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Complete next-to-leading-order calculation for pion production in nucleon-nucleon collisions
at threshold
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Based on a counting scheme that explicitly takes into account the large momeNtum characteristic for
pion production in nucleon-nucleon collisions we calculate all diagrams for the re&dthenNN7r at thresh-
old up to next-to-leading-order. At this order there are no free parameters and the size of the next-to-leading-
order contributions is in line with the expectation from power counting. The sum of loop corrections at that
order vanishes for the procepp— pp° at threshold. The total contribution at next-to-leading-order from
loop diagrams that include the delta degree of freedom vanishes at threshold in both reaction ghannels
—pp#n’,pnw.
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The high precision data for the procesges— ppm®, — NN at threshold. In particular, we evaluate all one-loop
pp—pn7t andpp—d=™" in the threshold regiofil] have diagrams at next-to-leading order employing a counting
spurred a flurry of theoretical investigations. The first data orscheme that takes into account the large momengivim,,
neutral pion production were a big surprise because the exsharacteristic for pion production iNN collisions, as sug-
perimental cross sections turned out to be a factor of 5 largegested in Refs[8,16]. We consider also the contributions
than the theoretical predictions based on direct pion produdrom explicit delta isobars at tree level and at one-loop order.
tion and neutral pion rescattering fixed from on-sheM To the order we are working there are no free parameters and
data[2,3]. Subsequently, it was argued that heavy-meson exe demonstrate that the size of the individual next-to-
changes might be able to remove this discrepdadtyOn the leading-order con_trlbutlons is in line with the expectations
other hand, it was foungl5,6] that the (model-dependept ~ffom power counting.
off-shell behavior of the fullzN T matrix can also enhance Let us begin W!th writing down the generql form of.the
the cross sections near threshold considerably. thre§hold T rpatnx for th? pion  production - reaction

Due to their nature as pseudo-Goldstone bosons the d1(P) ¥ Na(—p)—N+N+ in the center-of-mass frame,
namics of pions is largely constrained by chiral symmetryWhich read{17]

Thus one might hope that effective field theory studies which
incorporate these constraints strictly will help to resolve the
so far confusing situation. In the literature there are severa
calculations carried out in the framework of tree-level chiral
perturbation theory including the dimension two opeators
(single-nucleoi for neutral pion productiof7—10] as well

as for charged pion productigal,12. A common feature of . .. Ll
these calculations is that the contributions from the isoscalar X(iT —=iTot 71X 73) - @, 1)
pion rescattering interfere destructively with the direct pro-

duction amplitude, thus I_eadmg to an even more severe digg;ip, o1, and 7, » the spin and isospin operators of the two
crepancy between experiment and theory. It should be note ' ’

that such an interference pattern is in contradiction to the ongucleonsd) _denotes the_ three-compo_nent isospin wave func-
found in phenomenological approachi&é]. Furthermore, tLon of the final state pion producegi in &mave state, e.g.,
within the Weinberg power counting scheme, where all mo-#=(0.,0,1) for 7° production ?nd¢=(1,l,0)/\/§ for m*
menta are considered of the ordermof., one-loop calcula- Production. The complex amplitude$ and B belong to the
tions have been performed for neutral pion productigm  transitions®Po— 'Sy and °Py— *S; in the two-nucleon sys-
—ppm® [13-15. According to some of these works the t€m, respectively. Ir_1 fact the _selectlon rules which follow
loop corrections are larger by at least a factor of 2 compareffom the conservation of parity, angular momentum, and
to the tree-level diagrams, which according to the countingSoSpin allow only for these two transitions for the reaction
scheme applied appear one order down. This fedtfiper- NN— NN at threshold. In the case of neutral pion produc-
rech would seriously question the convergence of the chiration pp—ppm° the threshold amplitudet is the only rel-
expansion for pion production NN collisions. On the other €vant one whereas in charged pion producg-pnm*
hand, according to Ref16] the chiral expansion seems to both threshold amplituded and B can contribute. Note that
show convergence in the casemfvave pion production. the thresholdT matrix written in Eq.(1) incorporates the
The purpose of the present work is to present a completBauli exclusion principle since combined left multiplication
next-to-leading-order calculation of the reactioNN  with the spin-exchange operator{l;lo(}z)/Z and the iso-

c.m, _é P - e ~
| Tin (NN—NN7)= 2(|0'1 ios+ 01X 0a5) P

.. B . . .
><(7'1+7'2)-¢*+§(0'1+02)~p
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spin exchange operator ;- 7,)/2 reproducesT{"(NN
—NN) up to an important minus sign. The magnitude of
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the nucleon center-of-mass momenttﬁmecessary to pro-
duce a pion at rest is given by

|pl=Vm,(M+m_/4), 2 2) b) o

with M =939 MeV and m,=139.6 MeV denoting the ' '
nucleon and pion masses, respectively. Equai@rexhibits LR

the important feature of the reacticdN— NN, namely, NLO

the large momentum mismatch between the initial and the

final nucleon-nucleon state. This leads to a large invariant

(squared momentum transfet=—Mm_ between in- and n o)
outgoing nucleons. The appearance of the large momentum . .
scaleyMm_, in pion production demands for a change in the ;
chiral power counting rules, as pointed out already in Ref. p :
[8]. In addition, it seems compulsory to include the delta NNLO
isobar as an explicit degree of freedom, since the delta-
nucleon mass differencé =293 MeV is comparable to the
external momentunp=+Mm_=362 MeV. The hierarchy f)
of scales

2)

FIG. 1. Tree-level contributions to threshold pion production at
leading ordefa), (b), and(c), next-to-leading ordefd) and(e), and
. L o o next-to-next-to-leading ordeff) and (g). A single solid, double
suggested by this feature, is in line with findings within me-sgjig, and dashed line denotes a nucleon, delta isobar, and pion,

son exchange models where the delta isobar gives significapéspectively. Leadingsubleadingorder vertices are symbolized by
contributions even close to the threshpl®,19. solid circles(open circles

Let us now state our counting rules. The external momen-
tum p=+yMm, sets the overall scale relevant for the processare not shown. Subsets of four diagrams obtained by these
NN—NN7. This momentum scalg enters the internal lines operations map properly onto the crossing antisymmetric
of tree and loop diagrams. Therefore we count allthresholdT matrix Eq.(1). Figure Xa) involving the(isovec-
four—momentélu inside loops generically as ordpfand the  tor) Weinberg-TomozawamwNN-contact vertex gives a
loop integration measurgd®?l as orderp®. A pion propaga- leading-order contribution of the form
tor is counted as order?. The delta propagator of the form
1/(energy-A) counts as order p since we made the
choice A~p. For the nucleon propagator of the form
1/energyone has to distinguish whether it occurs outside or

inside a loop. The associated residual energy counts as ordgfin ga=1.3 the nucleon axial vector coupling arfg,
m,, outside a loop and as order~yMm; inside a loop. =92.4 MeV the pion decay constant. It is important to note
Furthermore, external pion energies are counted as ordehat the Weinberg-Tomozawa vertex generates here a propor-
mg. tionality factorm,, at “leading order” in the chiralwN La-
According to these counting rules one-loop diagrams congrangian via the pion and nucleéresidual energies as well
tribute at ordeip? in the expansion of th& matrix and thus s through a “relativistic correction” of the forp?/M. This
generate threshold amplitudes of the forod,B~p  factor of m, gets finally canceled by the pion propagator
=Mm_. The new counting rules demand also for a reor{m_(M+m_)]~'. Obviously, the isovector Weinberg-
dering of the terms in the interaction Lagrangian, sinceTomozawa vertex cannot contribute to the neutral pion pro-

“relativistic corrections” proportional to nucleon kinetic en- quyction threshold amplitudel. From the one-pion exchange
ergiesp?/M are now of the same order as “leading orderjn Fig. 1(b) one finds

contributions” proportional to residual nucleon energies.

M>p=A>m_, 3

g
AWD=q B(WUZ_ZMA]G, (4

Several examples of this effect will be encountered here. o 393
In Fig. 1, we display tree-level diagrams which according A(l”)=8—fg, B(M):W' (5)

to the above mentioned counting rules contribute at leading
order, next-to-leading order, and next-to-next-to-leading or—_l_h_ It st ; th | tion to tIN
der. Diagrams for which the role of both nucleons is inter-' 1> FeSUlt Stems from the recoif correction fo ver-

changed and diagrams with crossed outgoing nucleon liné@x proportional to in,./M)a,-p with the m,, factor now
getting canceled by the intermediate nucleon propagator.

Furthermore, the product of the two vertices on the left

1Baryon energies are residual energies with the nucleon Mass nucleon line 61- 5)2= Mm,, is canceled by the pion propa-
subtracted. gator. The ratia3(*™/ A(™ =3 has its origin in the isospin
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factor of Fig. 1b). From the analogous Fig.(d) with one .
virtual delta-isobar excitation one finds T LR AN "

3 /,’ \\ ‘,a’ ,’ ‘\ ,’
gamz -

A =qurar B0 © ’ o '

where we have used the empirically well satisfied relation
ha=3g,/+/2 for the wNA-coupling constant. The spin and T L N

isospin transition operators entering theNA vertex : VY
(hal2f,)S-pT, satisfy the usual relationsSS/=(24;
—i€j0)/3 and T T)=(28ap—i €apc7e)/3. The latter iso-  f | P77
spin relation is the reason behind the vanishingf).

According to our counting of the mass splittidg the term ¢)
A@ in Eq. (6) is a next-to-leading-order contribution, since

A~p [cf. relation(3)]. Figure 1f) involves the second-order

chiral wwNN-contact vertex proportional to the low-energy
constants; » 3 4[20]. We find the following contributions to

the threshold amplitudes at next-to-next-to-leading order:

‘T’._._._-

e)

m, )
A= gAWg(c;ﬁ 2c,—4cy),

FIG. 2. One-loop diagrams that start to contribute at next-to-
next-to-leading order. For further notations see Fig. 1.
N . . .

B = W(cﬁ C3+2¢,—4c;). (7)  ward but tedious evaluation leads to the following next-to-

m leading-order contributions of the one-loop diagrams in Fig.

3 with nucleons only:
In a previous calculation in Reff7] [see Eq(32) thereir] the

c, term has been found with a relative factor 1/2 smaller. The

3
reason for this discrepancy is again that “relativistic correc- A(N'|OOP)ZW(_2_1+3),
tions” from thec, vertex are of the same order as its “static” 256>
contribution, sincg?/ M =m_ . We also note that our results,
Egs. (4)—(7) agree up to the respective order with those of 3 Mm.
the fully relativistic calculation in Ref[17] where no ap- B(N-Ioop):gA me(—2+0+3) ®)
proximations to the threshold kinematics have been made. 256f757 '
We do not specify the contributions from diagraieg, (e),

and (g) in Fig. 1 which are proportional to théa Priof  Here, the numerical entries correspond to the diagré@ns
_unknowr) strengths of four-nucleon contact vertices, etc. It IS(b)’ and (¢) of Fig. 3, in that order. Interestingly, the total
Important to note that already at leading order _Iong'rang%ext-to—leading-order loop contribution vanishes identically
effects. from pion-exchange and short-range contributions ¢ neutral pion productiond N1°°P =0 The diagramga)
pear simultaneously. - . nd (c) in Fig. 3 have been calculated fully relativistically
Let us now turn to the nonyanlshlng one-lqop diagrams aﬁ.e., without any approximation to the threshold kinematics
threshold. Not every loop diagram appearing formally a or pp—pp in Ref.[17]. It is an important check for our
next-to-leading order truly contributes at that order. In thecalculation that the. noﬁanalytical piece proportional to
case of diagraméh) and(c) in Fig. 2 the(spin-independept JMm_ agrees with the one derived by expanding @) in
one-loopzN-scattering subdiagrams are proportionairtp, o [17]. In addition, after correcting a sign error in Ref.
and this pushes their contributions to the threshiltatrix
Eq. (1) beyond next-to-leading order. A closer inspection of | . . .
diagram(a) in Fig. 2 reveals that they contribute in the form ™. 3 S p .
m,Inm, to the threshold amplituded and B, i.e., beyond N | SR IR SO
next-to-leading order. The specific vertex structures of dia- AN VT A
grams(d) and(e) in Fig. 2 make also their next-to-leading- 4
order contributions vanishing. Therefore we have to focus
only on the diagrams shown in Figs.(8nd 4.

We evaluate only the genuine next-to-leading-order pieces ) 0 ©

of the loop integrals emerging from the diagrams in Figs. 3 FIG. 3. Next-to-leading-order one-loop diagrams for pion pro-

(and 4. For instance, in the integrands we can systematicallyuction at threshold with nucleons only. For further notations see
drop terms of ordem_ compared td, (andA). Straightfor-  Fig. 1.
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a) b)

c) d)
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A M B 1 fw dx XyMm,,
vo(—A,— m”)_47r2\/M_mw o 142 arctan oA
~O(p™h). (13)
The (scale-dependentuantity
L —)\d_A ! ! 1-In4 14
(?\)—@ g-zt3(ve=1-In4m) (14

FIG. 4. Next-to-leading-order one-loop diagrams for pion pro_de_not(_es for the standard diverggnt piece in dimensional regu-
duction at threshold with intermediate delta isobars. For furthet@rization. The reason for grouping together the three specific

notations see Fig. 1.

diagrams into subclad®) is that this way thein the chiral
limit) singular termA2J,(—A)/Mm,. does not appear ex-

[14] and extracting at threshold the truly next-to-leading-plicitly. Evidently, the formal limit A—0 corresponds to
order pieces from that work our results agree with theirdoop diagrams with nucleons only, and therefd(¢0)=

[21].
Numerically, the loop correction in Eq(8) gives
BMN1eoP = g3 /Mm, /256f>=0.70 fnf. This is about 50%

—+Mm,_/16 enters Eq(8). Note, however, that for planar
box diagrams this limit becomes inconsistent with the count-
ing scheme employed.

of the leading order one-pion exchange contributions One concludes that the contributions stemming from loop

|BWD|=1.33 fnf or B3™=1.69 fnf. Indeed from chiral

diagrams with delta excitation vanish identically for both

power counting one expects a similar suppression factothreshold amplitudest and, respectively, for both reaction

p/M={m_/M=0.4.

According to our counting of the mass difference

channelspp— pp#?,pnm*. The complete cancellations in
Eq. (9) are actually important consistency checks for our

~Mm,, loop diagrams with explicit delta isobars are of the POWer counting schemé ~p. The combination of loop

same order as those with nucleons only, namely, of aqpder

functionsK(A)~p in Eqg. (10) is divergent, but at next-to-

to-leading-order contributions are shown in Fig. 4. Straight-9€nces.

forward but tedious evaluation leads to the following result:

3
K(A
A‘A"O"P):g];T(E;)(s—l% 1+3),

m

gaK(A)

B(A"°°p)=?)27(8—12+3+ 1) 9)

with the numerical entries corresponding to the subclass
(@, (b), (c), and (d) of Fig. 4, in that order. The relevant

combination of loop functions reads
K(A)=2Jo(—A)—2Alo(—Mm_ )+ (2A2—Mm,,)

Xyo(—A,—Mm,), (10
with the following loop integrald20] truncated at lowest
order according to our counting scheme:

1

A 2A
JO(_A):4AL()\)+W |nT—§ ~0O(p), (11

1 / Mm,, 0
Io(—Mm,T)=—2L(>\)—16772\1“” N2 ~0(p”), (12

In summary, we have performed a complete next-to-
leading-order calculation of the reactioNN—NN7 at
threshold. We have employed the counting scheme devel-
oped in Refs[8,16], that explicitly accounts for the large
momentump=+yMm_ characteristic for this process. We
find that the total next-to-leading-order loop corrections ei-
ther vanish or are in accordance with the expectation from
power counting. At this stage we conclude that the chiral
e%xpansion seems to converge also ingheave. Note, how-
ever, that at next-to-next-to-leading order a large number of
loops enters that has not yet been evaluated completely.

In order to compare our results directly to pion production
data the emerging chiral operators have to be folded with
(realistig NN-wave functions. This convolution has been
carried out in Ref{15] in such a way that the symmetries are
preserved. However, in that work the traditional Weinberg
counting has been used. Consequently the results presented
in Ref.[15] do not allow any firm conclusion about the con-
vergence of the chiral series, since contributions of different
orders are mixed and the next-to-next-to-leading order is in-
complete. Based on our counting scheme a complete next-to-
next-to-leading-order calculation is within reach and should
be performed. Another direction should be the calculation of
loop corrections to the higher partial wave amplitudes.
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