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Improved variational calculations of nucleon matter
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Variational calculations of nucleon matter, either symmetric nuclear or pure neutron matter, use Fermi
hypernetted chain and single-operator chain summation methods to sum approximately the contributions of
clusters of=3 nucleons to the energy expectation value. The cluster contributions summed by these methods
are discussed in detail, and it is shown that for realistic interactions the 3-body cluster contribution is larger
than the sum of=4-body contributions. We present a new method, based on representing cluster wave
functions by multidimensional vectors in spin-isospin space, as is common in quantum Monte Carlo calcula-
tions of light nuclei, to calculate exactly the 3-body cluster contribution including 3-body forces and all but
spin-orbit correlations. The variational energies obtained with the Argoi8e2- and Urbana IX 3-nucleon
interactions, using the exact 2- and 3-body cluster contributions and the approsmabedy contributions
summed with chain summation techniques are lower, closer to the empirical values for symmetric nuclear
matter than in previous calculations using the operator chain summation approximation for the large 3-body
cluster. In pure neutron matter the operator chain summation approximation is found to be fairly accurate for
the 3-body cluster; the present results are only slightly higher than the previous ones. We also report on the
results for the Argonne 14 2-nucleon interaction without any 3-body interaction. This case has been studied
with Brueckner’s method including 2, 3, and parts of 4-hole line terms by Day and Wirittgss. Rev. C32,
1057(1985]. Our results are significantly lower than theirs.

DOI: 10.1103/PhysRevC.66.054308 PACS nuniher21.65:+f, 26.60+c

I. INTRODUCTION pansion are calculated with 2-body fordd®] for two dif-
ferent choices ofJ, and in his pioneering calculations Day

In the past few years it has been shown that the energieslso estimated parts of 4-hole line terifikl]. In this ap-
of all the bound states of up to ten nucleons can be welproach one attempts to choodeto improve convergence of
reproduced by essentially exact Green’s function Monteahe expansion; however, higher-order terms are difficult to
Carlo (GFMC) calculations with realistic models of 2- and calculate. In most available calculations the 3-nucleon inter-
3-nucleon interactionl—4]. The error in these calculations action is approximated with a density dependent 2-nucleon
is estimated to be less than 2% of the calculated energy. ThHateraction[12].
computational effort in the GFMC calculations increases ex- The variational method is conceptually much simpler and
ponentially with the number of nucleons; and with the 3-nucleon interactions can be easily included in the Hamil-
present computing resourcé&C may be the largest symmet- tonian. However, with plausible variational wave functions
ric nucleus that can be studied with this method. the cluster expansion of the energy expectation value does

The uniform nucleon matter problem has been studiedhot converge rapidly. In most calculations with realistic in-
with realistic nuclear forces since the pioneering work ofteractions[13—15, the leading contributions of all clusters
Brueckner, Bethe, and Goldsone in the 1950s as a step tare summed by Fermi-hypernetted ché@hNC) and single-
wards a microscopic theory of large nuclei, and more re-operator chaifSOQ integral equations. For brevity we call
cently for studying the structure of neutron stars and supetthis the chain summation methd®€SM). In this method
novas[5,6]. GFMC calculations of symmetric nuclear matter only the 2-body cluster contribution is exact, and ra# 3
(SNM) with equal number of neutrons and protons are notbody cluster contributions are approximated, but the series is
yet possible. However, Carlson has recently calculated enenot truncated.
gies for 14 neutrons in a periodic box with semirealistic in- In principle, variational calculations provide an upper
teractions[ 7] with the GFMC method, and attempts to ex- bound to the ground state energy. The bound is closer to the
tract the E(p) of pure neutron mattefPNM) from these true energy when the variational wave function can well re-
results are in progress. A new quantum Monte Carlo methogroduce the exact eigenfunction. In practice a correction to
using auxiliary fields is also being developed by Schmidt andhe variational energy is estimated to take into account the
Fantoni[8] with which it may be possible to address the limitations of the variational wave function using either cor-
nucleon matter problem. At present, it is being used to studyelated basis theory16,17] or simpler method$14].
PNM [9]. In this paper we describe a new matrix method to calcu-

All available calculations of SNM with realistic interac- late the 3-body cluster contribution exactly for static corre-
tions use methods based on cluster expansions. In thations including 3-nucleon interactions. The small 3-body
Brueckner approach a hole line expansion is madeHpr cluster contributions from momentum dependent spin-orbit
=H-T-U, whereH is the full Hamiltonian,T is the ki-  correlations are omitted from this exact calculation; they are
netic energy operatot) is a single-particle potential to be estimated approximately. This method provides a test for the
chosen, andHy=T+U. 2- and 3-hole line terms of this ex- accuracy of the SOC approximation in CSM; the FHNC is
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exact forn=3. We also present results for SNM and PNM HereS;; andL - S are the tensor and spin-orbit operators. The
using exact computations of 2- and 3-body clusters, an@perators with even values pfare

CSM approximation for the rest. The method is useful for B

Hamiltonians in which the part evaluated with the CSM ap- Of~®e"=0f"'5-17. 2.3
proximation is relatively small. o ) ] )

The cluster expansion of nucleon matter energy is brieﬂyjl'helremalmng four operators in thd 8 _mteractlon break the
described in Sec. Il where we present CSM estimates dfOPin symmetry. They do not contribute to the energy of
(2-5-body cluster contributions for the Argonnel8 SNM in f|r§t order, and are included in PNM calculations as
2-nucleon[18] and Urbana IX 3-nucleon interactigii9].  described in Ref{14]. o
The matrix method to calculate the 3-body cluster contribu- !t i convenient to define the Hamiltonian as
tion is described in Sec. lll, and the results are presented in
Sec. IV. In earlier calculations of Akmal and Pandharipande  H=T.+(T—Tg)+ >, (v} +Uibj+viqj)+ > Vi
(AP) [14] with these interactions and the CSM, the energy of <] i<j<k
SNM at the empirical equilibrium density ofp, (2.4
=0.16 fm 3 was estimated to be-12 MeV, about 25%
higher than the empirical value of 16. With the present . S . . .
method we obtain-— 14 MeV. The AP, as well as present 2—ngcleon mteract;on is divided mtq its static parﬁ con-
estimates, include a perturbative correction-of 2 MeVto ~ t@ININY  terms with momentum '”islge”de”t operators
take into account the limitations of the variational waveOfi " the spin-orbit parti with in}_gyli and the qua-
function[14]. The calculated equilibrium density is close to dratic partvj} including terms havingfi™™". Different ap-
po in both the CSM and present calculations. proximations are used to calculate the expectation values of

The CSM estimate of the 3-body cluster energy in PNM isthese three parts af;; . The Urbana-IXV;j is static and is
found to be fairly accurate for this Hamiltonian. The presentireated along with the; .

PNM results are only slightly above those of AP. The variational wave function used in the above men-

We also report on the results for SNM with the older tioned calculations of nucleon matter is of the form
Argonne v14 interaction which has been used in many

where TF=O.3k§/m is the Fermi-gas kinetic energy. The

e : - 1
Brueckner and va.rlatlonal calculations. kt=1.6 fm ,the W)= SH Fi | aKe)), 2.5
present method gives~ —22.3 MeV, lower than Day’s es- <]
timate of —17.8+1.3 MeV. However, the CSM is found to ) )
be less accurate for this Hamiltonian. whereF;; are the pair correlation operators,

The combination o 18+ U-IX interactions used here un-
derbindsN~Z light nuclei like "Li and °Be by <4% in Fi= > fo(rjoP, (2.6)
GFMC calculations with an errox2%. The more accurate p=18

lllinois models of 3-nucleon interaction reproduce the ex- ) ) ) ) )
perimental energies of light nuclei within the GFMC accu- 2nd| P a(ke)) is the antisymmetric Fermi-gas wave function.
racy. However, these models contain 3-pion exchange inter.he Fij do not commute withF;, hence it is necessary to
actions that have very complex spin-isospin dependgzice Symmetrize thelr product. By convention, the spatial correla-
The present method has been developed partly to perforfon fp-1(rij) is denoted byfc(r;;), and all the other corre-
nucleon matter calculations with the lllinois models\gf,,  ations,p#c, have spin-isospin dependence. We divide the
which are in progress. Conclusions and outlook for moreij into its static ¢=1,6) and spin-orbit§=7,8) parts:
accurate calculations of nucleon matter are given in Sec. V.

Fiy=F5+F) ; (2.7)
Il. CLUSTER EXPANSION OF NUCLEON MATTER they are treated separately.
ENERGY The cluster expansion for the energy
The Hamiltonian containing the Argonnel8 2-nucleon
and the Urbana IX 3-nucleon interaction is discussed in de- Pa(ke) SL[J. Fij|(H=Tg) Siﬂj Fij || Pr(ke)
tail by AP. Thev 18 interaction has 14 isoscalar terms givenE=T.+
by <<I>A<kF> {513l FinSi[Ij Fi,} <I>p<kF>>
(2.9
i = ri)OoP . 2.1
Vil p:21,14vp( )0 @ is obtained by replacing;; by [(F;; — 1)+ 1] and expanding

in powers of E;;—1). The bra{® A(kg)| is antisymmetric,
while the ket|®p(kg)) is a simple product of single-particle
states in which nucleonsj, ... occupy plane wave states
with momentak; ,K;, ..., andspin-isospiny;,x;, . . . . The
of~°"=1, o;-0y, S;, L-S, L% L2%g;-0j, (L-92 cluster expansion for the energy of nucleon maf9] is
(2.2 complicated by the presence of noncommuting spin-isospin

The pair operators with odd values pfare
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k k 1 r.rj, ..., and the thick line represents
fo(rij)vg(rij) f(rij) with p,q,r<6. The contribution of the
2-body direct diagrand.2 of Fig. 1 to the energy of SNM is

r-—e given by
i ] i ] i ]
P
p,q,r=1,6
k k 1 k 1 5
o A '- ?' """ '. de rij fpripvg(ripf(rij).
1 H H N (2.1@

' ! ' ! ' ! Here C[Of;O10};] is the spin-isospin independent part,
D.3.FHNC D.4.FHNC called theC-part [20], of the product of operators. Other

parts of the operator product are linear in spins or isospins,
and they do not contribute to the direct 2-body cluster in
SNM.

The 3-body direct cluster contribution to the expectation
value Ofvisj with the staticF*® correlation operator is given

i i i i i j [20] by
D.3.50C D.4.5S0C D.4.50C Pt
[vf—8b—dif="— X | d®rdru(xi x] X]|
k k 1 k 1 Mor XioXj Xk
@ ------- h s

X (Mo M=FofFi(Fie+Fe—1))

ff : N kT Fii
I./_\\‘ ><|X| 1)(] 1Xk>! (211)

where M is the 3-body correlation operator
D.3.MOC D.4.MOC D4.ELE
M=[8FistjSkF§i]. (2.12
FIG. 1. Examples of direct diagrams illustrating various cluster
contributions to the energy of nucleon matter. In addition to the symmetrized product of pair operatavs,

. . . " can contain explicit 3-body operatdi22] neglected here and
?é;?hargogs Zz?jg:tetfﬁgg?i'tggaenz(lj:dmgﬂglsF;{Zii?]cﬁlg:emqh variational wave functiofEq. (2.5]. This contribution
com Iex[21p14] [Eqg. (2.11)] contains a sum over the possible spin-isospin

piex|L, 1A L : statesy=nT andn| in PNM andnf, n|, pT andp] in
The simplest expansion is of the expectation values of th(nS ” - ; -
. g . . . NM. The densities of each spin-isospin speciespare. .,
static potential®;; andV;;, including only the stati¢°. The 3 s . g
: . I ! : and the factor X, in the [v;;—3b—dir] takes that into
spin-orbit correlations have gradient operators, therefore ; ]
. S X account. It includes the term
their contribution is more complep21]. For brevity, we re-
view here only the cluster expansion for the expectation R s ses
value ofvj;, with F* correlations to introduce the notation M vyM=FiuiFj (2.13
and orient the readers. It contains connected diagrams ) )
formed with finite range correlation bonc(sfg(rij) -1), from the expansion of the numerator of the expectation value
2f(rij)fp(rij), and fo(ri;)fq(ri;), with indices p and q [Eg. (2.8], and the term
#c, and the spatial exchange correlation represented by the ) )
Slater functionl (r;;): —FiviFi(FHFRi—2), (214
j IRATRRTANN!
n in which the factor F7+F}—2) comes from the expan-
sion of the denominator.

When theF® operators are approximated ky(r), the
3

Herex=Kkgr, p is the matter density, ami,, =4 and 2 is the spin-isospin sum gives a factof,, to cancel the If] _, and
spin-isospin degeneracy of SNM and PNM, respectively. we can commute thé.'s in the M visl- M to form f2. The

For example, some of the direct cluster diagrams that consecond term then cancels the separable parts, i.e., those that
tribute to the expectation value ®fj are shown in Fig. 1. have onlyjk or ki correlation bonds, of the first, and we

The dots in these diagrams show nucleon position®btain the well-known irreducible contribution:

I(r)= ‘”k;k ek T=3[sin(x) —x cogx)]/x3. (2.9

p

054308-3



MORALES, PANDHARIPANDE, AND RAVENHALL PHYSICAL REVIEW C66, 054308 (2002

_ p? ) isospin correlations of the spectator nuclégmaving either
[v?j—3b—dlr—JastrovSr=7f dri dricte(ri))vj; fo(r i) Fa(Ti) OF Fo(r ) fo(rii) of Fo(rii) fo(ry) are calcu-
lated. These terms are denoted by diagrdin3.SOC and

X (FA(r) —D(Fa(rg) — 1), D.3.Sin Fig. 1. In direct diagrams, terms with a single spin-

(2.15 isospin correlation ok give zero contribution after summing
over the spin-isospin states of nucleknA single thin line,
appropriate for the Jastrow variational wave functiénh, as in diagramD.3.SOC, denotesfZ...f., while a double
=f.. This contribution is included in the diagram thin line, as in diagranD.3.S, denotesf . fq...
D.3.FHNC in Fig. 1. The dashed lines in this diagram denote In the SOC approximation the contribution of 3-body
fﬁ(r)—l. It is contained in the FHN{23] sum together terms with f,(ryi) fq(ri) are calculated exactly only in the
with all of its exchange terms without approximation. limit where jk correlations are neglected. In this limit the

In the SOC approximation thej; multiplying thev;; are  contribution ofD.3.S is given by[20]:
not approximated, but only the leading terms with two spin-

[Uisj—3b-3—dir]=l)2pqr§16fdsfijfp(fij)vq(fij)fr(fij)J drifs(ri) fu(ri)

X C[+{Of ,O}}0{Oj; O} — Of0l0; O3O0i 1. (2.19

At least one of theD;; must not commute with th®;, op-  correlations can give substantial many-body contributions
erators for this contribution to be nonzero. The contributiondue to their long range. For example, the contribution of

of the operator chain diagram.3.SOC is given by20] D.4.SOC can be comparable to that@B3.SOC when
2
[visj—3b.SOC—dir]=p— > > fd3rijd3rik Pf dr[2f o(rp) fo(rud JL2Fc(rj) Fo(r) 1~ Folrip),
2 pgr=16strc
(2.18
XEo(ripvg(rip fe(rij) o .
due to largep and/or the long range of the spin-isospin cor-
X[2F(rig) fs(ri)] relations. Some of the 3-body terms omitted in the SOC ap-
X[2F (1) Fo(F)] proximation have been estimated by Wirif@s] and shown
e kTR gk to be smaller than those summed by SOC equations. Here we

X C[ 4 {inj 1O$k}oiqj{oirj !O}k}]- propose to sum them all exactly, as discussed in Sec. Ill.

The complete 3-body cluster can have of order 50 differ-

(2.17 ent links on each side of the triangle formedty,r;,, and

Using the FHNC summation techniq{23] it is possible  r,;, producing of the order of 100000 diagrams. Clusters
to sum many-body diagrams wiftf2(r)—1] correlations, ~with more than 3 bodies have an even larger number of
such as those denoted By4.FHNC in Fig. 1. The diagrams terms. With the CSM20,13,14 it is simpler to calculate the
summed by FHNC equations can have hypernetted chainsums of all the diagrams included in that approximation than
However, these equations do not sum elementary diagrante separately sum the diagrams with a given number of par-
such asD.4.ELE in Fig. 1, having coupling between two or ticles or spin-isospin correlation bonds. Therefore the indi-
more chains of correlations. For Jastrow correlations, diavidual cluster contributions to the variational energy of
grams with a coupling between two hypernetted chains canucleon matter were not calculated in previous studies. Nev-
be summed by the FHNC/4 equatidi®st]; they are smaller ertheless, they contain useful information.
than those included in the FHNC. In contrast, the SOC equa- The contributions to the expectation values from
tions [20] sum only the single-operator chain or ring dia- n-particle clusters with a specific number of spin-isopsin cor-
grams such aB.4.S,D.4.S0C in Fig. 1. TheC parts of the relations can be easily obtained from the total. Wkerand
operator products are particularly simple to calculate forp are treated as independent variables, the contribution of an
these diagrams. However, the multiple-operator chaim-particle cluster to the matter energy per nucleon is propor-
(MOC) diagrams such aB.3.MOC andD.4.MOC are not tional to p("™1). We calculate the total energy with re-
included in SOC sums. See R¢R0] for a more complete placed byxp for several values ok from 0 to 1. We also
description of direct and exchange terms summed by thealculate it replacind,..(r) by yfy.(r) for several values
FHNC/SOC approximation denoted here by CSM. of y over the same interval. The calculated expectation value

The SOC approximation is valid when the spin-isospinZ(x,y) of any operator can be expanded in a polynomiat of
correlationsf,.. are much less than 1. Nevertheless, suchandy whose coefficients contain the required information.
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The Slater functionl(r) and the interaction operators are  TABLE I. Cluster contributions calculated with CSM: SNM at
kept fixed, while varyingk andy. In the present work we p=0.50, @=0.60,d,=2.23 fm andd;=8.93 fm; T-=13.9 MeV
calculate theE(x) aty=1 to study the cluster expansion of andE;°"=—-7.1 MeV.

the energy expectation value.

In variational calculations the correlation functiofygr) n 2 3 4 > =5 Tow
are obtained from 2-body Schtimger-like equations with v -36.5 74 —49 26 —-09 -323
healing distancesl, for tensor correlations and, for all Ts 100 -1.6 1.4 —-07 0.1 9.2
others. The spin-isospin dependent parts of the 2—nucleonviq]. 1.2 0.8 0.0 0.0 0.0 1.9
interaction are quenched in thequations by a parameter Viik 0.6 0.1 0.1 0.0 0.7
The variational parametetk,, d;, anda are determined by Uibj+Tb -0.6 0 0 0 0 -0.6
minimizing the energy with constraints imposing conserva- gSSM_1_  —259 72 —34 20 —08 -21.0

tion of the number of nucleons and chafd8,14]. The cor-
relation functions naturally depend upon the density, the neu-
tron fraction of matter, and the assumed 2- and 3-nucleon It is obvious from the tables that the cluster expansion of
interactions. Therefore the convergence of the cluster expamucleon matter energy is not rapidly convergent with the
sion also depends upon all these variables. In Tables I-VI weptimum variational wave functions used here. In the case of
report on the cluster expansion of the energy of SNM andSNM (Tables | and I} we evaluate the enerdy(x) at each
PNM at densities of Oy, 1 and 1.5, for Hamiltonian  density at 14 values of and fit E(x) = Te—E_,54((X) by a
containing thev 18 andU-IX interactions. TheE(x) is cal-  polynomial having up toc*? to extract the(3—5-body con-
culated using the CSM used by AP. Minor improvements intributions with an accuracy of~0.1 MeV. The cluster ex-
the CSM are described later. Only the 2-body cluster contripansion for PNM atp<p, (Tables IV and V converges
butions listed in these tables are exact; the values reportadore slowly than that for SNM. At higher-densities, PNM
for n=3 are sums of those-body diagrams that are in- has two sets of minima indicating a phase transition. The
cluded in CSM. Tables VII and IX give results for PNM at higher-density phas@HDP) is expected to have neutral pion
2po, Where AP find evidence for a phase transition. condensatio14]. The cluster expansion does not appear to
The CSM variational energy and parameters are given ife convergent in high-density neutron matter. The lower-
the table captions. The columns of the tables give contribudensity PNM results shown in Tables IV and V are obtained
tions of clusters with 2—5 nucleons, the sum of all clustersas for SNM and have similar accuracy, while thosepat
with more than 5 nucleons, and the sum of all clusters. The=1.50, use polynomials having up ta'®. The 3- and
row Iabeledvfj lists contributions ofy® with only staticF3. 4-body contributions in Tables VI-IX have accuracies of
These large contributions are obtained by summing all direct-0.1 MeV, while the 5- and>5-body cluster contributions
and exchange FHNC and SOC diagrams. Similarly, Tge may have errors up to 0.5 MeV. However, their sum is cor-
gives the contribution of only=*° correlations to T—Tg). rect within ~0.1 MeV in the FHNC/SOC approximation.
All terms with eitherF® and/orv® are included in the row The contributions ta)f‘j and T alternate in sign as the
vit] +T,. They include the expectation value of, which  number of bodies in the cluster increases, as expected from
occurs mostly viaF® correlations, and the changes in the the chain equations. However, this is not necessarily the case
static interaction and kinetic energies dueFtbcorrelations.  for contributions to eithevﬂ or Vi« . As mentioned earlier,
A restricted set of diagrams is included in the calculation ofthere are additional 3-body terms that contribut@ﬁq and
the effect ofL - S correlations on kinetic and potential ener- the short- and long-range parts ¢y, have different behav-
gies, due to the gradient operatorffi. Both T, andT, are iors, as will be discussed in Sec. IV.
calculated with the Pandharipande-BefB6] expression for In the present work we calculate the 3-body contributions,
the kinetic energy. apart from the smali;!f’j and T, terms, by an exact method
The rows:;i‘} and Vj;,, respectively, give the contribu- described in the following section. It provides a direct test of
tions of these terms in the Hamiltonian. The 3-body contri-the accuracy of SOC approximation fare=3. In nucleon
bution t0uiqj is comparable to that of 2-body clusters. This is matter, the 3-body cluster contribution is larger than the sum

on account of new terms in the 3-body cluster in which the

ViZ in vl operate orF .. In the earlier calculations of AP TABLE II. Cluster contributions calculated with CSM: SNM at
and APR (Ref. [15]), only the leading terms of the 3-body P=Po, @=0.80,d.=1.80 fm, andd,;=4.80 fm, Tp=22.1 MeV,
cluster contribution tov{] were calculated. In the pre- andE,~"=—8.9 Mev.

sent work we have dressed this contribution with

exfd Gyo(rij) Gud(r i) Cadlrii) I, whereGyq(ri;) represent central 2 3 4 > -5 ol
direct-direct FHNC sum§g20]. But, as can be seen from the vi) -66.7 11.1 -6.9 34 —-11 -60.2
tables, these do not give large3-body cluster contributions 1, 203 —-2.0 24 —-11 0.4 20.0
to theviqj expectation value. The contribution B correla- v 4.5 35 0.2 0.0 0.0 8.1
tions ton=3 clusters o9 is neglected. There are also new v, 1.9 1.0 03 -0.1 3.1
4-body terms in the expectation value uzﬁ having V;F Uibj+Tb -18 —-0.1 -0.1 0 0 -2.0

andV;F; . They are expected to be small, and have not yet e¢SM—_T1_  —437 144 -3.4 26 —-08 -31.0
been estimated.
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TABLE lll. Cluster contributions calculated with CSM: SNM at TABLE V. Cluster contributions calculated with CSM: PNM at
p=1.5pg, «=0.89,d,=1.50 fm, andd;=3.99 fm; Te=29.0 and p=py, «=0.95d.=2.74 fm, and d;=4.39 fm; Tr=35.1 and

ESSM=—3.3 MeV. ESSM=19.0 MeV.

n 2 3 4 5 >5 Total n 2 3 4 5 >5 Total
vf -921 109 -62 28 -09 -855 v —-485 17.8 —144 125 -6.0 —386
T, 287 -05 25 -08 02 30.1 T, 126 —6.6 53 —48 23 8.8
vf] 99 80 06 -01 -01 18.4 v 129 13 -03 02 -0.1 14.0
Vi 47 27 08 -03 7.9 Vijk 72 —-34 24 -06 5.6
vy +Tp -27 -03 -01 O 0 -3.1 v+ Ty -59 02 0 0 0 -5.8
ESSM-T, -562 228 -05 27 -11 -—323 ESSM-T. -290 199 -128 103 -44 -16.1

of all clusters withn=4. Therefore we can hope that an |n yniform matter, the above six-dimensional spatial integral
improvement in the accuracy of the calculated energy can bgan pe reduced to a three-dimensional integral OVEr ji ,
achieved by using exact values of 2- and 3-body cluster enangr,;, and evaluated using mesh points; in finite nuclei it is
ergies, together with the CSM estimate for4. more convenient to use Monte Carlo methods for the spatial
The main cause of the poor convergence of the PNMnpteqgrals. The above equation gives the sumalbf3-body
cluster expansion gi=<p, is the longnn scattering length.  girect diagrams containing® and FS.
As shown in Fig. 1 of AP, the energy of PNM at small den-  The antisymmetric brad (k)| in the expectation value
sity is very insensitive to the range of correlations, but the[Eq_ 2.9 is obtained by applying exchange operators to the

cluster expansion depends strongly on the range. Thus it & p(ke)|. Therefore in the contribution of exchange dia-
possible to use af with smallerd. andd, and obtain es- grams; the spin exchange operators,

sentially the same energy with a more convergent expansion,
as will be discussed in more detail in RE27].
1
eij:_—(1+0'i'0'j), (32)
I1l. EXACT CALCULATION OF 3-BODY CLUSTER 2
CONTRIBUTION

Variational Monte Carlo calculations of light nuclei do not appear to the left of all the® operators. Note thag; is also
use an expansion in powers of spin-isospin correlationgn 8<8 matrix in the spin vector space. The sum aif
fpzc. In that method[4] the 3-nucleon wave function is 3-body diagrams with nucleon$ exchanged is given by
represented by a vector in spin-isospin space, ané thend
v® are matrix functions of interparticle distances. We first 2
discuss the simpler case of PNM. We can eliminate the isos- s _ap 1= lf S3r A3 12(r.

. . . [U” 3b el]] d Fij dryp | (rlj)
pin dependence of and F in PNM by setting all7;- 7 28
=1. The 3-neutron wave function is a vector of dimension s s sgEs
23=8, whose components describe the amplitudes for each XTr(ey Mo M=e;FjoiiFy
spin state, such &s/ 17,111, .... Thevj, Fij, Fji, andFyg; ><(|:J%‘f+ F2-1)). (3.3
are 8x8 matrices, and Eq2.11) becomes

. _ p’1 s . The Slater function takes into account the spatial exchange
[vij—3b—dir]= 7§f d°r;d°r Tr(Moj M of each particle.
The diagrams withk or ik exchanged give identical con-
—FSoSFS(F2+FZ—1)). (3.1)  tribution. Their sum is given by
TABLE IV. Cluster contributions calculated with CSM: PNM at TABLE VI. Cluster contributions calculated with CSM: PNM at
p=0.5py, «=0.95,d.=2.88 fm, andd,=6.14 fm; Tr=22.1 and p=1.5p,, «=0.83,d.=2.99 fm, andd,=3.30 fm; Tz=46.0 and

ESSM=10.1 MeV. ESSM=33.4 MeV.

n 2 3 4 5 >5 Total n 2 3 4 5 >5 Total
v -26.7 118 -94 72 -32 -203 vl -689 255 —-246 300 —17.0 -550
Ts 73 —-45 36 -28 13 4.9 s 176 -93 85 —106 58 120
v 43 01 -02 01 00 4.4 v 222 39 -05 04 -01 259
Vi 15 -1.1 07 -01 1.0 Vijk 193 -92 75 -26 150
v+ Tp -20 0 01 0 0 -1.9 vij+T, —-101 0 -02 02 -02 -104
ESSM-T. -170 89 -70 52 -20 -120 ESSM-T. —-392 394 -260 275 —-141 -125

054308-6



IMPROVED VARIATIONAL CALCULATIONS OF ... PHYSICAL REVIEW C 66, 054308 (2002

TABLE VII. Cluster contributions calculated with CSM: PNM TABLE IX. Cluster contributions calculated with CSM: PNM
atp=2pq, «=0.87,d,=2.86 fm, andd;=2.86 fm; T-=55.7and HDP at p=2py, «=1.26, d.=1.68 fm, andd,=4.48 fm; T¢

ESSM=55.0 MeV. =55.7 andESSM=52.6 MeV.
n 2 3 4 5 >5 Total n 2 3 4 5 >5 Total
visj —86.5 229 —-219 268 —-145 -—-73.2 visj —-894 112 —-11.6 70 —-49 -—-87.7
Ts 214 —-7.6 6.9 —9.0 4.7 16.4 Ts 23.1 —28 44 —-13 1.4 24.8
viqj 34.4 8.4 0.5 0.2 0.0 43.5 viqj 40.3 131 1.0 —1.8 -5 52.1
Vijk 332 —-92 111 -56 29.5 Vijk 15.9 2.0 49 -31 19.7
vibj-i-Tb —-156 —-03 -0.9 04 -04 -16.8 vﬁ-‘rTb —133 -0.3 0.5 0.7 03 -—-121
ESSM-T, —-462 56.6 —246 295 —158 —0.6 ESSM-T. -393 371 -37 95 -68 -31
s T —3b]. The[V;j—3Db] contributions are obtained by keeping
[vij—3b—(ejten)]=p"g | drijd rid “(ri) only the first term in the traces in these equations, and re-
, placing thev§; by Vj; /3.
XTr(e Mo M—FjviiFiieqFi)- The kinetic energy has terms containifgf M, and

3.4  ViM-Vi|Pp(ke)). The|®p(ke)) is an eigenstate ovZ.
The sum of all terms havin@ﬂd)p(kF)) gives the Fermi-

In addition, there are two 3-body circular exchange dia-gas kinetic energylr. Therefore these terms are not in-

grams. The(®p(ke)|ejke; produces the state in which cluded in the cluster expansion Bf-Tg . It can be verified

nucleoni occupies the state ¢fin |®p(ke)), j that ofk, and  that all the terms havin@iz/\/l are obtained from Eq43.1)

k that of i. We denote this exchange by-j—k—i. The and(3.3)—(3.5), with the substitutions

((1>p(kF)|eijejk produces the other cyclic exchange in which

i—k—j—i. Both cyclic exchanges give the same contribu- UiSjM—>—2[5(Vi2 FiSj)F};kFii]
tion. Their sum is
—2[S(ViF)- (ViFR)FRi] (3.7
. 1
[V} —3b—c:|r]=p2§f Ay driid (i () 1 (1) in the first term of the trace and
XTr(ejkeijMv?jM—eijF?jvﬁFﬁ €i UiSjFiSj—>_2(Vi2FiSj)' (3.8

X (Fii 1), 35 .
in the second term. Terms containifgF;; - V,Fy; are de-

noted byu, while those withV? Fi are included inw in
FHNC-SOC calculation§20].

(Pp(ke)lejeij=(Pp(ke)|ejjeyi - (3.9 Terms containingV;|®p(ke)) =iki|®p(ke)) give zero

contribution in direct diagrams after summation over.

The entire 3-body cluster contribution to the expectationThese terms contribute only via exchange diagrams in which
value of v® including only F* correlations is given by the the 3;ik;e' i i givesl’(rij)Fij ' whereFij denotes the unit
sum of the directe;; , e;,, € and circular exchange contri- vector. TheV; M- V,|®p(kg)) contributions are classified as
butions given abovevithout any approximation follows [20]. Let V; operate orFj; in M; this defines the
~ The 3-body cluster contribution /) is rather simple  nycleonj. Exchange diagrams in whidh- | are calledw ;
in this repre_sentatmr?. Since it is the leading term, thesre arﬂwey contain '(fij)Fij , and give
no subtractions as in Eq¢3.1) and (3.39—(3.5) for [vj]

Here we have used

— . , 1 p? .
TABLE VIII. Cluster contributions calculated with CSM: PNM [WF_3b_eij]:__p_J dsrijdsrkil(rijﬂ'(fij)rij
HDP at p=1.50y, «=1.36, d.=1.70 fm, andd;=4.94 fm; T¢ m 8
=46.0 andeSSM=35.2 MeV.
v X Tr(e M[S(ViF3)FiFiil
n 2 3 4 5 >5  Total —e;(FRViFH)(FR+Fii—1), (3.9
v -69.7 137 -150 109 -62 —66.3
T, 19.4 —4.0 61 —-33 20 20.2 . Lo o 4 L
v 2860 66 03 -11 -02 336  [We=3b—ci=— o [ dryd’ral (rpdl(r)l’ (ripr;
Vi 73 -02 25 -07 8.9
vP+ T ~93 06 09 05 01 -72 X Tr(ejei M[S(ViF5)FFR]
E;SM-T, -316 242 -79 95 -50 -108 2
—e”(FlsVFS])eleﬁl . (31@
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These contain subtracted terms from the denominator expan- F?j +F], 0 0
sion, sincewg has a 2-body cluster contribution from
el (ripl" (riprij- (FViF3). . o .

The contribution of terms in which—k#j in the ex- 0 2F] Fii—Fi
change loop are calleg, and

Fs = 0 FO—F5  2F0 |. (3.19

This matrix operates on the wave function vector:

1 p? .
[UF_3b_eki]: — a %f d3|’ijd3rki|(rki)| /(rki)rki l//ijk:nnp(ri yrj ,rk)
Wik=| Yijk=npn(li rj:1 |, (3.1

S S S
XTr(eMLS(ViFi) FiFiil Wii—prn(T 112710

— e, FSV.FS(FS2—
eFi ViFij (Fic— 1)), (311 where ij=nnp(ri rj.re), for example, is an eight compo-
1 2 nent spin wave function in whichandj are neutrons ank
[ug—3b—cir]=— — §J' A3 APl (rp (1 (P i is a proton. We need to calculate only the 3-neutron and the
m 2-neutron—1-proton cluster contributions in SNM since they
XTr(eijejkM[S(ViFﬁ)Fjsk s ] do not change on interchanging all protons with neutrons.
— e (FSViFS)e;0. (3.12 IV. RESULTS

The results of exact 3-body cluster contributions in SNM
and PNM are compared with those obtained with the CSM in

denominator subtractions ur— 3b. The subtracted terms in Tables X and XI. The FHNC sums include all the contribu-

the above two equations are, in fact, zero: that in Bql1) tions containing central correlations without approximation;

: _ =S however, the 3-body contribution is dominated by spin-
has zero integral over the angle betwegn and V5, isospin correlations. The difference between the exact and

while that in Eq.(3.12 has uncorrelaj[ed nucleok in an  the CSM results is entirely due to truncations in the number
exchqnge Iqop. However, the subtractlo_nS help to reStr'Ct thgf spin-isospin correlations included in the SOC. In SNM the
g?gnealn of integrals overjc andry; which are otherwise 3-body estimate of CSM is larger than the exact result by
' . I . . 44%, 33%, and 22% at o3, 1.0pg, and 1.5y, while in the
The (_equatlons for theq—_:%b contributions are given in low-density phase of PNM it is sr(‘)naller by oOnIy 8%, 6%, and
Aplpelndllx A fa??(; tze Qur_perl\c/al metr;o%s use: for_'éhed r—_:xacll% at these densities. At higher densities the chain diagrams
calculation of 3-bodyyj , Ts., Vijk, andvj; are described N po.ome more important and the CSM becomes more accu-

Appﬁndix B'f i | ; rate. This is rather fortunate because in high-density PNM
The PNM formalism can also be used for SNM. However,i,o ¢yster expansion is not convergent, and one has to rely

the number of 3-nucleon spin-isospin states is 64, and thugy, jntegral equations to sum all of the clusters. The larger
all the F's and interactions are 6464 matrix functions of oo in' CSM in SNM is due to the strong tensor correlations
theri,rj, andr, in this formalism. In PNM they are only 5 t—0s=1 channels. When the tensor correlations are
88 matrix functions. A more efficient way to calculate the g itched off. the 3-body CSM and exact energies are 8.4 and

3-body cluster in SNM is as follows. 7.7 MeV at p,. However, in this case th&,>0, since

__The pair correlations and the interactions can be separatd};cjear matter is not bound in the absence of tensor correla-
into parts that contain and do not contain isospin operators ggns.

The ug diagrams must have at least three nucleoyjs,and
k. There are no 2-bodyr diagrams, and thus there are no

follows: There is a large cancellation between the two terms of the
ES—FO 4 E rop Urbana IXVjj, in SNM. The spin-isospin independent term
TRTRRNKNIE VR is repulsive and CSM estimates its contribution fairly
accurately. In contrast, the Fujita-Miyazawa interacti
. TABLE X. The 3-body cluster contribution frofa® correlations
Fi=fi+ti7o- o+ 1S (3.13  calculated exactly and with CSM for SNM in MeV.
Both F® and F” operate only on the spins and aré<8 0.50¢ Po 1.5,

matrix functions. Innnn andppp clusters,s- ;=1. These

clusters have only eight spin-isospin states, and there contri- Exact CSM Exact CSM  Exact CSM

bL(J)tions are calculated as in PNM usiﬁﬁ +F{j in place of T, -18 -16 -25 -20 —-11 -05
Fij - v§ 57 74 93 111 104 109
Clusters with two neutrons and a proton have three isos—viqj 0.9 0.8 3.2 35 6.3 8.0
pin states denoted bynp,npn, andpnn. In these clusters VE 1.7 1.6 6.3 6.0 13.7 133
we treat theF as a 3<3 matrix whose elements are com- ViT 16 -10 -54 -41 -102 -86
binations of 8<8 matrix functionsF® andF”. For example, TOltal 3b 5.0 72 109 145 19.0 231

the 3X 3 matrix representation df-isj is
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TABLE XI. The 3-body cluster contribution fror® correlations calculated exactly and with CSM for

PNM in MeV.
0.500 Po 1.500
Exact CSM Exact CSM Exact CSM
Ts —-4.2 —-45 -6.3 -6.6 -9.4 -9.3
v 11.8 11.8 17.9 17.8 25.7 25.5
vl 0.3 0.1 1.3 1.3 4.3 3.9
Vit 1.4 1.4 6.6 6.5 16.7 16.3
VipFuA 0.5 0.2 1.4 0.7 3.9 2.9
Total 3b 9.8 9.0 20.9 19.7 41.1 39.4
2po HDP 1.5, HDP 2p,
Exact CSM Exact CSM Exact CSM
T, -8.2 -7.6 -3.1 -4.0 -1.9 -2.8
v 23.2 22.9 14.0 13.7 11.6 11.2
vl 7.3 8.4 5.8 6.6 10.0 13.1
Vit 29.0 28.7 11.4 11.6 21.4 21.7
VierMA 5.6 4.4 -24 -43 -3.6 -5.8
Total 3b 56.8 56.9 25.6 25.0 37.4 38.6

is entirely spin-isospin dependent, and the CSM is less accwill have less than 10% error. However, it is difficult to
rate in calculating its 3-body contribution. Thus the tatgk estimate the error iM\E since there are cancellations be-
expectation value can have a relatively large error in theween the contributions of 4-, 5- arnd5-body clusters.
CSM.

As can be seen from Table Xl, the 3-body cluster contri-
bution increases rapidly with density in the low-density
phase of PNM in which th&/Z7 is repulsive. In the HDP, At present we can calculate the 1-, 2-, and most of 3-body
Vizj’kT becomes attractive and reduces the 3-body contributiosluster contributionsT ¢, E-2b andE-3b+* to the energy of
significantly. The CSM has fair accuracy in evaluating thenucleon matter exactly with realistic variational wave func-
3-body cluster contribution in both the phases of PNM. tions. However, the cluster expansion is not rapidly conver-

We can hope to get more accurate evaluations of the ergent in variational theories of nucleon matter, and it is nec-
ergy expectation value by summing the Fermi kinetic energyessary to use CSM to estimate the rest of the contributions
Te, the 2-body, and the matrix 3-body cluster energiesdenoted byAE. For example, at the equilibrium density, the
These terms are large and are calculated exactly. The remaih-5-body cluster contributions to the energy of SNM are
der, denoted bW E, includes=4-body clusters withF* cor-  22.1,—43.7, 10.8,— 3.4, and 2.6 MeV, while those with
relations and=3-body clusters withv® and/orF®, and is >5 give —0.8 MeV. Of these the first three are now calcu-
estimated with CSM. The variational energies obtained ifated exactly, apart from the small 3-body spin-orbit contri-
this way are listed in Tables XII and XIII. In SNM they are bution (see Table Ill. Then=4-body are approximate CSM
significantly below the results obtained earlier using CSMestimates; they add up te 1.6 MeV.
for all n=3-body (3b) cluster. The new PNM energies are  For some Hamiltonians, such as the present ®pe E-2b
closer to the older results. The approximately calcula&t€&d andE-3b are all comparable to or larger in magnitude than
is relatively small for the sum of Argonngl8+ Urbana 1X
interactions, and if the error iAE is less than 25%the TABLE XIII. Variational energy of PNM obtained with the ex-
accuracy of CSM for 3-body clusterthe calculatedEy’s  act 3-body cluster contribution in MeV. The last column gives the

value obtained with CSM.

V. CONCLUSIONS AND OUTLOOK

TABLE XII. Variational energy of SNM obtained with the exact
3-body cluster contribution in MeV. The last column gives the value P Te
obtained with CSM.

E-2b E-3bFS AE E, EJM

0.500 221 -17.0 98  —-38 111 101
351 —290 209 6.7 203 19.0

Tr E-2b E-3bF° AE E ECSM Po
P F v v 1.500 460 —39.2 412 126 354 334
0500 139 —2509 49 —-22 -93 -71 2po 55.7 —46.2 56.8 —11.2 551 55.0
o 221 —43.7 109 —17 -124 -89 150, HDP 46.0 —31.5 256  —2.8 373 352
1.5, 29.0 —56.2 19.1 08 -73 —33 2poHDP 557 —393 374  —13 525 526
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Ey. For these it is probably essential to calculate Bs8b  include all the FHNC/SOC diagrams summed in CSM.
exactly. The error inEy is then due to that in the CSM '!'he cluster expansion depends sensitively on the Hamil-
estimate ofAE. It is not well known, however, the fractional tonian. For example, the problem of SNM has been studied
error in the CSM estimate okE is likely to be larger than by many groups using the older Argonmé4 interaction

. ; 3 b a0 without any Vjj, . In his classic Brueckner theory calcula-
Lha;[_ll_géreegSM estimate &-3b, which is~33% in SNM at tions, Day[11] obtained an energy of 17.8+1.3 for SNM
0 .

S . . atke=1.6 fm ! or p=1.7%,. The present calculation gives
We obtain significantly more binding for SNM with the a lower energy in this case. The values obtained Tior

present calculations. In the earlier CSM calculations, theE_2b E-3b-F5, andAE are, respectively, 31.9: 61.2, 10.2
SNM Ey*¥(p0) :c;v?A MeV (see Tablle . _Of AR, Th? and—3.2, giving a total of—22.3 MeV. However, the CSM
present value oy ~"(po) = —8.9 MeV, listed in Table Il, is 5 ot very accurate in this case. The estimateEeSh-+FS
higher due to the chain dressings ad_ded to 3-body _diagranwith CSM is 19.0 MeV, too large by a factor of 2. The CSM
with v9. The E(po) = _1c23'8| MeV estimated by AP is 0b- egtimate ofAE could also have a large error in this case. In
tained by adding to th&y>"(po) half the difference of the gych cases it is probably necessary to have complete calcu-

kinetic energies obtained with the Pandharipande-Bethe angtions of 4- and possibly 5-body clusters to obtain reliable
Jackson-Feenbel@8] expressions € —0.6), and a pertur-  estimates of,, .

bative correction € —1.9 MeV) for the limitations of the
present variational wave function. Adding the perturbative
correction to the preseriy(pg)=—12.4 (Table XII), we
obtain E(pg)~—14 MeV, much closer to the empirical The authors thank Dr. M. W. Paris, Dr. S. C. Pieper, and
value of —16 MeV. It now appears possible that accurateDr. R. B. Wiringa for useful discussions and comments. This
calculations of SNM with more realistic interaction models, work has been partly supported by the US National Science
including 3-pion exchange terms i [2], can provide Foundation via Grant No. PHY 00-98353.
adequate binding to SNM.

It is interesting to note that Fabrociat al. [29] also find APPENDIX A: EXPECTATION VALUES OF QUADRATIC
that the FHNC/SOC calculations underestimate the binding INTERACTIONS
energy of 1°0 nucleus by~1 MeV per nucleon, compared
with the energy obtained with the cluster Monte Carlo Interactions containind-? or (L-S)* operators are ex-
method [30]. In the latter method contributions of up to pressed in the form
4-body clusters are calculated exactly, except for spin-orbit

ACKNOWLEDGMENTS

correlations. VAP ) OPL2= (11X V') - X0 1,X V), (Al)
The CSM calculations are computationally simple: it
takes only~10 sec to calculate the SNEY*" on a work- XP,= 2 P(r 1) 0P, (A2)

station operating at-150 MFLOPS. The present calculation
of E,, takes~10 min instead. Using Monte Carlo integration

(L-92%p P(l.S2=(V'. p .
methods, as in the calculation 10 [30], it may be possible v () OTAL-9"=(V'- SXr1)Yi(SXT12- V),

to calculate 4- and possibly 5-body clusters with negligible (A3)
errors usingF*® alone. Such calculations will include the 0 (L-92p 0
leading elementary diagrams, and will be valuable for SNM Yi=v P(r12)O0%,. (Ad)

near equilibrium density, where the contribution>e56-body . .
clusters is estimated to be very small with the presept ~ HereV=(V1—V;)/2 operates to the right on the, while

They will need much larger computational resources, whichY. OPerates to the left on the". TheOP '”2L2 terms can be
are fortunately now available. (L0, 0,)®(1,71- m), while those in L-S) terms can (_)nly
Near the indicated phase transition in PNM, the contribu€ 1 orz;- 7. The X, and Y}, are known matrix functions
tion of >5-body clusters is not small. Here the cluster ex-of I'ip.
pansion does not appear to be convergent. If we defig The V can operate on either the correlation operators or
as the sum of all clusters with n bodies, from Table IX we the plane waves i. For brevity, we define
obtain the CSM estimates &E,=36.2, —0.9, 2.7, and
—6.8 MeV forn=2,3,4, and 5. Fortunately, in this case the VM=MV'=M. (A5)
CSM estimate oE-3b+° of 38.6 MeV is close to the exact ) ] ]
value of 37.4 MeV(Table X). An exact calculation oE-4b ~ On the right-hand, side we use a simple prodbet, and
may not improve the accuracy of the toEs} here, although i
gévll\l/lllprowde an important additional test of the accuracy of V‘I)p=§(k1— K,)Dp. (A6)
It is also necessary to have improved estimates of contri-
butions of clusters withy® and/orFP® for better accuracy of However, theb2V' depends upon the exchange pattern. The
the calculatedE,,. Even though the present estimates ofessential problem in computing these contributions is that of
>2-body contributions of® andF" are rather smallTables  summing over théx; _ » 3in the exchange diagrams. All the
I-IX), these are more approximate. For example, they do natontributions can be expressed as
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21 T2¢=0, A10
%gJ dry; d3ry TrZX, (A7) FK (A10)
1
whereX=D for direct, C for circular exchangeA for e;,, IEK=§r§2k§><(MX M—FSXPFS(F3+F$2-1)),
andB for e;3 ande,; pair exchange diagrams. Eagi can
(A11)
be expressed as
TX= TX A Th A+ TS (ag)  While those for the I -S)? are
KK »
where the subscript§ F, FK, and KK denote terms in TRe=(M-SXr1)) YR, (SXr12-M)

which both, one, and none of the gradients operate on the s s
correlation operators. IRF terms, the sums over momenta —(VFi -erlz)-Yi’z(erlz-VFlz)
ki-123Can be easily zcarried out to obtain Slater functions. X(FR+F2-1), (A12)
The FK terms are zero for the direct amg, diagrams, and
were neglected in the earlier calculations of AP and APR. In
these andKK terms, one obtains derivatives of Slater func-
tions orkZ from sums over plane wave momenta. We give

below theZ for PNM. Those for SNM have a similar struc- 70 _
ture. KK ™ 10

—F§2(S><r12)-Yp (SXTr1p)

72,=0, (A13)
kE(M (SXr12)- YD, (SXrip)M

1. Direct diagrams
In these diagramsb*V’'=®*(—i)(k;—ky)/2. The IP XFiAF53+F35i—1). (A14)
for L2 terms are given by
2. Pair exchange diagrams

Zep=(riu2xM)- X5, (r;pXM)—(rix VF3,) - X4, _ _
In e, diagrams®*V'=®d*(i)(k,—k,)/2. TheZ” for L2

X (rpX VFS)(F35+F5—1), (A9)  terms are given by
|
TRe=e1d 2(r 1) ((r12X M) - XB, (riaX M) — (11X VES,) - XD, (rpX VES,) (F35+FS2—1)), (A15)
Zpc=0, (A16)
TRe=e1a 1A (1)l (1 12) X (M X8, M—F3XRF3(F35+F3i—1)), (A17)

while those for the l( - S)? are
TRe=ed A1) (M-SXr1p)- Y, (SXr1pM)—(VF3, SXr1p)- YA(SXr1y VFL)(F3R+F3R—1)), (A18)
Tpc=0, (A19)

A I(ril"(rsp) p s p s (S2 s2
IKK:elzTX(M (SXT19)-Yip (SXrip)M—F1(SXr1p) Y7, (SXri)F(F3+F31—1)).  (A20)

In e;3diagrams®*V'=d*(—i)(kz—ky)/2. In the following equations, their contribution is doubled to take into account that
of e,; diagrams. The& ® for L? terms are given by

TRe=2e1d 2(r1d (112X M) - X8, (ripX M) =2(r ;X VF,) - XD, (11X VF3)eisFss 12(r ), (A21)
[(rig)l’(rqg) [(riz)l’(ry3)
IEK:el3r—B((rl2XM)XEZ'(rlzxr13)M+M(r12xrlS)XEZ'(rmXM))_T( r1oX VFi,)
XXy (19X 1 1) F— Fiar 12X 119 X0, (112X VFS)))ersF 33, (A22)

054308-11



MORALES, PANDHARIPANDE, AND RAVENHALL PHYSICAL REVIEW C66, 054308 (2002

1 1, .~ A 12(r ra ,
TRk=2e1d 3 Ek|2:|2(r13)+ ZI 2(r13)[1_(r12'r13)2])(M XP, M)—FiX0Fiats Tk ——I”(r13)l(r13)

A " (rya)l(r
><[1—(r12-r13)2]—%1213)[1+ F12°T19) ])913F13- (A23)

while those for - S)? terms are given by

ZRr=2€19 (119 (M-SXr19)- Y0, (SXr15M)—2(VF35, SXryy)- YO,(SX 11 VFS)ed 2(r9Fi3, (A24)
[(rig)l’'(ryz) [(rag)l’(ry3)
IEK:eBr—B((M - SXT 1) YR SXT 1o T M+ M(r 5 S><r12)YE2(S><r12‘M))—r—13
X ((VFS SXT119) YR (SX T 15 119 Fo— Fi(r13 SXr10) Y (SXr 5 VF 2))e13F13, (A25)

1 1
TRe= 10313| 2(r19KEM(SXr19)- YD, (SXr1y) M+ e13| ‘i M (SXryy r19Y%, (SXripria) M]

1 1"(rig)l(r3) 1
—F1A(SXryy)-Yi, (S><r12)F12<10k2 12(r 19 — o, erF st 5 Flz(sxr12 r19 Y SXrip119F3,

( 13)

1"(r 19) — X1(r19)€53F33. (A26)

3. Circular exchange diagrams
The two circular exchangeg,se,, and ese1,, give identical contributions. We calculate thateke;, and double the
result. Ine,se;, diagrams®*V'=®d*(—i)(ks—k;). TheZC for L? terms are given by

IEF=2e23e12|<r13>|<r23>|<r12><r12xM>~(r12><M>—2e2[rlszFiz]-[rlzxVFiz]l<r12>|(r23>|<r13>e13(Fi%—1>,(A27)

[112X MIXE,: [1 12X T gp]l M—— |(( ;) + M X1 ] X [1 X M |((r 133)))

TE=e1d (111 (1)1 (r3)
— 1l (r1)l" (129l (ra) ([F12X VF3]X [115X Fal Fipt+ Fid 11X Fao XDy [11oX VF e Fi3—1),  (A28)

1" (rig)l’ (raa)l(rqo)

2r 13 73

IEK:eZI%elZ( (r12Xr31) - (F12XT29) 11 (F1) (291" (1 12) |X (MXEaM)

( 23)

[14(F1p 729 ]”'(rls)els(':%_ 1),

(A29)

€12 ’ //
—7F§2Xﬁ2Fi2{2r12I (ra)l(rog) + 131 (r12) X [ 1"(rp9)[1— (T 15 T23)%]+

while those for the I( - S)? terms are given by

TEr=26e51 (1)1 (1) (r19[M - SX 115l YL SX 110 M]—2e1d VFS, SX115] Y8 SXT 15 VF, (110l (r 29l (113)

Xey(Fi—1), (A30)
c _ ’( 23) I (r 13)
Tex=—€3 12| [M - SXr 5] Y SXr 1y "za]M ) + M{[ T35 SXr,] YR 1A SXr1p M]—+ Iy 1(ri)1(r3)l(rq3)
+e([VFI, erlﬂYEisxrlz'Fzs]Fi2+ FILSXr, Fzs]Yﬁz[SXHz'VFiz]ﬂ(rlz)"(r23)|(r13)913(|:%_ 1),
(A31)
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17(ri)

r—lz|(r23)|(r13)[s>< F12] Y5 [SXr 5]

M

1 “ “
IEKzze%elZM(l(rlz)l "(rog 1" (r1p)[SXrip rag] YL SXriprg] +

1 s p I,(r]_z) I,(r23) ~ p - ”
_Eelelz [SXr1o] Y7o [SXryo] L [(rag)l(rig)+ s (11 (rq3) | F[SXT12 To3] YT L SXT 15 123] [ 17(r23)
1" (r
- (r2§3)}|(r12)|(r13) 1Xe(Fis—1). (A32)

APPENDIX B: COMPUTATIONAL METHODS

In Sec. Il and Appendix A, the entire 3-body cluster contribution frBfncorrelations is expressed as a sum of integrals
over &(rij ,fjk.ri), Where¢ is a trace of matrices that depend only upgnr;, andr,;. Using spherical symmetry, the
integrals over¢ are reduced to 3-dimensional integrals:

3 3 2 R R’ rij+rik
d=ridori &(rij . F . Ti) =87 . dr;; . drig . ‘drjkg(rij NSPHPOR (B1)
ij ik

The upper limitsR andR’ are obtained from the range of the interaction dpdthe range of correlations. We compute this
3-dimensional integral using a grid withr~0.1 fm. Ther;; is chosen as the-axis andrj in the x-z plane to simplify the
calculation ofv andF matrices.
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