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Toy model for pion production in nucleon-nucleon collisions.
II. The role of three-particle singularities
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The influence of three-particle breakup singularitiessamave meson production in nucleon-nucleon colli-
sions is studied within the distorted wave Born approximation. This study is based on a simple scalar model for
the two-nucleon interaction and the production mechanism. An algorithm for the exact numerical treatment of
the inherent three-body cuts, together with its straightforward implementation is presented. It is also shown that
three often-used approximations to avoid the calculation of the three-body breakup are not justified. The
possible impact on pion production observables is discussed.
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I. INTRODUCTION contains branch cut singularities. Since the evaluation of
those so-called three-body singularities is technically rather
Interest in studies of pion production in nucleon-nucleoninvolved, they have been avoided so far in all calculations
collisions at energies near the pion production threshold haghat apply DWBA to meson production iNN collisions
been revitalized by the appearance of excellent high quality11]. Instead, the energy-dependence of the pion propagator
data[1]. In addition, experimental data for double polariza- was manipulated in such a way that no singularity occurred.
tion observables for the reactionsp—pp7° [2], PP These approximations, however, were never tested quantita-
—pnz" [3], andpp—dn " [4] are available. A comparison tjvely. Moreover, since the imaginary part arising from the
of the experimental information with the predictions of Athree-body singularities scales with the three-body phase
modern meson exchange modB] shows that the data for gnace 4 strongly energy-dependent phase motion of all those
the production of chargeq pions  are well reprOducedamplitudes with a significant contribution from pion ex-
whereas there are large discrepancies between the pred@ﬁange should be expected. One might speculate that the

tions and the data when con5|de_r|ng neutral_plon prod'“'Ct'o.r]hsufficient treatment of the three-body character of the pion
Thus, although the process of pion production has been in

vestigated over several decades, the phenomenology of th{?éOduﬁt'(:ir; Tia)rq t()je ta ‘;’Ofr:e ?rf tlhei |rr1]su1;f|((:j|entti dfsrﬁ”ﬁ:oﬂ O(I
fundamental process is still not fully resolved. € polarization data for neutral plon production mentione

A priori one could assume that the most rigorous ap_before. . e .
Recently a simple, scalar “toy” model for pion produc-

proach to pion production in nucleon-nucleon collisions is a ) _ : o
complete description of the nucleon-nucleon-pion systemt,'on was proposed in order to investigate the validity of sev-

e.g., via coupled channel equations, as developed recently ffal approximations used with respect to the energy depen-
Ref. [6]. However, not only is such a procedure difficult to dence in the pion propagator, as well as in t¢ amplitude
implement, arguments based on effective field theories sud12]- Although the model used in Ref12] is simple with
gest that, at least close to the production threshold, most despect to the interactions, the pion dynamics is treated ex-
the diagrams generated within a coupled channel approadtly. A significant finding of that work was that a proper
are suppressdd,8]. Those arguments indicate that the only treatment of the dynamics is very important, even exactly at
piece that needs to be treated nonperturbatively is th&he pion production threshold. Therefore, this model is a
nucleon-nucleon NIN) interaction, whereas the transition natural choice for studying the impact of an exact treatment
amplitudeNN— NN can be treated perturbatively. In this Of the three-body dynamics in the pion production process.
spirit, most of the recent calculations for pion production inIn this work we specifically want to address the role of three-
NN collisions are based on the distorted wave Born approxibody singularities in reactions of the typ&N— NN, and
mation (DWBA).! study their possible effect on observables. In addition, we
Above the pion production threshold, where a virtual pionpresent an algorithm for their evaluation that can be imple-
exchange can produce a real pion, one encounters a finflented quite easily. For this specific study an exact treatment
state containing three real particles and therefore has to colf the NN interaction is not necessary. The inclusion of a full
sider a full three-body breakup amplitude. This amplitudeNN interaction will add to the computational complexity by
requiring careful interpolations of the half off-sh&lN tran-
sition amplitudes, but will have no impact on the technical
INote: Even before using chiral perturbation theory, DWBA was Pe€culiarities induced by the three-particle singularities of the
used for calculations of the proceldN— NN [10]. In these cal-  pion propagator. Such a model is thus the ideal starting point
culations the only justification for this procedure was based on thdor our investigation.
slow growth of theNN inelasticities. This article is structured as follows. In Sec. Il we briefly
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summarize the most important features of the model from*,
Ref.[12]. In Sec. lll the algorithm for the exact numerical
evaluation of the three-body breakup singularity is given. In
Sec. IV we present our numerical results. We conclude in
Sec. V.

Il 2 13 4

FIG. 1. The six TOPT diagrams of the initial-state interaction. A
pion field is represented by a dashed line, a nucleon by a single
solid line. The two possible time orderings of theexchangesolid

Here the most important features of the scalar model foflouble ling lead to the identical contributions grouped(lt) and
the production of pions iMNN collisions as introduced in (12), for each of two ladder diagraméi3) and (14) are stretched
Ref. [12] are summarized and discussed. The main featurgxes:
of this model are

(i) The pion is represented by a scalar-isoscalar Klein
Gordon field that couples via a Yukawa coupling to the
nucleons. Only the emission of this particle is considered.

Il. THE TOY MODEL FOR PION PRODUCTION
IN NN COLLISIONS

It is important to point out some of the unrealistic features
‘of the model introduced above, even so they will not influ-
ence our study of the three-body dynamics of the pion pro-
duction process. We are concerned with near-threshold kine-

"matics, so that a scalar particle is produced irsavave, as

sequence, pion emission needs to be .conside_red.only_fro the final NN pair. Angular momentum conservation re-
one nucleon. The symmetric term wherein the pion is emitte uires that the initiaNN pair is also in ans wave. In a

frorg lthe o:h_er (r;léclecl)ln IS ortnhltteq. Tthe S|m|pllct:|ty Olf the realistic case, however, where the pions are pseudoscalar me-
Modet 1S retained by allowing the pion o couple 1o only on€qq ¢ e production afwave pions calls for @ wave in the

of the nucleons. Therefore, pion exchange between tWﬂﬂitial state. Furthermore, the scalar model does not include a

nut(:ili?;)?)sn:s ni?)tncfgsti:;?edriw tge %%dﬁtcleon i Consideredstrong short-range repulsion. Thus the nucleons have stron-
This pion ?/ezcatterin is de%cr?/bed bymd\ seagull vertex ger overlap within our mo_del, as com_pared to a more reall_s-
P 9 Yy 9 tic treatment. However, since the main focus of this work is

which ishinspirtlad by the chirairN intgr?c(tjict))n Lhagran%ian. he three-body dynamics of the production operator, a study
(iv) The nuc ear interaction Is modeled by the exchange ofyiinin this model will still give valuable information. As an
a heavy scalar-isoscalar Klein-Gordon field, nameavhich o qjge. the consideration of more realistic interactions would

couple?] tof trr:.e nucI(Tpns dvia YUka.W]fll coupli?]g. ﬁincebtt‘j":hot introduce new conceptual aspects to the exact treatment
strength of this coupling does not influence the three-bodyy¢ 1, ree_pody singularities, but only increase the numerical
dynamics of the pion production process, only small cou-¢qt.

plings are considered for the omeexchange. In a DWBA calculation of threshold pion production, any

Itis typical to treat pion production near threshold uUsing ayee |evel diagram is modified substantially by the contribu-
nonrelativistic expansion in the nucleon momenta. In the folyjong from the initial and final-state interactions. We will

lowing only leading terms in this expansion will be consid- therefore concentrate in our model calculations on those
ered; in particular, contributions from antinucleons are I9-DWBA terms. in which only initial- or final-stat&N inter-

nored. . . actions are present. We will thus ignore the rescattering dia-
In summary, we consider a scalar model defined by theym with DWBA contributions irbothinitial- and finalNN
following Lagrangian: interactions, since this is a two-loop integration term. Again,
the initial- and final-state interactions, which occur before or
V2 after the pion rescattering process, are represented by a
ZMN)NJ singleo exchange. All diagrams are evaluated in time-
ordered perturbation theofffOPT). The diagrams involving
an initial-state interaction are depicted in Fig. 1. In the

L=, N}(iao+
ji=1,2

+ 5[((7#77)2_miWZJF(f?MU)Z—miUz] present work, we will only study ladder diagrams, which are
given by the contributions labeled 11 and 12 in that figure.
Ot : C ., ) There are two additional types of diagrams, namely the
+ 1 NpNom+ 90_2 NjNjo+ —NiNi(dom)~. stretched boxefFig. 1(13), (14)], and graphs in which & is
m =12 fa exchanged in between the emission and rescattering of the

(2.1  virtual pion. We ignore those here. Although both groups
have three-body singularities, they introduce no additional

Here M, represents the physical nucleon mass of 939 Me\;:ompllca'uons and are thus not relevant for the present study.

andm, is 139 MeV. The mass of the meson is chosen to
be 550 MeV. All diagrams are evaluated at order
(gw/fﬂ)gf,(C/ff,). In the following we do not display these As mentioned at the end of the former section we will
factors, nor other constants that are common to all amplistudy only ladder diagrams. The corresponding diagrams are
tudes. All the loops are finite, so that we do not need toshown as I1 and 12 in Fig. 1. In time-ordered perturbation
introduce any regulators. theory the corresponding amplitudes are proportional to

Ill. CALCULATION OF THE THREE-BODY BREAKUP
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FE . b QT  p-qn2 -p’-q'12 qQ  pqr2 p-q 2= P
AF: J dsp,,VUGNN(GW’I\rIN_GW;TNN)::AF'r+AF'b’ k \ .
(3.0 N - .
p’-q’/2 -p-q’2 0 T
A'=f d3p"(Glin— Glonn) GV, = Al + AP, 1 4 ?
(3.2 k
. . . P P P
The superscript (b) denotes the diagrams for pion rescatter- a) FSI by ISI
ing (backscattering namely those with a pion moving for-
ward (backward in time, as shown in Fig. U1), (12). The FIG. 2. Feynman diagram and choice of coordinates (&8r
individual pieces can be directly deduced from the diagramfinal- and (b) initial-state interaction. All momenta indicated are
e.g. the two propagators in E(B.2) are given by three-momenta.
Gl 1 (33 andk are defined through=p’+q'/2—p” andgz p—p”.
NN Eiot— EL —E"—wqtie ' The momentum of the initial nucleon is labelpd(c.f. Fig.
2).
and The amplitude given by Eq3.2) exhibits a distinct sin-

gularity structure; it contains both, a two- and a three-body

cuts. Those cuts occur whenever it is energetically allowed
(3.4  for two or three particles in the intermediate state to go on-
shell simultaneously. It should be noted that the two- and
three-body singularities are kinematically well separated, as
Shown in detail in the Appendix A; whenever the intermedi-
ate two-nucleon state is on-shell, theNN propagator is
strictly negative. The numerical treatment of two-body sin-
gularities, e.g., by subtraction methods, is a well-established
procedurd 13]. Calculations of the three-body breakup have
long history in neutron-deuteron scatterifegg., Refs[14—
16]). In the context ofNN potentials that incorporate pion
production explicitly, the breakup has been treated either by

1

Eioi—EL—E"— 04— wq t+ie

b _
G NN

w

The relative minus sign between the two propagators in Eq
(3.1 and (3.2 stems from the particular form of theN
— aN transition operator, namely the pion energies that ap
pear explicitly. The evaluation of the expressions ASt, as
well as AP is straightforward since they only contain two
nucleon singularities, as long as total enerdigs below the
two-pion threshold are considerpdf. Eq.(3.4)]. Thus in the
following we will concentrate on the evaluation of the am-

pIitudeA"’: Wheaniscuslsing the resul_ts, however, the COMtomplex contour deformatiof7], spline method$18], or
plete amplitudes\™ and A" will be considered. subtraction methodgl9,20. For the explicit calculation of
_ For completeness we will Iarlso give explicitly the expres-pion production observables the last seem preferable, since
sions for the other parts oh™", namely the two-nucleon g calculations are carried out along the real axis. For our
propagator purpose, namely the framework of DWBA, the method in-
troduced by Schwamb and co-work¢P®,21] is most suited.
P 1 Thus, this algorithm is presented here together with modifi-
Gw= o @9 cat for the evaluation of the loop given in Fi
Epo— 2E"+ie ga ions necessary for the evaluation of the loop given in Fig.
and thes-exchange potential In order to proceed, therNN propagator introduced in
Eq. (3.3 is rewritten as

1

V= : (3.6) I
0, (E(qi—E-E"—w,) Gt = Eiot—EL —E"+ w4 1
™ 2P/p’/

p —. (3.7
X"—Xgt+ie
In a model based on a realist&N interaction, the potential
Vi, will have to be replaced by BIN tmatrix.

The integration variable” in Eq. (3.2) stands for the
relative momentum of the nucleons in the intermediate state.
The quantityE’. = (1/2My)(p’ +=q'/2)? is the energy of the wg= \/mfr+ P'24+p"2 —2P"p"x", (3.9
right (+) and the left () nucleon in the final statey

HereP’=p’+(q'/2) and

=Vm2+q'2 is the energy of the produced pion, and thewherex”=(P’-p")/(P'p"). The quantityx, is defined as
total energy is given b¥,;=2E=E +E’ + wg . In addi-

tion, wq=\mZ2+q? and w,=\m2+k? denote the on-shell b m2+P'2 +p"? —(Eyo—E, —E")?
energies of ther and o meson, andE”=p"/2M is the Xo=Xo(P",p") = 2P'p" :
energy of a nucleon in an intermediate state. The morrﬁanta (3.9
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500
p

The regions of integration are given by

Rapb=[Pa,Pbl;  Rno=[0pa]U[Py,Pi]l; Rop=[pi,*].

(3.19
Here p; denotes an in-principle arbitrary momentum placed
in the interval between the region of three-body singularities
and the two-nucleon singularity. For the numerical evalua-
tion we chosep; such that it cuts this interval in half. The
different regions of integration are illustrated in Fig. 3.

The termA}, is thus the piece of the amplitude that con-
tains the three-body cut. The second temég) in Eqg. (3.1))
stands for the remaining integration fropn to infinity and
contains only the two-nucleon singularity. Since this calcula-
tion involves only a standard, single subtraction it will not be
discussed in detail. The third terA,, contains the integra-
tion outside the region of three-body singularities for mo-

FIG. 3. The region of three-body singularities fdq menta smaller t_hapi and will be discussed in detail at the
end of this section.

=210 MeV and the choice of the integration intervals for the three- ) ) ) ) |
body cut algorithm. Inside the region enclosed by the solid line we YWe begin our discussion with the terd,. For each

Pi

Py
Pay *

Pa
0

p"(MeV)

200

P'(MeV)

-300

have |xg|<1 and on the boundarjx,|=1. The symbol+ (—)
means that the corresponding boundary curve is solutioxyof
=+1 (xo=—1) [c.f. Eq.(3.10]. Additionally, the two-particle sin-
gularity atp=444 MeV is marked by the dashed-dotted lif@r its
location c.f. the Appendix A

The integration over the angle variablé contains a sin-
gularity for all p” that lead to/xo/<1. Thus,

2
Prz prrz

2My  2My

=0
(3.10

XOZ il@mi"’(P, I pII)Z_( EtOt_

represent two conditions for the boundaries of the area con-

taining three-particle singularities. These are two polynomial
equations of degree four f@”’=p”(P’). Only three of the

eight solutions are physically relevant, as can be easil
checked by taking the threshold limit for the solutions. The

in Fig. 3, for a total energy oE,,;=210 MeV. In what fol-
lows we will denote the boundaries of this area fyand
py, respectively, as indicated in the figure.

The next step is to split the amplitudé" defined in Eq.
(3.2) according to the singularity structures occurring. We
thus write

AT =AL AL A, (3.19)
where
Al :m pll p" Jl dx’ F(X")
“ 2P, Ra pz_p/I2+i€ -1 X”_X0+i€’
(3.12
with

2w
F(x")::(Etot—Eﬁr—E”+wq)J de"V! . (3.13
0

value of x, we subtract and add the value &%, at the

singularity and get

My (Po P
AleZZP’ P 2_ "2
2 p™—p
1 F(X")=F(Xo) ( - )
X dX'————+F(Xp)| In —im||.
f—l X" =X o) 1+X%o

(3.19

The complication specific to three-body singularities is the
appearance of removable logarithmic singularities: the argu-
ments of the logarithm vanish at the integration lingsand
Po. where|x,|=1.

The last piece of Eq(3.15 is the imaginary part men-
tioned in the introduction. It leads to an additional imaginary

y)(:ontribution, which is necessarily energy dependent.

enclose the area of three-patrticle singularities, as illustrated

Let us now concentrate on the logarithm in the last term
of Eqg. (3.195. Here we employ a transformation first intro-
duced by Schwamf21] that allows to carry out the integrals
numerically in a quite straightforward fashion. In order to
apply the transformation the range of integration opéris
split into two pieces, so that there is only one singularity in
each of the two intervals. The intermediate momentum is
chosen to bg,,:=3(pa+Py), in accordance with Ref21].
Using the abbreviationa(p”) andB(p”), we are now faced
with integrals of the type

Pb
1= ; dp”a(p”)In[B(p")], (3.16
ab
where 8(py) =0. The substitution
y?=pp—p"=0 (3.17
allows to transform the integral of E3.16) into
V(Pp—pa)/2
7=2| "7 " dyya(py-y))InLB(Ps -y )],
(3.18
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Due to the minus sign in Eq3.17 the lower integration 0 02 04 06 08 1
limit O is now the “critical” point of the integrand. The 4 ‘ ' ' ‘
additional factory in Eqg. (3.18 is responsible for the “dis-

appearance” of the logarithmic singularity; the integral is 3r (a) 7

now regular, since “’}Loy In(y)=0. The integration interval

[Pa:Papl is treated in a similar fashion, as described in the
Appendix B.

In principle, the application of a subtraction in the inter-
vals[0,p,] and[py,p;] is not necessary, since singularities

G, (arb. units)
n

occur at the boundaries only. However, numerical tests 0
showed that applying a subtraction in these intervals also 25 : :
allows a smaller number of grid points in obtaining a stable \
and convergent result. In summary, with the above algebraic 2 p (b) ]
transformations, the second term in E8.11) is expressed as '5 Y
" , N
p o I
2P JR,o 2 "
p =P 05 | .
1 F(x")—F(sgrx - 0 ‘ : . :
X f dx’ ( (o) +F(sgmnkg)in , 0 02 04 06 08 1
-1 X" —Xg 1+Xo Qm,
(3.19 FIG. 4. The total production cross section as function of the

excess energy, which is given in unitsrof, . In the upper pandl)
no = = . the full calculation is represented by the solid line, the calculation
) Note.that, thr_ough the. splitting into intervals of tpe with the FSI(ISI) only is shown as dottelasheglline. The lower
integration the first term in Eq¢3.15 and (3.19 also ap- panel (b) shows the ratios of the calculations containing the FSI

pears as integrated in intervals. In principle there are No Nugyatteq and IS (dashedl only to the full calculatior{solid line in
merical difficulties with this integral, however one needs topane(g)].

make sure that there is a sufficient number of mesh points

within the region of the three-body singularities in order toline) with cross sections, (dashed lingand of,, (dotted
obtain accurate results. That is why we propose to use thine) obtained from the initial- and final-state interactions
splitting of the intervals here as well. A complete pres-individually.

entation of the three-body cut algorithm is given in the In order to better emphasize the contributions of the ISI

where the integration interva,,, is defined in Eq(3.14).

Appendix B. and FSI separately, we divide],, and ol by o and dis-
play those ratios in Fig. #%). The figure shows thaztr{Ot
IV. EFFECT OF THE THREE-BODY BREAKUP gives the largest contribution over the entire energy interval
ON THE PRODUCTION CROSS SECTION under consideration, whilef, is always close tar.

. . . Naturally these features are specific to the model. More
Since the ingredients of our model are of scalar naturejyeresting'is to compare the exact calculation with approxi-
the only observables to be considered here are cross sectioRSations used in the literature for the pion propagator to
The total cross sectio, for pion production is calculated  ,\6iq the appearance of the three-body singularities, since a
fr?m the coherent sum of the production amplitudésand  ain goal of this work is to investigate the quality of those
A defined in Egs(3.1) and(3.2), respectively. Here we will approximations. In what follows we will include the rescat-

use the notations tering terms onlyflabeled byA™" andA'"" in Egs.(3.1) and
(3.2), respectively, for it is only this piece of the amplitude
Umt:J' dp|Al+AF|%; UtFot:J dp|AF|2; that contains the singularity under investigation. Here we
consider three of these approximations. In all cases, the

7NN propagator Eq(3.3 is substituted by a propagator

o =f dp|A'|2 4.1 contgaining no three—.body sin_gularity. The most naive ap-
tot P ' ' proximation is thestatic approximation (sta)wvhere the sub-
stitution
wheredp denotes the phase space factor. As a measure of the
total energy we introduce the excess ene@yy E;o;—m,, . 1 1
In the present work we concentrate on excess energies be- Etot—EL—E"—que_)_ w_q (4.2

tween the one-pion and the two-pion threshold. Thus, if the

excess energy is given in units of,, we restrict ourselves is made; i.e., ther-exchange is made instantaneous. Thus, in
to values ofQ/m, between O and 1. In Fig.(@ (upper this approximation the nucleons are assumed on-shell and
pane) we display the result of the full calculatian, (solid  the energy transfer is neglected.
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FIG. 5. The ratios of the total cross section of the static approxi- FIG. 6. The phase of the production amplitude in degrees as a
mation (short dashed curyethe fixed kinematics approximation function of the kinetic energy of the relative motion of the
(long dashed curyeand the threshold approximatiédotted curvg ~ NN-system € in units of m,) at the excess energ@)= e ax
to the total cross section of the corresponding exact calculation. The 3m_=70 MeV. The solid lines represent the exact calculation,
calculations of pane{a) contain only the FSI, the calculations of the dashed lines the static approximation. In paagkalculations
panel(b) only the ISI. In panelc) the ratios of the full calculations with the FSI only are shown, in panéb) those with the ISI only.
are shown. The full calculations, i.e., the superposition @) and (b), are

shown in panelc). Qualitatively, for eachQ with 0<Q<m, the

As second choice we want to study tfieed kinematics illustrated dependence is the same.
approximation (fkajppplied in Refs[7,22]. For the threshold
case it was already tested in REE2]. It should be pointed erably. Thefka strongly overestimates the full result in the
out that the results given here, even at the production threskentire energy regime between the one-pion and the two-pion
old, cannot be compared to those of RéR2] directly, since  threshold. This is especially pronounced near the one-pion
we omit here the inclusion of the backscattering term andhreshold. The same is true, so less severe, forstlae In
include the contribution from the two-nucleon cut in the I1SI order to investigate the effects of the approximations in more

calculation. For this approximation the substitution detail we display their effects calculated with FSI and ISI
only in panelsa) and(b) of Fig. 5, respectively. Comparing
1 1 the panels(a) and (b) with the complete calculatioric)

(4.3 shows that the last is the result of interference effects: due to
their singularity structureA' and A" have different phases
with different energy dependence that are taken into account
h different ways by the three approximations.

In order to study this point in more detail let us now

N
Ewt—E} —E'—wgtie Mi/2-0q

is made, i.e., the nucleons are treated as if being in the o
shell threshold situatiorithen E;,;=m,, E, =0, andE"

=m./2). ] ) ) consider the phase motion introduced by the exact inclusion
In case of thethreshold approximatior{thra) [used in  of the three-body singularities. Obviously, in order to obtain

Refs.[9,23]], the 7NN propagator is given by a quantitative understanding, we need to compare the full

result to one in which the breakup does not occur. For this
1 = 1 4.4 comparison we choose tiséa, defined in Eq(4.2). In Fig. 6
Ewoi—E}—E'—wgtie m—E.—E'—w, we compare the phaseé[A] of the amplitudes, defined

through

By definition, exactly at threshold this “threshold approxi-

mation” agrees with the exact propagator, since the total en- Im(A) 4.5

tan(p[A]) = Re(A)’

ergy E,o is then equal tan ;. In the literature other approxi-
mations can be found. Recognizing that our list is not
complete, we nevertheless considersha, thefka, and the for a fixed total excess energy=3m,, as a function of the
thra as representatives and concentrate on these. kinetic energy of the relative motion of the outgoing two
In Fig. 5 the ratios of the calculations based on the thre@ucleon system in units afh,.. The solid line shows the
approximations and the exactly calculated cross sections aghase of the full result, while the dashed line corresponds to
displayed. In panefc) of Fig. 5 the results of the full calcu- the sta. Panel(a) contains the phase[A"], panel(b) the
lations (i.e., containing FSI and I$lare shown. To empha- phase¢[A'], and the phase of the full calculatiog] AF
size the differences, we plot the cross sections in units of the- A'], is shown in panelc). As could have been expected,
exact result. The short dashed line gives the result for théhe phase of' is influenced most by the approximation, and
sta, the long dashed line that for tHda, while the dotted there is a significant effect on the phase of the total ampli-
line represents théhra. The figure indicates that, although tude. We would like to point out that for each value@that
thethra is by definition exact at threshold, its energy behav-is smaller thamm ., the effect is qualitatively similar to the
ior does not correspond to the exact calculation at higheone shown in Fig. 6. Naturally, this effect is irrelevant, as
energies. Especially when approaching the two-pion thresHeng as only one partial wave contributes. However, as soon
old, this approximation underestimates the full result considas differential observables are analyzed, different partial
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waves start to interfere. It will be important to see how suchU.S. Department of Energy under Contract No. DE-FGO02-
a change in the phases of some amplitudes influences tf88ER40756 with Ohio University.
description of the polarization data of the reactibiN

—NN7. APPENDIX A: LOCATION OF THE TWO- AND THREE-

V. SUMMARY AND CONCLUSIONS BODY SINGULARITIES

The effect of three-body dynamics in the pion production .V_Ve demonstrate here that the two- and three-body ;ingu—
larities from Eq.(3.2) are well separated. The two-particle

process within the framework of the DWBA has been inves-“ ;
tigated using a scalar toy model. This model is simple withSingularity occurs at

respect to the interactions employed: tH&l interaction is

represented by the exchange of a scatameson; the pion is p"=p=VMnEor
also treated as a scalar, and finally the nucldosgresented ) ) )
by scalar fieldsare assumed to be distinguishable. However|-€-, In case of on-shell scattering. An estimate for the de-
the underlying dynamics is treated exactly, especially théominator of the three-body propagator clarifies the position
three-body breakuplN— NN. We presented an algorithm Of its singularities, namely,

for evaluating the three-body breakup singularities exactly.

(A1)

This algorithm can be applied to realistitN interactions in V p=p:  Eiq—EL—E"(p"=P)—wq(p"=p)
a straightforward way. E

Within our model we compared the results for the Fotal. sﬁ—E;—wq(p”=5)<O, (A2)
production cross section with three different approximations: 2

the “static approximation,” which makes the pion exchange

instantaneous and neglects energy transfer, the “fixed kinesjnce E”(p”:B)ZEZEmt/Z, and Ei;<2m,, wq=mg,
matics approximation,” where the energy transfer is fixed at, g/ = P'ZIZMNBO. Consequently therNN-propagator
the threshold value and the nucleons are treated as being i ~_ . .

static, and the “threshold approximation,” which keeps the!s régular for allp=p. In particular, the position of the two-

full dynamics of nucleons as well as pions, but fixes the total u<_:|eon pole occursbove each thr_e_e-part|cle sm_gu_larlty.
energy at the threshold value. It turns out that all three ap- his leads to the g_atural decomposition of the radial integra-
proximations are different in character, but equally unsuitedion intervalf o= fq'+ [, [c.f. EQ.(3.1D], where[0,p;] con-

to describe the total pion production cross section betweetains all three-body singularities arjgh; ,>c] contains the
the one-pion and the two-pion threshold, at least within thigwo-body singularity.

model study. In case of the fixed kinematics approximation

the cross section is strongly overestimated over the entirgppeNDIX B: ANALYTIC AND NUMERIC TREATMENT

energy regime under consideration, especially close to OF THE LOGARITHMIC SINGULARITIES
threshold. The static approximation also overestimates the

cross section over the entire energy regime though less se- Here we give a brief but complete presentation of the
verely. Although the threshold approximation is exact at thethree-body cut algorithm. With
threshold, it overestimates the cross section slightly close to

threshold and underestimates it considerably near the two- Xo if |xo|<1
pion threshold. All three approximations produce the wrong So'= sgnx, if |xo|>1
energy dependence in the energy region under consideration.

_It remains Fo be seen how much of these o!lfferences_ SUrvivie., &=xX, in Ryp=[Pa.Pp] and &=sgrx, in Ry,
in a realistic calculation, where, e.g., the final-state interac=[0p,]U[p,,p;],) the contribution AL +A!  [c.f. Egs.

tion plays an a lot more prominent role and small momentgz 11) (3.15, and(3.19] to the production amplitude reads
are suppressed due to chiral symmetry.

Finally, we compared the phases of the amplitudes of our | | D alA |
exact calculation with the phases given by the static approxi- Azt Ane=A""+ AT +iIm(Azp), (B2)
mation and found sizable differences. Although not presented
in this work, a quite similar statement can be made withwhere
respect to the other approximations discussed. Naturally, the

(B1)

phases play an important role when different partial waves Im(AL )= — WMNprd ,P"F(Xo) (B3
interfere, as occurs for differential observables. It can then be S Hpy B P 5
expected that in the case of realistic interactions the descrip- pT—p
tion of some observables will depend crucially on the way
that the three-body dynamics of the intermediate states is 'n My Pa Pab Pb Pi ,
treated. A" ==7(f +J + +J )dp
P 0 Pa Pab Pb
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TABLE |. Schwamb’s substitutions in the four parts of the intefv@p;].

Interval Transformation Contributiof;

[0pa] y?=pa—p"=0 —2[%5dyya(pa—y?)IN[A(P.—y?)]

[Pa.Pab] y?=p"—pa=0 2] P Pady ya(pa+y?) N[ B(Paty?)]
[PabPo] y?=p,—p"=0 =2/ %55 dyya(pp—y?)IN[A(Ps—Y?)]
[Po.Pi] y?=p" = p,=0 2 P Podyya(py+y) IN[B(ps+Y?)]

and

et o

" ") I (50)
dx /r
p p” f

X—X

(B5)

A" denotes the real contribution &,,+ A, containing the
logarithm originating in the principal value of the analyti-
cally solvable integral, and'* is the other real contribution
originating in the application of the subtraction method. The
expressionA'~'”=:(MN/2P’)E4lej from Eq. (B4) is to be
understood as if the corresponding Schwamb’s substitution
would have been already performed in each of the four inte-
grals(c.f. Table ).
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