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Toy model for pion production in nucleon-nucleon collisions.
II. The role of three-particle singularities
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The influence of three-particle breakup singularities ons-wave meson production in nucleon-nucleon colli-
sions is studied within the distorted wave Born approximation. This study is based on a simple scalar model for
the two-nucleon interaction and the production mechanism. An algorithm for the exact numerical treatment of
the inherent three-body cuts, together with its straightforward implementation is presented. It is also shown that
three often-used approximations to avoid the calculation of the three-body breakup are not justified. The
possible impact on pion production observables is discussed.
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I. INTRODUCTION

Interest in studies of pion production in nucleon-nucle
collisions at energies near the pion production threshold
been revitalized by the appearance of excellent high qua
data@1#. In addition, experimental data for double polariz
tion observables for the reactionspp→ppp0 @2#, pp
→pnp1 @3#, andpp→dp1 @4# are available. A comparison
of the experimental information with the predictions of
modern meson exchange model@5# shows that the data fo
the production of charged pions are well reproduc
whereas there are large discrepancies between the pr
tions and the data when considering neutral pion product
Thus, although the process of pion production has been
vestigated over several decades, the phenomenology of
fundamental process is still not fully resolved.

A priori one could assume that the most rigorous
proach to pion production in nucleon-nucleon collisions i
complete description of the nucleon-nucleon-pion syste
e.g., via coupled channel equations, as developed recen
Ref. @6#. However, not only is such a procedure difficult
implement, arguments based on effective field theories s
gest that, at least close to the production threshold, mos
the diagrams generated within a coupled channel appro
are suppressed@7,8#. Those arguments indicate that the on
piece that needs to be treated nonperturbatively is
nucleon-nucleon (NN) interaction, whereas the transitio
amplitudeNN→NNp can be treated perturbatively. In th
spirit, most of the recent calculations for pion production
NN collisions are based on the distorted wave Born appro
mation ~DWBA!.1

Above the pion production threshold, where a virtual pi
exchange can produce a real pion, one encounters a
state containing three real particles and therefore has to
sider a full three-body breakup amplitude. This amplitu

1Note: Even before using chiral perturbation theory, DWBA w
used for calculations of the processNN→NNp @10#. In these cal-
culations the only justification for this procedure was based on
slow growth of theNN inelasticities.
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contains branch cut singularities. Since the evaluation
those so-called three-body singularities is technically rat
involved, they have been avoided so far in all calculatio
that apply DWBA to meson production inNN collisions
@11#. Instead, the energy-dependence of the pion propag
was manipulated in such a way that no singularity occurr
These approximations, however, were never tested quan
tively. Moreover, since the imaginary part arising from t
three-body singularities scales with the three-body ph
space, a strongly energy-dependent phase motion of all th
amplitudes with a significant contribution from pion e
change should be expected. One might speculate that
insufficient treatment of the three-body character of the p
production may be a source of the insufficient description
the polarization data for neutral pion production mention
before.

Recently a simple, scalar ‘‘toy’’ model for pion produc
tion was proposed in order to investigate the validity of se
eral approximations used with respect to the energy dep
dence in the pion propagator, as well as in thepN amplitude
@12#. Although the model used in Ref.@12# is simple with
respect to the interactions, the pion dynamics is treated
actly. A significant finding of that work was that a prop
treatment of the dynamics is very important, even exactly
the pion production threshold. Therefore, this model is
natural choice for studying the impact of an exact treatm
of the three-body dynamics in the pion production proce
In this work we specifically want to address the role of thre
body singularities in reactions of the typeNN→NNp, and
study their possible effect on observables. In addition,
present an algorithm for their evaluation that can be imp
mented quite easily. For this specific study an exact treatm
of theNN interaction is not necessary. The inclusion of a f
NN interaction will add to the computational complexity b
requiring careful interpolations of the half off-shellNN tran-
sition amplitudes, but will have no impact on the technic
peculiarities induced by the three-particle singularities of
pion propagator. Such a model is thus the ideal starting p
for our investigation.

This article is structured as follows. In Sec. II we briefl
e
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summarize the most important features of the model fr
Ref. @12#. In Sec. III the algorithm for the exact numeric
evaluation of the three-body breakup singularity is given.
Sec. IV we present our numerical results. We conclude
Sec. V.

II. THE TOY MODEL FOR PION PRODUCTION
IN NN COLLISIONS

Here the most important features of the scalar model
the production of pions inNN collisions as introduced in
Ref. @12# are summarized and discussed. The main featu
of this model are

~i! The pion is represented by a scalar-isoscalar Kle
Gordon field that couples via a Yukawa coupling to t
nucleons. Only the emission of this particle is considered

~ii ! The nucleons are treated as distinguishable. As a c
sequence, pion emission needs to be considered only
one nucleon. The symmetric term wherein the pion is emit
from the other nucleon is omitted. The simplicity of th
model is retained by allowing the pion to couple to only o
of the nucleons. Therefore, pion exchange between
nucleons is not contained in the model.

~iii ! Only pion rescattering by one nucleon is consider
This pion rescattering is described by apN seagull vertex
which is inspired by the chiralpN interaction Lagrangian.

~iv! The nuclear interaction is modeled by the exchange
a heavy scalar-isoscalar Klein-Gordon field, nameds, which
couples to the nucleons via Yukawa coupling. Since
strength of this coupling does not influence the three-b
dynamics of the pion production process, only small co
plings are considered for the one-s exchange.

It is typical to treat pion production near threshold using
nonrelativistic expansion in the nucleon momenta. In the
lowing only leading terms in this expansion will be consi
ered; in particular, contributions from antinucleons are
nored.

In summary, we consider a scalar model defined by
following Lagrangian:

L5 (
j 51,2

Nj
†S i ]01

¹2

2MN
DNj

1
1

2
@~]mp!22mp

2 p21~]ms!22ms
2s2#

1
gp

f p
N2

†N2p1gs (
j 51,2

Nj
†Njs1

C

f p
2

N1
†N1~]0p!2.

~2.1!

HereMN represents the physical nucleon mass of 939 M
andmp is 139 MeV. The mass of thes meson is chosen to
be 550 MeV. All diagrams are evaluated at ord
(gp / f p)gs

2(C/ f p
2 ). In the following we do not display thes

factors, nor other constants that are common to all am
tudes. All the loops are finite, so that we do not need
introduce any regulators.
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It is important to point out some of the unrealistic featur
of the model introduced above, even so they will not infl
ence our study of the three-body dynamics of the pion p
duction process. We are concerned with near-threshold k
matics, so that a scalar particle is produced in ans wave, as
is the final NN pair. Angular momentum conservation re
quires that the initialNN pair is also in ans wave. In a
realistic case, however, where the pions are pseudoscalar
sons, the production ofs wave pions calls for ap wave in the
initial state. Furthermore, the scalar model does not includ
strong short-range repulsion. Thus the nucleons have st
ger overlap within our model, as compared to a more rea
tic treatment. However, since the main focus of this work
the three-body dynamics of the production operator, a st
within this model will still give valuable information. As an
aside, the consideration of more realistic interactions wo
not introduce new conceptual aspects to the exact treatm
of three-body singularities, but only increase the numeri
effort.

In a DWBA calculation of threshold pion production, an
tree level diagram is modified substantially by the contrib
tions from the initial and final-state interactions. We w
therefore concentrate in our model calculations on th
DWBA terms, in which only initial- or final-stateNN inter-
actions are present. We will thus ignore the rescattering
gram with DWBA contributions inboth initial- and final-NN
interactions, since this is a two-loop integration term. Aga
the initial- and final-state interactions, which occur before
after the pion rescattering process, are represented b
single-s exchange. All diagrams are evaluated in tim
ordered perturbation theory~TOPT!. The diagrams involving
an initial-state interaction are depicted in Fig. 1. In t
present work, we will only study ladder diagrams, which a
given by the contributions labeled I1 and I2 in that figur
There are two additional types of diagrams, namely
stretched boxes@Fig. 1~I3!, ~I4!#, and graphs in which as is
exchanged in between the emission and rescattering of
virtual pion. We ignore those here. Although both grou
have three-body singularities, they introduce no additio
complications and are thus not relevant for the present st

III. CALCULATION OF THE THREE-BODY BREAKUP

As mentioned at the end of the former section we w
study only ladder diagrams. The corresponding diagrams
shown as I1 and I2 in Fig. 1. In time-ordered perturbati
theory the corresponding amplitudes are proportional to

FIG. 1. The six TOPT diagrams of the initial-state interaction
pion field is represented by a dashed line, a nucleon by a si
solid line. The two possible time orderings of thes-exchange~solid
double line! lead to the identical contributions grouped in~I1! and
~I2!, for each of two ladder diagrams.~I3! and ~I4! are stretched
boxes.
2-2
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TOY MODEL FOR PION.... II... PHYSICAL REVIEW C66, 054002 ~2002!
AF5E d3p9Vs
FGNN

F ~GpNN
F,r 2GppNN

F,b !5:AF,r1AF,b,

~3.1!

AI5E d3p9~GpNN
I ,r 2GppNN

I ,b !GNN
I Vs

I 5:AI ,r1AI ,b.

~3.2!

The superscriptr ~b! denotes the diagrams for pion rescatt
ing ~backscattering!, namely those with a pion moving for
ward ~backward! in time, as shown in Fig. 1~I1!, ~I2!. The
individual pieces can be directly deduced from the diagra
e.g. the two propagators in Eq.~3.2! are given by

GpNN
I ,r 5S 1

Etot2E18 2E92vq1 i e
D , ~3.3!

and

GppNN
I ,b 5S 1

Etot2E28 2E92vq2vq81 i e
D . ~3.4!

The relative minus sign between the two propagators in E
~3.1! and ~3.2! stems from the particular form of thepN
→pN transition operator, namely the pion energies that
pear explicitly. The evaluation of the expressions forAF, as
well as AI ,b is straightforward since they only contain tw
nucleon singularities, as long as total energiesEtot below the
two-pion threshold are considered@c.f. Eq.~3.4!#. Thus in the
following we will concentrate on the evaluation of the am
plitudeAI ,r . When discussing the results, however, the co
plete amplitudesAF andAI will be considered.

For completeness we will also give explicitly the expre
sions for the other parts ofAI ,r , namely the two-nucleon
propagator

GNN
I 5

1

Etot22E91 i e
, ~3.5!

and thes-exchange potential

Vs
I 5

1

vs~Etot2E2E92vs!
. ~3.6!

In a model based on a realisticNN interaction, the potentia
Vs

I will have to be replaced by aNN t-matrix.
The integration variablep9 in Eq. ~3.2! stands for the

relative momentum of the nucleons in the intermediate st
The quantityE68 5(1/2MN)(pW 86qW 8/2)2 is the energy of the
right (1) and the left (2) nucleon in the final state,vq8

5Amp
2 1qW 82 is the energy of the produced pion, and t

total energy is given byEtot52E5E18 1E28 1vq8 . In addi-

tion, vq5Amp
2 1qW 2 andvs5Ams

21kW2 denote the on-shel

energies of thep and s meson, andE95pW 9/2MN is the
energy of a nucleon in an intermediate state. The momenqW
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andkW are defined throughqW 5pW 81qW 8/22pW 9 andkW5pW 2pW 9.
The momentum of the initial nucleon is labeledpW ~c.f. Fig.
2!.

The amplitude given by Eq.~3.2! exhibits a distinct sin-
gularity structure; it contains both, a two- and a three-bo
cuts. Those cuts occur whenever it is energetically allow
for two or three particles in the intermediate state to go
shell simultaneously. It should be noted that the two- a
three-body singularities are kinematically well separated
shown in detail in the Appendix A; whenever the interme
ate two-nucleon state is on-shell, thepNN propagator is
strictly negative. The numerical treatment of two-body s
gularities, e.g., by subtraction methods, is a well-establis
procedure@13#. Calculations of the three-body breakup ha
long history in neutron-deuteron scattering~e.g., Refs.@14–
16#!. In the context ofNN potentials that incorporate pio
production explicitly, the breakup has been treated either
complex contour deformation@17#, spline methods@18#, or
subtraction methods@19,20#. For the explicit calculation of
pion production observables the last seem preferable, s
all calculations are carried out along the real axis. For
purpose, namely the framework of DWBA, the method
troduced by Schwamb and co-workers@20,21# is most suited.
Thus, this algorithm is presented here together with mod
cations necessary for the evaluation of the loop given in F
2.

In order to proceed, thepNN propagator introduced in
Eq. ~3.3! is rewritten as

GpNN
I ,r 5S Etot2E18 2E91vq

2P8p9
D 1

x92x01 i e
. ~3.7!

HerePW 85pW 81(qW 8/2) and

vq5Amp
2 1P82 1p92 22P8p9x9, ~3.8!

wherex95(PW 8•pW 9)/(P8p9). The quantityx0 is defined as

x0[x0~P8,p9!5
mp

2 1P82 1p92 2~Etot2E18 2E9!2

2P8p9
.

~3.9!

FIG. 2. Feynman diagram and choice of coordinates for~a!
final- and ~b! initial-state interaction. All momenta indicated ar
three-momenta.
2-3
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The integration over the angle variablex9 contains a sin-
gularity for all p9 that lead toux0u<1. Thus,

x0561⇔mp
2 1~P87p9!22S Etot2

P82

2MN
2

p92

2MN
D 2

50

~3.10!

represent two conditions for the boundaries of the area c
taining three-particle singularities. These are two polynom
equations of degree four forp95p9(P8). Only three of the
eight solutions are physically relevant, as can be ea
checked by taking the threshold limit for the solutions. Th
enclose the area of three-particle singularities, as illustra
in Fig. 3, for a total energy ofEtot5210 MeV. In what fol-
lows we will denote the boundaries of this area bypa and
pb , respectively, as indicated in the figure.

The next step is to split the amplitudeAI ,r defined in Eq.
~3.2! according to the singularity structures occurring. W
thus write

AI ,r5A3b
I 1Ano

I 1A2b
I , ~3.11!

where

Aa
I 5

MN

2P8
E

Ra

dp9
p9

p22p921 i e
E

21

1

dx9
F~x9!

x92x01 i e
,

~3.12!

with

F~x9!ª~Etot2E18 2E91vq!E
0

2p

dw9Vs
I . ~3.13!

FIG. 3. The region of three-body singularities forEtot

5210 MeV and the choice of the integration intervals for the thr
body cut algorithm. Inside the region enclosed by the solid line
have ux0u,1 and on the boundaryux0u51. The symbol1 (2)
means that the corresponding boundary curve is solution ox0

511 (x0521) @c.f. Eq.~3.10!#. Additionally, the two-particle sin-
gularity atp.444 MeV is marked by the dashed-dotted line~for its
location c.f. the Appendix A!.
05400
n-
l

ly
y
d

The regions of integration are given by

R3b5@pa ,pb#; Rno5@0,pa#ø@pb ,pi #; R2b5@pi ,`#.
~3.14!

Here pi denotes an in-principle arbitrary momentum plac
in the interval between the region of three-body singularit
and the two-nucleon singularity. For the numerical evalu
tion we chosepi such that it cuts this interval in half. Th
different regions of integration are illustrated in Fig. 3.

The termA3b
I is thus the piece of the amplitude that co

tains the three-body cut. The second termA2b
I in Eq. ~3.11!

stands for the remaining integration frompi to infinity and
contains only the two-nucleon singularity. Since this calcu
tion involves only a standard, single subtraction it will not
discussed in detail. The third termAno

I contains the integra-
tion outside the region of three-body singularities for m
menta smaller thanpi and will be discussed in detail at th
end of this section.

We begin our discussion with the termA3b
I . For each

value of x0 we subtract and add the value ofA3b
I at the

singularity and get

A3b
I 5

MN

2P8
E

pa

pb
dp9

p9

p22p92

3F E
21

1

dx9
F~x9!2F~x0!

x92x0

1F~x0!S lnU12x0

11x0
U2 ip D G .

~3.15!

The complication specific to three-body singularities is t
appearance of removable logarithmic singularities: the ar
ments of the logarithm vanish at the integration limitspa and
pb , whereux0u51.

The last piece of Eq.~3.15! is the imaginary part men
tioned in the introduction. It leads to an additional imagina
contribution, which is necessarily energy dependent.

Let us now concentrate on the logarithm in the last te
of Eq. ~3.15!. Here we employ a transformation first intro
duced by Schwamb@21# that allows to carry out the integral
numerically in a quite straightforward fashion. In order
apply the transformation the range of integration overp9 is
split into two pieces, so that there is only one singularity
each of the two intervals. The intermediate momentum
chosen to bepabª

1
2 (pa1pb), in accordance with Ref.@21#.

Using the abbreviationsa(p9) andb(p9), we are now faced
with integrals of the type

IªE
pab

pb
dp9a~p9!ln@b~p9!#, ~3.16!

whereb(pb)50. The substitution

y2
ªpb2p9>0 ~3.17!

allows to transform the integral of Eq.~3.16! into

I52E
0

A~pb2pa!/2
dyya~pb2y2!ln@b~pb2y2!#.

~3.18!

-
e
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TOY MODEL FOR PION.... II... PHYSICAL REVIEW C66, 054002 ~2002!
Due to the minus sign in Eq.~3.17! the lower integration
limit 0 is now the ‘‘critical’’ point of the integrand. The
additional factory in Eq. ~3.18! is responsible for the ‘‘dis-
appearance’’ of the logarithmic singularity; the integral
now regular, since lim

y→0
y ln(y)50. The integration interva

@pa ,pab# is treated in a similar fashion, as described in t
Appendix B.

In principle, the application of a subtraction in the inte
vals @0,pa# and @pb ,pi # is not necessary, since singularitie
occur at the boundaries only. However, numerical te
showed that applying a subtraction in these intervals a
allows a smaller number of grid points in obtaining a sta
and convergent result. In summary, with the above algeb
transformations, the second term in Eq.~3.11! is expressed as

Ano
I 5

MN

2P8
E

Rno

dp9
p9

p22p92

3F E
21

1

dx9
F~x9!2F~sgnx0!

x92x0

1F~sgnx0!lnU12x0

11x0
UG ,

~3.19!

where the integration intervalRno is defined in Eq.~3.14!.
Note that, through the splitting into intervals of thep9

integration the first term in Eqs.~3.15! and ~3.19! also ap-
pears as integrated in intervals. In principle there are no
merical difficulties with this integral, however one needs
make sure that there is a sufficient number of mesh po
within the region of the three-body singularities in order
obtain accurate results. That is why we propose to use
splitting of the intervals here as well. A complete pre
entation of the three-body cut algorithm is given in t
Appendix B.

IV. EFFECT OF THE THREE-BODY BREAKUP
ON THE PRODUCTION CROSS SECTION

Since the ingredients of our model are of scalar natu
the only observables to be considered here are cross sec
The total cross sections tot for pion production is calculated
from the coherent sum of the production amplitudesAF and
AI defined in Eqs.~3.1! and~3.2!, respectively. Here we will
use the notations

s tot5E druAI1AFu2; s tot
F 5E druAFu2;

s tot
I 5E druAI u2, ~4.1!

wheredr denotes the phase space factor. As a measure o
total energy we introduce the excess energyQ5Etot2mp .
In the present work we concentrate on excess energies
tween the one-pion and the two-pion threshold. Thus, if
excess energy is given in units ofmp , we restrict ourselves
to values ofQ/mp between 0 and 1. In Fig. 4~a! ~upper
panel! we display the result of the full calculations tot ~solid
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line! with cross sectionss tot
I ~dashed line! and s tot

F ~dotted
line! obtained from the initial- and final-state interactio
individually.

In order to better emphasize the contributions of the
and FSI separately, we divides tot

I ands tot
F by s tot and dis-

play those ratios in Fig. 4~b!. The figure shows thats tot
I

gives the largest contribution over the entire energy inter
under consideration, whiles tot

F is always close tos tot .
Naturally these features are specific to the model. M

interesting is to compare the exact calculation with appro
mations used in the literature for the pion propagator
avoid the appearance of the three-body singularities, sin
main goal of this work is to investigate the quality of tho
approximations. In what follows we will include the resca
tering terms only@labeled byAF,r andAI ,r in Eqs.~3.1! and
~3.2!, respectively#, for it is only this piece of the amplitude
that contains the singularity under investigation. Here
consider three of these approximations. In all cases,
pNN propagator Eq.~3.3! is substituted by a propagato
containing no three-body singularity. The most naive a
proximation is thestatic approximation (sta), where the sub-
stitution

1

Etot2E18 2E92vq1 i e
→2

1

vq
~4.2!

is made; i.e., thep-exchange is made instantaneous. Thus
this approximation the nucleons are assumed on-shell
the energy transfer is neglected.

FIG. 4. The total production cross section as function of
excess energy, which is given in units ofmp . In the upper panel~a!
the full calculation is represented by the solid line, the calculat
with the FSI~ISI! only is shown as dotted~dashed! line. The lower
panel ~b! shows the ratios of the calculations containing the F
~dotted! and ISI ~dashed! only to the full calculation@solid line in
panel~a!#.
2-5
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A. MOTZKE, CH. ELSTER, AND C. HANHART PHYSICAL REVIEW C66, 054002 ~2002!
As second choice we want to study thefixed kinematics
approximation (fka)applied in Refs.@7,22#. For the threshold
case it was already tested in Ref.@12#. It should be pointed
out that the results given here, even at the production thr
old, cannot be compared to those of Ref.@12# directly, since
we omit here the inclusion of the backscattering term a
include the contribution from the two-nucleon cut in the I
calculation. For this approximation the substitution

1

Etot2E18 2E92vq1 i e
→ 1

mp/22vq
~4.3!

is made, i.e., the nucleons are treated as if being in the
shell threshold situation~then Etot5mp , E18 50, and E9
5mp/2).

In case of thethreshold approximation(thra) @used in
Refs.@9,23##, thepNN propagator is given by

1

Etot2E18 2E92vq1 i e
→ 1

mp2E18 2E92vq

. ~4.4!

By definition, exactly at threshold this ‘‘threshold approx
mation’’ agrees with the exact propagator, since the total
ergyEtot is then equal tomp . In the literature other approxi
mations can be found. Recognizing that our list is n
complete, we nevertheless consider thesta, the f ka, and the
thra as representatives and concentrate on these.

In Fig. 5 the ratios of the calculations based on the th
approximations and the exactly calculated cross sections
displayed. In panel~c! of Fig. 5 the results of the full calcu
lations ~i.e., containing FSI and ISI! are shown. To empha
size the differences, we plot the cross sections in units of
exact result. The short dashed line gives the result for
sta, the long dashed line that for thef ka, while the dotted
line represents thethra. The figure indicates that, althoug
the thra is by definition exact at threshold, its energy beha
ior does not correspond to the exact calculation at hig
energies. Especially when approaching the two-pion thre
old, this approximation underestimates the full result cons

FIG. 5. The ratios of the total cross section of the static appro
mation ~short dashed curve!, the fixed kinematics approximatio
~long dashed curve!, and the threshold approximation~dotted curve!
to the total cross section of the corresponding exact calculation.
calculations of panel~a! contain only the FSI, the calculations o
panel~b! only the ISI. In panel~c! the ratios of the full calculations
are shown.
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erably. Thef ka strongly overestimates the full result in th
entire energy regime between the one-pion and the two-p
threshold. This is especially pronounced near the one-p
threshold. The same is true, so less severe, for thesta. In
order to investigate the effects of the approximations in m
detail we display their effects calculated with FSI and I
only in panels~a! and~b! of Fig. 5, respectively. Comparing
the panels~a! and ~b! with the complete calculation~c!
shows that the last is the result of interference effects: du
their singularity structureAI and AF have different phases
with different energy dependence that are taken into acco
in different ways by the three approximations.

In order to study this point in more detail let us no
consider the phase motion introduced by the exact inclus
of the three-body singularities. Obviously, in order to obta
a quantitative understanding, we need to compare the
result to one in which the breakup does not occur. For t
comparison we choose thesta, defined in Eq.~4.2!. In Fig. 6
we compare the phasef@A# of the amplitudes, defined
through

tan~f@A# !5
Im~A!

Re~A!
, ~4.5!

for a fixed total excess energyQ5 1
2 mp as a function of the

kinetic energy of the relative motion of the outgoing tw
nucleon system in units ofmp . The solid line shows the
phase of the full result, while the dashed line correspond
the sta. Panel~a! contains the phasef@AF#, panel~b! the
phasef@AI #, and the phase of the full calculation,f@AF

1AI #, is shown in panel~c!. As could have been expecte
the phase ofAI is influenced most by the approximation, an
there is a significant effect on the phase of the total am
tude. We would like to point out that for each value ofQ that
is smaller thanmp , the effect is qualitatively similar to the
one shown in Fig. 6. Naturally, this effect is irrelevant,
long as only one partial wave contributes. However, as s
as differential observables are analyzed, different par

i-

he

FIG. 6. The phase of the production amplitude in degrees a
function of the kinetic energy of the relative motion of th
NN-system (« in units of mp) at the excess energyQ5«max

5
1
2 mp.70 MeV. The solid lines represent the exact calculatio

the dashed lines the static approximation. In panel~a! calculations
with the FSI only are shown, in panel~b! those with the ISI only.
The full calculations, i.e., the superposition of~a! and ~b!, are
shown in panel~c!. Qualitatively, for eachQ with 0<Q,mp the
illustrated dependence is the same.
2-6
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waves start to interfere. It will be important to see how su
a change in the phases of some amplitudes influences
description of the polarization data of the reactionNN
→NNp.

V. SUMMARY AND CONCLUSIONS

The effect of three-body dynamics in the pion producti
process within the framework of the DWBA has been inv
tigated using a scalar toy model. This model is simple w
respect to the interactions employed: theNN interaction is
represented by the exchange of a scalars-meson; the pion is
also treated as a scalar, and finally the nucleons~represented
by scalar fields! are assumed to be distinguishable. Howev
the underlying dynamics is treated exactly, especially
three-body breakupNN→NNp. We presented an algorithm
for evaluating the three-body breakup singularities exac
This algorithm can be applied to realisticNN interactions in
a straightforward way.

Within our model we compared the results for the to
production cross section with three different approximatio
the ‘‘static approximation,’’ which makes the pion exchan
instantaneous and neglects energy transfer, the ‘‘fixed k
matics approximation,’’ where the energy transfer is fixed
the threshold value and the nucleons are treated as b
static, and the ‘‘threshold approximation,’’ which keeps t
full dynamics of nucleons as well as pions, but fixes the to
energy at the threshold value. It turns out that all three
proximations are different in character, but equally unsui
to describe the total pion production cross section betw
the one-pion and the two-pion threshold, at least within t
model study. In case of the fixed kinematics approximat
the cross section is strongly overestimated over the en
energy regime under consideration, especially close
threshold. The static approximation also overestimates
cross section over the entire energy regime though less
verely. Although the threshold approximation is exact at
threshold, it overestimates the cross section slightly clos
threshold and underestimates it considerably near the
pion threshold. All three approximations produce the wro
energy dependence in the energy region under considera
It remains to be seen how much of these differences sur
in a realistic calculation, where, e.g., the final-state inter
tion plays an a lot more prominent role and small mome
are suppressed due to chiral symmetry.

Finally, we compared the phases of the amplitudes of
exact calculation with the phases given by the static appr
mation and found sizable differences. Although not presen
in this work, a quite similar statement can be made w
respect to the other approximations discussed. Naturally,
phases play an important role when different partial wa
interfere, as occurs for differential observables. It can then
expected that in the case of realistic interactions the desc
tion of some observables will depend crucially on the w
that the three-body dynamics of the intermediate state
treated.
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APPENDIX A: LOCATION OF THE TWO- AND THREE-
BODY SINGULARITIES

We demonstrate here that the two- and three-body sin
larities from Eq.~3.2! are well separated. The two-partic
singularity occurs at

p95p5AMNEtot, ~A1!

i.e., in case of on-shell scattering. An estimate for the
nominator of the three-body propagator clarifies the posit
of its singularities, namely,

; p̃>p: Etot2E18 2E9~p95 p̃!2vq~p95 p̃!

<
Etot

2
2E18 2vq~p95 p̃!,0, ~A2!

since E9(p95 p̃)>E5Etot/2, and Etot,2mp , vq>mp ,
and E18 5P82/2MN>0. Consequently thepNN-propagator

is regular for allp̃>p. In particular, the position of the two
nucleon pole occursabove each three-particle singularity
This leads to the natural decomposition of the radial integ
tion interval*0

`5*0
pi1*pi

` @c.f. Eq.~3.11!#, where@0,pi # con-

tains all three-body singularities and@pi ,`# contains the
two-body singularity.

APPENDIX B: ANALYTIC AND NUMERIC TREATMENT
OF THE LOGARITHMIC SINGULARITIES

Here we give a brief but complete presentation of t
three-body cut algorithm. With

j0ªH x0 if ux0u<1

sgnx0 if ux0u.1
~B1!

~i.e., j05x0 in R3b5@pa ,pb# and j05sgnx0 in Rno

5@0,pa#ø@pb ,pi #,! the contribution A3b
I 1Ano

I @c.f. Eqs.
~3.11!, ~3.15!, and~3.19!# to the production amplitude read

A3b
I 1Ano

I 5AI , ln1AI ,D1 i Im~A3b
I !, ~B2!

where

Im~A3b
I !52

pMN

2P8
E

pa

pb
dp9

p9F~x0!

p22p92
, ~B3!

AI , ln
ª

MN

2P8
S E

0

pa
1E

pa

pab
1E

pab

pb
1E

pb

pi D dp9

3
p9F~j0!

p22p92
lnU12x0

11x0
U, ~B4!
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TABLE I. Schwamb’s substitutions in the four parts of the interval@0,pi #.

Interval Transformation ContributionIj

@0,pa# y2
ªpa2p9>0 22*Apa

0 dyya(pa2y2)ln@b(pa2y2)#

@pa ,pab# y2
ªp92pa>0 2*0

Apab2padyya(pa1y2)ln@b(pa1y2)#

@pab ,pb# y2
ªpb2p9>0 22*Apab2pa

0 dyya(pb2y2)ln@b(pb2y2)#

@pb ,pi # y2
ªp92pb>0 2*0

Api2pbdyya(pb1y2)ln@b(pb1y2)#
i-

he

tion
te-
and

AI ,D
ª

MN

2P8
S E

0

pa
1E

pa

pb
1E

pb

pi D dp9

3
p9

p22p9
E

21

1

dx9
F~x9!2F~j0!

x92x0

. ~B5!
.

s.

tt.

k,

05400
AI , ln denotes the real contribution toA3b
I 1Ano

I containing the
logarithm originating in the principal value of the analyt
cally solvable integral, andAI ,D is the other real contribution
originating in the application of the subtraction method. T
expressionAI , ln5:(MN/2P8)( j 51

4 Ij from Eq. ~B4! is to be
understood as if the corresponding Schwamb’s substitu
would have been already performed in each of the four in
grals ~c.f. Table I!.
m
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