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Schematic model for QCD at finite temperature
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The simplest version of a class of toy models for QCD is presented. It is a Lipkin-type model, for the
quark-antiquark sector, and, for the gluon sector, gluon pairs with spin zero are treated as elementary bosons.
The model restricts to mesons with spin zero and to few baryonic states. The corresponding energy spectrum
is discussed. We show that ground state correlations are essential to describe physical properties of the
spectrum at low energies. Quantum phase transitions are described in an effective manner, by using coherent
states. The appearance of a Goldstone boson for large values of the interaction strength is discussed, as related
to a collective state. The formalism is extended to consider finite temperatures. The partition function is
calculated, in an approximate way, showing the convenience of the use of coherent states. The energy density,
heat capacity, and transitions from the hadronic phase to the quark-gluon plasma are calculated.
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[. INTRODUCTION states for a given spin and parity can be calculated. The
observed sequence of levels cannot be explained by lattice
Schematic models have been very important in order t@auge calculations, and alternative methods have to be de-
understand basic concepts in, e.g., nuclear phygiasing, veloped to explain the ordering, as, e.g., done in Ref.
guadrupole interaction, quantum phase transition fromMany effective models have achieved some success in de-
spherical to deformed nuclei, eXcln particular, Lipkin-type  scribing the low energy regime of QC[20,11]. These mod-
models[1] were important in this context. For example, in els have in common that only quarks and antiquarks are
Ref. [2] the quantum phase transition to a pion condensatéaken into account in the fermionic sector, while effective
was investigated and in Ref3] a model was presented gluon potentials or states with a fixed number of gluons are
which describes the coupling of fermion and boson degreesonsidered. In the real world hadrons are built by quarks,
of freedom. In the description of thes decay, simple mod- antiquarks, and gluonsl2]. The interactions between these
els[4,5] helped us to understand the applicability of differentdegrees of freedom, in consequence, may play an essential
many-body methods by comparing approximations to the exrole in order to understand QCD at low energies.
act solution of the schematic model. In RE§] many con- Concerning QCD effects at finite temperature, i.e., the
siderations were dedicated to the Lipkin type models in ordemvestigation of the quark-gluon plasni®@GP [13], there
to illustrate boson mapping techniques. In summary, with theexists an intense effort, mainly focused on computational
help of schematic models not only can a physical insight bespects of the problefi4].
achieved but also different many-body techniques can be In this paper, we propose a toy model for QCD whitih:
tested; both features are important for theories where an exs amenable for an analytical treatment, except for a numeri-
act or approximate solution cannot be achieved easily, at altal matrix diagonalizatior(ji) may describe the meson spec-
We are convinced that a similar model for QCD can be verytrum for flavor (0,0)-spin 0 and partly the baryon spectrum,
useful in order to understand the spectrum of QCD at low(iii) it is able to describe quantum phase transitionsT at
energy, its structure with respect to quantum phase transi=0, as a function of coupling paramete(is;) can describe
tions and the transition to the quark-gluon-plast@GP,  some characteristics of the transition from the hadron gas to
without the need to combine models which are valid at lowthe QGP continously fronT=0 to largeT, and(v) can be
energy with others which are valid at high energy. used to test microscopic many-body techniques, intended to
QCD is considered to be the theory of the strong interacdescribe realistic scenarios of QCD which cannot be ac-
tions. It is well understood at high energies. At low energiescessed by other methodéBecause the system is of finite
the QCD coupling constant becomes too large to apply pemumber of degrees of freedom, in the strong sense no phase
turbation theory. Lattice gauge calculatidi’§ may describe transition can appear. However, it will be smeared out and
the nonperturbative QCD regime, instead. Yet, problems likehe notion ofphase transitioris used in the same way as in
finite size effectd8] and fermion doubling still persist. Al- nuclear physics, where sharp localized changes in the energy
though some advances have been made, only the lowest its derivatives are denoted as a phase transjtion.
The model is meant to mock up the basis features of non-
perturbative QCD, in a similar way as some schematic mod-
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raising the indices of the operators introduces a phase, which
18¢ - ™ depends on the convention usgkb], and a change of the
indices to their conjugate values, i.e., the quantum numbers
(1,0)YTT,o change to (0,1)YT-T,—o.

The operators, defined above, contain the most important
degrees of freedom of QCD, i.e., color, spin, and flavor
which are the same for all energies. This is mainly due to the
difference in the spatial properties, while color, spin, and
flavor are still the same. The quarks and antiquarkscare
or stituent particles atlow energyand have little in common
(except for the some quantum numbesgth the ones at high
energy. One lesson to learn will be that a model which con-
tains these basic degrees of freedand takes into account

FIG. 1. Schematic representation of the model space. The fethe dynamic coupling with gluons can describe the main
mion levels are indicated by their energieso;. The gluon pairs  characteristics of QCD at low energy.
are represented by the level at the enesgy The quark and antiquark creation and annihilation opera-

tors are given in terms of the operatarsandc’,
toy model in a very transparent way. At a certain point in our ; ; .
discussion we shall indicate the structure of an extended ver- Ao =Cato1r Uafo=Cafo2:
sion of the model, which can be treated analytically. The
model will be able to describe explicitly quantum phase tran-

sitions at zero temperatur@ € 0) and the phase transition to . . . . .
b €0) P which corresponds to the Dirac picture of particles and anti-

the QGP. It is, for the moment, the only model which can do”_ "~ i . . ;
it continuously fromT=0 to highT. Of course, we have to particles: quarks are described by fermions in the upper level
: and antiquarks by holes in the lower level.

pay a price for that, i.e., the loss of the ability to describe The gluon sector of the model space is described by

CD in all its details. ) - )
Q osons which represent pair of gluons coupled to spin zero.

The paper is organized as follows. In Sec. Il the model i S
introduced, the energy spectrum is calculated, and its struc-he energy of a b(_)s_on state Is f'Xeq at the valyeand the
ate is createtannihilated by the action of a boson creation

ture is discussed in terms of the elementary degrees of freé(*;tl St
dom. Coherent states are introduced to determine the occu annihilation ope_ratorb on .the vacuum. .

rence of quantum phase transition, induced by variations of The quark-antiquark pairs of the model are given by
the strength of the interactions. In Sec. Ill we discuss finite

temperature effects, by introducing temperature and by cal- Cizgziz B:ffr"zzz czf
culating the grand canonical partiton function. There, a ' * R
method will be presented which can be applied to arbitrary

realistic Hamiltonians and is therefore of use in more general ~ cf2721_ghaoa_ N (ot
and realistic theories. Conclusions are drawn in Sec. IV. foy2 oy L et

E(GeV)
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Il. TOY MODEL: ZERO TEMPERATURE CASE Cfijjl— 20:’ Chp 0aC 12721 = Ea: ali .82,
The fermion sector of the theory is described by the action
of the operators which creatannihilate quarks, with effec- fora2
. . . ’ . . 2022 _ T frop2 _ taf
tive masses; . Schematically, it corresponds to the situation CflaIZ_é Caf o, 2C" 272 _g dafyo,d' 272 (2)
represented in Fig. 1, where two levels, with energw;
and degeneracy(2, are represented as valence Spels. The first two equations describe the creation and annihi-

The degeneracy of each level is given by the product of théation of quark-antiquark pairs. The pairs can be coupled to
number of colorsif.), spin (ng), flavors (f), and all other  definite flavor §,\)=(0,0) or (1,1) and spi$=0 or 1. We
possible degrees of freedorm.), like orbital quantum  shall write, in this coupling schem@/, , sy, Wheref is
numbers, etc. For temperatufe=0 and no interaction the the flavor,S is the spin, andV is the spin projection. The
lower level is filled by fermions. The creatigannihilation) operatorsB, ,yr.su annihilate the vacuurf0), which is the
operators of these fermions amé(lvo)fgi (c*X9%h) “in co-  configuration where the lower state is completely filled and
and contravariant notation for the indices. The symbol (f1,0) the upper one is empty. The operators in E2). form a
refers to the flavor part, where (1,0) is the @Mflavor no-  U(12) algebra[17]. To simplify the discussion, we shall re-
tation andf is a shorthand notation for the hyperchaXgehe  strict it to a subalgebra given by the pair operators coupled to
isospinT, and its third component,. The indexo repre-  flavor singlet] (0,0) in the SW3) notation[18]],

sents the two spin components3, the indexi=1 or 2

stands for the upper or lower level, and the indexepre- S, = \/EBEFO,O)O,OO,
sents all remaining degrees of freedom, which are at least 3 if
the color degree of freedom is considered. Lowering and S = \/55(0,0)0,00,
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S=n;— 1, 3 8
with n¢=(ny+ny)/2, wheren, is the number operator for 61
quarks andhg the number operator for the antiquarks. They /
form a SU2) algebra. 4t PO

In a subsequent publicatiqi7] the more general model :
will be discussed. In this contribution we center around this § 2| 1
simplest version in order to illustrate the basic concepts, |/~
though as we will see, already here several conclusions abolt! of = ™. .-~ .
the structure of states at low ener@pw lying collective
states and mixing of particle numbgcsan be drawn and also 2r

L 'V, =0.000GeV
for the transition to the QGP. V, = 0.020 GeV -
The model is equivalent to the Lipkin moddl], familiar 4t ¥1 :8-828 83\\; ]
in_ nuclear physics, with _the_difference that f[he opera_tors are £ ST i ;'0 - 35 30
given here by the combination of quark-antiquark pairs. The P

addition of an extra boson level was also discussed in Ref.
[2] and it is related to pion effects in nuclei.
As Hamiltonians we shall consider two different types:

FIG. 2. The energy of the ground stdg in units of GeV, as a
function of P, for several values of the parame¥. The values
correspond to the calculations performed with the Hamiltohlan

Note the occurrence of a nontrivial minima wheW
H =2w0;Sy+ wpnp+ Vi (S2 b+ bS?), = 0.035 GeV. 1

_ . 2.pt
Hi=20St opy+Vi:(S, +S)%(b1+b), () 4 energy spectrum df, for positive parity states is dis-

; o P _ played. The parameters used in the calculations @re9
mgh Sy=n;—Q and the double dots indicatermal order (e, n.=3 andny=3), .wf:% QeV, and wy— 1.6 GeV.
The HamiltonianH, exhibits a useful symmetry, i.e., it For Vl.:O GeV we obtaln.the first state gtGeV, corre-
commutes with the operator sponding to two quark—anthuark pairs. 'The_ next state is the
glueball at 1.6 GeV. When the interaction is turned on, the
Ny energy changes until it reaches a “critical” or “transitional”
P= §+nb. (5  point atV§=0.035 GeV. There, a level crossing occurs and
the lowest state, for higher values ¥f, has both quark-
antiquark and gluon pairs. Beyond the transitional point, the
density of levels increases. This effect is known from nuclear
physics, where the transition from a spherical nucleus to a
deformed one is accompanied by a significant increase of the
density of levels at very low energi¢$9]. The transition is

The states of the model space, belongingito are SU2) of second ord_er as can be seen byCinspecting Fig. 2. For
states with the additional ordering given by the eigenvalue¥@lués of the interaction larger thavi, the ground-state
of P. The vacuum state is defined \i#0)=S_|0)=0. Be- expectation value of the number of quark-antiquark and
cause the number of fermion pains is limited by 2) the
range ofn, for a fixed value ofP is also limited. Therefore
the matrix representation &f, are finite. A large eigenvalue
of P implies that the corresponding configuration has many  |..-
gluons. In Fig. 2 we show the energy of the lowest state for -
a given strength of the interaction, as a function of the eigen-
value ofP. For zero interaction, the energy increases mono-< [ e
tonically. For large values df4 it appears a minimum with a S 1t
large value ofP. This implies that the physical ground state 1
should be a correlated one, that is to say that the physica
ground state will, likely, be a state with a large number of 5L
gluon pairs. Concerning the dependence ulienwhich is
the strength of the interaction which couples pairs of gluons
with pairs of quark-antiquark pairs, the curves of Fig. 2 show . . L J
minima, which are different from the perturbative vacuum, 0 0.01 0~02V (Gev?-OS 0.04 0.05
for values ofV,=0.035 GeV. For larger values of the inter- !
action strengthv,, the lowest state is the one with a large  FIG. 3. The spectrum of the model Hamiltonieip, for positive
eigenvalueP, indicating a gluon dominated vacuufior the  parity states, as a function of the coupling paramsterNote the
transitional region, quark-antiquark and gluon pairs couldcrossing of excited states with the perturbative ground state at about
appear in the vacuum with comparable weighta Fig. 3, V;~0.035 GeV.

This version of the Hamiltonian is similar to the one given in
Ref. [2], except that in Ref[2] the SU2) operators appear
linearly while in Eq.(4) they appear quadratically. Because a
qguark-antiquark pair has negative parity, the operatrs
andS_ should appear quadratically to conserve parity.

045207-3



LERMA H., JESGARZ, HESS, CIVITARESE, AND REBOIRO PHYSICAL REVIEW €5, 045207 (2002

0 0.005 s
0.015 0.02

0.01
v, (GeV)

0.01 ) .
v, (Gev) 0 0,005

FIG. 5. The difference between the vacuum expectation values
of the number of gluon pains, and fermion pairs; is shown, as a
function of V4, and for the case of the Hamiltoniat, .

at least similar coupling constant, justifying the use of only
one interaction parametey];. Figure 4 shows the depen-
dence of the energy, of positifease(a)] and negativécase

(b)] parity states, on the strengih, for the values ofv; and

wp given above. The values are referred to the positive-parity
ground state. Contrary to the case of the Hamiltomianthe
HamiltonianH,, does not show a dense spectrum beyond the
phase transition point. In the transitional region several
0.015 0.02 avoided crossings occur and the spectrum is richer there,
than outside that region. Concerning the behavior of the low-

FIG. 4. The energy spectrum of Hamiltoni&h, for positive e”?rgy part Of, the SPeCtrum' it §hov_vs, after the tranSition
[case(a)] and negative paritjcase(b)] states, as a function of the POINt, @ negative parity state which is degenerate with the
coupling strength/;. The onset of the phase transition takes placePOsitive parity ground state. This state, a Goldstone boson,

for lower values oV, as compared with the results corresponding ¢an be interpreted as a collective, pionlike state whose struc-
to the HamiltoniarH, (see Fig. 3. ture can be understood in the framework of coherent states

[20], as it will be discussed later on.

gluon pairs increases. For large interaction strength the num- Figure 5 shows for the ground stateacuum the differ-
bern; approaches a constant value, reflecting the Pauli prinence of the expectation value of the number of gluon and
ciple, i.e., only a certain number of quarks can occupy thgermion pairs, as a function of the strength of the inter-
higher level. This behavior will be discussed in detail for thEaction, for the case of the Ham"toniaﬂ” . As it is seen
caseH), . The relatively high density of states at low energy, from the figure, the results can be interpreted in terms of
shown in Fig. 3, may not be very realistic. However, theequa| population of fermion and gluon pairsVy(
model predicts the appearance of some states at very low . 008 GeV), fermionic  dominance (0.068/,
energy. This would correspond to a pionlike structure, which—g 015 GeV), and gluonic dominanc/{>0.015 GeV).
is also indicative of a collective nature. _Another conclusion concerns the structure of the vacuum

This problem does not appear in the case of the Hamilstate, i.e., it will contain a finite number of quark-antiquark
tonianHy;, which does not commute witR. The Hamil-  pajrs and gluons, whose ratio depends on the strength of the
tonianH;; has to be diagonalized in the whole space, whichinteraction, which in turn has to be adjusted to experiment in
is infinite dimensional. The diagonalization can be performednhe more general model with open flavor and Sif].
numerica”y by intrOdUCing a variable cutoff in the number of The features of the Spectrum, and of the ground_state oc-
bosons. We have adopted, as a criterium for convergence, ﬂ&lpation numberS, can be understood in terms qmmtum
stability of the low-energy sector of the spectrum as a funcphase transitiorat zero temperature, that is to say, in terms
tion of the cutoff. The HamiltoniarH,; contains all terms  of a change in the correlations induced by the Hamiltonian. A
which are required by symmetry, i.e., it includes a term ofconvenient way to represent this effect is to introduce a set of
the formS% b, describing the annihilation of a gluon pair and states(coherent stat¢sand to define an order parametére
the creation of two quark-antiquark pairs, and also a ternyround-state occupation number associated to a given degree
S%b', describing ground-state correlations. The scatteringf freedom. The calculation of the expectation value of the
term S, S_(b"+b) appears with a factor of 2 because fer- Hamiltonian, in the basis of coherent states, and its variation
mion lines can be exchanged. Because of the symmetry iwith respect to the order parameter yields the possible
permuting the lines all interactions should have the seane “phases” of the system, as extremes of the minimization

(b)

0 0.005 o
V, (GeV)
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procedure. The set of coherent states, which we have adopte ~ 4
in our calculations, is defined 0]

35
|2)=z¢)|zp), 3
25
z;)= —————e%5+|0);, 2
| f> (1+|Zf|2)ﬂ | >f g 2
51
) ) 15}
|25) =€ 26ROy, (6) 1
where|0) and|0),, are the fermion and the boson vacuum |

and|0) is the product vacuum statgdf®|0),). The power
), of the fermion normalization factor, indicates that we are 05

0.005 0.01 0.015 0.02

working in the SUW2)-spin representation which includes, as V, (GeV)
the lowest state in energy, the fully occupied level-ab; _ _
(see Fig. 1 FIG. 6. The spectrum of the lowest baryonic states as a function

of the interaction strength. The values of the excitation energies are
taken with respect to the ground state of the mesonic sector. The
HamiltonianH,, was used.

By defining the complex order parametegs- pie'?t and
z,=ppe' %, the expectation value of the Hamiltonitl, (4)

is given by
)20 a-ph a%(qa)" (N, 1) f,SM)~(S,)"@®, (A ) f.SM); ()
)= & —— = T WpPy
(1+P%) the index {,u)f refers to the flavor, which is (1,1) for the
’ octet, etc., andy® indicates that the state to the right, on
ny 40(2Q—-1)picod2¢y) which the operato6, acts, is a pure three-quark state. The
! (1+ p%)z three-quarks state satisfifkl]
S |g% (A w)f,SM)=0. C)

40p7(20+ pf)
_l’_ I

(1+p?)2 ) 2pb Coi(ﬁb)v (7)

That S_ annihilates the three-quark state holds because
the quark-antiquark pair operator contains an antiquark anni-
and it can be regarded as a classical potential in the paramédiilation operator which anticommutes with the quark cre-
ric space of the amplitudes and phasesp. It shows for  ation operators of the state on the right and annihilates finally
small coupling constanty/; a minimum at|z]=p;=0, the correlated vacuum. Note that the Hamiltontdp (and
which represents small departures from a dominant harmonithe same is true fo,) does not distinguish between differ-
(quadratig potential, and a deformed minimum for a suffi- ent flavors, and therefore the flavor-(1,1) and flavor-(3,0)
ciently large value o¥/; and a given combination ap; and  baryons are degenerate. Part of the degeneracy can be re-
¢y, . The factor 25, makes the potential invariant under the moved, by introducing terms depending on the hypercharge
changeg;— ¢: + 7. Thus, when the difference in energy of and the isospin. In order to remove completely the degen-
the two minima with respect to the barrier between them isracy between the (1,1) and the (3,0) flavor configurations
sufficiently large, there exist two degenerate states, one witbhne has to include, of course, flavor-depending interactions,
positive and the other with negative parity, which minimizeas it will be done in a more general formulation of the
the expectation value of the Hamiltonian. present toy moddl17].

The pseudoscalar particle at zero energy cannot be iden- The problem for the baryons is completely analogous.
tified with the pion, because the pion belongs to a flavorDue to the fact that three quarks minimally occupy the
(1,1) (octeh representation of the flavor group §83). higher level of the fermion model space, the effective degen-
However, the fact that the model has a Goldstone bosogrracy, i.e., the number of configurations available to excite
gives some hope that a generalized model with open spin amgliarks from the lower level, is@—3 (since the total num-
flavor, as indicated at the beginning, may also exhibit a lowber of available states is(R). The factor 3 is a consequence
lying negative parity state which can be identified with theof the Pauli blocking.
pion. This conjecture is justified because an equivalent inter- In Fig. 6, the spectrum of the lowest baryonic states, as a
action, as in Eq(4), for flavor (1,1) spin O will exhibit a function of the coupling strengtt{; and referred to the low-
similar behavior with respect to a coherent state which in-est positive-parity mesonic state, is shown. After the transi-
cludes pairs with flavor (1,1) spin 0. One lesson to learrtion point, the energy of the baryonic states increases. To
from these results is that the lowest excited energy state wilbbtain states below 1 GeV, one has to reduce the effective
be a combination of quarks-antiquarks and gluons and in thquark mass. Since we are interested in the trends exhibited
general model the resulting quantum numbers of this statby the spectrum, we shall not fit it to physical masses. The
will be the one of the pion. transition point is slightly shifted to higher values of the

In our model the basis for the baryonic states is given bycoupling constant, due to the lower value of the degeneracy,
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12 \ - . (lower) level. The operators which creatannihilate these

fermion pairs obey a pseudospin block algebra, for gpin

10t {ng)y — 1 There are in total 2 building blocks. If v; denotes the
(Np) - number of blocks where both levels are occupiegljs the

number of blocks where both levels are empty, ard2the
number of blocks where either one of the levels is occupied,
the partition function can be written §22]

27

(20)!
at . Z(B)= D> —— ok, 10
(B) E CEITAR 2 0 (10)
2r where
‘ L . —B(H—uN)
% 0.005 0.01 0.015 0.02 |J:(2‘J+l)f dzzbf dzsz<ZfJ=Zb|e W\ z45,2p)
V, (GeV) 2 (1+|sz|2)2

FIG. 7. The content of quark-antiquarki{) and gluon @) 1D
pairs in the first excited state of the barionic spectrum, as a functiof}itn j= r—k B=1/T, andT is the temperature in units of
of the interaction strengtl,. The HamiltonianH;, was used. GeV. The State$z>= |Z>f®|z>b are the normalized coherent
) , states[20]. The factorgy is the multiplicity of the configu-
otherwise the behavior observed for the baryon spectrum is,.: 1 with pseudo-spid= r—k. For each value of one

simila_\r_ to _the meson case. The relatively delay_ed onset of gy, 4 define a coherent std#;). The coherent state, used
transition in the baryon spectra produces a region where thr?I the previous sectiofthe T=0 casg, corresponds to the

physical vacuum may contain a pair condensate while th%aluerQ. The chemical potentigi. multiplies the opera-

baryonic states may still be built as pure three quark ObjeCtE)r N, which gives the total number of particles in the lower

i.e., there is a region where the mesons are complicate nd upper level. The partition functiol0) does not con-

states in terms of th? quarks, antiquarks, e_md gluons, WhIIgerve flavor, color, and spin. A multiple projection, to restore
the baryons have a simpler structure. Knowing that the bary;

L these symmetries, can be carried out, in principle, although it
ons have a coniribution from the sea quarks and the gluolq a very involved procedurgl3]. We assume that the vol-
indicates that probably the mesons are well beyond the poi me occupied by the QGP is large enough so that a projec-

of tllgleF?ua7n;[ﬁm p?]?sr:attr?nsnlrc;(n. ntiquark and aluon pair intion is not needed, though we shall restrict to a subvolume
9- € content of quark-antiquark and giuon pairs Mg, ¢ thermodynamic description.

the first-excited baryonic state is shown. The results show a If interactions are added to the Hamiltonian, the partition

large contribution from gluon pairs to the baryonic state unction cannot be obtained analytically, in general. If the

after the transition point. This |nd|9ate thqt in a more reallst|cvalue 0f() is not too large, the partition functiofL0) can be
model and for sufficiently large interaction strength, some btained icall
baryon states, like the proton, may contain a sizable contri9 ained numericatly. I .
bution due to,sea uarks anéj luon pairs. thus shed some We have diagonalized the Hamiltoni&h and obtained a
X . qua 9 pairs, sét of eigenvalues for each valuebfThe parameters of the
light on the microscopic structure of the problem. Y ; B -

: ) . Hamiltonian were fixed at/;=0 and 0.04 GeV()=9, w;

After the analysis of the properties of the low lying spec- - o :
trum of the two Hamiltonian¢4), we can proceed to discuss __3 GeV, andw,=1.6 GeV. The partltlon.functlomO) was
. calculated for temperatur€<0.5 GeV. Since the value of

finite temperature effects, which may be relevant for theQ is not very large, one may ask if, at high temperature,

description of the transition from the hadronic phase to : o .
the QGP. more configurationgi.e., larger vaIl_Jes oQ)_shouId be in-
cluded. We have checked, numerically, this effect upon the
partition function. Figure 8 shows the value of E0), for
lll. TOY MODEL: FINITE TEMPERATURE CASE each value ofl<(). As seen from this figure the contribu-
tions to the partition function reach a maximum for a certain
In this section we shall present the results correspondingalue ofJ, which is smaller tharf). This result justifies the
to the finite temperature case. We shall show the main stepgpproximation withJ>1. First and second derivatives of the
related to the calculation of the partition function, which haspartition function(the internal energy and the heat capacity
been performed by extending the techniques discussed #re shown in Figs. 9 and 10, respectively. The heat capacity,
Ref.[21]. for V,=0 GeV, shows the Schottky bunip4], typical of a
In the limit V,=0, the fermionic sector of the Hamilto- two level system. The shape of the curve remains unchanged
niansH, and H,; reduces to the free Lipkin model, which when the interaction is switched on k. The increase of
consists of two levels, with energiesw; and a degeneracy the interaction strengtV, produces a sharper peak in the
(2Q)). Allowed configurations are specified by all possible curve, indicating a possible phase transition. The results
arrays of particles and holes, in both levels, and their degershown in Figs. 9 and 10 have been obtained with the Hamil-
eracies. Thus a certain configuration can be specified by listonianH, . Although we are not showing it in Figs. 9 and 10,
ing the number of occupiedempty states in the upper the same thermal behavior of the heat capacity is obtained
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FIG. 8. Contribution to the partition function, E¢L0), for a
fixed value ofJ. The curve shows the logarithm of the results cor-
responding to the casH,, for values ofJ<(Q=9, and forT
=0.2 GeV, andv,;=0 GeV.

FIG. 10. The specific heat, as a function of temperature, for the
cases shown in Fig. 9. Results are shown following the notation
given in the captions to Fig. 9.

We shall discuss first the treatment of the fermionic sec-
with the HamiltonianH,, . However, the values ofTf{and  tor, i.e., the integration on the coherent staigg;y). For
V1), where the onset of the phase transition is produced, ararge values of, the overlagz,|z,) is a decreasing function
different for the partition functions correspondingtip and  of |p,—p4|. Also in this limit, it is a strongly oscillating
H), . Note that the model predicts a phase transition indicategunction of the phase differenag,— ¢ 4. Due to this oscil-
by the sudden increase of the internal energy at about O.@&tion we can write, both foH, andH,, ,

GeV, which may be of first order, as suggested by the results
(see Fig. 9. (o€ P zg)~(zale ™ PM|2a) (24l 2Zp), (12)

The above discussed results, which have been obtained by
performing a numerical diagonalization, are indeed the exaatvhere the overlap in the above equation takes into account
results of the model. Potentially, they exhibit the desirablethe off diagonal behavior forr# 8. The expectation value
thermodynamical features of QCD. We shall take these re¢z,|e #H|z,) can be expressed as an integral product of the
sults as reference values for an approximate calculation. Thig@rm
obvious motivation for such approximate treatment is the
generalization to larger values of the model parameters angbj+ 1) d?z,,
more general Hamiltonians. - f

T e 2

4

Ly A @ an &’z -z,

z, |H|z
n=o N " Hﬂ;é(lJrlzyklz)2< oMl
X(z,,[H|z,,) - -(zyn71|H|270>, (13

by insertingn times the unit operatd20]. The Hamiltonian

H is expressed into two termdy,+H’, whereH, is the
noninteracting part andl’ contains the interactions. THkth
term of the expansion hdsmatrix elements oH’' and (n

—k) factors withHy. By performing a rearrangement, as-
suming also that the main contribution to the integral comes
from all z, approximately equél.e., it allows renaming,,),

0 S T T S E—Y the contribution of thekth partition to the integral is written
T (GeV)

(E)(GeV)

» n 2 25, 42

FIG. 9. The temperature dependence of the internal energy, as E (=B)" (23+1) f d°z,d Zp (n)
obtained from the calculations performed with the Hamiltorkign A=k N! w2 (1+|z,/»H2(1+ |zﬁ|2)2 k

Dashed lines indicate the exact results corresponding to the unper-

turbed (/;=0) case, small-dashed lines show the exact results for X(Za| (H)"Z5)(Z6l (Ho)" ¥z, (14
V;=0.04 GeV, and the solid line shows the results of the approxi-

mations described in Sec. Il of the text, see E29). The chemical ~ This result illustrates the binomial character of ik parti-
potential has the valug=0. tion. By a reexponentiation one can write
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The volume element of the complex integrald&z, /= (in
(z,|ePHo|z,) Ref.[20] the coherent states are not normalized and therefore
the volume element has an extra factor®/”). The calcu-
lation involves an integral of the type

(23+ sz d?z,d%z,
? (1+za|?)%(1+]24%)?
X(zgle P |z,). (19

One is tempted to say that it corresponds to the assumption if d22b<zb|e_ﬁwbnb+ale+aZb| ). (20)
thatHy andH’ commute. However, this is not entirely the ™

case because the product appears in an integral and the
proximations relies on the assumption of largeand the
steep fall off of the overlap. The integrfitiz;fdz, can be
replaced by a single integral, by using Ef2) and by per-
forming the integration on the variablg;. The validity of
this approximation is restricted to large valuesJpfwhose
validity was shown above. After these approximati@h8)

alpﬁe coefficients, which depend on the expectation value
of powers of the S(2) generators and which are propor-
tional to the interaction strengt¥i;, have a common value
for the model Hamiltoniam,, but they differ for the case of
H,.

In order to evaluate the expectation value which appears
in Eq. (20), the Baker-Campbell-Hausdorff formula is ap-

reads plied [20,23. Notice that one cannot apply the approxima-
2 2o 12 tions described for the fermion sector, because the overlaps
(23+1) d<z,dzg B , f
7 |e~AHo|z (zy|z,) show a broader dependence pg—p, and ¢
2 2\2 2 2< Cl| | B) bl “b pb b
™ (1+]24|)%(1+z6]%) — ¢y . The result is
X(zgle M|z, e~ Bupny+arb! +agb_ gtib!géompetab K. 21)
2J+1 d?z, ' .
SBR[ S e iz e ).
m (1+]z,]%) 1
(16) K=§&5 e % —2+§—) - 2]
2 °2 2
SinceHy=2w:S,, the matrix elementz,|e #Holz,) is
readily calculated and the result is 28V, 2BV,
&)= o Glh=- ,
2Bwid
—B2wiSy — 24— 2Bwi)\2]
(ol ) = e e £ =By, &)= Bos,
(17) ,
_ o _ B Ve 4,
As a check on the consistency of these approximations, it &(l)=— me b,
is verified that by settingd’=0 and from the above equa-
tion, the integration of Eq(11) gives a result which is iden- )
tical to the one of Ref[22]. £(11)= — BVcwp o Bop 22)
Concerning the matrix element of the interactidnh, we * (1—e Aob) '
have adopted the following approximation:
and where
ZD( eiﬁH, Za ~e73<<za|H"za>, (18)
< | | > Va:Vl<Za|S§|2a>
which is valid when the temperature is high and/or the inter-
action coupling constant is small. It corresponds to the fac- Vb=V1(za|Sﬁ|za>
torization(z,|(H")"|z,)~ ((z4|H'|z.))", a result which can
be reproduced, by assuming E42) and insertingnth unit Ve=V1(z,|:(S; +S.)%|z,). (23

operators between factorb' . As said before, the applicabil- o ] )
ity of the procedure is limited to relatively small values of 1he indicesl andll refer to the two different model Hamil-

the interaction strengtl; and relatively large values of the fonians. _ _ _ _
temperature. Because the exponential function which contains the op-

Let us now turn the attention to the Bosonic degrees offatorb is acting on the coherent stdig,), the operation is
freedom. The exponent of EGL8) is a linear combination of Well defined and it gives a fact@*s*. The same holds for
the boson operatots’ andb. The coefficients are given by the exponential function which contains the operatband
the expectation values & or S,S_ (see the Appendix it gives ef1i% . The expectation value of the operator which
which are functions of the complex variablesandz? . The  containsn, reads

normalized boson coherent state is given[Bg] 2 1 (2t
<Zb|e§2nb|zb>:e*‘zb‘ e‘zb| ez (24)
|26/

|zp)=e€" TezbbT|0). (19 Finally, the integration over the complex varialagyields
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£1851(1—ef2) H,, [17]. The remaining integration on the complex variable
1 + e 4
—f d?z(z,|e1P ef2Mvebsl| 7, ) = : (25 z,, of the fermion part, leads to

™ 1—es2

o eZBwa

In the following we shall construct the final expression of the PRpT (23+ 1)f0 dxw
partition function, after the above introduced approxima- € (1+x)
tions. We shall restrict to the caseldf, in order to compare > (1+Xe—ZBwf)2Jeﬁl6F(ﬁ)vi\]4[x2/(1+x)4]’ 26)

the results of the approximations with the numeri@ac)
results. A similar analysis can be performed for the case ofvith

i)zﬂwb[(ﬂwb)z—e’Bwb_eﬁwbJr Bwpelr— Bw,+2]

F(B)=2
. ( (2+ Bap) (P~ 1)(1-e Auv)

Wp

after substitutingx=p?. F(B) is a smooth function of3, whereZ; andZ;, are the partition functions for free fermions
which approaches the limit@ w, for large 8. The integral, [22] and free bosons, respectively, i.e.,
Eq.(26), is a function of the pseudospirand its argument is
the product of exponential functions of positive and negative (X+Y)?(1+XY)>?
functions ofJ. That the integral can be represented by the Zi= <20 ;
integrand atl=J,, wherelJ, is the value that maximizes it,
can be easily seen by settivg=0.

Let us callg(J) the ratio between the integré26) with 1
V,#0 and the same integral with, =0, andJ, the value of Zy
J which maximizes the integral. We can write the Taylor
expansion ofy(J) as

e 0

and Z;,;=9(Jp) is the contribution due to the interactions.
1/ As mentioned above, the value @fJ,) is given by the ratio
g(d)=2>, _(_g) (I=Jp)". (270  of the integral in Eq(26) with V, different from zero and the
nti ggn I3 same integral with/;=0 andJ=J,. The integral withV,
different from zero is calculated numerically, while fuf
By using the identity =0 there is an analytical solution given pyithout the fac-
tor Z,, appearing in Eq(26)]

—vo

n
XZJ

ax"

JthJ:i

n
o X", (28 @2Be(I+112) _ o~ 2Be(3+112)

e (31)

with X=eP®f, the expansion in terms ofJ-Jy) of g(J)

transforms into an expansion in the derivativégX. Thus For 8—0 Z;,.— 1 by construction, and the high tempera-
the sum(27) is of the form=,D"(Jo,X)Zo, WhereZo is the e Jimit is automatically obtained. The partition function
partition function for the noninteracting ca22] andD is  \j|| pe well approximated for larg@. For smallT, especially

the differential operatof(X/2)(d/dX)—Jo]. We chooselo  T—0, the main contribution to the exact partition function
such that the] (X/2)(d/9X)—Jo]Zo=0. The value ofdo, |l be exp(— BE,), whereE, is the ground-state energy
obtained in this way, is given by which can always be determined using coherent states or
another variational procedure. For the internal energy it will
give a straight line a=E,. We take as the total result the
approximation described above until the curve crosses the
straight line atE=E,,.

where Y=e*# is the fugacity[22]. This expression ap- In what follows we choose the same values of interaction
proachesl,= () for 8—o and it gives small values df, for ~ strength as done above when the partition function was cal-
B—0. Theg(Jy) can be put outside of the sum given in Eq. culated numerically.

(10) and the rest can be summed up as in the noninteracting In Figs. 9 and 10 we show the internal energy and the heat

1
x2

X2Y )
(X+Y)(1+XY)

JO%Q(

case[22]. capacity respectively, as a function of the temperature, ob-
After these approximations the partition function can betained with the approximate partition functi¢9). As it can
written as be seen from the curves, the approximation works reasonable
well for high temperatures[>0.15 GeV. At low tempera-
2=2:ZpZint, (290 tures the curves, representing the approximated values, devi-
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0.25 — . . : ; : : : We have shown here that the exact result can be approxi-
"""""" mated with the procedure exposed. It has the possibility to be

O — | extended to arbitrary Hamiltonians with interactions,

' which in addition do not have a simpler structure due to

symmetries.

IV. CONCLUSIONS

T (GeVZD

In this work we have introduced the essentials of a toy
model for QCD. The model consists of two levels with en-
0.05 | 5 ergies* ws, which describe the fermion degrees of freedom,

; : and gluons are introduced via a level of positive energy

| | which can be filled by gluon pairs with spin zero. The gluon
03 03 ' 0.4 pairs are treated as bosons. Two different Hamiltonians are
u (GeV) discussed. The first oneH{) commutes with the symmetry
. . . operatorP, a property which allows us to calculate the en-
FIG. 11. Temperature as a function of the chemical potentialy o “shootrym easily. However, this Hamiltonian contains
The solid line indicates the exact results corresponding to the un- . . . . .
perturbed ¥;=0) case, the dashed line shows the exact results foPnly a certain type of !nteractlon terms which d.o nqt include
V;=0.04 GeV, and the small-dashed line shows the results of thground-stat.e correlathns. The second Hamiltoniaf, X .
approximations described in Sec. IIl. does contain terms which prodgce ground-state correlations.
Due to the symmetry of the vertices, respect to the exchange
of fermion and boson lines, all terms enteringHp have the
ate significantly from the exact results. It will overshoot the ggme interaction strength. We have shown that the corre-
straight line given byE=E, and end atE=—13 GeV for  sponding spectrum exhibits a quantum phase transition, de-
T=0. pending on the interaction. For small values of the interac-
The behavior of the curves of Fig. 9 illustrates the agreetjon V,, fermion pairs and gluon pairs equally populate the
ment between the approximated and the exacts results. It tﬁound state, for intermediate values Wf the physical
valid only for the high temperature region. At oW the  vacuum is described by quark-antiquark pairs while for
main contribution to the partition function comes from the|arger values Of‘/l g|uon pairs dominate. In the g|uon domi-
ground state. The lowest energy is the one of the configurayated phase the spectrum has a degeneracy of the ground
tion where all states in the lower level are occupied while thestate, given by one positive- and one negative-parity state.
ones in the upper level are empty. This corresponds to thghis property gives some hope that a more general version of
case (2)=2Q, v1=v,=0. In the approximation, the par- the model, with open flavor and spin channels, may show a
tition function reduces to one term, given by the integ28)  Goldstone bosofin the flavor octet (1,1) S(3) notatior, if
with J=, and the energy goes to2V;0*/ w, asTgoesto  the strength of the corresponding interaction is large enough.
zero. This value, is of the order ef 13 GeV if one uses the The appearance of the gluon and quark-antiquark condensate
already given parameters/{=0.04 GeV, (1=9, andw, and of the Goldstone boson may be easily described by using
=1.6 GeV). The exact calculation yields2 GeV. This de- coherent states, as we have shown for the present version of
viation is caused by the approximati¢bg). the model. The same approach may be useful for the case of
Note that, in a more realistic context, the transition to themore general models of nonperturbative QCD. Important to
QGP is believed to take place aroufd-0.165 GeV[14]. note is that the states at low energy will consist of a not
For these temperatures our approximate results are acceplefinite number of quarks, antiquarks, and gluons. The non-
able. Also, for these temperatures there is still a sizable difeonservation of the particle number will be essential in order
ference between the results obtained with interactions ant remove the multiplicity of states encountered in models
without interactions. It shows also that the interactions canwith no particle mixing interaction. There, a given state can
not be neglected in the high temperature regime. be constructed in various manners tjferent realizations.
Finally, we like to discuss the dependenceTobn the  The mesongand in general hadrohsvill contain more than
chemical potentialw, when the pressure of the system is just the valence quarks and antiquarks.
equal to the bag pressuBs=0.145 GeV[24]. To find such a Baryons were also considered in the mofdsle Eq.(8)]
dependence one has to introduce a volume. We consider @md due to Pauli-blocking effect the effective degener@cy
elementary volume given by the size of a hadrondecreases. Also, the transition point to a condensate of pairs
(=1 fm%), as done in Ref[13]. The pressure is then given of quarks-antiquarks and gluons is shifted to larger values of
by the ratio of the internal energy and this volume. The resulthe interaction strength. There is a regime where mesons are
is depicted in Fig. 11. Without interaction¥{=0) we re-  already in a condensate phase while the baryons can still be
produce the results of Rd24]. By turning on the interaction treated as three quark systems.
(V,=0.04 GeV), the chemical potential increases. This ef- We have investigated finite temperature effects, by con-
fect shows that the correlated vacuum state is dominated bstructing the partition function of the model, both exactly
gluon pairs and it also has contributions from quark-and approximately. A method was chosen which allows a
antiquark pairs. control over the approximations made and it can be extended

0 ' 01
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to more realistic systems where, however, an exact solution 1

is impossible or very difficult to obtain. We have shown that (2| So|z) = 5553, I(S+ZS.)
the use of coherent states makes it possible to introduce ap- (1+]z]%)

proximations in a controlled way. The results, for the internal
energy, heat capacity, and the equation of state of the system
at the bag pressure are in agreement with previous calcula-

X g% S-g#S+|J, — J)

tions. The model gives us the possibility to describe in a — 1 (_ *_)
continuous manner the transition from low energy to the (1+]z»H% "oz
QGP, unique up to now. The model predicts a first order .

transition to the QGP. X(J,—J|e*S-e%5+|J,-J).

To summarize, the model is able to describe characteristic
features of QCD at low and at high temperature. This gives .
some hope that, in a more general version of it with open To calculate the normalization(J,—J|e? S e%S+|J,
flavor and colof17], it may describe the hadron spectrum at —J), we write[20]
low energy and the transition to the QGP as well.
2J
z:|" | (29)!
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< f|SO| f> (1+|Zf|2)ZJ faz? ( | f|
APPENDIX I1-|z?)
We want to calculate the expectation values of the opera- T 1+|z|?

tors SO,(SiJrSZ_), and S, S_ using coherent states. We

adopted, as a suitable representation, the normalized coher- ] _
ent stateg20], Next we are going to calculate the expectation value of

the operatoS?

1
|Zf>=mezfs+|3,—3>, 1
Zf 2] |z ) =—————=(J,— J|(e4S- S e¥S+) |3, —J
< f| +| f> (1+|Zf|2)2J< |( + )l >
where |J,—J) is the eigenstate of the pseudospin algebra 1 2

with the absolute value of the spihand its projectionM — — _J|(ez;s,ezfs+)|\] ~J)
T (1+|z]?* oz
For the operatofs, we have )
1 d

- . 2\2J
C(1+|z]»)? az?m'zf' )

1 *
Zi| S|z ) =—————- (3, — J| (% 5-5e%5+) |, - J).
(zlSlz) (1+|Zf|2)2J< > | 2)(23-1)(7))?

1+|z?)?
Now, since[S_,S]=S_ and (11249
1 1 Therefore
ef0e A=0+ Ti[A O+ 5 [A[AO]]+- -+, (AL)
23(23-1)[(z))*+7]
i (Z|(SL+5)|z4) =
we arrive at * (1+]z42)2
1S S, * ¥S_AzS
%> S’ = (S + 27 S )e’r > et To calculate the expectation value 8fS_ we use the
identity S+S_:SZ—SS+ Sy, and from the above obtained
This yields results we find
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2
d
2 _ * 2\2J
z z)y=—————| —J+z; —| (1+]|z]°)
< f|SO| f> (1+|Zf|2)2J< f&z:) | f|
o 432z,  23|z)? +2J(2J—1)|Zf|4
I+|ze® 14[z> (1+]z]»?
e 2J(23—1)|zl?
(1+]z]?)?
and

PHYSICAL REVIEW €5, 045207 (2002

(z4|SyS_|ze) = (z[ (S~ S5+ So) | z¢)

2J(23—1)|z/?
=JJ+1)— JZ_(—M
(1+]z4]?)?
3=z
1+ |zq|?

23]z4]2(23+ %)
(1+]z]?)?

Finally, in the limit of largeJ expressions like (2—k)
are approximated by 2
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