r jk ,r ki), wherej is a trace of matrices that depend only uponr i j ,r jk , and r ki . Using spherical symmetry, th
integrals overj are reduced to 3-dimensional integrals:

E d3r i j d
3r ikj~r i j ,r jk ,r ki!58p2E

0

R

dri j E
0

R8
drikE

ur i j 2r iku

r i j 1r ik
dr jkj~r i j ,r jk ,r ki!. ~B1!

The upper limitsR andR8 are obtained from the range of the interaction anddt , the range of correlations. We compute th
3-dimensional integral using a grid withdr;0.1 fm. Ther i j is chosen as thez-axis andr ik in the x-z plane to simplify the
calculation ofv andF matrices.
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