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Rotationally invariant Hamiltonians for nuclear spectra based on quantum algebras
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The rotational invariance under the usual physical angular momentum of t(2)sdamiltonian for a
description of rotational nuclear spectra is explicitly proved, and a connection of this Hamiltonian to the
formalisms of Amal'sky and Harris is provided. In addition, a Hamiltonian for rotational spectra is introduced,
based on the construction of irreducible tensor oper&t®@'s) under sy(2) and the use aj-deformed tensor
products andy-deformed Clebsch-Gordan coefficients. The rotational invariance of th{2 sUTO Hamil-
tonian under the usual physical angular momentum is explicitly proved, a simple closed expression for its
energy spectrunithe “hyperbolic tangent formuld’is introduced, and its connection to the Harris formalism
is established. Numerical tests in a series of Th isotopes are provided.
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[. INTRODUCTION one correspondence between the two sets of irfapshe
generic case in which the deformation parametés not a

Quantum algebrakl—3] have started to find applications root of unity).
in the description of symmetries of physical systems over the Taking advantage of the results of Sec. lll, in Sec. IV we
last yeard4]. In one of the earliest attempts, a Hamiltonian write the eigenvalues of the g2) Hamiltonian as an exact
proportional to the second order Casimir operator {2y  power series im(l + 1) (wherel is the usual physical angular
was used for a description of rotational nuclear speldifa  momentuni. An approximation to this expansion, studied in
and its relation to the variable moment of inertia mo&l  Sec. V, leads to a closed energy formula for rotational spectra
was clarified. However, several open problems remained. introduced by Amal'sky[7]. The study of analytic expres-

(a) Is the sy(2) Hamiltonian invariant under the usual sions for the moment of inertia and the rotational frequency
su2) Lie algebra, i.e. under usual angular momentum, or itbased on the closed formula of Sec. V leads, in Sec. VI, to a
breaks spherical symmetry and/or the isotropy of space? connection between the present approach and the Harris for-

(b) How does the physical angular momentum appear irmalism[8].
the framework of sy(2)? Isthere any relation between the ~ We then turn in Sec. VIl to the study of irreducible tensor
generators of g(2) and the usual physical angular momen-operators under g(2) [9,10], constructing the irreducible
tum operators? tensor operator of rank 1 corresponding to thg(2) gen-

(c) How can one add angular momenta in the(2)  erators. We also define tensor products in thg2)frame-
framework? In other words, how does angular momentunwork and construct the scalar square of the angular momen-
conservation work in the g(2) framework? tum operator, a task requiring the use gfdeformed

Answers to these questions are provided in the preser@lebsch-Gordan coefficienf8]. In addition to exhibiting ex-
paper, along with connections of the,62) model to other plicitly how the addition of angular momenta works in the
formalisms. sy,(2) framework, this exercise leads to a Hamiltonian built

After a brief introduction to the g§2) formalism in Sec. out of the components of the above mentioned irreducible
Il, we prove explicitly in Sec. Il that the §¢2) Hamiltonian  tensor operato(ITO), which can also be applied to a de-
does commute with the generators of(®ui.e., with the  scription of rotational spectra. We are going to refer to this
generators of usual physical angular momentum. Therefordjamiltonian as theu,(2) ITO Hamiltonian
the si(2) Hamiltonian does not violate the isotropy of space  The fact that the g}{2) ITO Hamiltonian does commute
and does not destroy spherical symmetry. The generators ®fith the generators of the usual(8ualgebra is shown ex-
sw,(2) are expressed in terms of the generators @@)sun  plicitly in Sec. VIII. Based on the results of Sec. VIII in Sec.
addition, it turns out that the angular momentum quantumX we express the eigenvalues of the &) ITO Hamil-
numbers appearing in the description of the irreducible reptonian as an exact power serieslifi+1), wherel is the
resentationgirreps of sy,(2) are exactly the same as the usual physical angular momentum. An approximation to this
ones appearing in the irreps of(8y establishing a one-to- series, studied in Sec. X, leads to a simple closed formula for

the spectrum(the “hyperbolic tangent formula); which is
used in Sec. Xl in order to obtain analytic expressions for the

*Email address: bonat@inp.demokritos.gr moment of inertia and the rotational frequency, leading to a
TEmail address: bkotsos@teilam.gr connection of the present results to the Harris formal(i8in
*Email addresses: raychev@phys.uni-sofia.bg and Finally in Sec. XII all the exact and closed approximate
raychev@inrne.bas.bg energy formulas obtained above are compared to the experi-
SEmail address: terziev@inrne.bas.bhg mental spectra of a series of Th isotopes, as well as to the
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results provided by the usual rotational expansion and by thand the dimension of the corresponding representation is the
Holmberg-Lipas formulg 11], which is probably the best same as in the nondeformed case, i.e., (q;zZl +1 for

two-parameter formula for the description of rotational|_ g1

nuclear spectr@l?2]. A discusion of the present results and
plans for future work are given in Sec. XIII.

Il. QUANTUM ALGEBRA su (2)

The quantum algebra g(2) [13-19 is a g deformation
of the Lie algebra s@). It is generated by the operatdrs ,
L_, andL,, obeying the commutation relatiofsee Ref[4]
and references thergin

[LOILt]:iLt! (1)
g2to—q2Lo
[Ly L ]=[2Lo)= ———, @
whereq numbers andj operators are defined by
qx_q—x
[X]=—. 3
a-q

There are two distinct cases for the domain of the deforma

tion parameter(a) g=€e”, 7e R, in which

_ sinh7x 4
" sinh7’ “)
and(b) g=€'", reR, in which
B sin X 5
[x]= sint ’ ®)
In both cases one has
[x]->x as g—1. (6)

If the deformation parameteyis not a root of unity q is
a root of unity in case hif one hasq"=1, ne N] the finite-
dimensional irreducible representatimq) of sy,(2) is de-
termined by the highest weight vectidrl), with

L+||,|>q:0, (7)
and the basis stat¢sm), are expressed as
[I4+m]! m
[l,m)y= m(l-—) 1.1)q. tS)

where[n]!=[n][n—1]...[1] is the notation for the) fac-

3132....
12132
The second-order Casimir operator of,&) is

clo %(L+L_+L_L++[2][L0]2)=L_L++[Lo][|—o+ 1]

=L,L_+[Lol[Lo—1], (13)
while its eigenvalues in the space of the irreducible represen-
tation Di,) are[1][1+1]
CE1my=[1101+11[1,m)q. (12)
It has been suggeste@ee Refs.[4,5] and references
therein that rotational spectra of deformed nuclei and di-
atomic molecules can be described by a phenomenological
Hamiltonian based on the symmetry of the quantum algebra
sy(2),
h2
=_—_cl
H ZJOCZ +Ep, (13
\_NhereC(Zq) is the second order Casimir operator of Etfl),
Jo is the moment of inertia for the nondeformed case
—1, andEj, is the bandhead energy for a given band.
The eigenvalues of the Hamiltonian of E(.3) in the
basis of Eq.8) are then

EM=A[I[1+1]+Eq, (14)
where the definition
ﬁZ
A= — 15
27 19

has been used for brevity.
In the case withp=e", 7e R the spectrum of the model
Hamiltonian of Eq.(13) takes the form

Asinf(l 7)sinh((I+1)7)

E(M=
sink(7)

0 q= eT’ (16)

while, in the case witg=¢€'", re R andq"#1, neN, the

spectrum of the model Hamiltonian of E@L3) takes the
form

Asin(lr)sin((l-i—l)r)

E(M=
Sir(7)

(17)

Eo, g=¢€'".

It is known (see Refs[4,5] and references thergithat only
the spectrum of Eq(17) exhibits behavior that is in agree-

torial. Then the explicit form of the irreducible representa-ment with experimentally observed rotational bands.

tion (irrep) D'(q) of the sy(2) algebra is determined by the
equations

Lo|l,myg=[IFm][1=m+1]]l,m=1),, 9)

Loll,m)q=m[l,m),, (10

[lI. ROTATIONAL INVARIANCE OF THE su
HAMILTONIAN

o(2)

In this section we are going to use both the usual quantum
mechanical operators of angular momentum, denoteld. by
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i i i .1 =

[ _, andly, and theq AdefoArmed onAes, Wh.ICh are relateq to = Z(—1+ \/T4Cz). (26)
su,(2) and denoted bz, , L, andL,, as in Sec. II. In this 2

section we are going to use hats) (for the operators, in

order to give_ emphasis to the distinc;ion between_the OP€rar o action of the operatdr on the vectors of the classical
tors and their eigenvalues. For brevity we are going to CalL)asis is then given by

the operator$. , _, andi, “ classica)” while the operators

L., L, andﬂo will be called “quantum” For the classical

basis the symboll,m). will be used, while the quantum N 1 -

basis will be denoted byl,m),, as in Sec. II. Thereforé |||’m>°_§(_1+ 1+4Co)[1m),

and m are the quantum numbers related to the usual quantum 1

mechanical angular momentum, which is characterized by = S (—1+ VI al(+ 1)

the sy2) symmetry, whilel andm are the quantum numbers 2( L+V1+al i+ D)l mhe

related to the deformed angular momentum, which is char- 1

acterized by the g(12) symmetry. = (= 1+ Y21+ DD m
The “classical” operators satisfy the usual(8ucommu- 2( ( I mhe

tation relations

1
(o fu]= s 0L 012, 18 :E(—1+2I+1)|I,m>c=l|l,m>c, 27

while the finite-dimensional irreducible representatidhof

su2) is determined by the highest weight vectbi), with ~ Where again only the positive value of the square root has
been taken into account.

T.]1,1)=0, (19 In this “classical” environment one can introduce the op-
erators[16,17]

and the basis statésm). are expressed as

[ amy n [T+TO][T—T0+1]?
|I1m>C_ (2|)|(|_m)|(|7) |I1I>C (20) £+ (T+TO)(T—TO+1)I+' (28)

The action of the generators of (8 on the vectors of the
classical basis is described by

[T+T][T—To+1]

. =l : (29
Ll mye=VAFm(I=m+1)|[I,m=1),, (21 (T+Tg)(1-Tp+1)
Toll,m)c=mll,m)c, (22) A
Lo=lo, (30)
the dimension of the corresponding representation being
dimD'=2l+1 for1=0, £, 1,2, 2,....
The second order Casimir operator ofuis where square brackets denat®perators, as defined in Eq.
(3.
~ 1 L. PO S S The action of these operators on the vectors of the classi-
Co=g(Ll+IL)+lg=T_1. +lo(lo+1) cal basis is given by
=T, 1 +1o(1To—1), (23) _
R [T+1I[T=1g+1].
where the symbol 1 is used for the unit operator, while its Lo |l,mye= T (=141 Lol mhe
eigenvalues in the space of the irreducible represent&tlon (I+To)( ot 1)
arel(I+1): - [T+TO]['I‘_'|‘O+1]
Coll,mye=1(1+21)|I,m).. (24) (T+1)(1-To+1)
It is useful to introduce the operatbrthrough the definition XV =m(+m+ [l m+ 1)
&=fl1 o5 ~ il +m+1][1—m]
=1+ D). @9 " N+m+1)(I-m)
Insisting thal should be a positive operator one then has by X AJ(T—m)(I+m+1)[I,m+ 1),
solving the relevant quadratic equation and keeping only the
positive sign in front of the square rof6]: =\[I+m+1][I—m]l,m+ 1), (31
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T+iolli—1 £o .
2 lmy=T [I+1o][1—lo+1] . [Lo,L4]

TN [+ -To+1) = Lov[T=mi(l+m+ 1]t m+ 1)
[I+m][l—m+1]
"NV (+m)(l—-m+1)

|7m>c:202:+||’m>c_Z:+z0||-m>c

“-m>c _2+m||'m>c

=(m+1)y[I—=m][1+m+1][l,m+ 1),

=J(I+m)(I-m+1)

—\II=m][l+m+1]m|l,m+1),

[1+m][1-m+1]
(I+m)(I—m+1)

I,m—1), =(m+1—m)y[I—m][I+m+1]|l,m+1),

=J[I+m][l1—-m+1]]l,m—1),, (32 =L|tmye, (37
and, in exactly the same way,
Z:O“vm>c:TO||vm>c:m||!m>Cv (33 [ZO,E,]|I,m>C=—,73,|I,m>C, (38)

while for the commutator of Eq2) one has

or, in compact form, "o S A
P (2o 2 qlmye=Ls 2 |1, mye— 22 |1, mhe

=L A[T+ml[T=m+1]]1,m—1),

Lo|l,my= \[IF=m][I=m+1]|I,m+1),,

—Z_\[T=m][T+m+1]]1,m+1),
=([1+m][l—m+1]

Lo|l,mye=mll,m),. (34)
—[I=m][l+m+1])|l,m)

. . 5 =[2m]|l,my.=[2Lo]|l,m)c,
It is clear that the operator§, andl. do not commute: [2m]|l,m)e=[2Lo][1,m)c (39
where use of the identity

(2o 000 mye=L. 0 [1,mye—T,Z.[1,me [I+m][l=m+1]-[I-m][l+m+1]=[2m], (40)

=2 NO—m(I+m+1)[l,m+1), which can be easily proved by using Eg), has been made.
We have therefore demonstrated that the operafqrs
L_, andL, satisfy the commutation relations of the,2)

—T VT =m][T+m+1]]1, m+ 1),

_ — algebra. As a consequence, the quantities appearing on the
(VIT=m=1][1+m+2] right-hand side of Eqg28)—(30) are just the realizations of
X J(I=m)(1+m+1) the generators of g(2) in the “classical” basis. Therefore,

from now on we can use the symbdls , L_, andL, in the
place of £, , £_, and L.
X [T=m][I+m+1])[I,m+2),#0. One can also see that the operator

—VJ(I—=m—-1)(I1+m+2)

(€5 C=L_L,+[Lol[Lo+1] (41)

) ) ) ) acts on the vectors of the classical basis as
This result is expected if one considers E2g): The opera-

tor I, does commute with itself and with the operaior Cll,mye=L_L|l,m)e+[Lol[Lo+1]]1,m),
which is a function of the relevant Casimir operator, as Eq. .

(26) indicates, but it does not commute with the operagor =L VII+mill—m+1][l, m+ 1)
as Eq.(18) shows. In the same way one can see that +ImI[m+ 171, m),

=[1+m][l—m+1][l,m)+[m][m+ 1]|I,m),
[Z_ 1111, m)c#0. (36 =[10+ 211 m)e, (42

where in the last step the identity
One can now prove that the “new” operators satisfy the

commutation relations of Eq$l) and(2). Indeed, one has [I+m][l=m+1]+[m][m+1]=[I][1+1], (43
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C{@  which are[1][I+1] [as we have seen in E@2)], in

terms of the eigenvalues (@2, which arel(l1+1) [as we
have seen in Eq24)]. This task will be undertaken in Sec.

of sy,(2), i.e. thatC is the second order Casimir operator of IV.

sy,(2). Indeed, one has

[C.Llm)=CL[l,my—L.CllI,m),

=C\[I-=m][l+m+1]]l,m+1),

~ LI+ 2701 m),
=[H][I +1]\/[I —m][l1+m+1]|1,m+ 1),

—J[I=m][l+m+1][1[1+1]|I,m).=0.
(44)

In exactly the same way one can prove that

[C,L_7I,m)=0, (45)

while in addition one has
[éal:o]“ -m>c: é|:0|| ’m>c_ I:Oé“ vm>c
=[N0+ 2]m|l,myc—m[I][1+21]]1,m).=0.
(46)

Thus we have proved that the operafris the second
order Casimir operator of g(2). We are nowgoing to prove

that the operato€ commutes also with the generatdrs,
_, andl, of the usual s(2) algebra. Indeed, one has

[CT L mye=CI.|I,m—T,.Cll,m),

=CJ(I—m)(I+m+1)|l,m+1),

—TL [0+ 271, m),
=[I[1+21]VA=m)(I+m+1)|I,m+ 1),

—J(I=m)(I+m+ D)[ 1[I+ 1]|1,m+ 1),

=0. (47)
In exactly the same way one can prove that
[C,1_]]I,m).=0, (49)
while the relation
[C.T]l1,m)c=0 (49)

occurs from Eq.(46), sincelL,=1, by definition [see Eq.
(30)]. The following comments are now in place.

(a) The fact that the operat(@, which will be from now
on denoted byC{?, commutes with the generators of(8y

implies that this operator is a function of the second order

Casimir operator of 4@), given in Eq.(23). As a conse-

(b) Equations(47)—(49) also tell us that the Hamiltonian
of Eq. (13) commutes with the generators of the usudRsu
algebra, i.e., it is rotationally invariant. The Hamiltonian of
Eqg. (13) does not break rotational symmetry. It corresponds
to a function of the second order Casimir operator of the
usual s?) algebra. This function, however, has been chosen
in an appropriate way, in order to guarantee that the Hamil-
tonian of Eq.(13) is also invariant under a more complicated
symmetry, namely the symmetry £@).

(c) From the contents of the present section it is also clear
that the irrepD'(q) of sy,(2) and the ireD' of su2) have
the same structure, the relevant states being in a one to one
correspondence to each other. The similarity between Egs.
(34) and (21) and (22) implies that the distinction between
the “classical” basis of the present section and the “quan-
tum” basis of Sec. Il turns out to be unnecessary, as well as
that the quantum numbetsandm can be identified with the
usual angular momentum quantum numbeasd m.

(d) These conclusions are valid in the caseydfeing not
a root of unity, as already mentioned in Sec. Il.

IV. EXACT EXPANSION OF THE su 4(2) SPECTRUM

Let us consider the spectrum of E4.7), which has been
found relevant to rotational nuclear and molecular spectra,
assuming for simplicityfg,=0 and r>0. Since the Hamil-
tonian of Eq.(13) is invariant under si2), as we saw in Sec.

11, it should be possible in principle to express it as a func-
tion of the Casimir operatdC, of the usual s(2) algebra. As

a consequence, it should also be possible to express the ei-
genvalues of this Hamiltonian, given in E{.7), as a func-
tion of the eigenvalues of the Casimir operator of the usual
su2), i.e. as a function of(l+1). This is a nontrivial task,
since in Eq.(17) two different functions of the variablé
appear, while we are in need of a single function of the
variablel (I + 1), which is related to the length of the angular
momentum vector. In order to represent the expression of Eq.
(17) as a power series of the variallig +1), one can use
the identity

sin(l 7)sin((I+1)7)= ;{cos( 7)—coq(21+1)7)}.
(50)

It turns out that the coefficients of the relevant expansion can
be expressed in terms of the spherical Bessel functions of the
first kind j,(x) [18], which are determined through the gen-
erating function

n

(51)

1 - t
;COS\/XZ—ZX = 1)
n=0

ma

guence, it should be possible to express the eigenvalues afd are characterized by the asymptotic behavior
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n

Jn(X)~ Znrn x<1. (52
Performing the substitutions
x=71, t=-27(+1), (53
which imply
x?—2xt=7%(21+1)?, (54)
one obtains the expression
%cos((m D=2 2t
(55)
which in the special case 60 reads
1
—cosT= jo1(7), (56)
in agreement with the definitiofiL8]
100= (57

Substituting Egs(55) and(56) into Eq.(50), and taking into
account thaf18]

) sinx
Jo(X)=——,

” (58)

Eq. (17) takes the form

i (—1"2n)"

) iso  (n+1)! in(DI+1)1HL (59)

Jo

which is indeed an expansion in termsl@f+1).

V. APPROXIMATE EXPANSION OF THE su 4(2)
SPECTRUM

PHYSICAL REVIEW @6, 054306 (2002

G 274
EMD=AlI(1+1)— S0+ + {10+ 1))

6

— gl (+ DY+,

(62

in agreement with the findings of RgB].
One can now observe that the expansion appearing in Eq.
(60) is similar to the power series of the function

2K
S|n2x——(1 COS X) = E( 1)k+ip2k—1____

(2K
(63)
Then, performing the auxiliary substitution
E=\I(1+1), 7=1(1+1)=¢&, (64)
one can put the expansion of E&O) in the form
£ Asinz(rf) _ h? sif(ryI(1+1)) .
L 2 270 7 ' '
(65)

This result is similar to the expression proposed for the uni-
fied description of nuclear rotational spectra by Amal'sky

(71,

(66)

E = sosinz( %\u I+,

wheregq is a phenomenological constanty,t6.664 Me\)
which remains the same for all nuclei, whik is a free
parameter varying from one nucleus to the other.

VI. ANALYTIC EXPRESSIONS BASED ON THE
APPROXIMATE EXPANSION OF THE su 4(2) SPECTRUM

In this section we will consider some analytic expres-
sions, which are based on the approximate result of &,
with the purpose of connecting the present approach to the
Harris formalism[8]. In the study of high spin phenomena
the rotational frequency and the kinematic moment of in-

We are now going to consider an approximate form of thisertia .7 are defined by
expansion, which will allow us to connect the present ap-

proach to the description of nuclear spectra proposed by JE
Amal'sky [7]. For “small deformation,” i.e., forr<1, one ho= 9E" (67)
can use the asymptotic expression of Exf). Keeping only
the terms of the lowest order one then obtains the following 52 9E 1 OE
approximate series 27 ap 28 9E’ (68)
AE —-1)"(27)*" NES (60)  Where{ has been defined in E¢64), and
(n+1)(2n+1)! '

n=1(1+1)=¢ (69)

where use of the identity
From Eqs.(67) and(69) it is clear that the two quantities are
2"(n+D)I(2n+ 1) =(n+1)(2n+1)! (61) connected by the relation

has been made. The first few terms of this expansion are

Jw="hE. (70)
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Applying these definitions to the analytical expression of Eq. A 1 5
(65), one obtains E= 277 (wt)?+ Z(wt)4+ g(wt)6+ . (82
- sin(27¢) :ﬁ_zw The choice of the positive sign gives, correspondingly,
w=A ) (7D
T 27 T
—11t21t45t6 83
py 2ré . e=1-2(ot)"= Te(ot)’= Z(wt)°—--- (83
= T
sin(27¢) and

where the identity A 1 1 5
_na_= 2_ Tt = 6_ ...
E= 2 1 4(wt) 16(oot) 32(wt) )
(84)

sin 2x=2sinXcosx (73

has been used. Using the expressionsEdfor which we

drop the superscript and subscyipndw given in Egs.(65) It i_s clear that_ Eq(82) corresponds tde increasing as a
and(71) one can easily verify that function of w, while Eq.(84) corresponds t& decreasing as

a function of w. Therefore only the first solution can be
relevant to the description of nuclear rotational spectra.

: (74 We are now trying to find a similar expansion for the
kinematic moment of inertig7. Using Eq.(76) one can re-

where use of the identity of Eq73) has been made. Defin- Write Eq.(71) in the form

jowz—El 72E
2 A

'ng wt=sin(27¢). (85)
2
- %Ezsinz(rg), (757 Then Eq.(72) gives
J 27€ B arcsin wt) 86
_hT 27, Jo sin278) ot (86)
t= K = T 7, (76)
Then using the Taylor expansi¢h8]
wheret is a constant possessing dimensions of time,(E4). _ 1 1.3x5 1.3.5x
takes the form arcsik=x+ =+-——+-———+---, (87
23 245 2467 '
(wt)2=4e(1—¢)=4e—4e. (77)
one obtains
This expression can be considered as a quadratic equation for 7 L 3 .
e, allowing us to express as a function oiwt. Indeed, one gt 2, 2, a4, 2 6,
finds 7 1+ 6(wt) + 4O(wt) + 112(wt) +.... (89
1 Using Eqs.(70) and (76) one finds from this result that
e==(1*J1—(wt)?). (79 9 Eas.(70) (79
2 J o1 1 3
=(l+1)=w7=5=| ot+ (wt)*+ —(ot)®
Using the Taylor expansiofi8] ¢ ( ) “h 20\ ? G(w) 40(w)
1 1.3 1.3.5 5 )
T2 Ty 2 3y... +—=(wt) +--- . (89
(1+x) 1 2x+2_4x 2-4-6X +. 112
—1<x=<1 (79 The expansions appearing in E¢82) and(89) are of the
form occurring in the Harris formalisi8]:
one obtains
1 2 4 6 8
1 X 1 . 5 ] E=E0+§(Jow +3Cw"+5Dw°+7Fw®+- - ),
=5 1_(1 2(a)t) 8(wt) 16(wt) )) (90)
(80)
_ o V(+1)=Tow+2Cw3+3Dw’+4Fw '+ -, (91)
The choice of the negative sign then leads to
the main difference between the two formalisms being the
1 1 S fact that in the case of Harris the coefficients of the various
_ = 24— 4, = 64 ...
&= 4(wt) * 16(wt) * 32(wt) L (8D terms in the series are independent from each other, while in
the present case the coefficients in the series are interdepen-
which, through Eq(75), gives dent, since they all contain the constantt should be no-
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ticed at this point that the Harris formalism is knoyi8] to 1
be equivalent to the variable moment of ineitév!) model Jo=m(q LiL_—q 'L_L,)
[20]. The similarities between the g2) approach and the
VMI model have been directly considered in Rig]. 1 .
= 7(aL-L—a7 i L) +[2Lo]

VIl. IRREDUCIBLE TENSOR OPERATORS UNDER su 4(2) .
_ _ o (9—q )

A different path toward the construction of a Hamiltonian = 5| [2Lol+ T(L—L+ +LiLo)
appropriate for the description of rotational spectra can be
taken through the construction of irreducible tensor operators 1 .
under sy(2) [9,10]. In this discussion we limit ourselves to = m{Q[ZLo]JF(q—q )LL)}
real values ofy, i.e., tog=e", with 7 real, as in Refd.9,10].

An irreducible tensor operator of rarkis the set of X 1 L1y, ()
+1 operatorsT® (x=k,k—1k—-2,...,—k), which sat- = m{q[ZLo]Jr(q—q )(CV—[LollLo+1D)},
isfy with the generators of the g(2) algebra the commuta-

tion relations[9,10] (101
[Lo, TW]=«T(, (920  while the Hermitian conjugate operators are
(L, Ti0ge= VKT allkEa+11T{%. g7, (93) Q)t=-q 8, (_pT=-qd,, <Jo>*=a(01.02)

whereq commutators are defined by

It is clear that in the limitg—1 these results reduce to the
[A,B]q«e=AB—q“BA. (94)  usual expressions for spherical tensors of rank 1 und@y,su

formed out of the usual angular momentum operators

It is clear that in the limig— 1 these commutation relations

reduce to the usual ones, which occur in the definition of . .

. . L, L,+iL L. Ly—iL

irreducible tensor operators under(2u It should also be j, = ——=_ X Y 3 —— "% ¥ 3|

noticed that the operators V2 V2 V2 V2

(103
RO=(—1)%q (T )T, (95)
G)t=-3_, Q)'=-3., o'=3. (109
where T denotes Hermitian conjugation, satisfy the same ’ B ° °
commutation relation$92) and (93) as the 0perator§(kf‘,)<, The commutation relations among the operatars,.
i.e., the operatorB(®. also form an irreducible tensor opera- 3., J, can be obtained using Eq&9)—(101), (96), and

tor of rankk under sy(2). _ (97), as well as the fact that from E¢L) one has
We can construct an irreducible tensor operator of rank 1
using as building blocks the generators of(R). This irre- _ _ n
ducible tensor operator will consist of the operatdrs, , [Lobi]=Li=Lob=L(Lot D=T(Lo)L
J_4, andJy, which should satisfy the commutation relations =L, f(Ly+1), (105
[Lordm]=mdn, (%6 [LoL J=—L =Lol =L (Lo~ 1)=F(LoL_

[Le Imlgn="[1Fm][2Em]Ip. 197", 97) =L_f(Lo—1), (106
which are a special case of Eq€2) and (93), while the  \heref(x) is any function which can be written as a Taylor
relevant Hermitian conjugate operators will be expansion in powers of. Indeed, one has

Gm =(=1)"g"™ (98)

1
[Ji1.do]=— \/t(q_LOL+Jo—JoCI_L°L+)

which is a consequence of E®5). It turns out{9,10,2] that [2]

the explicit forms of the relevant operators are

1
=——=—=(L4Jo—JoL)g to7*

1
Ji =———=q ‘oL, 99 V2]
- = —Loy—Lo—1— _ q—2Lp+1
TN o ﬁﬁJ“q q q Jit,
N . (107
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1 Analytic expressions for severaj-deformed Clebsch-
[J_1.d0]=—==(q "oL_Jo—Joq ‘oL_) Gordan coeffipients, as well as their symmetry proporties,

V[2] can be found in Ref49,22]. Using the general formulas of
Refs.[9,22] we derive here the Clebsch-Gordan coefficients

1 . o i :
= (L_Jp—JoL_)q ‘totl which we will immediately need:
V2]
_ 1 ~Loy—Lo+1_ y—2Lg—1 (111911 4=q E, <1011Ijll>q=—q’l E, (113
N [2]3-19 "oq =q J 1, [4] [4]
(108 ) \/ﬁ
L (101-1]1-1)=a\ 77
[J+1,J71]=—m(q‘L°L+q‘L°L7—q‘LOqu‘L°L+)

1 1-1101-1)y=—q /2 11
:—m(q_2L0+lL+L_—q_ZLO_lL_L+) < q >C|_ q [4]! ( 4)
gLl —g i L) 2] [2]

[2] o o (11-11106= \7z (1-114104=— \57
=—q 2-0J,, (109 >

or, in compact form, (101010)g=(q—q~ 1) [ar (115

[Ji1.do]=—q 21y, q, , _—
Using the definition of Eq(112), the Clebsch-Gordan co-
J .. J.]=q o137 efficients just given, as well as the commutation relations of
[J-1,d0]=4 11 .
Eq. (110, one finds the tensor products
[J41,d-1]=—q 2 0J,. (110

. J@ 1M =(111011) 144 1Jo+(101111)1/4d0J
In the limit g—1 these results reduce to the usual commu-[ 1= q 119130 1 119301

tation relations related to spherical tensor operators under [2]
su2): = m{q J11J30—0aJdod 11}
[‘]+!J0]:_J+! [‘]—!‘]O]ZJ—! [‘]+l‘]—]:_J0' [2] 1 ol
(111 = m{q (Jod11—a 70" 1) —qdod 1}
It is clear that the commutation relations of HG10) are B
different from these of Eqs(l) and (2), as it is expected = 1 /_{(q*l_q)Jo_q*ZLo}JH
since the commutation relations of E(L11) are different [4]

from the usual commutation relations of(8y given in Eq.

(18). =- \/E{q’“0+ (=aq HIHs1, (116
One can now try to build out of these operators the scalar [4]

square of the angular momentum operator. For this purpose

one needs the definition of the tensor product of two irreduc: (1) _ T

ible tensor operators, which has the fof#10,21-23 [J®3]3,51=(101-1[1 - 1)14d0d -

+(1-1101-1);,, 1o

() g(M7(La) — i i i (@ g
[A®B ) ]im _mlzmz (F1maj 2moljm) gAY B, - _ @{ 13,011y
(112) [4] q ov-1 q —-1vY0
One should observe that the irreducible tensor oper&fits [2] o
() . . @ =V iala edo1—a(Jed_1+q 20" )},
and sz , which correspond to the deformation parameter [4]
are combined into an irreducible tensor opera[@tf‘l‘)

(2]~ _ _
xB{P]{P, which corresponds to the deformation param- = m{(q =) do—qp

eter 14, through the use of the deformed Clebsch-Gordan
coefficients(j ;m;j,m,|jm)y, which also correspond to the

=—\/E{ A CR NN (117
deformation parameter ¢/ [4] q a-q o5 -1,
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[303]1{"=(111-1]10) 143 1 1J 1
+(1-11310) 1531341
+(101010)14(Jo)°

2
_ \/%{Jﬂa_l—J_mﬁ(q‘l—qxao)z}
[2
) %ﬁ{—Q‘ﬂﬂh—{q—q‘lﬂsz}

2
=- \/%{q‘ﬂw(q—q‘luo}%- (118

PHYSICAL REVIEW @6, 054306 (2002

[J2Jd]fd=— \/%{q“wq—qlwowm

__ 2 P
= 2720 m=0:1

(119
where, by definition,
Z=q %o+ (q—q"HJp. (120

One can now prove that the operafbis a scalar quantity,

We remark that all these tensor products are of the generaince it is a function of the second order Casimir operator of

form

Z=q *o+(q—q HJp

(=g~ b

=g 2oy — — ~
a [2]

sy,(2), given in Eq.(11). Indeed, one has

{ar2Lo]+(q—q H(CP—[LollLo+1])}

1
=q 2o+ a{a(a™o-q 9 +(q - H*CE —(ato—q o) (gt g o)

1
=q72Lo+ m{qZLOJrl_q72Lo+l_q2L0+l+q+qfl_q72Lofl+(q_qfl)2C(2q)}
—-2L 1 -2L -1 -1 -1\2¢(a)
=q ot ppimaTe@ta ) H(ata ) (a-a e
_ _ (9—q™H? (q—q~H?
=q 2o—q o+1+ ——CW=14+ ———Cl, 121
|
or, in more compact form, simir C{¥ of sy,(2), which commutes with the generators
(q—q 12 L., L_, andLq of sy,(2), andtherefore does not affect the
Z=q 2o+ (q—q HJy=1+ c{®, (122  commutation relations of Eq$96) and (97).

[2]

Since Z is a scalar quantity, symmetric under the ex-

changeq—q ! (as one can see from the last expression

appearing in the last equatiprEq. (119 can be written in

the form
J I 1213 /[2]
el — 4 [ETm S A 1€ ) L T
Z®Z} (2] Z =[J'®J im [4]Jm,
1m

(123

where, by definition,
m=+1,0-1. (124

It is clear that the operatotk, also form an irreducible ten-
sor operator, sinc& is a function of the second order Ca-

The scalar product of two irreducible tensor operators is
defined ag§10,24

(AJ(Q) . BJ(Q))(I/Q): (— 1)*] . /[Zj + l][Aj(q)X BJ(CI)]&/)Q)

=2 (=9 "ARB{L,. (129

Substituting the irreducible tensor operatdgsin this defi-
nition we obtain[10]

(3-9) 40 = —[3][3x 155"
Z%-1
(a—q~H?’
(126

_ - 1\2
2 @, 979 )7
[2]?

=121 (CEV)?=
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where in the last step the identity

—1=(Z—-1)(Z+1)

_(@-a7h? (a-g°h?
(2] [2]

has been used, obtained through use of @@2. In the

c| 2+ c@|, (@127

same way the irreducible tensor operatd}sgive the result

1-772

(J'.J')(llq):—__
(a—q™H?

(128

We have therefore determined the scalar square of the angu
lar momentum operator. We can assume at this point that th
guantity can be use@ip to an overall constanas the Hamil-

tonian for the description of rotational spectra, defining

1-272
H:A(q—q‘l)z' 129

whereA is a constant, which we also write in the form
ﬁ2
A= — 130
27 (130

for future reference.
The eigenvalue$Z) of the operatoZ in the basigl,m)

can be easily found from the last expression given in Eg.

(122, using the eigenvalues of the Casimir opera®? in

this basis, which argl][1 + 1], as already mentioned in Sec.

(a—q1)?

(Z)=1+ ——57— 2]

( 2|+1+q—2l—1)

[101+11=5;

—_([21+2]-[2I)). (131)

[2]

The eigenvalues((J-J)M) of the scalar quantity X
-J)(¥@) can be found in a similar manner from E34.26)

1\2
(3:2)00)= = [I][l+1]+w[l]z[l+l]2
2121+ 2
=%=[|]q2[|+11q2, (132
where, by definition,
2X _ ~—2X
[X]q2= % (133)

PHYSICAL REVIEW C 66, 054306 (2002

Finally, the eigenvalue@H) of the Hamiltonian can be found
by substituting the eigenvalues affrom Eq. (131) into Eq.
(129,

[2]?
E:<H>:A(q_q71)z _(q2|+1+q—2|—1)2
A 1 L cositr 3
~Aasintr |1 cosR((2i+ ) 97€
(134
xg/here in the last step the identities
a—q =2sinhr, [2]=qg+q '=2coshr, (135
g? l+q @ 1t=2costi(21+1)7), (136)

which are valid in the present case @fe” with 7 being
real, have been used. In the same way one sees that

cosh(21+1)7)
coshr '

()= (137)

The following comments are now in place.

(@) The last expression in E¢132) indicates that the ei-
genvalues of the scalar quantity-J)*® are equivalent to
the eigenvalues of the Casimir operator of(®) (which are
[I[1+1]), up to a change in the deformation parameter
from q to g°.

(b) From EQq.(13)) it is clear that the eigenvalues of the
scalar operatoZ go to the limiting value 1 ag— 1. There-
fore, one can think oZ as a “unity” operator. Furthermore
the last expression in E¢L31) indicates tha{Z) is behaving
like a “measure” of the unit of angular momentum in the
deformed case.

VIIl. ROTATIONAL INVARIANCE OF THE su
HAMILTONIAN

«(2) 170

In this section the notation and tools of Sec. Il will be
used once more. We wish to prove that the Hamiltonian of

Eq. (129 commutes with the generatots , 1_, andi, of
the usual s(2) algebra, i.e., with the usual angular momen-
tum operators. Taking into account E{.22) we see that
acting on the “classical” basis described in Sec. Ill we have
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(q—q 1?2
[2]

_~—1\2
1+glé%—LU]n+1]

Z|l,my=| 1+

& t.m.

[I,m).

Then, using Eq(129), we see that

PHYSICAL REVIEW @6, 054306 (2002

F|||,m>czm 1—? |I,m>c
(138 _ A
(q—q 1?2
X[ 1 ! [I,m)
[ (q-q 12 2| M-
(1+T[|][|+1]
(139

Using this result, as well as EQ1), one finds

(ATl mye=HT |1 m)—T AL m)

1

=AJ(I—m)(I+m+1)[l,m+ 1)~ 1, — —— 5 | |1, m)e
(q—q1)? (g—q %)
1+__T5T__“Hl+l]
A ! Ja—m)(I+m+1)[l,m+1)

= i —q 1?2 2 -m m Mt L)e

(@=a) 1+£&T2T__“Hl+lﬁ

1
—J(I=m)y(I+m+1) — ——13 5 | [1,m+1).=0. (140
(a-g7? g 99 [g] S+

In exactly the same way, using Eq21) and(139), one finds

that
[H.I_][1,m)=0, [H.Io]ll,m).=0.

We have thus proved that the Hamiltonian of E#29) is
invariant under usual angular momentum. This result is ex-

[A,3,.71,m)e=0, [H,I_][I,m)=0, [H,Io]ll,m).=0.
(143

(141)  Then from Eqgs(124) and (138 one furthermore obtains

[H,3.7]1,m)¢=0, [H,JI],m).=0, [H,I5l,m).=0.
(144

pected, since the Hamiltonian is a function of the operﬁtor

which in turn[as seen from Eq122)] is a function of the
second order Casimir operator of68), C{¥, which was

proved to be rotationally invariant in Sec. lll.

Since the Hamiltonian of Eq129) is rotationally invari-

ant, it should be possible to express it as a functior@@f
[the second order Casimir operator of 3. It should also

IX. EXACT EXPANSION OF THE su 4(2) ITO SPECTRUM

Since the Hamiltonian of Eq(129 is invariant under
su2), as we have seen in Sec. VIII, it should be possible to
write its eigenvalueggiven in Eq.(134)] as an expansion in
terms ofl (1+1). This is a nontrivial task, since in E¢L34)

a function of the variablé appears, while we are in need of

be possible to express the eigenvalues of the Hamiltonian a function of the variablé(l +1), which is related to the

Eqg. (129 as a function of (1+1), i.e., as a function of the

eigenvalues of>,. This task will be undertaken in Sec. IX.
For completeness we mention that using E@&l) and o

(139 one can prove in an analogous way that

[H.LLLmye=0, [H,L_]|1,m)=0, [H,Lolll,m)=0,
(1

i.e., that the Hamiltonian of Eq.129 commutes with the
generators of )(2) as well. Then from Eq(103) it is clear

that, in addition, one has

length of the angular momentum vector. For this purpose it
turns out that one should use the Taylor expan§idj

22n(22n_ l) an inil

tanhx= >, @

n=1

* 22n+2(22n+2

42)

_1)an+2 on+1
(2n+2)! '

n=0

T
XI<%

5 (149
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where B,, are the Bernoulli numbergl8], defined through non
the generating function 22=(4x+1)72, =72 k)22kxk, (154
k=0
*© n
X _ > an_, (146)  (the latter through use of the standard binomial formula
e—1 n=o Nl from Eq. (148 one obtains the expansion
the first few of them being 1 _ 1
2 4 2
el 1 : 1 o 1 cosh”((2/+1)71) cosh*z
0~ 4 1__5! 2_61 4__3_01 _i 22"+2(22"+2_1)32n+2 .
TA& T emlent2)
Bg= ! Bg= ! Bio= >
6—4_2, 8 %, 10—6_6, ey _ E 22n+2(22n+2_1)32n+2 .
n=0 (2n)t(2n+2)
B,,.1=0 for n=12,.... (147 b ~
aﬂ
From Eq.(145 the following identities, concerning the de- m
rivatives of tantx, occur: x>, ( k>22k x*
k=0
bn,k
(tanhx)’ = =1—tantfx
coslfx e » )
= n bn .
o 22n+2(22n+2_1)82n+2 ) nZO “ ]CZO A
= n
20 anizntz) < (148 (155
The double sum appearing in the last expression can be re-
tanhx)" = _Ztanhx _ sinhx arranged using the general procedure
( ~ “cosix  “costx
*© 22n+4(22n+4_1)82n+4 « n
— 2n+1 S= b k
& T eniienta X - 149 2, @n 2y brix
From these equations the following auxiliary identities oc- =agboo+ai(biotbiix) +as(bytbyxtby?)
cur: +as(bygtbyx+byx®+byx®)+ .-
sinhx 1 =(aobootabiptazbytasbspt---)
=— 2—(tanhx)”
X COSﬁX X + (a1b11+a2b21+a3b31+a4b41+ e )x
T p2n+3(q_p2n+dp +(abptashbytabytashs,+ - )x?
_ 2(+1 e l:n+4X2n’ (150) 2822 3¥32 442 5752 )
=0 (2n+1)I(2n+4) +(ashyyt byt asbss+aghgt - )X+
1 * 22n+4(1_22n+4)82n+4 * * *
=1— = 2n+2 = ayby 1 x"= cpx”y
tanffx=1- o 2 mipianta < 2| 2, b 2,
(151) g
The expression for the energy, given in E§34), can be put (156
in the form where
E [costfr-7?| 1 1 1 ” -
A sinttr | (27)? | costtr cost((21+1)7)) Cn= Zn akbk,n=k§=lo 3n+kn+icn - (157
(152
, Applying this general procedure in the case of Ekp5 we
Denoting obtain
z=(21+1)7, x=I(1+1), (153 o
! 1 > X" 158
which imply cosR((21+1)7) cosRz i S (199
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where

z an+kbn+k,n

2n+2k+2792n+2k+2 _
2 (2 1)BZn+2k+2 72n+2k

fr=r (2n+2k)!(2n+2k+2)
n+k
2
x( n )2”

22n+2k+ 2(22n+2k+2

1)Bon+ok+2
2n
=(27) 20 (2n+2K)1(2n+ 2K+ 2)

n+k
x( K, (159

n

The first term in Eq(158) is

o 2k+2/~2k+2__
:E 2 (2 1)BZK+2 2k _ . (160)
k=0 (2k)!(2k+2) cosHr
Then one has
1 1 1
(27)% | cositr cost((21+1)7)
1 & R
= — c Xn: c Xn+1
(27_)2 nZl n (27_)2 z n+1
=> dx"*1 (161)
n=0
where the coefficientd, are
1 (—1"2n)"
= (2772 Chni1= TEE fo(7), n=0212...,
(162
with
fo(m)=(—1)""1(27)"(n+1)!
o 22n+2k+4(22n+2k+4 1)82 okt
n
go (2n+2k+2)!(2n+2k+4)
n+k+1
2k
( nt1 )T . (163
Forn=0 one has
7 2%k+4p2k+4_1)B sinhr
fO(T)Z—E ( ) 2k+4(k+1)7’2k: ,
k=0 (2k+2)!(2k+4) 7coshr
(164

where in the last step Eq150) has been used. It is worth

noticing that

PHYSICAL REVIEW @6, 054306 (2002

1d\"
fn<r>=<—1)“r“(;d—7) fo(7). (165

With the help of Eqs(161) and (162), the spectrum of Eq.
(152 is put into the form

E

A

fa(m)(1(1+1)" ",
(166)

(n+1)!

TZCOSFFT) ” (=1)"2n)"
sinfr /n=o

sincex=1(I+1) from Eq.(153. It is clear that Eq(166) is
an expansion in terms ofl +1), as expected.

X. APPROXIMATE EXPANSION OF THE su ¢(2) ITO
SPECTRUM

In the limit of | 7/<1 one is entitled to keep in E¢163
only the term withk=0. Then the functiorf,,(7) takes the
form

. (T)—> (_ 1)n+122n+2(22n+4_ 1)an+4 Tn
n )

(2n+1)!(n+2)

(167)

where the Bernoulli numbers appear again and use of the

identity

(2n+2)!=2""Y(n+1)I(2n+ 1)1 (168

has been made. Taking into account the Taylor expansions

x3 x5 N

sinhx= X+§+§+ , coshx= 1+§+E+
(169)

and keeping only the lowest order terms, one easily sees that

Eqg. (166 is put in the form

g 22n+4(1 22n+4) an+4

n=o (2n+2)1(2n+4) (T)Zn(l(l+1))k+1,

(170

where use of the identity of Eq168 has been made once
more and use of the fact that

r2costtr

mw for |7]<1

(177

has been made. Comparing this result with Etp1) and
making the identifications

x=2mJI(I+1)=27¢ &=4I(1+1), (172
Eq. (170 is put into the compact form
A
E~ 2 tanff(27yI(1+1))= 2 )2 tantf(27¢),
g=¢e". 173

The extended form of the Taylor expansion Bfis easily
obtained from Eq(170):
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21 a2 2_ 3
E~A|(|+1)—2(2T)Z(|(|+1))2+g(zr)4(|(|+1))3 s(1-e)’=(1-g)s’=x=s'~s"=x. (183

From Eq.(18)) it is clear that
2
— 3200+ 1) -, (174 e(w=0)=0, (184)

Equation(173) will be referred to as the “hyperbolic tangent which immediately implies

formula. s(x=0)=1. (189
XI. ANALYTIC EXPRESSIONS BASED ON THE One can now try to expresg(X) as a power series iR,
APPROXIMATE EXPANSION OF THE su 4(2) ITO having the form
SPECTRUM
s(x)=1+a;x>+ax3+agx*+ .- .. (186

We are now going to derive analytic formulas for the
rotational frequency» and the kinematic moment of inertia Eor a series of this form one can use the fact #36x) is of
J, based on the approximate expression for the energy giveihe form[18]
in Eq. (173). From Eqgs.(67) and (68) one immediately ob-
tains S2(X)=1+byx+bx2+bgx3+ - - -, (187

JE A sinh(27¢) where the coefficientb,, are given by the recursion relation

A
tanh(ZTé)(l tantf(27¢)),

@79 7 cosR(276) L
(79 bn:ﬁZ (3k—n)ab,_, n=1, by=1, (189
B2 OE 1 0E A sinh27d) 1
2j 377 2¢ 05 27¢& cosR(27¢) as well as the fact that’(x) is of the form[18]
A 3 = 2 3 . ..
2 tanh278)(1—tan(2r¢)), (176 S (X) =1+ CiX+CoX“+CaX°+ - - -, (189

" 21¢

where by definitiony=1(1+1)=¢2, as in Eq.(69). Using
the expressions foE and w given in Egs.(173 and (175
one can easily verify that

where the coefficients,, are given by the recursion relation

n
E (4k—n)a,ch_x, Nn=1, co=1, (190

2 2 2
jozw =E( _ (2: E) ’ (177  the explicit form of the first few coefficients being
b]_: Zal, C1:3a1, (191)

where use of Eq(15) and of the identities
b,=a’+2a,, c,=3(aj+ay), (192

1
coshx—sintPx=1, —ﬁ=1—tanh’-x, (178 s
COSITX b3:2(a1a2+a3), C3:a1+ 6a1a2+ 3a3, (193)

has also been made. Defining b,=a2+2a,a;,+2a,, C,=3(aa,+ai+2a,a,+ay,),

(27_)2 (194)
e= (179
bs=2(a,az;+ajas+as),
_ f%" _ % . (180) cs=3(a,a5+ajag+2aa;+2a;,a,+ag). (195

The coefficients in Eq(186) can now be determined by
wheret is a constant having dimensions of time, E&j77)  considering Eq(183 written in the form
takes the form
$2(x) —S3(X) =d X+ dx2+dgx3+ - - - =x, (196
(wt)?=g(l—¢g)’=e—2e%+¢°. (181
which implies that

From this equation one can determin@s a function ofwt,
in the following way. One can define d;=1 and dy=d,=dz=...=0. (197

s(x)=1—¢e(X)=e(x)=1—s(x), x=(wt)?. (182  The first few coefficients in E¢(196) are then

Then Eq.(181) takes the form d,=2a;—3a;=—a;=1l=a;=—1, (198
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d,=(aj+2a,) —3(aj+a,)=—2—a,=0=a,=—2,

(199
dy=2(a,a,+ay) — (ad+6a,a,+3a3)

= —7—a;=0=az=—7. (200

By this procedure one obtains
S(X)=1—x—2x2—7x3—30x*—143°— ... (201

and
g(X)=1—s(X) =x+2x>+7x3+ 30x*+ 1435+ - - -,

(202

which, using Eq(182), takes the form

PHYSICAL REVIEW @6, 054306 (2002

= _ A ((wt)2+2(wt)*+ 7(wt)8+ 30 wt)®
(272" (27?

+143 wt)10+ .. .). (209

On the other hand from Eq176) using Eg.(15 one
obtains

J 27 _arctanli\e)

Jo tanh276)(1—tanf(276))  Je(1-s) '
(210

where, in the last step, E(QL79 has been taken into account.
In the case of &2e<1 (which guarantees that the Taylor
expansion of arctankfe) is possibl¢ one can use the expan-
sion[18]

=(wt)?+2(wt)*+7(0t)®+ 30 wt)®+ 143 wt)*° o oxentl
s(w)=(wt)+2(wt) (w)*+ 30 wt) Tot) arctanx= >, . Ixl<1. (211
b (203 i=o 2n+1
It is clear that this expression corresponds to a real root ohn addition, the following expansion holds:
the cubic equation of Eq181), which is of the form 1 %
=D, x*"  |x|<1. 212
g3+ e+ fe+1y,=0, (209 1-x° n§=:0 X (212
with Using the general resulii8] that the series
fo=—2, fi=1, fo=—(wt)2 (205 Si(X)=1+ax+ax>+agx3+--- (213
Using the standard way of solving a cubic equafib8@] one and
has $(X) = 1+ byx+ box2+ bgx3+ - - - (214
g= %fl_ éfgz — % (206  can be combined into
I PO IO DU SR 5300 =81(0)82(0) = 2, cpx", (215
—g( 1f2— o)_2_7 2—5(0)0 9 (207
with
while the discriminant is
n
1\2 (12 Ch= 2, aby (216
—~3 2| 2 T | k=
D=g°+h (2((0'[) 9) (27) 0
2\ /1 4 from Eqgs.(211) and (212 one obtains
== — 2 __
( 5 (wt) 27) ( 5 (wt) 27) (208
arctanhx 1 - 1 =
One obtains three real roots whén<0 [i.e., when 4/27 — 12 > 2n+1x2" DR
<(wt)?<8/27], while forD>0 [i.e., for (wt)2>8/27 or for "0 , ":O\b/
(wt)?<4/27] one has only one real root. In the case of rota- a, !
tional spectra it is clear that we are interested in the region o
including w=0, i.e., the relevant region is <Q(wt)? _ E 2 2<1
<4/27, in which only one real root exists. Using the standard = I
procedurd 18] one can write in this case the explicit form of (217
the real root, expand the square and cubic roots appearirbg_ h
there, and verify that the Taylor expansion of the root is of it
the form given in Eq(203). n n 1
Using Egs.(179 and (203 one finally obtains the expan- c.= ab. L= 218
sion of the energy in terms of powers of " Z K-k kZO 2k+1’ (218
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TABLE I. Parameter values and quality measur¢Eq. (226)] for models I[Eq. (17)], I" [Eq. (65)], II
[Eqg.(139)], I [Eq.(173)], Il [Eq.(224)], and IV[EQ.(225], obtained from least square fits to experimental
spectra of Th isotopetshown in Tables Il and I)l Data have been taken from Ref&5] (*?%Th), [26]
(?2°Th), [27] (?25Th), [28] (??8Th), [29] (?%°Th, 232Th, 2**Th). TheR,=E(4)/E(2) ratio for each isotope is

also shown.
222Th 224Th 226Th 228Th 230Th 232Th 234Th
R4 2.399 2.896 3.136 3.235 3.271 3.283 3.308
Model |
A (keV) 12.577 11.855 10.047 8.873 8.149 7.437 7.845
107 4.857 5.527 4,701 4.507 3.512 3.141 3.312
o (keV) 154.213 38.135 26.404 11.601 17.074 26.700 10.839
Model 1’
A (keV) 12.582 11.861 10.052 8.876 8.150 7.438 7.847
1077 4.858 5.528 4.702 4.508 3.512 3.141 3.313
o (keV) 154.210 38.134 26.403 11.600 17.074 26.700 10.839
Model Il
A (keV) 13.797 12.253 10.289 8.988 8.261 7.559 7.928
107 2.156 2.229 1.858 1.728 1.351 1.218 1.260
o (keV) 125.815 32.420 21.631 9.582 13.585 21.724 8.204
Model II'
A (keV) 13.792 12.247 10.286 8.986 8.260 7.564 7.927
107 2.155 2.228 1.858 1.727 1.351 1.220 1.260
o (keV) 125.815 32.420 21.631 9.581 13.585 21.730 8.204
Model IlI
A (keV) 11.928 11.602 9.884 8.793 8.067 7.350 7.785
10°B (keV) 0.703 0.977 0.616 0.525 0.291 0.210 0.253
o (keV) 173.357 42.528 30.137 13.238 19.912 30.710 13.026
Model IV
10 2a (keV) 13.812 22.413 30.636 36.853 54.344 58.577 63.701
10°b 2.909 1.211 0.720 0.505 0.316 0.270 0.256
o (keV) 53.745 18.244 10.080 4.677 5.216 9.754 2.139
the first few coefficients being J 4 ) 21 . 120 . 715 .
70—14' §(wt) +§(wt) +T(wt) +?(wt)
co=1, ¢ —f C —2—3 4368
R R ) + 2 o) 04 (222
11
c3=£6 04:5_63 05=@3. (219 Using Eq.(70) one then additionally has
105’ 315’ 3465

Using Eq.(217) with x=¢ one can put Eq(210) in the
form

7 =n20 che”, (220)

where the coefficients are the ones given in €848 and
(219. Equation(220 is written analytically as

J_ . A 2, 176, 563, ”
o Tt tigs® Tay T (22D

which can be rewritten with the help of ER09 as

E=\l(1+1)= %z %w 1+ g(wt)z-}—%(wt)“

120 6 715 s 4368 10
+7(wt) +?(wt) +Y(wt) + .

(223

Equations(209 and (223 give the energy and the quantity
JI(I+1) as series in powers of the rotational frequeigy
thus making contact between the present approach and the
Harris formalism[8].

XIl. NUMERICAL TESTS

The formulas developed in the previous sections will be
now tested against the experimental spectra of the Th iso-
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topes [25-29, which range from vibrationa]??°Th with TABLE II. Theoretical predictions of models [Eq. (17)], I’
R,=E(4)/E(2)=2.399] to clearly rotational 2“Th with  LEd- (691, 1l [Eq. (134], II" [Eq. (173], IIl [Eq. (224], and IV
R,=3.308). The purpose of this study is twofold [Eg.(225)], obtained from least square fits to the experimental spec-

s 7 . trum (expt) of 2%2Th, taken from Ref[29]. All energies are given
Y a(?dT)(z test the quality of the approximations used in Secsin keV. The relevant model parameters and quality measttgq.

. . . (226)] are given in Table I.
(b) To test the agreement between theoretical predictions

and experimental data. The standard rotational expansion 23211
I expt. | I 1] I’ 1] v

2 49.4 445 445 45.2 45.3 44.0 47.3
4 162.2 1478 147.8 150.0 150.1 146.2 156.3
+e (224 6 3333 3081 3081 3123 3125 3050 3236
8 557.1 523.0 523.0 529.1 5294 5183 5448
10 826.9 789.0 789.0 796.6 797.0 783.0 814.4
from which only the first two terms will be included in order 12 1136.9 1102.1 1102.1 1110.0 1110.6 1095.4 1126.9
to keep the number of parameters equal to 2, as well as they 1482.3 1457.1 1457.1 1464.2 1464.8 1450.8 1476.7
Holmberg-Lipas two-parameter expressjda] 16 1858.3 1848.6 1848.6 1853.4 1854.0 1843.7 1858.8
18 2261.7 2270.3 2270.3 2271.7 2272.3 2267.9 2268.7
20 2690.5 2715.7 2715.7 2713.1 2713.6 2716.4 2702.3
E=a(y1+bl(l+1)-1), (225 22 31429 3177.6 3177.6 3171.7 31719 3181.2 3156.3
24 3618.3 3648.9 3648.9 3641.8 3641.7 3653.7 3627.6
26 41149 4122.0 4122.0 4118.0 4117.9 41245 4113.9
which is known to give the best fits to experimental rota-28 4630.5 4589.5 4589.5 4595.6 4594.6 4583.2 4613.1
tional nuclear spectra among all two-parameter expression
[12], will be included in the test for comparison. For brevity
we are going to use the following terminology: model I for rea), while in models Il and Il the deformation parameter is
Eq. (17) (original sy(2) formula, model I' for Eq. (65  a real numberd=e’, 7 rea). A consequence of this fact is
(“the sinus formula’), model Il for Eq.(134) [“the su,(2)  the presence of trigonometric functions in models | ahd |
irreducible tensor operatdiTO) formula”], model II' for  while in models Il and I hyperbolic functions appear.
Eq. (173 (“the hyperbolic tangent formula’, model Il for The parameters resulting from the relevant least square
Eq. (224 (the standand rotational formyjaand model IV fits, together with the quality measure
for Eq. (225 (the Holmberg—Lipas formu)a
It should be emphasized at this point that in models | and \/
o=

E=AlI(l+1)+B(I(I1+1)?+C(I1+1))3+D(I(1+1))*

|max

> (Eexp{)—En(1)?, (226

I” the deformation parameter is a phase facip=€'", 7 |
max =2

TABLE Ill. Theoretical predictions of models [Eq. (65)], II" [Eq. (173], Il [Eqg. (224)], and IV[Eq.
(225)], obtained from least square fits to the experimental spéext) of 2?°Th [25] and ?%“Th [26]. All
energies are given in keV. The relevant model parameters and quality meagbce (226)] are given in
Table I.

2227h 224Th
| expt. I I’ 11l \% expt. (N I’ I \%

2 183.3 75.1 82.1 71.3 115.7 98.1 70.7 72.9 69.3 80.0

4 439.8 247.7 269.1 235.7 356.0 284.1 232.4 238.6 228.1 256.8
6 750.0 511.2 550.4 488.6 677.7 534.7 477.2 487.1 470.1 511.8
8 1093.5 855.7 910.7 822.3 1048.6 8339 793.2 804.1 784.7 825.5
10 1461.1 1268.3 1332.0 1227.0 1449.6 1173.8 11649 1172.8 1158.0 1181.8
12 1850.7 1733.4 1795.0 1689.6 1869.4 1549.8 15744 15755 1572.1 1568.8
14 2259.7 2233.6 2281.0 2194.8 2301.7 1958.9 2001.6 19954 2005.5 1978.1
16 2687.8 2749.9 2773.1 2934.3 27425 2398.0 2425.7 2417.4 2432.8 2403.8
18 31335 3263.0 3257.1 3257.0 3189.4 2864.0 2826.2 2829.1 28249 2841.7
20 3596.0 3753.6 3721.7 3769.5 3640.7

22 4077.6  4203.2 4158.7 42354 4095.4

24 45779 45949 45629 4625.8 4552.7

26 5097.9 4914.0 4931.3 4908.8 5012.0
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TABLE IV. Same as Table I, but fof?°Th [27], and 22Th [28].

2267y 2287y
| expt. I I’ Il \ expt. I’ I’ Il \%

2 72.2 60.0 61.4 50.1 65.5 57.8 53.0 53.7 52.6 55.4

4 226.4 198.1 202.0 195.2 213.3 186.8 1751 176.9 173.8 181.7
6 447.3 409.3 415.9 404.2 432.9 378.2 362.3 365.1 360.0 372.2

8 721.9 686.1 694.2 679.7 711.9 622.5 608.5 611.6 605.9 618.3
10 1040.3 1018.9 1026.1 1012.6 1038.1 911.8 905.8 907.9 903.7 911.3
12 1395.2 13959 13995 1391.9 1401.2 12394 12444 12445 12440 1242.6
14 17815 1803.8 1802.2 1803.8 17929 1599.5 16135 1611.3 1615.1 1605.2
16 2195.8 22281 22219 22325 2206.9 1988.1 2001.0 1998.3 2003.4 1993.0
18 2635.1 2654.1 26479 2659.5 2638.3 24079 23945 2396.1 23934 2401.2
20 3097.1 3066.5 3070.4 3064.2 3083.4

where | .y is the angular momentum of the highest level (c) A similar picture holds for the transitional nucleus
included in the fit, are listed in Table I, while in Table Il the ??*Th (R,=2.896) and the near-vibrational nucleus
theoretical predictions of all models f3f°Th are listed to-  2%°Th (R,=2.399), i.e. still model IV gives the best results
gether with the experimental spectrum. Finally in Tablesand model Il the worst, while models Il and’ Iare better
[l1-V the theoretical predictions of model$,1Il’, 1ll, and  than models | and’| However, the deviations from the data
IV for the rest of the Th isotopes are listed, together with thebecome much larger, indicating that all these models are in-
relevant experimental spectra. From these tables the follonappropriate for describing spectra in the vibrational and tran-
ing observations can be made. sitional regions, in which the presence of a term linedrig

(a) As seen in Tables | and I, models | arlddive results  required, as in the (8) and d6) limits of the Interacting
which are almost identical. The same is true for models 1IBoson mode[30].
and II'. We therefore conclude that the approximations car- These observations lead to the following conclusions:
ried out in Secs. V and X are very accurate. This is the (a) One can freely use model In the place of model I,
reason that in Tables IlI-V the results of models | and Il areand model I in the place of model Il, since the relevant
omitted in favor of models’land II'. approximations turn out to be very accurate. Modélsnd

(b) All models give good results fof?°Th-234Th, which I’ have the advantage of providing simple analytic expres-
lie in the rotational region, wittiR, ratio between 3.136 and sions for the energy, the rotational frequency and the moment
3.308, with model IV giving the best results and model Il of inertia.
giving the worst ones, while in all cases models Il aridalle (b) The fact that models Il and’llare better than models
better than models | and.l It should be noticed, however, | and I’ indicates that within the same symmefisu,(2) in
that all models tend to underestimate the first several levelthis casé it is possible to construct different rotational
of the spectra and the last one or two levels, while theyHamiltonians characterized by different degrees of agree-
overestimate the rest of the levels. In other words, all modelsnent with the data. However, these Hamiltonians are too
“fail in the same way.” “rigid,” in the sense that they can describe only rotational

TABLE V. Same as Table IlI, but fof*°Th [29] and 23*Th [29].

23071 234
| expt. r 1K Il IV expt. K 1K i v

2 53.2 48.8 49.4 48.3 51.3 49.6 47.0 47.4 46.6 48.7

4 174.0 161.7 163.6 160.2 169.0 164.1 155.8 157.2 154.7 161.1
6 356.5 336.4 340.0 333.7 349.3 337.5 3245 327.1 3225 333.8

8 593.9 569.7 574.5 565.8 586.4 565.7 550.3 553.8 547.4 562.4
10 879.6 856.7 862.1 852.2 873.9 843.5 829.0 832.9 825.7 841.5
12 1207.5 1192.0 1196.7 1187.8 12054 1165.8 1155.8 1159.2 1152.8 1165.6
14 1572.8 1568.8 1571.6 1565.9 1574.5 1527.6 1525.1 1527.0 1523.1 1529.1
16 1970.7 1979.8 1979.7 1979.2 19756 19244 1930.3 1930.0 1930.1 1926.8
18 2397.5 2416.8 2413.6 2419.0 2403.9 2352.0 2364.3 2361.7 2366.1 2354.1
20 2849.8 2871.3 2866.3 28754 2855.1 2806.1 2819.5 2815.6 2822.7 2806.8
22 3325.2 3334.3 3330.8 3337.7 3325.7 32824 3288.0 32854 32905 32814
24 3820.2 3796.6 3800.8 3793.7 3812.7 3776.1 37615 3765.0 3758.8 3774.8
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spectra, while vibrational and transitional spectra are outidenine “optimal” values for the ratiosr; and r, from Eq.

their realm.

(227) as a function of the mass number. This procedure,

Some additional comments on the convergence of théowever, is very unsafe, since the values of the paramé€ters
various expansions can be made by considering the quantnd especiallp obtained from the fits are very unstable.

ties[31]
C D
A AC A A?
=7z~ gz g g (220
H 5

which refer to the coefficients of the expansion of ExR4).
Keeping only the first two terms in the Harris formalism for
the energy and the moment of inertia leads to the vdlagk

rl]—.|arris:4’ r?arris:24. (228)
From Eq.(62) we obtain, for model’l,
v 2 3 220
=g, =3, (229
while from Eq.(174) we obtain, for model I,
g 17 93 (230
1720 "2 T140 ‘

The Taylor expansion of the Holmberg-Lipas formiiEgg.
(225] reads

—b||1 bz||12bs||13
3 -3 1+ D=5 (d+1)%+ (1(+1))
4
— — 4 “ e
128(I(I+1)) + , (231
from which one obtains
ry=2, ry=s. (232

We observe that for model$,I1l’, and IV the quality of the
fits is improved as the values of the ratiosandr, become
larger.

Finally, a word of warning: One could think of fitting the
experimental spectra by E@224), keeping the first four

XIll. DISCUSSION

The main results of the present work are the following.

(a) The rotational invariance of the original g2) Hamil-
tonian[5,6] under the usual physical angular momentum has
been proved explicitly and its connections to the formalisms
of Amal'sky [7] (“the sinus formula” and Harris[8] have
been given.

(b) An irreducible tensor operatdtTO) of rank 1 under
sy,(2) has been found and used, througteformed tensor
product andg-deformed Clebsch-Gordan coefficient tech-
niques[9,10,22,23, for the construction of a Hamiltonian
appropriate for the description of rotational spectra, the
sy(2) ITO Hamiltonian. The rotational invariance of this
new Hamiltonian under the usual physical angular momen-
tum has been proved explicitly. Furthermore, an approximate
simple closed expressidfthe hyperbolic tangent formula®
for the energy spectrum of this Hamiltonian has been found
and its connection to the Harii8] formalism has been dem-
onstrated.

From the results of the present work it is clear that the
sy,(2) Hamiltonian, as well as the gi2) ITO Hamiltonian,
are complicated functions of the Casimir operator of the
usual s@?), i.e. of the square of the usual physical angular
momentum. These complicated functions possesg23u
symmetry, in addition to the usual (@) symmetry. Matrix
elements of these functions can be readily calculated in the
deformed basis, but also in the usual physical basis. A similar
study of ag-deformed quadrupole operator is called for. This
operator would allow the study of multi-band spectra, in
analogy to the Elliott mode[32], as well as the study of
B(E2) transition probabilities. Sincq deformation appears
to describe well the stretching effect of rotational nuclear
spectra, ir is interesting to check what its influence on the
corresponding BE2) transition probabilities will be. Work in
this direction is in progress.
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