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Rotationally invariant Hamiltonians for nuclear spectra based on quantum algebras
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The rotational invariance under the usual physical angular momentum of the suq(2) Hamiltonian for a
description of rotational nuclear spectra is explicitly proved, and a connection of this Hamiltonian to the
formalisms of Amal’sky and Harris is provided. In addition, a Hamiltonian for rotational spectra is introduced,
based on the construction of irreducible tensor operators~ITO’s! under suq(2) and the use ofq-deformed tensor
products andq-deformed Clebsch-Gordan coefficients. The rotational invariance of this suq(2) ITO Hamil-
tonian under the usual physical angular momentum is explicitly proved, a simple closed expression for its
energy spectrum~the ‘‘hyperbolic tangent formula’’! is introduced, and its connection to the Harris formalism
is established. Numerical tests in a series of Th isotopes are provided.
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I. INTRODUCTION

Quantum algebras@1–3# have started to find application
in the description of symmetries of physical systems over
last years@4#. In one of the earliest attempts, a Hamiltoni
proportional to the second order Casimir operator of suq(2)
was used for a description of rotational nuclear spectra@5#,
and its relation to the variable moment of inertia model@6#
was clarified. However, several open problems remained

~a! Is the suq(2) Hamiltonian invariant under the usu
su~2! Lie algebra, i.e. under usual angular momentum, o
breaks spherical symmetry and/or the isotropy of space?

~b! How does the physical angular momentum appea
the framework of suq(2)? Is there any relation between th
generators of suq(2) and the usual physical angular mome
tum operators?

~c! How can one add angular momenta in the suq(2)
framework? In other words, how does angular moment
conservation work in the suq(2) framework?

Answers to these questions are provided in the pre
paper, along with connections of the suq(2) model to other
formalisms.

After a brief introduction to the suq(2) formalism in Sec.
II, we prove explicitly in Sec. III that the suq(2) Hamiltonian
does commute with the generators of su~2!, i.e., with the
generators of usual physical angular momentum. Theref
the suq(2) Hamiltonian does not violate the isotropy of spa
and does not destroy spherical symmetry. The generato
suq(2) are expressed in terms of the generators of su~2!. In
addition, it turns out that the angular momentum quant
numbers appearing in the description of the irreducible r
resentations~irreps! of suq(2) are exactly the same as th
ones appearing in the irreps of su~2!, establishing a one-to
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one correspondence between the two sets of irreps~in the
generic case in which the deformation parameterq is not a
root of unity!.

Taking advantage of the results of Sec. III, in Sec. IV w
write the eigenvalues of the suq(2) Hamiltonian as an exac
power series inl ( l 11) ~wherel is the usual physical angula
momentum!. An approximation to this expansion, studied
Sec. V, leads to a closed energy formula for rotational spe
introduced by Amal’sky@7#. The study of analytic expres
sions for the moment of inertia and the rotational frequen
based on the closed formula of Sec. V leads, in Sec. VI, t
connection between the present approach and the Harris
malism @8#.

We then turn in Sec. VII to the study of irreducible tens
operators under suq(2) @9,10#, constructing the irreducible
tensor operator of rank 1 corresponding to the suq(2) gen-
erators. We also define tensor products in the suq(2) frame-
work and construct the scalar square of the angular mom
tum operator, a task requiring the use ofq-deformed
Clebsch-Gordan coefficients@9#. In addition to exhibiting ex-
plicitly how the addition of angular momenta works in th
suq(2) framework, this exercise leads to a Hamiltonian bu
out of the components of the above mentioned irreduc
tensor operator~ITO!, which can also be applied to a de
scription of rotational spectra. We are going to refer to t
Hamiltonian as thesuq(2) ITO Hamiltonian.

The fact that the suq(2) ITO Hamiltonian does commute
with the generators of the usual su~2! algebra is shown ex-
plicitly in Sec. VIII. Based on the results of Sec. VIII in Se
IX we express the eigenvalues of the suq(2) ITO Hamil-
tonian as an exact power series inl ( l 11), wherel is the
usual physical angular momentum. An approximation to t
series, studied in Sec. X, leads to a simple closed formula
the spectrum~the ‘‘hyperbolic tangent formula’’!, which is
used in Sec. XI in order to obtain analytic expressions for
moment of inertia and the rotational frequency, leading t
connection of the present results to the Harris formalism@8#.

Finally in Sec. XII all the exact and closed approxima
energy formulas obtained above are compared to the exp
mental spectra of a series of Th isotopes, as well as to

d
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results provided by the usual rotational expansion and by
Holmberg-Lipas formula@11#, which is probably the bes
two-parameter formula for the description of rotation
nuclear spectra@12#. A discusion of the present results an
plans for future work are given in Sec. XIII.

II. QUANTUM ALGEBRA su q„2…

The quantum algebra suq(2) @13–15# is a q deformation
of the Lie algebra su~2!. It is generated by the operatorsL1 ,
L2 , andL0, obeying the commutation relations~see Ref.@4#
and references therein!,

@L0 ,L6#56L6 , ~1!

@L1 ,L2#5@2L0#5
q2L02q22L0

q2q21
, ~2!

whereq numbers andq operators are defined by

@x#5
qx2q2x

q2q21
. ~3!

There are two distinct cases for the domain of the deform
tion parameter:~a! q5et, tPR, in which

@x#5
sinhtx

sinht
, ~4!

and ~b! q5ei t, tPR, in which

@x#5
sintx

sint
. ~5!

In both cases one has

@x#→x as q→1. ~6!

If the deformation parameterq is not a root of unity@q is
a root of unity in case b! if one hasqn51, nPN] the finite-
dimensional irreducible representationD (q)

l of suq(2) is de-
termined by the highest weight vectoru l ,l &q with

L1u l ,l &q50, ~7!

and the basis statesu l ,m&q are expressed as

u l ,m&q5A @ l 1m#!

@2l #! @ l 2m#!
~L2! l 2mu l ,l &q , ~8!

where@n#! 5@n#@n21# . . . @1# is the notation for theq fac-
torial. Then the explicit form of the irreducible represen
tion ~irrep! D (q)

l of the suq(2) algebra is determined by th
equations

L6u l ,m&q5A@ l 7m#@ l 6m11#u l ,m61&q , ~9!

L0u l ,m&q5mu l ,m&q , ~10!
05430
e
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-

and the dimension of the corresponding representation is
same as in the nondeformed case, i.e., dimD (q)

l 52l 11 for

l 50,1
2 ,1,32 ,2 . . . .

The second-order Casimir operator of suq(2) is

C2
(q)5

1

2
~L1L21L2L11@2#@L0#2!5L2L11@L0#@L011#

5L1L21@L0#@L021#, ~11!

while its eigenvalues in the space of the irreducible repres
tation D (q)

l are @ l #@ l 11#

C2
(q)u l ,m&q5@ l #@ l 11#u l ,m&q . ~12!

It has been suggested~see Refs.@4,5# and references
therein! that rotational spectra of deformed nuclei and
atomic molecules can be described by a phenomenolog
Hamiltonian based on the symmetry of the quantum alge
suq(2),

H5
\2

2J0
C2

(q)1E0 , ~13!

whereC2
(q) is the second order Casimir operator of Eq.~11!,

J0 is the moment of inertia for the nondeformed caseq
→1, andE0 is the bandhead energy for a given band.

The eigenvalues of the Hamiltonian of Eq.~13! in the
basis of Eq.~8! are then

El
(t)5A@ l #@ l 11#1E0 , ~14!

where the definition

A5
\2

2J0
~15!

has been used for brevity.
In the case withq5et, tPR the spectrum of the mode

Hamiltonian of Eq.~13! takes the form

El
(t)5A

sinh~ l t!sinh~~ l 11!t!

sinh2~t!
1E0 , q5et, ~16!

while, in the case withq5ei t, tPR andqnÞ1, nPN, the
spectrum of the model Hamiltonian of Eq.~13! takes the
form

El
(t)5A

sin~ l t!sin~~ l 11!t!

sin2~t!
1E0 , q5ei t. ~17!

It is known ~see Refs.@4,5# and references therein! that only
the spectrum of Eq.~17! exhibits behavior that is in agree
ment with experimentally observed rotational bands.

III. ROTATIONAL INVARIANCE OF THE su q„2…
HAMILTONIAN

In this section we are going to use both the usual quan
mechanical operators of angular momentum, denoted byl̂ 1 ,
6-2
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l̂ 2 , and l̂ 0, and theq deformed ones, which are related

suq(2) and denoted byL̂1 , L̂2 , andL̂0, as in Sec. II. In this
section we are going to use hats (ˆ) for the operators, in
order to give emphasis to the distinction between the op
tors and their eigenvalues. For brevity we are going to c
the operatorsl̂ 1 , l̂ 2 , andl̂ 0 ‘‘ classical,’’ while the operators
L̂1 , L̂2 , andL̂0 will be called ‘‘quantum.’’ For the classical
basis the symbolu l ,m&c will be used, while the quantum
basis will be denoted byu l ,m&q , as in Sec. II. Thereforel
and m are the quantum numbers related to the usual qua
mechanical angular momentum, which is characterized
the su~2! symmetry, whilel andm are the quantum number
related to the deformed angular momentum, which is ch
acterized by the suq(2) symmetry.

The ‘‘classical’’ operators satisfy the usual su~2! commu-
tation relations

@ l̂ 0 , l̂ 6#56 l̂ 6 , @ l̂ 1 , l̂ 2#52 l̂ 0 , ~18!

while the finite-dimensional irreducible representationDl of
su~2! is determined by the highest weight vectoru l ,l &c with

l̂ 1u l ,l &c50, ~19!

and the basis statesu l ,m&c are expressed as

u l ,m&c5A ~ l 1m!!

~2l !! ~ l 2m!!
~ l̂ 2! l 2mu l ,l &c . ~20!

The action of the generators of su~2! on the vectors of the
classical basis is described by

l̂ 6u l ,m&c5A~ l 7m!~ l 6m11!u l ,m61&c , ~21!

l̂ 0u l ,m&c5mu l ,m&c , ~22!

the dimension of the corresponding representation be
dimDl52l 11 for l 50, 1

2 , 1, 3
2 , 2, . . . .

The second order Casimir operator of su~2! is

Ĉ25
1

2
~ l̂ 1 l̂ 21 l̂ 2 l̂ 1!1 l̂ 0

25 l̂ 2 l̂ 11 l̂ 0~ l̂ 011!

5 l̂ 1 l̂ 21 l̂ 0~ l̂ 021!, ~23!

where the symbol 1 is used for the unit operator, while
eigenvalues in the space of the irreducible representationDl

are l ( l 11):

Ĉ2u l ,m&c5 l ~ l 11!u l ,m&c . ~24!

It is useful to introduce the operatorl̂ through the definition

Ĉ2[ l̂ ~ l̂ 11!. ~25!

Insisting thatl̂ should be a positive operator one then has
solving the relevant quadratic equation and keeping only
positive sign in front of the square root@16#:
05430
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l̂ 5
1

2
~211A114Ĉ2!. ~26!

The action of the operatorl̂ on the vectors of the classica
basis is then given by

l̂ u l ,m&c5
1

2
~211A114Ĉ2!u l ,m&c

5
1

2
~211A114l ~ l 11!!u l ,m&c

5
1

2
~211A~2l 11!2!u l ,m&c

5
1

2
~2112l 11!u l ,m&c5 l u l ,m&c , ~27!

where again only the positive value of the square root
been taken into account.

In this ‘‘classical’’ environment one can introduce the o
erators@16,17#

L̂15A@ l̂ 1 l̂ 0#@ l̂ 2 l̂ 011#

~ l̂ 1 l̂ 0!~ l̂ 2 l̂ 011!
l̂ 1 , ~28!

L̂25 l̂ 2A@ l̂ 1 l̂ 0#@ l̂ 2 l̂ 011#

~ l̂ 1 l̂ 0!~ l̂ 2 l̂ 011!
, ~29!

L̂05 l̂ 0 , ~30!

where square brackets denoteq-operators, as defined in Eq
~3!.

The action of these operators on the vectors of the cla
cal basis is given by

L̂1u l ,m&c5A@ l̂ 1 l̂ 0#@ l̂ 2 l̂ 011#

~ l̂ 1 l̂ 0!~ l̂ 2 l̂ 011!
l̂ 1u l ,m&c

5A@ l̂ 1 l̂ 0#@ l̂ 2 l̂ 011#

~ l̂ 1 l̂ 0!~ l̂ 2 l̂ 011!

3A~ l 2m!~ l 1m11!u l ,m11&c

5A@ l 1m11#@ l 2m#

~ l 1m11!~ l 2m!

3A~ l 2m!~ l 1m11!u l ,m11&c

5A@ l 1m11#@ l 2m#u l ,m11&c , ~31!
6-3
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L̂2u l ,m&c5 l̂ 2A@ l̂ 1 l̂ 0#@ l̂ 2 l̂ 011#

~ l̂ 1 l̂ 0!~ l̂ 2 l̂ 011!
u l ,m&c

5 l̂ 2A@ l 1m#@ l 2m11#

~ l 1m!~ l 2m11!
u l ,m&c

5A~ l 1m!~ l 2m11!

3A@ l 1m#@ l 2m11#

~ l 1m!~ l 2m11!
u l ,m21&c

5A@ l 1m#@ l 2m11#u l ,m21&c , ~32!

L̂0u l ,m&c5 l̂ 0u l ,m&c5mu l ,m&c , ~33!

or, in compact form,

L̂6u l ,m&c5A@ l 7m#@ l 6m11#u l ,m61&c ,

L̂0u l ,m&c5mu l ,m&c . ~34!

It is clear that the operatorsL̂1 and l̂ 1 do not commute:

@L̂1 , l̂ 1#u l ,m&c5L̂1 l̂ 1u l ,m&c2 l̂ 1L̂1u l ,m&c

5L̂1A~ l 2m!~ l 1m11!u l ,m11&c

2 l̂ 1A@ l 2m#@ l 1m11#u l ,m11&c

5~A@ l 2m21#@ l 1m12#

3A~ l 2m!~ l 1m11!

2A~ l 2m21!~ l 1m12!

3A@ l 2m#@ l 1m11# !u l ,m12&cÞ0.

~35!

This result is expected if one considers Eq.~28!: The opera-
tor l̂ 1 does commute with itself and with the operatorl̂ ,
which is a function of the relevant Casimir operator, as E
~26! indicates, but it does not commute with the operatorl̂ 0,
as Eq.~18! shows. In the same way one can see that

@L̂2 , l̂ 2#u l ,m&cÞ0. ~36!

One can now prove that the ‘‘new’’ operators satisfy t
commutation relations of Eqs.~1! and ~2!. Indeed, one has
05430
.

@L̂0 ,L̂1#u l ,m&c5L̂0L̂1u l ,m&c2L̂1L̂0u l ,m&c

5L̂0A@ l 2m#@ l 1m11#u l ,m11&c

2L̂1mu l ,m&c

5~m11!A@ l 2m#@ l 1m11#u l ,m11&c

2A@ l 2m#@ l 1m11#mu l ,m11&c

5~m112m!A@ l 2m#@ l 1m11#u l ,m11&c

5L̂1u l ,m&c , ~37!

and, in exactly the same way,

@L̂0 ,L̂2#u l ,m&c52L̂2u l ,m&c , ~38!

while for the commutator of Eq.~2! one has

@L̂1 ,L̂2#u l ,m&c5L̂1L̂2u l ,m&c2L̂2L̂1u l ,m&c

5L̂1A@ l 1m#@ l 2m11#u l ,m21&c

2L̂2A@ l 2m#@ l 1m11#u l ,m11&c

5~@ l 1m#@ l 2m11#

2@ l 2m#@ l 1m11# !u l ,m&c

5@2m#u l ,m&c5@2L̂0#u l ,m&c , ~39!

where use of the identity

@ l 1m#@ l 2m11#2@ l 2m#@ l 1m11#5@2m#, ~40!

which can be easily proved by using Eq.~3!, has been made
We have therefore demonstrated that the operatorsL̂1 ,

L̂2 , andL̂0 satisfy the commutation relations of the suq(2)
algebra. As a consequence, the quantities appearing on
right-hand side of Eqs.~28!–~30! are just the realizations o
the generators of suq(2) in the ‘‘classical’’ basis. Therefore
from now on we can use the symbolsL̂1 , L̂2 , andL̂0 in the
place ofL̂1 , L̂2 , andL̂0.

One can also see that the operator

Ĉ5L̂2L̂11@ L̂0#@ L̂011# ~41!

acts on the vectors of the classical basis as

Ĉu l ,m&c5L̂2L̂1u l ,m&c1@ L̂0#@ L̂011#u l ,m&c

5L̂2A@ l 1m#@ l 2m11#u l ,m11&c

1@m#@m11#u l ,m&c

5@ l 1m#@ l 2m11#u l ,m&c1@m#@m11#u l ,m&c

5@ l #@ l 11#u l ,m&c , ~42!

where in the last step the identity

@ l 1m#@ l 2m11#1@m#@m11#5@ l #@ l 11#, ~43!
6-4
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which can easily be verified using Eq.~3!, has been used.
Using Eqs.~34! and ~42! one can now prove that th

operatorĈ commutes with the generatorsL̂1 , L̂2 , and L̂0

of suq(2), i.e. thatĈ is the second order Casimir operator
suq(2). Indeed, one has

@Ĉ,L̂1#u l ,m&c5ĈL̂1u l ,m&c2L̂1Ĉu l ,m&c

5ĈA@ l 2m#@ l 1m11#u l ,m11&c

2L̂1@ l #@ l 11#u l ,m&c

5@ l #@ l 11#A@ l 2m#@ l 1m11#u l ,m11&c

2A@ l 2m#@ l 1m11#@ l #@ l 11#u l ,m&c50.

~44!

In exactly the same way one can prove that

@Ĉ,L̂2#u l ,m&c50, ~45!

while in addition one has

@Ĉ,L̂0#u l ,m&c5ĈL̂0u l ,m&c2L̂0Ĉu l ,m&c

5@ l #@ l 11#mu l ,m&c2m@ l #@ l 11#u l ,m&c50.

~46!

Thus we have proved that the operatorĈ is the second
order Casimir operator of suq(2). We are nowgoing to prove
that the operatorĈ commutes also with the generatorsl̂ 1 ,
l̂ 2 , and l̂ 0 of the usual su~2! algebra. Indeed, one has

@Ĉ, l̂ 1#u l ,m&c5Ĉl̂ 1u l ,m&c2 l̂ 1Ĉu l ,m&c

5ĈA~ l 2m!~ l 1m11!u l ,m11&c

2 l̂ 1@ l #@ l 11#u l ,m&c

5@ l #@ l 11#A~ l 2m!~ l 1m11!u l ,m11&c

2A~ l 2m!~ l 1m11!@ l #@ l 11#u l ,m11&c

50. ~47!

In exactly the same way one can prove that

@Ĉ, l̂ 2#u l ,m&c50, ~48!

while the relation

@Ĉ, l̂ 0#u l ,m&c50 ~49!

occurs from Eq.~46!, since L̂05 l̂ 0 by definition @see Eq.
~30!#. The following comments are now in place.

~a! The fact that the operatorĈ, which will be from now
on denoted byĈ2

(q) , commutes with the generators of su~2!
implies that this operator is a function of the second or
Casimir operator of su~2!, given in Eq. ~23!. As a conse-
quence, it should be possible to express the eigenvalue
05430
r

of

Ĉ2
(q) , which are@ l #@ l 11# @as we have seen in Eq.~42!#, in

terms of the eigenvalues ofĈ2, which arel ( l 11) @as we
have seen in Eq.~24!#. This task will be undertaken in Sec
IV.

~b! Equations~47!–~49! also tell us that the Hamiltonian
of Eq. ~13! commutes with the generators of the usual su~2!
algebra, i.e., it is rotationally invariant. The Hamiltonian
Eq. ~13! does not break rotational symmetry. It correspon
to a function of the second order Casimir operator of
usual su~2! algebra. This function, however, has been chos
in an appropriate way, in order to guarantee that the Ham
tonian of Eq.~13! is also invariant under a more complicate
symmetry, namely the symmetry suq(2).

~c! From the contents of the present section it is also cl
that the irrepD (q)

l of suq(2) and the irrepDl of su~2! have
the same structure, the relevant states being in a one to
correspondence to each other. The similarity between E
~34! and ~21! and ~22! implies that the distinction betwee
the ‘‘classical’’ basis of the present section and the ‘‘qua
tum’’ basis of Sec. II turns out to be unnecessary, as wel
that the quantum numbersl andm can be identified with the
usual angular momentum quantum numbersl and m.

~d! These conclusions are valid in the case ofq being not
a root of unity, as already mentioned in Sec. II.

IV. EXACT EXPANSION OF THE su q„2… SPECTRUM

Let us consider the spectrum of Eq.~17!, which has been
found relevant to rotational nuclear and molecular spec
assuming for simplicityE050 andt.0. Since the Hamil-
tonian of Eq.~13! is invariant under su~2!, as we saw in Sec
III, it should be possible in principle to express it as a fun
tion of the Casimir operatorC2 of the usual su~2! algebra. As
a consequence, it should also be possible to express th
genvalues of this Hamiltonian, given in Eq.~17!, as a func-
tion of the eigenvalues of the Casimir operator of the us
su~2!, i.e. as a function ofl ( l 11). This is a nontrivial task,
since in Eq.~17! two different functions of the variablel
appear, while we are in need of a single function of t
variablel ( l 11), which is related to the length of the angul
momentum vector. In order to represent the expression of
~17! as a power series of the variablel ( l 11), one can use
the identity

sin~ l t!sin~~ l 11!t!5
1

2
$cos~t!2cos~~2l 11!t!%.

~50!

It turns out that the coefficients of the relevant expansion
be expressed in terms of the spherical Bessel functions o
first kind j n(x) @18#, which are determined through the ge
erating function

1

x
cosAx222xt5 (

n50

`

j n21~x!
tn

n!
, ~51!

and are characterized by the asymptotic behavior
6-5
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j n~x!'
xn

~2n11!!!
, x!1. ~52!

Performing the substitutions

x5t, t522t l ~ l 11!, ~53!

which imply

x222xt5t2~2l 11!2, ~54!

one obtains the expression

1

t
cos~~2l 11!t!5 (

n50

`
~22t!n

n!
j n21~t!$ l ~ l 11!%n,

~55!

which in the special case ofl 50 reads

1

t
cost5 j 21~t!, ~56!

in agreement with the definition@18#

j 21~x!5
cosx

x
. ~57!

Substituting Eqs.~55! and~56! into Eq.~50!, and taking into
account that@18#

j 0~x!5
sinx

x
, ~58!

Eq. ~17! takes the form

El
(t)5

A

j 0
2~t!

(
n50

`
~21!n~2t!n

~n11!!
j n~t!$ l ~ l 11!%n11, ~59!

which is indeed an expansion in terms ofl ( l 11).

V. APPROXIMATE EXPANSION OF THE su q„2…
SPECTRUM

We are now going to consider an approximate form of t
expansion, which will allow us to connect the present a
proach to the description of nuclear spectra proposed
Amal’sky @7#. For ‘‘small deformation,’’ i.e., fort!1, one
can use the asymptotic expression of Eq.~52!. Keeping only
the terms of the lowest order one then obtains the follow
approximate series

El
(t)'A(

n50

`
~21!n~2t!2n

~n11!~2n11!!
$ l ~ l 11!%n11, ~60!

where use of the identity

2n~n11!! ~2n11!!! 5~n11!~2n11!! ~61!

has been made. The first few terms of this expansion ar
05430
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El
(t)'AS l ~ l 11!2

t2

3
$ l ~ l 11!%21

2t4

45
$ l ~ l 11!%3

2
t6

315
$ l ~ l 11!%41••• D , ~62!

in agreement with the findings of Ref.@6#.
One can now observe that the expansion appearing in

~60! is similar to the power series of the function

sin2x5
1

2
~12cos 2x!5 (

k51

`

~21!k1122k21
x2k

~2k!!
.

~63!

Then, performing the auxiliary substitution

j5Al ~ l 11!, h5 l ~ l 11!5j2, ~64!

one can put the expansion of Eq.~60! in the form

El
(t)'A

sin2~tj!

t2
5

\2

2J 0

sin2~tAl ~ l 11!!

t2
, q5ei t.

~65!

This result is similar to the expression proposed for the u
fied description of nuclear rotational spectra by Amal’s
@7#,

El5«0sin2S p

N
Al ~ l 11! D , ~66!

where«0 is a phenomenological constant («0'6.664 MeV!
which remains the same for all nuclei, whileN is a free
parameter varying from one nucleus to the other.

VI. ANALYTIC EXPRESSIONS BASED ON THE
APPROXIMATE EXPANSION OF THE su q„2… SPECTRUM

In this section we will consider some analytic expre
sions, which are based on the approximate result of Eq.~65!,
with the purpose of connecting the present approach to
Harris formalism@8#. In the study of high spin phenomen
the rotational frequencyv and the kinematic moment of in
ertia J are defined by

\v5
]E

]j
, ~67!

\2

2J 5
]E

]h
5

1

2j

]E

]j
, ~68!

wherej has been defined in Eq.~64!, and

h5 l ~ l 11!5j2. ~69!

From Eqs.~67! and~68! it is clear that the two quantities ar
connected by the relation

Jv5\j. ~70!
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Applying these definitions to the analytical expression of E
~65!, one obtains

\v5A
sin~2tj!

t
5

\2

2J0

sin~2tj!

t
, ~71!

J5J0

2tj

sin~2tj!
, ~72!

where the identity

sin 2x52sinxcosx ~73!

has been used. Using the expressions forE ~for which we
drop the superscript and subscript! andv given in Eqs.~65!
and ~71! one can easily verify that

J 0v2

2
5ES 12

t2

A
ED , ~74!

where use of the identity of Eq.~73! has been made. Defin
ing

«5
t2

A
E5sin2~tj!, ~75!

t5
\t

A
5

2J0

\
t, ~76!

wheret is a constant possessing dimensions of time, Eq.~74!
takes the form

~vt !254«~12«!54«24«2. ~77!

This expression can be considered as a quadratic equatio
«, allowing us to express« as a function ofvt. Indeed, one
finds

«5
1

2
~16A12~vt !2!. ~78!

Using the Taylor expansion@18#

~11x!21/2512
1

2
x1

1•3

2•4
x22

1•3•5

2•4•6
x31•••,

21,x<1 ~79!

one obtains

«5
1

2 S 16S 12
1

2
~vt !22

1

8
~vt !42

5

16
~vt !62••• D D .

~80!

The choice of the negative sign then leads to

«5
1

4
~vt !21

1

16
~vt !41

5

32
~vt !61•••, ~81!

which, through Eq.~75!, gives
05430
.

for

E5
A

~2t!2 S ~vt !21
1

4
~vt !41

5

8
~vt !61••• D . ~82!

The choice of the positive sign gives, correspondingly,

«512
1

4
~vt !22

1

16
~vt !42

5

32
~vt !62••• ~83!

and

E5
A

t2 S 12
1

4
~vt !22

1

16
~vt !42

5

32
~vt !62••• D .

~84!

It is clear that Eq.~82! corresponds toE increasing as a
function ofv, while Eq.~84! corresponds toE decreasing as
a function of v. Therefore only the first solution can b
relevant to the description of nuclear rotational spectra.

We are now trying to find a similar expansion for th
kinematic moment of inertiaJ. Using Eq.~76! one can re-
write Eq. ~71! in the form

vt5sin~2tj!. ~85!

Then Eq.~72! gives

J
J0

5
2tj

sin~2tj!
5

arcsin~vt !

vt
. ~86!

Then using the Taylor expansion@18#

arcsinx5x1
1

2

x3

3
1

1•3

2•4

x5

5
1

1•3•5

2•4•6

x7

7
1•••, ~87!

one obtains

J
J0

511
1

6
~vt !21

3

40
~vt !41

5

112
~vt !61•••. ~88!

Using Eqs.~70! and ~76! one finds from this result that

j5Al ~ l 11!5v
J
\

5
1

2t S vt1
1

6
~vt !31

3

40
~vt !5

1
5

112
~vt !71••• D . ~89!

The expansions appearing in Eqs.~82! and~89! are of the
form occurring in the Harris formalism@8#:

E5E01
1

2
~J 0v213Cv415Dv617Fv81••• !,

~90!

Al ~ l 11!5J0v12Cv313Dv514Fv71•••, ~91!

the main difference between the two formalisms being
fact that in the case of Harris the coefficients of the vario
terms in the series are independent from each other, whil
the present case the coefficients in the series are interde
dent, since they all contain the constantt. It should be no-
6-7
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ticed at this point that the Harris formalism is known@19# to
be equivalent to the variable moment of inertia~VMI ! model
@20#. The similarities between the suq(2) approach and the
VMI model have been directly considered in Ref.@6#.

VII. IRREDUCIBLE TENSOR OPERATORS UNDER su q„2…

A different path toward the construction of a Hamiltonia
appropriate for the description of rotational spectra can
taken through the construction of irreducible tensor opera
under suq(2) @9,10#. In this discussion we limit ourselves t
real values ofq, i.e., toq5et, with t real, as in Refs.@9,10#.

An irreducible tensor operator of rankk is the set of 2k
11 operatorsTk,k

(q) (k5k,k21,k22, . . . ,2k), which sat-
isfy with the generators of the suq(2) algebra the commuta
tion relations@9,10#

@L0 ,Tk,k
(q) #5kTk,k

(q) , ~92!

@L6 ,Tk,k
(q) #qk5A@k7k#@k6k11#Tk,k61

(q) q2L0, ~93!

whereq commutators are defined by

@A,B#qa5AB2qaBA. ~94!

It is clear that in the limitq→1 these commutation relation
reduce to the usual ones, which occur in the definition
irreducible tensor operators under su~2!. It should also be
noticed that the operators

Rk,k
(q) 5~21!kq2k~Tk,2k

(q) !†, ~95!

where † denotes Hermitian conjugation, satisfy the sa
commutation relations~92! and ~93! as the operatorsTk,k

(q) ,
i.e., the operatorsRk,k

(q) also form an irreducible tensor oper
tor of rankk under suq(2).

We can construct an irreducible tensor operator of ran
using as building blocks the generators of suq(2). This irre-
ducible tensor operator will consist of the operatorsJ11 ,
J21, andJ0, which should satisfy the commutation relatio

@L0 ,Jm#5mJm , ~96!

@L6 ,Jm#qm5A@17m#@26m#Jm61q2L0, ~97!

which are a special case of Eqs.~92! and ~93!, while the
relevant Hermitian conjugate operators will be

~Jm!†5~21!mq2mJ2m , ~98!

which is a consequence of Eq.~95!. It turns out@9,10,21# that
the explicit forms of the relevant operators are

J1152
1

A@2#
q2L0L1 , ~99!

J215
1

A@2#
q2L0L2 , ~100!
05430
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1

J05
1

@2#
~qL1L22q21L2L1!

5
1

@2#
~qL2L12q21L1L2!1@2L0#

5
1

2 S @2L0#1
~q2q21!

@2#
~L2L11L1L2! D

5
1

@2#
$q@2L0#1~q2q21!L2L1!%

5
1

@2#
$q@2L0#1~q2q21!~C2

(q)2@L0#@L011# !%,

~101!

while the Hermitian conjugate operators are

~J11!†52q21J21 , ~J21!†52qJ11 , ~J0!†5J0 .
~102!

It is clear that in the limitq→1 these results reduce to th
usual expressions for spherical tensors of rank 1 under su~2!,
formed out of the usual angular momentum operators

J152
L1

A2
52

Lx1 iL y

A2
, J25

L2

A2
5

Lx2 iL y

A2
, J05L0 ,

~103!

~J1!†52J2 , ~J2!†52J1 , ~J0!†5J0 . ~104!

The commutation relations among the operatorsJ11 ,
J21 , J0 can be obtained using Eqs.~99!–~101!, ~96!, and
~97!, as well as the fact that from Eq.~1! one has

@L0 ,L1#5L1⇒L0L15L1~L011!⇒ f ~L0!L1

5L1 f ~L011!, ~105!

@L0 ,L2#52L2⇒L0L25L2~L021!⇒ f ~L0!L2

5L2 f ~L021!, ~106!

where f (x) is any function which can be written as a Tayl
expansion in powers ofx. Indeed, one has

@J11 ,J0#52
1

A@2#
~q2L0L1J02J0q2L0L1!

52
1

A@2#
~L1J02J0L1!q2L021

52
1

A@2#
A@2#J11q2L0q2L02152q22L011J11 ,

~107!
6-8
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@J21 ,J0#5
1

A@2#
~q2L0L2J02J0q2L0L2!

5
1

A@2#
~L2J02J0L2!q2L011

5
1

A@2#
A@2#J21q2L0q2L0115q22L021J21 ,

~108!

@J11 ,J21#52
1

@2#
~q2L0L1q2L0L22q2L0L2q2L0L1!

52
1

@2#
~q22L011L1L22q22L021L2L1!

52
1

@2#
q22L0~qL1L22q21L2L1!

52q22L0J0 , ~109!

or, in compact form,

@J11 ,J0#52q22L011J11 ,

@J21 ,J0#5q22L021J21 ,

@J11 ,J21#52q22L0J0 . ~110!

In the limit q→1 these results reduce to the usual comm
tation relations related to spherical tensor operators un
su~2!:

@J1 ,J0#52J1 , @J2 ,J0#5J2 , @J1 ,J2#52J0 .
~111!

It is clear that the commutation relations of Eq.~110! are
different from these of Eqs.~1! and ~2!, as it is expected
since the commutation relations of Eq.~111! are different
from the usual commutation relations of su~2!, given in Eq.
~18!.

One can now try to build out of these operators the sc
square of the angular momentum operator. For this purp
one needs the definition of the tensor product of two irred
ible tensor operators, which has the form@9,10,21–24#

@Aj 1

(q)
^ Bj 2

(q)# j ,m
(1/q)5 (

m1 ,m2

^ j 1m1 j 2m2u jm&1/qAj 1 ,m1

(q) Bj 2 ,m2

(q) .

~112!

One should observe that the irreducible tensor operatorsAj 1

(q)

andBj 2

(q) , which correspond to the deformation parameterq,

are combined into an irreducible tensor operator@Aj 1

(q)

3Bj 2

(q)# j ,m
(1/q) , which corresponds to the deformation para

eter 1/q, through the use of the deformed Clebsch-Gord
coefficientŝ j 1m1 j 2m2u jm&1/q , which also correspond to th
deformation parameter 1/q.
05430
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Analytic expressions for severalq-deformed Clebsch-
Gordan coefficients, as well as their symmetry proporti
can be found in Refs.@9,22#. Using the general formulas o
Refs.@9,22# we derive here the Clebsch-Gordan coefficie
which we will immediately need:

^1110u11&q5qA@2#

@4#
, ^1011u11&q52q21A@2#

@4#
, ~113!

^10121u121&q5qA@2#

@4#
,

^12110u121&q52q21A@2#

@4#
, ~114!

^11121u10&q5A@2#

@4#
, ^12111u10&q52A@2#

@4#
,

^1010u10&q5~q2q21!A@2#

@4#
. ~115!

Using the definition of Eq.~112!, the Clebsch-Gordan co
efficients just given, as well as the commutation relations
Eq. ~110!, one finds the tensor products

@J^ J#1,11
(1/q)5^1110u11&1/qJ11J01^1011u11&1/qJ0J11

5A@2#

@4#
$q21J11J02qJ0J11%

5A@2#

@4#
$q21~J0J112q22L011J11!2qJ0J11%

5A@2#

@4#
$~q212q!J02q22L0%J11

52A@2#

@4#
$q22L01~q2q21!J0%J11 , ~116!

@J^ J#1,21
(1/q)5^10121u121&1/qJ0J21

1^12110u121&1/qJ21J0

5A@2#

@4#
$q21J0J212qJ21J0%

5A@2#

@4#
$q21J0J212q~J0J211q22L021J21!%,

5A@2#

@4#
$~q212q!J02q22L0%J21

52A@2#

@4#
$q22L01~q2q21!J0%J21 , ~117!
6-9
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@J^ J#1,0
(1/q)5^11121u10&1/qJ11J21

1^12111u10&1/qJ21J11

1^1010u10&1/q~J0!2

5A@2#

@4#
$J11J212J21J111~q212q!~J0!2%

5A@2#

@4#
$2q22L0J02~q2q21!~J0!2%

52A@2#

@4#
$q22L01~q2q21!J0%J0 . ~118!

We remark that all these tensor products are of the gen
form
x
io

-
-

05430
ral

@J^ J#1,m
(1/q)52A@2#

@4#
$q22L01~q2q21!J0%Jm

52A@2#

@4#
ZJm , m50,61 ~119!

where, by definition,

Z5q22L01~q2q21!J0 . ~120!

One can now prove that the operatorZ is a scalar quantity,
since it is a function of the second order Casimir operator
suq(2), given in Eq.~11!. Indeed, one has
Z5q22L01~q2q21!J0

5q22L01
~q2q21!

@2#
$q@2L0#1~q2q21!~C2

(q)2@L0#@L011# !%

5q22L01
1

@2#
$q~q2L02q22L0!1~q2q21!2C2

(q)2~qL02q2L0!~qL0112q2L021!%

5q22L01
1

@2#
$q2L0112q22L0112q2L0111q1q212q22L0211~q2q21!2C2

(q)%

5q22L01
1

@2#
$2q22L0~q1q21!1~q1q21!1~q2q21!2C2

(q)%

5q22L02q22L0111
~q2q21!2

@2#
C2

(q)511
~q2q21!2

@2#
C2

(q) , ~121!
rs
e

is
or, in more compact form,

Z5q22L01~q2q21!J0511
~q2q21!2

@2#
C2

(q) . ~122!

Since Z is a scalar quantity, symmetric under the e
changeq↔q21 ~as one can see from the last express
appearing in the last equation!, Eq. ~119! can be written in
the form

F J

Z
^

J

ZG
1,m

(1/q)

52A@2#

@4#

Jm

Z
⇒@J8^ J8#1,m

(1/q)52A@2#

@4#
Jm8 ,

~123!

where, by definition,

Jm8 5
Jm

Z
, m511,0,21. ~124!

It is clear that the operatorsJm8 also form an irreducible ten
sor operator, sinceZ is a function of the second order Ca
-
n

simir C2
(q) of suq(2), which commutes with the generato

L1 , L2 , andL0 of suq(2), andtherefore does not affect th
commutation relations of Eqs.~96! and ~97!.

The scalar product of two irreducible tensor operators
defined as@10,24#

~Aj
(q)
•Bj

(q)!(1/q)5~21!2 jA@2 j 11#@Aj
(q)3Bj

(q)#0,0
(1/q)

5(
m

~2q!2mAj ,m
(q) Bj ,2m

(q) . ~125!

Substituting the irreducible tensor operatorsJm in this defi-
nition we obtain@10#

~J•J!(1/q)52A@3#@J3J#0,0
(1/q)

5
2

@2#
C2

(q)1
~q2q21!2

@2#2
~C2

(q)!25
Z221

~q2q21!2
,

~126!
6-10
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where in the last step the identity

Z2215~Z21!~Z11!

5
~q2q21!2

@2#
C2

(q)S 21
~q2q21!2

@2#
C2

(q)D , ~127!

has been used, obtained through use of Eq.~122!. In the
same way the irreducible tensor operatorsJm8 give the result

~J8•J8!(1/q)5
12Z22

~q2q21!2
. ~128!

We have therefore determined the scalar square of the a
lar momentum operator. We can assume at this point that
quantity can be used~up to an overall constant! as the Hamil-
tonian for the description of rotational spectra, defining

H5A
12Z22

~q2q21!2
, ~129!

whereA is a constant, which we also write in the form

A5
\2

2J0
~130!

for future reference.
The eigenvalueŝZ& of the operatorZ in the basisu l ,m&

can be easily found from the last expression given in
~122!, using the eigenvalues of the Casimir operatorC2

(q) in
this basis, which are@ l #@ l 11#, as already mentioned in Se
II

^Z&511
~q2q21!2

@2#
@ l #@ l 11#5

1

@2#
~q2l 111q22l 21!

5
1

@2#
~@2l 12#2@2l # !. ~131!

The eigenvalues^(J•J)(1/q)& of the scalar quantity (J
•J)(1/q) can be found in a similar manner from Eq.~126!

^~J•J!(1/q)&5
2

@2#
@ l #@ l 11#1

~q2q21!2

@2#2
@ l #2@ l 11#2

5
@2l #@2l 12#

@2#2 5@ l #q2@ l 11#q2, ~132!

where, by definition,

@x#q25
q2x2q22x

q22q22
. ~133!
05430
u-
is

.

Finally, the eigenvalueŝH& of the Hamiltonian can be found
by substituting the eigenvalues ofZ from Eq. ~131! into Eq.
~129!,

E5^H&5A
1

~q2q21!2 S 12
@2#2

~q2l 111q22l 21!2D
5A

1

4sinh2t S 12
cosh2t

cosh2~~2l 11!t! D , q5et,

~134!

where in the last step the identities

q2q2152 sinht, @2#5q1q2152 cosht, ~135!

q2l 111q22l 2152 cosh~~2l 11!t!, ~136!

which are valid in the present case ofq5et with t being
real, have been used. In the same way one sees that

^Z&5
cosh~~2l 11!t!

cosht
. ~137!

The following comments are now in place.
~a! The last expression in Eq.~132! indicates that the ei-

genvalues of the scalar quantity (J•J)(1/q) are equivalent to
the eigenvalues of the Casimir operator of suq(2) ~which are
@ l #@ l 11#), up to a change in the deformation parame
from q to q2.

~b! From Eq.~131! it is clear that the eigenvalues of th
scalar operatorZ go to the limiting value 1 asq→1. There-
fore, one can think ofZ as a ‘‘unity’’ operator. Furthermore
the last expression in Eq.~131! indicates that̂Z& is behaving
like a ‘‘measure’’ of the unit of angular momentum in th
deformed case.

VIII. ROTATIONAL INVARIANCE OF THE su q„2… ITO
HAMILTONIAN

In this section the notation and tools of Sec. III will b
used once more. We wish to prove that the Hamiltonian

Eq. ~129! commutes with the generatorsl̂ 1 , l̂ 2 , and l̂ 0 of
the usual su~2! algebra, i.e., with the usual angular mome
tum operators. Taking into account Eq.~122! we see that
acting on the ‘‘classical’’ basis described in Sec. III we ha
6-11
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Ẑu l ,m&c5S 11
~q2q21!2

@2#
Ĉ2

(q)D u l ,m&c

5S 11
~q2q21!2

@2#
@ l #@ l 11# D u l ,m&c . ~138!

Then, using Eq.~129!, we see that
ex

n

.

05430
Ĥu l ,m&c5
A

~q2q21!2 S 12
1

Ẑ2D u l ,m&c

5
A

~q2q21!2

3S 12
1

S 11
~q2q21!2

@2#
@ l #@ l 11# D 2D u l ,m&c .

~139!

Using this result, as well as Eq.~21!, one finds
@Ĥ, l̂ 1#u l ,m&c5Ĥ l̂ 1u l ,m&c2 l̂ 1Ĥu l ,m&c

5ĤA~ l 2m!~ l 1m11!u l ,m11&c2 l̂ 1

A

~q2q21!2 S 12
1

S 11
~q2q21!2

@2#
@ l #@ l 11# D 2D u l ,m&c

5
A

~q2q21!2 S 12
1

S 11
~q2q21!2

@2#
@ l #@ l 11# D 2D A~ l 2m!~ l 1m11!u l ,m11&c

2A~ l 2m!~ l 1m11!
A

~q2q21!2 S 12
1

S 11
~q2q21!2

@2#
@ l #@ l 11# D 2D u l ,m11&c50. ~140!
to

f

e it
In exactly the same way, using Eqs.~21! and~139!, one finds
that

@Ĥ, l̂ 2#u l ,m&c50, @Ĥ, l̂ 0#u l ,m&c50. ~141!

We have thus proved that the Hamiltonian of Eq.~129! is
invariant under usual angular momentum. This result is
pected, since the Hamiltonian is a function of the operatorẐ,
which in turn @as seen from Eq.~122!# is a function of the
second order Casimir operator of suq(2), Ĉ2

(q) , which was
proved to be rotationally invariant in Sec. III.

Since the Hamiltonian of Eq.~129! is rotationally invari-
ant, it should be possible to express it as a function ofĈ2
@the second order Casimir operator of su~2!#. It should also
be possible to express the eigenvalues of the Hamiltonia
Eq. ~129! as a function ofl ( l 11), i.e., as a function of the
eigenvalues ofĈ2. This task will be undertaken in Sec. IX

For completeness we mention that using Eqs.~34! and
~139! one can prove in an analogous way that

@Ĥ,L̂1#u l ,m&c50, @Ĥ,L̂2#u l ,m&c50, @Ĥ,L̂0#u l ,m&c50,
~142!

i.e., that the Hamiltonian of Eq.~129! commutes with the
generators of suq(2) as well. Then from Eq.~103! it is clear
that, in addition, one has
-

of

@Ĥ,Ĵ1#u l ,m&c50, @Ĥ,Ĵ2#u l ,m&c50, @Ĥ,Ĵ0#u l ,m&c50.
~143!

Then from Eqs.~124! and ~138! one furthermore obtains

@Ĥ,Ĵ18 #u l ,m&c50, @Ĥ,Ĵ28 #u l ,m&c50, @Ĥ,Ĵ08#u l ,m&c50.
~144!

IX. EXACT EXPANSION OF THE su q„2… ITO SPECTRUM

Since the Hamiltonian of Eq.~129! is invariant under
su~2!, as we have seen in Sec. VIII, it should be possible
write its eigenvalues@given in Eq.~134!# as an expansion in
terms ofl ( l 11). This is a nontrivial task, since in Eq.~134!
a function of the variablel appears, while we are in need o
a function of the variablel ( l 11), which is related to the
length of the angular momentum vector. For this purpos
turns out that one should use the Taylor expansion@18#

tanhx5 (
n51

`
22n~22n21!B2n

~2n!!
x2n21

5 (
n50

`
22n12~22n1221!B2n12

~2n12!!
x2n11,

uxu,
p

2
, ~145!
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where Bn are the Bernoulli numbers@18#, defined through
the generating function

x

ex21
5 (

n50

`

Bn

xn

n!
, ~146!

the first few of them being

B051, B152
1

2
, B25

1

6
, B452

1

30
,

B65
1

42
, B852

1

30
, B105

5

66
, . . . ,

B2n1150 for n51,2, . . . . ~147!

From Eq.~145! the following identities, concerning the de
rivatives of tanhx, occur:

~ tanhx!85
1

cosh2x
512tanh2x

5 (
n50

`
22n12~22n1221!B2n12

~2n!! ~2n12!
x2n, ~148!

~ tanhx!9522
tanhx

cosh2x
522

sinhx

cosh2x

5 (
n50

`
22n14~22n1421!B2n14

~2n11!! ~2n14!
x2n11. ~149!

From these equations the following auxiliary identities o
cur:

sinhx

x cosh3x
52

1

2x
~ tanhx!9

5 (
n50

`
22n13~1222n14!B2n14

~2n11!! ~2n14!
x2n, ~150!

tanh2x512
1

cosh2x
5 (

n50

`
22n14~1222n14!B2n14

~2n12!! ~2n14!
x2n12.

~151!

The expression for the energy, given in Eq.~134!, can be put
in the form

E

A
5S cosh2t•t2

sinh2t
D 1

~2t!2 H 1

cosh2t
2

1

cosh2~~2l 11!t!
J .

~152!

Denoting

z5~2l 11!t, x5 l ~ l 11!, ~153!

which imply
05430
-

z25~4x11!t2, z2n5t2n(
k50

n S n
kD22kxk, ~154!

~the latter through use of the standard binomial formul!,
from Eq. ~148! one obtains the expansion

~155!

The double sum appearing in the last expression can be
arranged using the general procedure

~156!

where

cn5 (
k5n

`

akbk,n5 (
k50

`

an1kbn1k,n . ~157!

Applying this general procedure in the case of Eq.~155! we
obtain

1

cosh2~~2l 11!t!
5

1

cosh2z
5 (

n50

`

cnxn, ~158!
6-13
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where

cn5 (
k50

`

an1kbn1k,n

5 (
k50

`
22n12k12~22n12k1221!B2n12k12

~2n12k!! ~2n12k12!
t2n12k

3S n1k
n D22n

5~2t!2n(
k50

`
22n12k12~22n12k1221!B2n12k12

~2n12k!! ~2n12k12!

3S n1k
n D t2k. ~159!

The first term in Eq.~158! is

c05 (
k50

`
22k12~22k1221!B2k12

~2k!! ~2k12!
t2k5

1

cosh2t
. ~160!

Then one has

1

~2t!2 H 1

cosh2t
2

1

cosh2~~2l 11!t!
J

52
1

~2t!2 (
n51

`

cnxn52
1

~2t!2 (
n50

`

cn11xn11

5 (
n50

`

dnxn11, ~161!

where the coefficientsdn are

dn52
1

~2t!2
cn115

~21!n~2t!n

~n11!!
f n~t!, n50,1,2, . . . ,

~162!

with

f n~t!5~21!n11~2t!n~n11!!

3 (
k50

`
22n12k14~22n12k1421!B2n12k14

~2n12k12!! ~2n12k14!

3S n1k11
n11 D t2k. ~163!

For n50 one has

f 0~t!52 (
k50

`
22k14~22k1421!B2k14

~2k12!! ~2k14!
~k11!t2k5

sinht

t cosh3t
,

~164!

where in the last step Eq.~150! has been used. It is wort
noticing that
05430
f n~t!5~21!ntnS 1

t

d

dt D n

f 0~t!. ~165!

With the help of Eqs.~161! and ~162!, the spectrum of Eq.
~152! is put into the form

E

A
5S t2cosh2t

sinh2t
D (

n50

`
~21!n~2t!n

~n11!!
f n~t!~ l ~ l 11!!n11,

~166!

sincex5 l ( l 11) from Eq.~153!. It is clear that Eq.~166! is
an expansion in terms ofl ( l 11), as expected.

X. APPROXIMATE EXPANSION OF THE su q„2… ITO
SPECTRUM

In the limit of utu!1 one is entitled to keep in Eq.~163!
only the term withk50. Then the functionf n(t) takes the
form

f n~t!→ ~21!n1122n12~22n1421!B2n14

~2n11!!! ~n12!
tn, ~167!

where the Bernoulli numbers appear again and use of
identity

~2n12!! 52n11~n11!! ~2n11!!! ~168!

has been made. Taking into account the Taylor expansio

sinhx5x1
x3

3!
1

x5

5!
1•••, coshx511

x2

2!
1

x4

4!
1•••,

~169!

and keeping only the lowest order terms, one easily sees
Eq. ~166! is put in the form

E

A
' (

n50

`
22n14~1222n14!B2n14

~2n12!! ~2n14!
~2t!2n~ l ~ l 11!!k11,

~170!

where use of the identity of Eq.~168! has been made onc
more and use of the fact that

t2cosh2t

sinh2t
'1 for utu!1 ~171!

has been made. Comparing this result with Eq.~151! and
making the identifications

x52tAl ~ l 11!52tj, j5Al ~ l 11!, ~172!

Eq. ~170! is put into the compact form

E'
A

~2t!2 tanh2~2tAl ~ l 11!!5
A

~2t!2 tanh2~2tj!,

q5et. ~173!

The extended form of the Taylor expansion ofE is easily
obtained from Eq.~170!:
6-14
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E'AS l ~ l 11!2
2

3
~2t!2~ l ~ l 11!!21

17

45
~2t!4~ l ~ l 11!!3

2
62

315
~2t!6~ l ~ l 11!!41••• D . ~174!

Equation~173! will be referred to as the ‘‘hyperbolic tangen
formula.’’

XI. ANALYTIC EXPRESSIONS BASED ON THE
APPROXIMATE EXPANSION OF THE su q„2… ITO

SPECTRUM

We are now going to derive analytic formulas for th
rotational frequencyv and the kinematic moment of inerti
J, based on the approximate expression for the energy g
in Eq. ~173!. From Eqs.~67! and ~68! one immediately ob-
tains

\v5
]E

]j
5

A

t

sinh~2tj!

cosh3~2tj!
5

A

t
tanh~2tj!~12tanh2~2tj!!,

~175!

\2

2J 5
]E

]h
5

1

2j

]E

]j
5

A

2tj

sinh~2tj!

cosh3~2tj!

5
A

2tj
tanh~2tj!~12tanh2~2tj!!, ~176!

where by definitionh5 l ( l 11)5j2, as in Eq.~69!. Using
the expressions forE and v given in Eqs.~173! and ~175!
one can easily verify that

J 0v2

2
5ES 12

~2t!2

A
ED 2

, ~177!

where use of Eq.~15! and of the identities

cosh2x2sinh2x51,
1

cosh2x
512tanh2x, ~178!

has also been made. Defining

«5
~2t!2

A
E5tanh2~2tj!, ~179!

t5
\t

A
5

2J0

\
t, ~180!

where t is a constant having dimensions of time, Eq.~177!
takes the form

~vt !25«~12«!25«22«21«3. ~181!

From this equation one can determine« as a function ofvt,
in the following way. One can define

s~x!512«~x!⇒«~x!512s~x!, x5~vt !2. ~182!

Then Eq.~181! takes the form
05430
en

«~12«!25~12s!s25x⇒s22s35x. ~183!

From Eq.~181! it is clear that

«~v50!50, ~184!

which immediately implies

s~x50!51. ~185!

One can now try to expresss(x) as a power series inx,
having the form

s~x!511a1x21a2x31a3x41•••. ~186!

For a series of this form one can use the fact thats2(x) is of
the form @18#

s2~x!511b1x1b2x21b3x31•••, ~187!

where the coefficientsbn are given by the recursion relatio

bn5
1

n (
k51

n

~3k2n!akbn2k , n>1, b051, ~188!

as well as the fact thats3(x) is of the form@18#

s3~x!511c1x1c2x21c3x31•••, ~189!

where the coefficientscn are given by the recursion relatio

cn5
1

n (
k51

n

~4k2n!akcn2k , n>1, c051, ~190!

the explicit form of the first few coefficients being

b152a1 , c153a1 , ~191!

b25a1
212a2 , c253~a1

21a2!, ~192!

b352~a1a21a3!, c35a1
316a1a213a3 , ~193!

b45a2
212a1a312a4 , c453~a1

2a21a2
212a1a31a4!,

~194!

b552~a2a31a1a41a5!,

c553~a1a2
21a1

2a312a2a312a1a41a5!. ~195!

The coefficients in Eq.~186! can now be determined b
considering Eq.~183! written in the form

s2~x!2s3~x!5d1x1d2x21d3x31•••[x, ~196!

which implies that

d151 and d05d25d35 . . . 50. ~197!

The first few coefficients in Eq.~196! are then

d152a123a152a151⇒a1521, ~198!
6-15
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d25~a1
212a2!23~a1

21a2!5222a250⇒a2522,
~199!

d352~a1a21a3!2~a1
316a1a213a3!

5272a350⇒a3527. ~200!

By this procedure one obtains

s~x!512x22x227x3230x42143x52••• ~201!

and

«~x!512s~x!5x12x217x3130x41143x51•••,
~202!

which, using Eq.~182!, takes the form

«~v!5~vt !212~vt !417~vt !6130~vt !81143~vt !10

1•••. ~203!

It is clear that this expression corresponds to a real roo
the cubic equation of Eq.~181!, which is of the form

«31 f 2«21 f 1«1 f 050, ~204!

with

f 2522, f 151, f 052~vt !2. ~205!

Using the standard way of solving a cubic equation@18# one
has

g5
1

3
f 12

1

9
f 2

252
1

9
, ~206!

h5
1

6
~ f 1f 223 f 0!2

1

27
f 2

35
1

2
~vt !22

1

9
, ~207!

while the discriminant is

D5g31h25S 1

2
~vt !22

1

9D 2

2S 1

27D
2

5S 1

2
~vt !22

2

27D S 1

2
~vt !22

4

27D . ~208!

One obtains three real roots whenD,0 @i.e., when 4/27
<(vt)2<8/27], while forD.0 @i.e., for (vt)2.8/27 or for
(vt)2,4/27] one has only one real root. In the case of ro
tional spectra it is clear that we are interested in the reg
including v50, i.e., the relevant region is 0<(vt)2

,4/27, in which only one real root exists. Using the stand
procedure@18# one can write in this case the explicit form o
the real root, expand the square and cubic roots appea
there, and verify that the Taylor expansion of the root is
the form given in Eq.~203!.

Using Eqs.~179! and~203! one finally obtains the expan
sion of the energy in terms of powers ofv2
05430
of

-
n

d

ng
f

E5
A

~2t!2 «5
A

~2t!2 ~~vt !212~vt !417~vt !6130~vt !8

1143~vt !101••• !. ~209!

On the other hand from Eq.~176! using Eq. ~15! one
obtains

J
J0

5
2tj

tanh~2tj!~12tanh2~2tj!!
5

arctanh~A«!

A«~12«!
,

~210!

where, in the last step, Eq.~179! has been taken into accoun
In the case of 0,«,1 ~which guarantees that the Taylo
expansion of arctanh(A«) is possible! one can use the expan
sion @18#

arctanhx5 (
n50

`
x2n11

2n11
, uxu,1. ~211!

In addition, the following expansion holds:

1

12x2 5 (
n50

`

x2n, uxu,1. ~212!

Using the general result@18# that the series

s1~x!511a1x1a2x21a3x31••• ~213!

and

s2~x!511b1x1b2x21b3x31••• ~214!

can be combined into

s3~x!5s1~x!s2~x!5 (
n50

`

cnxn, ~215!

with

cn5 (
k50

n

akbn2k ~216!

from Eqs.~211! and ~212! one obtains

~217!

with

cn5 (
k50

n

akbn2k5 (
k50

n
1

2k11
, ~218!
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TABLE I. Parameter values and quality measures @Eq. ~226!# for models I@Eq. ~17!#, I8 @Eq. ~65!#, II
@Eq. ~134!#, II8 @Eq. ~173!#, III @Eq. ~224!#, and IV@Eq. ~225!#, obtained from least square fits to experimen
spectra of Th isotopes~shown in Tables II and III!. Data have been taken from Refs.@25# (222Th), @26#
(224Th), @27# (226Th), @28# (228Th), @29# (230Th, 232Th, 234Th). TheR45E(4)/E(2) ratio for each isotope is
also shown.

222Th 224Th 226Th 228Th 230Th 232Th 234Th
R4 2.399 2.896 3.136 3.235 3.271 3.283 3.308

Model I
A ~keV! 12.577 11.855 10.047 8.873 8.149 7.437 7.845
102t 4.857 5.527 4.701 4.507 3.512 3.141 3.312
s ~keV! 154.213 38.135 26.404 11.601 17.074 26.700 10.83
Model I 8
A ~keV! 12.582 11.861 10.052 8.876 8.150 7.438 7.847
102t 4.858 5.528 4.702 4.508 3.512 3.141 3.313
s ~keV! 154.210 38.134 26.403 11.600 17.074 26.700 10.83
Model II
A ~keV! 13.797 12.253 10.289 8.988 8.261 7.559 7.928
102t 2.156 2.229 1.858 1.728 1.351 1.218 1.260
s ~keV! 125.815 32.420 21.631 9.582 13.585 21.724 8.204
Model II 8
A ~keV! 13.792 12.247 10.286 8.986 8.260 7.564 7.927
102t 2.155 2.228 1.858 1.727 1.351 1.220 1.260
s ~keV! 125.815 32.420 21.631 9.581 13.585 21.730 8.204
Model III
A ~keV! 11.928 11.602 9.884 8.793 8.067 7.350 7.785
102B ~keV! 0.703 0.977 0.616 0.525 0.291 0.210 0.253
s ~keV! 173.357 42.528 30.137 13.238 19.912 30.710 13.02
Model IV
1022a ~keV! 13.812 22.413 30.636 36.853 54.344 58.577 63.70
102b 2.909 1.211 0.720 0.505 0.316 0.270 0.256
s ~keV! 53.745 18.244 10.080 4.677 5.216 9.754 2.139
y

the

be
iso-
the first few coefficients being

c051, c15
4

3
, c25

23

15
,

c35
176

105
, c45

563

315
, c55

6508

3465
. ~219!

Using Eq.~217! with x5« one can put Eq.~210! in the
form

J
J0

5 (
n50

`

cn«n, ~220!

where the coefficients are the ones given in Eqs.~218! and
~219!. Equation~220! is written analytically as

J
J0

511
4

3
«1

23

15
«21

176

105
«31

563

315
«41•••, ~221!

which can be rewritten with the help of Eq.~209! as
05430
J
J0

511
4

3
~vt !21

21

5
~vt !41

120

7
~vt !61

715

9
~vt !8

1
4368

11
~vt !101•••. ~222!

Using Eq.~70! one then additionally has

j5Al ~ l 11!5
Jv

\
5

J0

\
vS 11

4

3
~vt !21

21

5
~vt !4

1
120

7
~vt !61

715

9
~vt !81

4368

11
~vt !101••• D .

~223!

Equations~209! and ~223! give the energy and the quantit
Al ( l 11) as series in powers of the rotational frequencyv,
thus making contact between the present approach and
Harris formalism@8#.

XII. NUMERICAL TESTS

The formulas developed in the previous sections will
now tested against the experimental spectra of the Th
6-17
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topes @25–29#, which range from vibrational@222Th with
R45E(4)/E(2)52.399] to clearly rotational (234Th with
R453.308). The purpose of this study is twofold.

~a! To test the quality of the approximations used in Se
V and X.

~b! To test the agreement between theoretical predicti
and experimental data. The standard rotational expansio

E5Al~ l 11!1B~ l ~ l 11!!21C~ l ~ l 11!!31D~ l ~ l 11!!4

1•••, ~224!

from which only the first two terms will be included in orde
to keep the number of parameters equal to 2, as well as
Holmberg–Lipas two-parameter expression@11#

E5a~A11bl~ l 11!21!, ~225!

which is known to give the best fits to experimental ro
tional nuclear spectra among all two-parameter express
@12#, will be included in the test for comparison. For brevi
we are going to use the following terminology: model I f
Eq. ~17! ~original suq(2) formula!, model I8 for Eq. ~65!
~‘‘the sinus formula’’!, model II for Eq.~134! @‘‘the suq(2)
irreducible tensor operator~ITO! formula’’#, model II8 for
Eq. ~173! ~‘‘the hyperbolic tangent formula’’!, model III for
Eq. ~224! ~the standand rotational formula!, and model IV
for Eq. ~225! ~the Holmberg–Lipas formula!.

It should be emphasized at this point that in models I a
I8 the deformation parameter is a phase factor (q5ei t, t
05430
.

s

he

-
ns

d

real!, while in models II and II8 the deformation parameter i
a real number (q5et, t real!. A consequence of this fact i
the presence of trigonometric functions in models I and8,
while in models II and II8 hyperbolic functions appear.

The parameters resulting from the relevant least squ
fits, together with the quality measure

s5A 2

l max
(
i 52

l max

~Eexpt~ l !2Eth~ l !!2, ~226!

TABLE II. Theoretical predictions of models I@Eq. ~17!#, I8
@Eq. ~65!#, II @Eq. ~134!#, II8 @Eq. ~173!#, III @Eq. ~224!#, and IV
@Eq. ~225!#, obtained from least square fits to the experimental sp
trum ~expt.! of 232Th, taken from Ref.@29#. All energies are given
in keV. The relevant model parameters and quality measures @Eq.
~226!# are given in Table I.

232Th
l expt. I I8 II II 8 III IV

2 49.4 44.5 44.5 45.2 45.3 44.0 47.3
4 162.2 147.8 147.8 150.0 150.1 146.2 156.
6 333.3 308.1 308.1 312.3 312.5 305.0 323.
8 557.1 523.0 523.0 529.1 529.4 518.3 544.
10 826.9 789.0 789.0 796.6 797.0 783.0 814
12 1136.9 1102.1 1102.1 1110.0 1110.6 1095.4 112
14 1482.3 1457.1 1457.1 1464.2 1464.8 1450.8 147
16 1858.3 1848.6 1848.6 1853.4 1854.0 1843.7 185
18 2261.7 2270.3 2270.3 2271.7 2272.3 2267.9 226
20 2690.5 2715.7 2715.7 2713.1 2713.6 2716.4 270
22 3142.9 3177.6 3177.6 3171.7 3171.9 3181.2 315
24 3618.3 3648.9 3648.9 3641.8 3641.7 3653.7 362
26 4114.9 4122.0 4122.0 4118.0 4117.9 4124.5 411
28 4630.5 4589.5 4589.5 4595.6 4594.6 4583.2 461
0
.8
.8

5.5
81.8
68.8
78.1
03.8
41.7
TABLE III. Theoretical predictions of models I8 @Eq. ~65!#, II8 @Eq. ~173!#, III @Eq. ~224!#, and IV @Eq.
~225!#, obtained from least square fits to the experimental spectra~expt.! of 222Th @25# and 224Th @26#. All
energies are given in keV. The relevant model parameters and quality measures @Eq. ~226!# are given in
Table I.

222Th 224Th
l expt. I8 II 8 III IV expt. I 8 II 8 III IV

2 183.3 75.1 82.1 71.3 115.7 98.1 70.7 72.9 69.3 80.
4 439.8 247.7 269.1 235.7 356.0 284.1 232.4 238.6 228.1 256
6 750.0 511.2 550.4 488.6 677.7 534.7 477.2 487.1 470.1 511
8 1093.5 855.7 910.7 822.3 1048.6 833.9 793.2 804.1 784.7 82
10 1461.1 1268.3 1332.0 1227.0 1449.6 1173.8 1164.9 1172.8 1158.0 11
12 1850.7 1733.4 1795.0 1689.6 1869.4 1549.8 1574.4 1575.5 1572.1 15
14 2259.7 2233.6 2281.0 2194.8 2301.7 1958.9 2001.6 1995.4 2005.5 19
16 2687.8 2749.9 2773.1 2934.3 2742.5 2398.0 2425.7 2417.4 2432.8 24
18 3133.5 3263.0 3257.1 3257.0 3189.4 2864.0 2826.2 2829.1 2824.9 28
20 3596.0 3753.6 3721.7 3769.5 3640.7
22 4077.6 4203.2 4158.7 4235.4 4095.4
24 4577.9 4594.9 4562.9 4625.8 4552.7
26 5097.9 4914.0 4931.3 4908.8 5012.0
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TABLE IV. Same as Table III, but for226Th @27#, and 228Th @28#.

226Th 228Th
l expt. I8 II 8 III IV expt. I 8 II 8 III IV

2 72.2 60.0 61.4 59.1 65.5 57.8 53.0 53.7 52.6 55
4 226.4 198.1 202.0 195.2 213.3 186.8 175.1 176.9 173.8 18
6 447.3 409.3 415.9 404.2 432.9 378.2 362.3 365.1 360.0 37
8 721.9 686.1 694.2 679.7 711.9 622.5 608.5 611.6 605.9 61
10 1040.3 1018.9 1026.1 1012.6 1038.1 911.8 905.8 907.9 903.7 9
12 1395.2 1395.9 1399.5 1391.9 1401.2 1239.4 1244.4 1244.5 1244.0 1
14 1781.5 1803.8 1802.2 1803.8 1792.9 1599.5 1613.5 1611.3 1615.1 1
16 2195.8 2228.1 2221.9 2232.5 2206.9 1988.1 2001.0 1998.3 2003.4 1
18 2635.1 2654.1 2647.9 2659.5 2638.3 2407.9 2394.5 2396.1 2393.4 2
20 3097.1 3066.5 3070.4 3064.2 3083.4
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where l max is the angular momentum of the highest lev
included in the fit, are listed in Table I, while in Table II th
theoretical predictions of all models for222Th are listed to-
gether with the experimental spectrum. Finally in Tab
III–V the theoretical predictions of models I8, II8, III, and
IV for the rest of the Th isotopes are listed, together with
relevant experimental spectra. From these tables the foll
ing observations can be made.

~a! As seen in Tables I and II, models I and I8 give results
which are almost identical. The same is true for models
and II8. We therefore conclude that the approximations c
ried out in Secs. V and X are very accurate. This is
reason that in Tables III–V the results of models I and II a
omitted in favor of models I8 and II8.

~b! All models give good results for226Th-234Th, which
lie in the rotational region, withR4 ratio between 3.136 and
3.308, with model IV giving the best results and model
giving the worst ones, while in all cases models II and II8 are
better than models I and I8. It should be noticed, howeve
that all models tend to underestimate the first several le
of the spectra and the last one or two levels, while th
overestimate the rest of the levels. In other words, all mod
‘‘fail in the same way.’’
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~c! A similar picture holds for the transitional nucleu
224Th (R452.896) and the near-vibrational nucleu
222Th (R452.399), i.e. still model IV gives the best resul
and model III the worst, while models II and II8 are better
than models I and I8. However, the deviations from the da
become much larger, indicating that all these models are
appropriate for describing spectra in the vibrational and tr
sitional regions, in which the presence of a term linear inl is
required, as in the u~5! and o~6! limits of the Interacting
Boson model@30#.

These observations lead to the following conclusions:
~a! One can freely use model I8 in the place of model I,

and model II8 in the place of model II, since the relevan
approximations turn out to be very accurate. Models I8 and
II 8 have the advantage of providing simple analytic expr
sions for the energy, the rotational frequency and the mom
of inertia.

~b! The fact that models II and II8 are better than model
I and I8 indicates that within the same symmetry@suq(2) in
this case# it is possible to construct different rotationa
Hamiltonians characterized by different degrees of agr
ment with the data. However, these Hamiltonians are
‘‘rigid,’’ in the sense that they can describe only rotation
.7
1.1
3.8
2.4
1.5

165.6
529.1
926.8
354.1
806.8
281.4
774.8
TABLE V. Same as Table III, but for230Th @29# and 234Th @29#.

230Th 234Th
l expt. I8 II 8 III IV expt. I 8 II 8 III IV

2 53.2 48.8 49.4 48.3 51.3 49.6 47.0 47.4 46.6 48
4 174.0 161.7 163.6 160.2 169.0 164.1 155.8 157.2 154.7 16
6 356.5 336.4 340.0 333.7 349.3 337.5 324.5 327.1 322.5 33
8 593.9 569.7 574.5 565.8 586.4 565.7 550.3 553.8 547.4 56
10 879.6 856.7 862.1 852.2 873.9 843.5 829.0 832.9 825.7 84
12 1207.5 1192.0 1196.7 1187.8 1205.4 1165.8 1155.8 1159.2 1152.8 1
14 1572.8 1568.8 1571.6 1565.9 1574.5 1527.6 1525.1 1527.0 1523.1 1
16 1970.7 1979.8 1979.7 1979.2 1975.6 1924.4 1930.3 1930.0 1930.1 1
18 2397.5 2416.8 2413.6 2419.0 2403.9 2352.0 2364.3 2361.7 2366.1 2
20 2849.8 2871.3 2866.3 2875.4 2855.1 2806.1 2819.5 2815.6 2822.7 2
22 3325.2 3334.3 3330.8 3337.7 3325.7 3282.4 3288.0 3285.4 3290.5 3
24 3820.2 3796.6 3800.8 3793.7 3812.7 3776.1 3761.5 3765.0 3758.8 3
6-19



tid

th
an

or

e

e
er

re,
rs

.

as
ms

h-

the
is
en-
ate

nd
-

he

he
lar

the
ilar
is
in

f

ar
the

ian
s.

BONATSOS, KOTSOS, RAYCHEV, AND TERZIEV PHYSICAL REVIEW C66, 054306 ~2002!
spectra, while vibrational and transitional spectra are ou
their realm.

Some additional comments on the convergence of
various expansions can be made by considering the qu
ties @31#

r 15

C

A

S B

AD 2 5
AC

B2 , r 25

D

A

S B

AD 3 5
A2D

B3 , ~227!

which refer to the coefficients of the expansion of Eq.~224!.
Keeping only the first two terms in the Harris formalism f
the energy and the moment of inertia leads to the values@31#

r 1
Harris54, r 2

Harris524. ~228!

From Eq.~62! we obtain, for model I8,

r 1
I 85

2

5
, r 2

I 85
3

35
, ~229!

while from Eq.~174! we obtain, for model II8,

r 1
II 85

17

20
, r 2

II 85
93

140
. ~230!

The Taylor expansion of the Holmberg-Lipas formula@Eq.
~225!# reads

E

a
5

b

2
l ~ l 11!2

b2

8
~ l ~ l 11!!21

b3

16
~ l ~ l 11!!3

2
5b4

128
~ l ~ l 11!!41•••, ~231!

from which one obtains

r 1
IV52, r 2

IV55. ~232!

We observe that for models I8, II8, and IV the quality of the
fits is improved as the values of the ratiosr 1 andr 2 become
larger.

Finally, a word of warning: One could think of fitting th
experimental spectra by Eq.~224!, keeping the first four
terms in the expansion, and then trying to use the param
values obtained from fitting several nuclei in order to det
y

r

.

s.

05430
e
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mine ‘‘optimal’’ values for the ratiosr 1 and r 2 from Eq.
~227! as a function of the mass number. This procedu
however, is very unsafe, since the values of the parameteC
and especiallyD obtained from the fits are very unstable.

XIII. DISCUSSION

The main results of the present work are the following
~a! The rotational invariance of the original suq(2) Hamil-

tonian@5,6# under the usual physical angular momentum h
been proved explicitly and its connections to the formalis
of Amal’sky @7# ~‘‘the sinus formula’’! and Harris@8# have
been given.

~b! An irreducible tensor operator~ITO! of rank 1 under
suq(2) has been found and used, throughq-deformed tensor
product andq-deformed Clebsch-Gordan coefficient tec
niques @9,10,22,23#, for the construction of a Hamiltonian
appropriate for the description of rotational spectra,
suq(2) ITO Hamiltonian. The rotational invariance of th
new Hamiltonian under the usual physical angular mom
tum has been proved explicitly. Furthermore, an approxim
simple closed expression~‘‘the hyperbolic tangent formula’’!
for the energy spectrum of this Hamiltonian has been fou
and its connection to the Harris@8# formalism has been dem
onstrated.

From the results of the present work it is clear that t
suq(2) Hamiltonian, as well as the suq(2) ITO Hamiltonian,
are complicated functions of the Casimir operator of t
usual su~2!, i.e. of the square of the usual physical angu
momentum. These complicated functions possess suq(2)
symmetry, in addition to the usual su~2! symmetry. Matrix
elements of these functions can be readily calculated in
deformed basis, but also in the usual physical basis. A sim
study of aq-deformed quadrupole operator is called for. Th
operator would allow the study of multi-band spectra,
analogy to the Elliott model@32#, as well as the study o
B~E2! transition probabilities. Sinceq deformation appears
to describe well the stretching effect of rotational nucle
spectra, ir is interesting to check what its influence on
corresponding B~E2! transition probabilities will be. Work in
this direction is in progress.
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