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Complete next-to-leading-order calculation for pion production in nucleon-nucleon collisions
at threshold
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Based on a counting scheme that explicitly takes into account the large momentumAMmp characteristic for
pion production in nucleon-nucleon collisions we calculate all diagrams for the reactionNN→NNp at thresh-
old up to next-to-leading-order. At this order there are no free parameters and the size of the next-to-leading-
order contributions is in line with the expectation from power counting. The sum of loop corrections at that
order vanishes for the processpp→ppp0 at threshold. The total contribution at next-to-leading-order from
loop diagrams that include the delta degree of freedom vanishes at threshold in both reaction channelspp
→ppp0,pnp1.
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The high precision data for the processespp→ppp0,
pp→pnp1 andpp→dp1 in the threshold region@1# have
spurred a flurry of theoretical investigations. The first data
neutral pion production were a big surprise because the
perimental cross sections turned out to be a factor of 5 la
than the theoretical predictions based on direct pion prod
tion and neutral pion rescattering fixed from on-shellpN
data@2,3#. Subsequently, it was argued that heavy-meson
changes might be able to remove this discrepancy@4#. On the
other hand, it was found@5,6# that the ~model-dependent!
off-shell behavior of the fullpN T matrix can also enhanc
the cross sections near threshold considerably.

Due to their nature as pseudo-Goldstone bosons the
namics of pions is largely constrained by chiral symme
Thus one might hope that effective field theory studies wh
incorporate these constraints strictly will help to resolve
so far confusing situation. In the literature there are sev
calculations carried out in the framework of tree-level chi
perturbation theory including the dimension two opeat
~single-nucleon! for neutral pion production@7–10# as well
as for charged pion production@11,12#. A common feature of
these calculations is that the contributions from the isosc
pion rescattering interfere destructively with the direct p
duction amplitude, thus leading to an even more severe
crepancy between experiment and theory. It should be n
that such an interference pattern is in contradiction to the
found in phenomenological approaches@5,6#. Furthermore,
within the Weinberg power counting scheme, where all m
menta are considered of the order ofmp , one-loop calcula-
tions have been performed for neutral pion productionpp
→ppp0 @13–15#. According to some of these works th
loop corrections are larger by at least a factor of 2 compa
to the tree-level diagrams, which according to the count
scheme applied appear one order down. This feature~if cor-
rect! would seriously question the convergence of the ch
expansion for pion production inNN collisions. On the other
hand, according to Ref.@16# the chiral expansion seems
show convergence in the case ofp-wave pion production.

The purpose of the present work is to present a comp
next-to-leading-order calculation of the reactionNN
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→NNp at threshold. In particular, we evaluate all one-lo
diagrams at next-to-leading order employing a count
scheme that takes into account the large momentumAMmp

characteristic for pion production inNN collisions, as sug-
gested in Refs.@8,16#. We consider also the contribution
from explicit delta isobars at tree level and at one-loop ord
To the order we are working there are no free parameters
we demonstrate that the size of the individual next-
leading-order contributions is in line with the expectatio
from power counting.

Let us begin with writing down the general form of th
threshold T matrix for the pion production reaction
N1(pW )1N2(2pW )→N1N1p in the center-of-mass frame
which reads@17#

Tth
c.m.~NN→NNp!5

A
2

~ isW 12 isW 21sW 13sW 2!•pW

3~tW11tW2!•fW * 1
B
2

~sW 11sW 2!•pW

3~ i tW12 i tW21tW13tW2!•fW * , ~1!

with sW 1,2 and tW1,2 the spin and isospin operators of the tw
nucleons.fW denotes the three-component isospin wave fu
tion of the final state pion produced in ans-wave state, e.g.
fW 5(0,0,1) for p0 production andfW 5(1,i ,0)/A2 for p1

production. The complex amplitudesA andB belong to the
transitions3P0→ 1S0 and 3P1→ 3S1 in the two-nucleon sys-
tem, respectively. In fact the selection rules which follo
from the conservation of parity, angular momentum, a
isospin allow only for these two transitions for the reacti
NN→NNp at threshold. In the case of neutral pion produ
tion pp→ppp0 the threshold amplitudeA is the only rel-
evant one whereas in charged pion productionpp→pnp1

both threshold amplitudesA andB can contribute. Note tha
the thresholdT matrix written in Eq. ~1! incorporates the
Pauli exclusion principle since combined left multiplicatio
with the spin-exchange operator (11sW 1•sW 2)/2 and the iso-
©2002 The American Physical Society05-1
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spin exchange operator (11tW1•tW2)/2 reproducesTth
cm(NN

→NNp) up to an important minus sign. The magnitude
the nucleon center-of-mass momentumpW necessary to pro
duce a pion at rest is given by

upW u5Amp~M1mp/4!, ~2!

with M5939 MeV and mp5139.6 MeV denoting the
nucleon and pion masses, respectively. Equation~2! exhibits
the important feature of the reactionNN→NNp, namely,
the large momentum mismatch between the initial and
final nucleon-nucleon state. This leads to a large invar
~squared! momentum transfert52Mmp between in- and
outgoing nucleons. The appearance of the large momen
scaleAMmp in pion production demands for a change in t
chiral power counting rules, as pointed out already in R
@8#. In addition, it seems compulsory to include the de
isobar as an explicit degree of freedom, since the de
nucleon mass differenceD5293 MeV is comparable to the
external momentump.AMmp5362 MeV. The hierarchy
of scales

M@p.D@mp , ~3!

suggested by this feature, is in line with findings within m
son exchange models where the delta isobar gives signifi
contributions even close to the threshold@18,19#.

Let us now state our counting rules. The external mom
tum p.AMmp sets the overall scale relevant for the proce
NN→NNp. This momentum scalep enters the internal lines
of tree and loop diagrams. Therefore we count
four-momenta1 l m inside loops generically as orderp and the
loop integration measure*d4l as orderp4. A pion propaga-
tor is counted as order 1/p2. The delta propagator of the form
1/(energy2D) counts as order 1/p, since we made the
choice D;p. For the nucleon propagator of the for
1/energyone has to distinguish whether it occurs outside
inside a loop. The associated residual energy counts as o
mp outside a loop and as orderp;AMmp inside a loop.
Furthermore, external pion energies are counted as o
mp .

According to these counting rules one-loop diagrams c
tribute at orderp2 in the expansion of theT matrix and thus
generate threshold amplitudes of the formA,B;p
.AMmp. The new counting rules demand also for a re
dering of the terms in the interaction Lagrangian, sin
‘‘relativistic corrections’’ proportional to nucleon kinetic en
ergiesp2/M are now of the same order as ‘‘leading ord
contributions’’ proportional to residual nucleon energie
Several examples of this effect will be encountered here

In Fig. 1, we display tree-level diagrams which accordi
to the above mentioned counting rules contribute at lead
order, next-to-leading order, and next-to-next-to-leading
der. Diagrams for which the role of both nucleons is int
changed and diagrams with crossed outgoing nucleon l

1Baryon energies are residual energies with the nucleon masM
subtracted.
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are not shown. Subsets of four diagrams obtained by th
operations map properly onto the crossing antisymme
thresholdT matrix Eq.~1!. Figure 1~a! involving the~isovec-
tor! Weinberg-TomozawappNN-contact vertex gives a
leading-order contribution of the form

A (WT)50, B (WT)52
gA

2M f p
3 , ~4!

with gA.1.3 the nucleon axial vector coupling andf p

592.4 MeV the pion decay constant. It is important to no
that the Weinberg-Tomozawa vertex generates here a pro
tionality factormp at ‘‘leading order’’ in the chiralpN La-
grangian via the pion and nucleon~residual! energies as well
as through a ‘‘relativistic correction’’ of the formp2/M . This
factor of mp gets finally canceled by the pion propagat
@mp(M1mp)#21. Obviously, the isovector Weinberg
Tomozawa vertex cannot contribute to the neutral pion p
duction threshold amplitudeA. From the one-pion exchang
in Fig. 1~b! one finds

A (1p)5
gA

3

8M f p
3 , B (1p)5

3gA
3

8M f p
3 . ~5!

This result stems from the recoil correction to thepNN ver-
tex proportional to (mp /M )sW 1•pW with the mp factor now
getting canceled by the intermediate nucleon propaga
Furthermore, the product of the two vertices on the l
nucleon line (sW 1•pW )25Mmp is canceled by the pion propa
gator. The ratioB (1p)/A (1p)53 has its origin in the isospin

FIG. 1. Tree-level contributions to threshold pion production
leading order~a!, ~b!, and~c!, next-to-leading order~d! and~e!, and
next-to-next-to-leading order~f! and ~g!. A single solid, double
solid, and dashed line denotes a nucleon, delta isobar, and
respectively. Leading~subleading! order vertices are symbolized b
solid circles~open circles!.
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COMPLETE NEXT-TO-LEADING ORDER CALCULATION . . . PHYSICAL REVIEW C66, 054005 ~2002!
factor of Fig. 1~b!. From the analogous Fig. 1~d! with one
virtual delta-isobar excitation one finds

A (D)5
gA

3mp

4M f p
3 D

, B (D)50, ~6!

where we have used the empirically well satisfied relat
hA53gA /A2 for thepND-coupling constant. The spin an
isospin transition operators entering thepND vertex
(hA/2f p)SW •pW Ta satisfy the usual relationsSiSj

†5(2d i j

2 i e i jksk)/3 and TaTb
†5(2dab2 i eabctc)/3. The latter iso-

spin relation is the reason behind the vanishing ofB (D).
According to our counting of the mass splittingD the term
A (D) in Eq. ~6! is a next-to-leading-order contribution, sinc
D;p @cf. relation~3!#. Figure 1~f! involves the second-orde
chiral ppNN-contact vertex proportional to the low-energ
constantsc1,2,3,4@20#. We find the following contributions to
the threshold amplitudes at next-to-next-to-leading order

A (ci )5
gAmp

2M f p
3 ~c312c224c1!,

B (ci )5
gAmp

2M f p
3 ~c41c312c224c1!. ~7!

In a previous calculation in Ref.@7# @see Eq.~32! therein# the
c2 term has been found with a relative factor 1/2 smaller. T
reason for this discrepancy is again that ‘‘relativistic corre
tions’’ from thec2 vertex are of the same order as its ‘‘static
contribution, sincep2/M5mp . We also note that our results
Eqs. ~4!–~7! agree up to the respective order with those
the fully relativistic calculation in Ref.@17# where no ap-
proximations to the threshold kinematics have been ma
We do not specify the contributions from diagrams~c!, ~e!,
and ~g! in Fig. 1 which are proportional to the~a priori
unknown! strengths of four-nucleon contact vertices, etc. I
important to note that already at leading order long-ran
effects from pion-exchange and short-range contributions
pear simultaneously.

Let us now turn to the nonvanishing one-loop diagrams
threshold. Not every loop diagram appearing formally
next-to-leading order truly contributes at that order. In t
case of diagrams~b! and~c! in Fig. 2 the~spin-independent!
one-looppN-scattering subdiagrams are proportional tomp

3 ,
and this pushes their contributions to the thresholdT-matrix
Eq. ~1! beyond next-to-leading order. A closer inspection
diagram~a! in Fig. 2 reveals that they contribute in the for
mplnmp to the threshold amplitudesA and B, i.e., beyond
next-to-leading order. The specific vertex structures of d
grams~d! and ~e! in Fig. 2 make also their next-to-leading
order contributions vanishing. Therefore we have to foc
only on the diagrams shown in Figs. 3~and 4!.

We evaluate only the genuine next-to-leading-order pie
of the loop integrals emerging from the diagrams in Figs
~and 4!. For instance, in the integrands we can systematic
drop terms of ordermp compared tol 0 ~andD). Straightfor-
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ward but tedious evaluation leads to the following next-
leading-order contributions of the one-loop diagrams in F
3 with nucleons only:

A (N-loop)5
gA

3AMmp

256f p
5 ~222113!,

B (N-loop)5
gA

3AMmp

256f p
5 ~221013!. ~8!

Here, the numerical entries correspond to the diagrams~a!,
~b!, and ~c! of Fig. 3, in that order. Interestingly, the tota
next-to-leading-order loop contribution vanishes identica
for neutral pion productionA (N-loop)50. The diagrams~a!
and ~c! in Fig. 3 have been calculated fully relativisticall
~i.e., without any approximation to the threshold kinematic!
for pp→ppp0 in Ref. @17#. It is an important check for our
calculation that the nonanalytical piece proportional
AMmp agrees with the one derived by expanding Eq.~16! in
Ref. @17#. In addition, after correcting a sign error in Re

FIG. 3. Next-to-leading-order one-loop diagrams for pion p
duction at threshold with nucleons only. For further notations
Fig. 1.

FIG. 2. One-loop diagrams that start to contribute at next-
next-to-leading order. For further notations see Fig. 1.
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@14# and extracting at threshold the truly next-to-leadin
order pieces from that work our results agree with the
@21#.

Numerically, the loop correction in Eq.~8! gives
B (N-loop)5gA

3AMmp/256f p
5 .0.70 fm4. This is about 50%

of the leading order one-pion exchange contributio
uB (WT)u.1.33 fm4 or B (1p).1.69 fm4. Indeed from chiral
power counting one expects a similar suppression fa
p/M5Amp /M.0.4.

According to our counting of the mass differenceD
;AMmp loop diagrams with explicit delta isobars are of t
same order as those with nucleons only, namely, of orderp2.
The relevant one-loop diagrams which generate truly ne
to-leading-order contributions are shown in Fig. 4. Straig
forward but tedious evaluation leads to the following resu

A (D-loop)5
gA

3K~D!

32f p
5 ~82121113!,

B (D-loop)5
gA

3K~D!

32f p
5 ~82121311! ~9!

with the numerical entries corresponding to the subclas
~a!, ~b!, ~c!, and ~d! of Fig. 4, in that order. The relevan
combination of loop functions reads

K~D!52J0~2D!22DI 0~2Mmp!1~2D22Mmp!

3g0~2D,2Mmp!, ~10!

with the following loop integrals@20# truncated at lowes
order according to our counting scheme:

J0~2D!54DL~l!1
D

4p2 S ln
2D

l
2

1

2D;O~p!, ~11!

I 0~2Mmp!522L~l!2
1

16p2S 11 ln
Mmp

l2 D;O~p0!, ~12!

FIG. 4. Next-to-leading-order one-loop diagrams for pion p
duction at threshold with intermediate delta isobars. For furt
notations see Fig. 1.
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g0~2D,2Mmp!5
1

4p2AMmp

E
0

` dx

11x2 arctan
xAMmp

2D

;O~p21!. ~13!

The ~scale-dependent! quantity

L~l!5
ld24

16p2 F 1

d24
1

1

2
~gE212 ln 4p!G ~14!

denotes for the standard divergent piece in dimensional re
larization. The reason for grouping together the three spec
diagrams into subclass~b! is that this way the~in the chiral
limit ! singular termD2J0(2D)/Mmp does not appear ex
plicitly. Evidently, the formal limit D→0 corresponds to
loop diagrams with nucleons only, and thereforeK(0)5
2AMmp/16 enters Eq.~8!. Note, however, that for plana
box diagrams this limit becomes inconsistent with the cou
ing scheme employed.

One concludes that the contributions stemming from lo
diagrams with delta excitation vanish identically for bo
threshold amplitudesA andB, respectively, for both reaction
channelspp→ppp0,pnp1. The complete cancellations i
Eq. ~9! are actually important consistency checks for o
power counting schemeD;p. The combination of loop
functionsK(D);p in Eq. ~10! is divergent, but at next-to-
leading order there is no local counter term to absorb div
gences.

In summary, we have performed a complete next-
leading-order calculation of the reactionNN→NNp at
threshold. We have employed the counting scheme de
oped in Refs.@8,16#, that explicitly accounts for the large
momentump.AMmp characteristic for this process. W
find that the total next-to-leading-order loop corrections
ther vanish or are in accordance with the expectation fr
power counting. At this stage we conclude that the ch
expansion seems to converge also in thes wave. Note, how-
ever, that at next-to-next-to-leading order a large numbe
loops enters that has not yet been evaluated completely.

In order to compare our results directly to pion producti
data the emerging chiral operators have to be folded w
~realistic! NN-wave functions. This convolution has bee
carried out in Ref.@15# in such a way that the symmetries a
preserved. However, in that work the traditional Weinbe
counting has been used. Consequently the results prese
in Ref. @15# do not allow any firm conclusion about the co
vergence of the chiral series, since contributions of differ
orders are mixed and the next-to-next-to-leading order is
complete. Based on our counting scheme a complete nex
next-to-leading-order calculation is within reach and sho
be performed. Another direction should be the calculation
loop corrections to the higher partial wave amplitudes.
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