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Schematic model for QCD at finite temperature
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The simplest version of a class of toy models for QCD is presented. It is a Lipkin-type model, for the
quark-antiquark sector, and, for the gluon sector, gluon pairs with spin zero are treated as elementary bosons.
The model restricts to mesons with spin zero and to few baryonic states. The corresponding energy spectrum
is discussed. We show that ground state correlations are essential to describe physical properties of the
spectrum at low energies. Quantum phase transitions are described in an effective manner, by using coherent
states. The appearance of a Goldstone boson for large values of the interaction strength is discussed, as related
to a collective state. The formalism is extended to consider finite temperatures. The partition function is
calculated, in an approximate way, showing the convenience of the use of coherent states. The energy density,
heat capacity, and transitions from the hadronic phase to the quark-gluon plasma are calculated.
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I. INTRODUCTION

Schematic models have been very important in orde
understand basic concepts in, e.g., nuclear physics~pairing,
quadrupole interaction, quantum phase transition fr
spherical to deformed nuclei, etc.!. In particular, Lipkin-type
models@1# were important in this context. For example,
Ref. @2# the quantum phase transition to a pion condens
was investigated and in Ref.@3# a model was presente
which describes the coupling of fermion and boson degr
of freedom. In the description of thebb decay, simple mod-
els@4,5# helped us to understand the applicability of differe
many-body methods by comparing approximations to the
act solution of the schematic model. In Ref.@6# many con-
siderations were dedicated to the Lipkin type models in or
to illustrate boson mapping techniques. In summary, with
help of schematic models not only can a physical insight
achieved but also different many-body techniques can
tested; both features are important for theories where an
act or approximate solution cannot be achieved easily, at
We are convinced that a similar model for QCD can be v
useful in order to understand the spectrum of QCD at l
energy, its structure with respect to quantum phase tra
tions and the transition to the quark-gluon-plasma~QGP!,
without the need to combine models which are valid at l
energy with others which are valid at high energy.

QCD is considered to be the theory of the strong inter
tions. It is well understood at high energies. At low energi
the QCD coupling constant becomes too large to apply p
turbation theory. Lattice gauge calculations@7# may describe
the nonperturbative QCD regime, instead. Yet, problems
finite size effects@8# and fermion doubling still persist. Al-
though some advances have been made, only the lo
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states for a given spin and parity can be calculated. T
observed sequence of levels cannot be explained by la
gauge calculations, and alternative methods have to be
veloped to explain the ordering, as, e.g., done in Ref.@9#.
Many effective models have achieved some success in
scribing the low energy regime of QCD@10,11#. These mod-
els have in common that only quarks and antiquarks
taken into account in the fermionic sector, while effecti
gluon potentials or states with a fixed number of gluons
considered. In the real world hadrons are built by quar
antiquarks, and gluons@12#. The interactions between thes
degrees of freedom, in consequence, may play an esse
role in order to understand QCD at low energies.

Concerning QCD effects at finite temperature, i.e.,
investigation of the quark-gluon plasma~QGP! @13#, there
exists an intense effort, mainly focused on computatio
aspects of the problem@14#.

In this paper, we propose a toy model for QCD which:~i!
is amenable for an analytical treatment, except for a num
cal matrix diagonalization,~ii ! may describe the meson spe
trum for flavor (0,0)-spin 0 and partly the baryon spectru
~iii ! it is able to describe quantum phase transitions aT
50, as a function of coupling parameters,~iv! can describe
some characteristics of the transition from the hadron ga
the QGP continously fromT50 to largeT, and ~v! can be
used to test microscopic many-body techniques, intende
describe realistic scenarios of QCD which cannot be
cessed by other methods.~Because the system is of finit
number of degrees of freedom, in the strong sense no p
transition can appear. However, it will be smeared out a
the notion ofphase transitionis used in the same way as i
nuclear physics, where sharp localized changes in the en
or its derivatives are denoted as a phase transition.!

The model is meant to mock up the basis features of n
perturbative QCD, in a similar way as some schematic m
els do in the nuclear many-body problem@1,2#. We should
stress that our toy model does not result from a field theo
rather it represents the interactions between effective deg
of freedom, instead. The basic ideas, procedures, and m
ods can be discussed already for the simplest versions o
©2002 The American Physical Society07-1
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toy model in a very transparent way. At a certain point in o
discussion we shall indicate the structure of an extended
sion of the model, which can be treated analytically. T
model will be able to describe explicitly quantum phase tr
sitions at zero temperature (T50) and the phase transition t
the QGP. It is, for the moment, the only model which can
it continuously fromT50 to highT. Of course, we have to
pay a price for that, i.e., the loss of the ability to descr
QCD in all its details.

The paper is organized as follows. In Sec. II the mode
introduced, the energy spectrum is calculated, and its st
ture is discussed in terms of the elementary degrees of f
dom. Coherent states are introduced to determine the oc
rence of quantum phase transition, induced by variation
the strength of the interactions. In Sec. III we discuss fin
temperature effects, by introducing temperature and by
culating the grand canonical partition function. There,
method will be presented which can be applied to arbitr
realistic Hamiltonians and is therefore of use in more gen
and realistic theories. Conclusions are drawn in Sec. IV.

II. TOY MODEL: ZERO TEMPERATURE CASE

The fermion sector of the theory is described by the act
of the operators which create~annihilate! quarks, with effec-
tive massesv f . Schematically, it corresponds to the situati
represented in Fig. 1, where two levels, with energy6v f
and degeneracy 2V, are represented as valence space@15#.
The degeneracy of each level is given by the product of
number of colors (nc), spin (nS), flavors (nf l), and all other
possible degrees of freedom (ncol), like orbital quantum
numbers, etc. For temperatureT50 and no interaction the
lower level is filled by fermions. The creation~annihilation!
operators of these fermions areca(1,0)f s i

† (ca(1,0)f s i), in co-
and contravariant notation for the indices. The symbol (1,f
refers to the flavor part, where (1,0) is the SU~3!-flavor no-
tation andf is a shorthand notation for the hyperchargeY, the
isospinT, and its third componentTz . The indexs repre-
sents the two spin components6 1

2 , the index i 51 or 2
stands for the upper or lower level, and the indexa repre-
sents all remaining degrees of freedom, which are at least
the color degree of freedom is considered. Lowering a

FIG. 1. Schematic representation of the model space. The
mion levels are indicated by their energies6v f . The gluon pairs
are represented by the level at the energyvb .
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raising the indices of the operators introduces a phase, w
depends on the convention used@16#, and a change of the
indices to their conjugate values, i.e., the quantum numb
(1,0)YTTzs change to (0,1)2YT2Tz2s.

The operators, defined above, contain the most impor
degrees of freedom of QCD, i.e., color, spin, and flav
which are the same for all energies. This is mainly due to
difference in the spatial properties, while color, spin, a
flavor are still the same. The quarks and antiquarks arecon-
stituent particles atlow energyand have little in common
~except for the some quantum numbers! with the ones at high
energy. One lesson to learn will be that a model which c
tains these basic degrees of freedomand takes into account
the dynamic coupling with gluons can describe the m
characteristics of QCD at low energy.

The quark and antiquark creation and annihilation ope
tors are given in terms of the operatorsc andc†,

aa f s
† 5ca f s1

† , da f s5ca f s2
† ,

aa f s5ca f s1, d†a f s5ca f s2, ~1!

which corresponds to the Dirac picture of particles and a
particles: quarks are described by fermions in the upper le
and antiquarks by holes in the lower level.

The gluon sector of the model space is described
bosons which represent pair of gluons coupled to spin z
The energy of a boson state is fixed at the valuevb and the
state is created~annihilated! by the action of a boson creatio
~annihilation! operatorb on the vacuum.

The quark-antiquark pairs of the model are given by

Cf 1s11
f 2s22

5Bf 1s1

† f 2s25(
a

ca f 1s11
† ca f 2s225(

a
aa f 1s1

† d†a f 2s2,

Cf 1s12
f 2s21

5Bf 1s1

f 2s25(
a

ca f 1s12
† ca f 2s215(

a
da f 1s1

aa f 2s2,

Cf 1s11
f 2s21

5(
a

ca f 1s11
† ca f 2s215(

a
aa f 1s1

† aa f 2s2,

Cf 1s12
f 2s22

5(
a

ca f 1s12
† ca f 2s225(

a
da f 1s1

d†a f 2s2. ~2!

The first two equations describe the creation and ann
lation of quark-antiquark pairs. The pairs can be coupled
definite flavor (l,l)5(0,0) or (1,1) and spinS50 or 1. We
shall write, in this coupling scheme,B(l,l) f ,SM

† , where f is
the flavor,S is the spin, andM is the spin projection. The
operatorsB(l,l) f ,SM annihilate the vacuumu0&, which is the
configuration where the lower state is completely filled a
the upper one is empty. The operators in Eq.~2! form a
U~12! algebra@17#. To simplify the discussion, we shall re
strict it to a subalgebra given by the pair operators couple
flavor singlet@(0,0) in the SU~3! notation@18##,

S15A6B(0,0)0,00
† ,

S25A6B(0,0)0,00,

r-
7-2
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SCHEMATIC MODEL FOR QCD AT FINITE TEMPERATURE PHYSICAL REVIEW C66, 045207 ~2002!
S05nf2V, ~3!

with nf5(nq1nq̄)/2, wherenq is the number operator fo
quarks andnq̄ the number operator for the antiquarks. Th
form a SU~2! algebra.

In a subsequent publication@17# the more general mode
will be discussed. In this contribution we center around t
simplest version in order to illustrate the basic concep
though as we will see, already here several conclusions a
the structure of states at low energy~low lying collective
states and mixing of particle numbers! can be drawn and als
for the transition to the QGP.

The model is equivalent to the Lipkin model@1#, familiar
in nuclear physics, with the difference that the operators
given here by the combination of quark-antiquark pairs. T
addition of an extra boson level was also discussed in R
@2# and it is related to pion effects in nuclei.

As Hamiltonians we shall consider two different types

HI52v fS01vbnb1V1~S1
2 b1b†S2

2 !,

HII 52v fS01vbnb1V1 :~S11S2!2:~b†1b!, ~4!

with S05nf2V and the double dots indicatenormal order-
ing.

The HamiltonianHI exhibits a useful symmetry, i.e.,
commutes with the operator

P5
nf

2
1nb . ~5!

This version of the Hamiltonian is similar to the one given
Ref. @2#, except that in Ref.@2# the SU~2! operators appea
linearly while in Eq.~4! they appear quadratically. Because
quark-antiquark pair has negative parity, the operatorsS1

andS2 should appear quadratically to conserve parity.
The states of the model space, belonging toHI , are SU~2!

states with the additional ordering given by the eigenval
of P. The vacuum state is defined viabu0&5S2u0&50. Be-
cause the number of fermion pairsnf is limited by 2V the
range ofnb for a fixed value ofP is also limited. Therefore
the matrix representation ofHI are finite. A large eigenvalue
of P implies that the corresponding configuration has ma
gluons. In Fig. 2 we show the energy of the lowest state
a given strength of the interaction, as a function of the eig
value ofP. For zero interaction, the energy increases mo
tonically. For large values ofV1 it appears a minimum with a
large value ofP. This implies that the physical ground sta
should be a correlated one, that is to say that the phys
ground state will, likely, be a state with a large number
gluon pairs. Concerning the dependence uponV1, which is
the strength of the interaction which couples pairs of gluo
with pairs of quark-antiquark pairs, the curves of Fig. 2 sh
minima, which are different from the perturbative vacuu
for values ofV1>0.035 GeV. For larger values of the inte
action strengthV1, the lowest state is the one with a larg
eigenvalueP, indicating a gluon dominated vacuum~for the
transitional region, quark-antiquark and gluon pairs co
appear in the vacuum with comparable weights!. In Fig. 3,
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the energy spectrum ofHI for positive parity states is dis
played. The parameters used in the calculations are:V59
~i.e., nc53 and nf l53), v f5

1
3 GeV, and vb51.6 GeV.

For V150 GeV we obtain the first state at4
3 GeV, corre-

sponding to two quark-antiquark pairs. The next state is
glueball at 1.6 GeV. When the interaction is turned on,
energy changes until it reaches a ‘‘critical’’ or ‘‘transitiona
point atV1

c50.035 GeV. There, a level crossing occurs a
the lowest state, for higher values ofV1, has both quark-
antiquark and gluon pairs. Beyond the transitional point,
density of levels increases. This effect is known from nucl
physics, where the transition from a spherical nucleus t
deformed one is accompanied by a significant increase of
density of levels at very low energies@19#. The transition is
of second order as can be seen by inspecting Fig. 2.
values of the interaction larger thanV1

c , the ground-state
expectation value of the number of quark-antiquark a

FIG. 2. The energy of the ground stateE0 in units of GeV, as a
function of P, for several values of the parameterV1. The values
correspond to the calculations performed with the HamiltonianHI .
Note the occurrence of a nontrivial minima whenV1

>0.035 GeV.

FIG. 3. The spectrum of the model HamiltonianHI , for positive
parity states, as a function of the coupling parameterV1. Note the
crossing of excited states with the perturbative ground state at a
V1'0.035 GeV.
7-3
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LERMA H., JESGARZ, HESS, CIVITARESE, AND REBOIRO PHYSICAL REVIEW C66, 045207 ~2002!
gluon pairs increases. For large interaction strength the n
bernf approaches a constant value, reflecting the Pauli p
ciple, i.e., only a certain number of quarks can occupy
higher level. This behavior will be discussed in detail for t
caseHII . The relatively high density of states at low energ
shown in Fig. 3, may not be very realistic. However, t
model predicts the appearance of some states at very
energy. This would correspond to a pionlike structure, wh
is also indicative of a collective nature.

This problem does not appear in the case of the Ham
tonian HII , which does not commute withP. The Hamil-
tonianHII has to be diagonalized in the whole space, wh
is infinite dimensional. The diagonalization can be perform
numerically by introducing a variable cutoff in the number
bosons. We have adopted, as a criterium for convergence
stability of the low-energy sector of the spectrum as a fu
tion of the cutoff. The HamiltonianHII contains all terms
which are required by symmetry, i.e., it includes a term
the formS1

2 b, describing the annihilation of a gluon pair an
the creation of two quark-antiquark pairs, and also a te
S1

2 b†, describing ground-state correlations. The scatter
term S1S2(b†1b) appears with a factor of 2 because fe
mion lines can be exchanged. Because of the symmetr
permuting the lines all interactions should have the same~or

FIG. 4. The energy spectrum of HamiltonianHII for positive
@case~a!# and negative parity@case~b!# states, as a function of th
coupling strengthV1. The onset of the phase transition takes pla
for lower values ofV1, as compared with the results correspondi
to the HamiltonianHI ~see Fig. 3!.
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at least similar! coupling constant, justifying the use of onl
one interaction parameter,V1. Figure 4 shows the depen
dence of the energy, of positive@case~a!# and negative@case
~b!# parity states, on the strengthV1, for the values ofv f and
vb given above. The values are referred to the positive-pa
ground state. Contrary to the case of the HamiltonianHI , the
HamiltonianHII does not show a dense spectrum beyond
phase transition point. In the transitional region seve
avoided crossings occur and the spectrum is richer th
than outside that region. Concerning the behavior of the lo
energy part of the spectrum, it shows, after the transit
point, a negative parity state which is degenerate with
positive parity ground state. This state, a Goldstone bos
can be interpreted as a collective, pionlike state whose st
ture can be understood in the framework of coherent st
@20#, as it will be discussed later on.

Figure 5 shows for the ground state~vacuum! the differ-
ence of the expectation value of the number of gluon a
fermion pairs, as a function of the strengthV1 of the inter-
action, for the case of the HamiltonianHII . As it is seen
from the figure, the results can be interpreted in terms
equal population of fermion and gluon pairs (V1
,0.008 GeV), fermionic dominance (0.008,V1
,0.015 GeV), and gluonic dominance (V1.0.015 GeV).
Another conclusion concerns the structure of the vacu
state, i.e., it will contain a finite number of quark-antiqua
pairs and gluons, whose ratio depends on the strength o
interaction, which in turn has to be adjusted to experimen
the more general model with open flavor and spin@17#.

The features of the spectrum, and of the ground-state
cupation numbers, can be understood in terms of aquantum
phase transitionat zero temperature, that is to say, in term
of a change in the correlations induced by the Hamiltonian
convenient way to represent this effect is to introduce a se
states~coherent states! and to define an order parameter~the
ground-state occupation number associated to a given de
of freedom!. The calculation of the expectation value of th
Hamiltonian, in the basis of coherent states, and its varia
with respect to the order parameter yields the poss
‘‘phases’’ of the system, as extremes of the minimizati

e

FIG. 5. The difference between the vacuum expectation va
of the number of gluon pairsnb and fermion pairsnf is shown, as a
function of V1, and for the case of the HamiltonianHII .
7-4
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SCHEMATIC MODEL FOR QCD AT FINITE TEMPERATURE PHYSICAL REVIEW C66, 045207 ~2002!
procedure. The set of coherent states, which we have ado
in our calculations, is defined by@20#

uz&5uzf&uzb&,

uzf&5
1

~11uzf u2!V
ezfS1u0& f ,

uzb&5e2uzbu2/2ezbb†
u0&b , ~6!

whereu0& f and u0&b are the fermion and the boson vacuu
andu0& is the product vacuum state (u0& f ^ u0&b). The power
V, of the fermion normalization factor, indicates that we a
working in the SU~2!-spin representation which includes,
the lowest state in energy, the fully occupied level at2v f
~see Fig. 1!.

By defining the complex order parameterszf5r fe
if f and

zb5rbeifb, the expectation value of the HamiltonianHII ~4!
is given by

^HII &522Vv f

~12r f
2!

~11r f
2!

1vbrb
2

1V1S 4V~2V21!r f
2 cos~2f f !

~11r f
2!2

1
4Vr f

2~2V1r f
2!

~11r f
2!2 D 2rb cos~fb!, ~7!

and it can be regarded as a classical potential in the para
ric space of the amplitudesr and phasesf. It shows for
small coupling constantsV1 a minimum at uzf u5r f50,
which represents small departures from a dominant harm
~quadratic! potential, and a deformed minimum for a suf
ciently large value ofV1 and a given combination off f and
fb . The factor 2f f , makes the potential invariant under th
changef f→f f1p. Thus, when the difference in energy
the two minima with respect to the barrier between them
sufficiently large, there exist two degenerate states, one
positive and the other with negative parity, which minimi
the expectation value of the Hamiltonian.

The pseudoscalar particle at zero energy cannot be i
tified with the pion, because the pion belongs to a fla
(1,1) ~octet! representation of the flavor group SUf(3).
However, the fact that the model has a Goldstone bo
gives some hope that a generalized model with open spin
flavor, as indicated at the beginning, may also exhibit a l
lying negative parity state which can be identified with t
pion. This conjecture is justified because an equivalent in
action, as in Eq.~4!, for flavor (1,1) spin 0 will exhibit a
similar behavior with respect to a coherent state which
cludes pairs with flavor (1,1) spin 0. One lesson to le
from these results is that the lowest excited energy state
be a combination of quarks-antiquarks and gluons and in
general model the resulting quantum numbers of this s
will be the one of the pion.

In our model the basis for the baryonic states is given
04520
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uq3~qq̄!n~l,m! f ,SM&;~S1!nuq3,~lm! f ,SM&; ~8!

the index (l,m) f refers to the flavor, which is (1,1) for th
octet, etc., andq3 indicates that the state to the right, o
which the operatorS1 acts, is a pure three-quark state. T
three-quarks state satisfies@11#

S2uq3,~lm! f ,SM&50. ~9!

That S2 annihilates the three-quark state holds beca
the quark-antiquark pair operator contains an antiquark a
hilation operator which anticommutes with the quark c
ation operators of the state on the right and annihilates fin
the correlated vacuum. Note that the HamiltonianHII ~and
the same is true forHI) does not distinguish between diffe
ent flavors, and therefore the flavor-(1,1) and flavor-(3
baryons are degenerate. Part of the degeneracy can b
moved, by introducing terms depending on the hypercha
and the isospin. In order to remove completely the deg
eracy between the (1,1) and the (3,0) flavor configurati
one has to include, of course, flavor-depending interactio
as it will be done in a more general formulation of th
present toy model@17#.

The problem for the baryons is completely analogo
Due to the fact that three quarks minimally occupy t
higher level of the fermion model space, the effective deg
eracy, i.e., the number of configurations available to exc
quarks from the lower level, is 2V23 ~since the total num-
ber of available states is 2V). The factor 3 is a consequenc
of the Pauli blocking.

In Fig. 6, the spectrum of the lowest baryonic states, a
function of the coupling strengthV1 and referred to the low-
est positive-parity mesonic state, is shown. After the tran
tion point, the energy of the baryonic states increases.
obtain states below 1 GeV, one has to reduce the effec
quark mass. Since we are interested in the trends exhib
by the spectrum, we shall not fit it to physical masses. T
transition point is slightly shifted to higher values of th
coupling constant, due to the lower value of the degener

FIG. 6. The spectrum of the lowest baryonic states as a func
of the interaction strength. The values of the excitation energies
taken with respect to the ground state of the mesonic sector.
HamiltonianHII was used.
7-5
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otherwise the behavior observed for the baryon spectrum
similar to the meson case. The relatively delayed onset
transition in the baryon spectra produces a region where
physical vacuum may contain a pair condensate while
baryonic states may still be built as pure three quark obje
i.e., there is a region where the mesons are complica
states in terms of the quarks, antiquarks, and gluons, w
the baryons have a simpler structure. Knowing that the ba
ons have a contribution from the sea quarks and the glu
indicates that probably the mesons are well beyond the p
of the quantum phase transition.

In Fig. 7 the content of quark-antiquark and gluon pairs
the first-excited baryonic state is shown. The results sho
large contribution from gluon pairs to the baryonic sta
after the transition point. This indicate that in a more realis
model and for sufficiently large interaction strength, so
baryon states, like the proton, may contain a sizable con
bution due to sea quarks and gluon pairs, thus shed s
light on the microscopic structure of the problem.

After the analysis of the properties of the low lying spe
trum of the two Hamiltonians~4!, we can proceed to discus
finite temperature effects, which may be relevant for
description of the transition from the hadronic phase
the QGP.

III. TOY MODEL: FINITE TEMPERATURE CASE

In this section we shall present the results correspond
to the finite temperature case. We shall show the main s
related to the calculation of the partition function, which h
been performed by extending the techniques discusse
Ref. @21#.

In the limit V150, the fermionic sector of the Hamilto
niansHI and HII reduces to the free Lipkin model, whic
consists of two levels, with energies6v f and a degenerac
(2V). Allowed configurations are specified by all possib
arrays of particles and holes, in both levels, and their deg
eracies. Thus a certain configuration can be specified by
ing the number of occupied~empty! states in the uppe

FIG. 7. The content of quark-antiquark (nf) and gluon (nb)
pairs in the first excited state of the barionic spectrum, as a func
of the interaction strengthV1. The HamiltonianHII was used.
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~lower! level. The operators which create~annihilate! these
fermion pairs obey a pseudospin block algebra, for spin1

2 .
There are in total 2V building blocks. If n1 denotes the
number of blocks where both levels are occupied,n2 is the
number of blocks where both levels are empty, and 2t is the
number of blocks where either one of the levels is occupi
the partition function can be written as@22#

Z~b!5 (
tn1n2

~2V!!

~2t!!n1!n2! (
k50

2t

gk
tI t2k , ~10!

where

I J5
~2J11!

p2 E d2zbE d2zf J

^zf J ,zbue2b(H2mN)uzf J ,zb&

~11uzf Ju2!2

~11!

with J5t2k, b51/T, andT is the temperature in units o
GeV. The statesuz&5uz& f ^ uz&b are the normalized coheren
states@20#. The factorgk

t is the multiplicity of the configu-
ration with pseudo-spinJ5t2k. For each value ofJ one
should define a coherent stateuzf J&. The coherent state, use
in the previous section~the T50 case!, corresponds to the
valueJ5V. The chemical potentialm multiplies the opera-
tor N, which gives the total number of particles in the low
and upper level. The partition function~10! does not con-
serve flavor, color, and spin. A multiple projection, to resto
these symmetries, can be carried out, in principle, althoug
is a very involved procedure@13#. We assume that the vol
ume occupied by the QGP is large enough so that a pro
tion is not needed, though we shall restrict to a subvolu
for the thermodynamic description.

If interactions are added to the Hamiltonian, the partiti
function cannot be obtained analytically, in general. If t
value ofV is not too large, the partition function~10! can be
obtained numerically.

We have diagonalized the HamiltonianHI and obtained a
set of eigenvalues for each value ofJ. The parameters of the
Hamiltonian were fixed atV150 and 0.04 GeV,V59, v f
5 1

3 GeV, andvb51.6 GeV. The partition function~10! was
calculated for temperatureT,0.5 GeV. Since the value o
V is not very large, one may ask if, at high temperatu
more configurations~i.e., larger values ofV) should be in-
cluded. We have checked, numerically, this effect upon
partition function. Figure 8 shows the value of Eq.~10!, for
each value ofJ<V. As seen from this figure the contribu
tions to the partition function reach a maximum for a certa
value ofJ, which is smaller thanV. This result justifies the
approximation withJ@1. First and second derivatives of th
partition function~the internal energy and the heat capaci!
are shown in Figs. 9 and 10, respectively. The heat capa
for V150 GeV, shows the Schottky bump@24#, typical of a
two level system. The shape of the curve remains unchan
when the interaction is switched on inHI . The increase of
the interaction strengthV1 produces a sharper peak in th
curve, indicating a possible phase transition. The res
shown in Figs. 9 and 10 have been obtained with the Ham
tonianHI . Although we are not showing it in Figs. 9 and 1
the same thermal behavior of the heat capacity is obtai

n
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SCHEMATIC MODEL FOR QCD AT FINITE TEMPERATURE PHYSICAL REVIEW C66, 045207 ~2002!
with the HamiltonianHII . However, the values of (T and
V1), where the onset of the phase transition is produced,
different for the partition functions corresponding toHI and
HII . Note that the model predicts a phase transition indica
by the sudden increase of the internal energy at about
GeV, which may be of first order, as suggested by the res
~see Fig. 9!.

The above discussed results, which have been obtaine
performing a numerical diagonalization, are indeed the ex
results of the model. Potentially, they exhibit the desira
thermodynamical features of QCD. We shall take these
sults as reference values for an approximate calculation.
obvious motivation for such approximate treatment is
generalization to larger values of the model parameters
more general Hamiltonians.

FIG. 8. Contribution to the partition function, Eq.~10!, for a
fixed value ofJ. The curve shows the logarithm of the results c
responding to the caseHI , for values of J<V59, and for T
50.2 GeV, andV150 GeV.

FIG. 9. The temperature dependence of the internal energ
obtained from the calculations performed with the HamiltonianHI .
Dashed lines indicate the exact results corresponding to the un
turbed (V150) case, small-dashed lines show the exact results
V150.04 GeV, and the solid line shows the results of the appro
mations described in Sec. III of the text, see Eq.~29!. The chemical
potential has the valuem50.
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We shall discuss first the treatment of the fermionic s
tor, i.e., the integration on the coherent statesuza( f J)&. For
large values ofJ, the overlap̂ zauzb& is a decreasing function
of ura2rbu. Also in this limit, it is a strongly oscillating
function of the phase differencefa2fb . Due to this oscil-
lation we can write, both forHI andHII ,

^zaue2bHuzb&'^zaue2bHuza&^zauzb&, ~12!

where the overlap in the above equation takes into acco
the off diagonal behavior foraÞb. The expectation value
^zaue2bHuza& can be expressed as an integral product of
form

~2J11!

p E d2za

~11uzau2!2
^zaue2bHuza&

5 (
n50

`
~2b!n

n!

~2J11!n

pn E d2zg0
•••d2zgn21

Pk50
n21~11uzgk

u2!2
^zg0

uHuzg1
&

3^zg1
uHuzg2

&•••^zgn21
uHuzg0

&, ~13!

by insertingn times the unit operator@20#. The Hamiltonian
H is expressed into two termsH01H8, where H0 is the
noninteracting part andH8 contains the interactions. Thekth
term of the expansion hask matrix elements ofH8 and (n
2k) factors with H0. By performing a rearrangement, a
suming also that the main contribution to the integral com
from all za approximately equal~i.e., it allows renamingza),
the contribution of thekth partition to the integral is written

(
n5k

`
~2b!n

n!

~2J11!2

p2 E d2zad2zb

~11uzau2!2~11uzbu2!2 S n

kD
3^zau~H8!nuzb&^zbu~H0!n2kuza&. ~14!

This result illustrates the binomial character of thekth parti-
tion. By a reexponentiation one can write

as

er-
r

i-

FIG. 10. The specific heat, as a function of temperature, for
cases shown in Fig. 9. Results are shown following the nota
given in the captions to Fig. 9.
7-7
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LERMA H., JESGARZ, HESS, CIVITARESE, AND REBOIRO PHYSICAL REVIEW C66, 045207 ~2002!
~2J11!2

p2 E d2zad2zb

~11uzau2!2~11uzbu2!2
^zaue2bH0uzb&

3^zbue2bH8uza&. ~15!

One is tempted to say that it corresponds to the assump
that H0 and H8 commute. However, this is not entirely th
case because the product appears in an integral and th
proximations relies on the assumption of largeJ and the
steep fall off of the overlap. The integral*dza

2*dzb
2 , can be

replaced by a single integral, by using Eq.~12! and by per-
forming the integration on the variablezb . The validity of
this approximation is restricted to large values ofJ, whose
validity was shown above. After these approximations~13!
reads

~2J11!2

p2 E d2zad2zb

~11uzau2!2~11uzbu2!2
^zaue2bH0uzb&

3^zbue2bH8uza&

'
~2J11!

p E d2za

~11uzau2!2
^zaue2bH0uza&^zaue2bH8uza&.

~16!

Since H052v fS0, the matrix element̂ zaue2bH0uza& is
readily calculated and the result is

^zaue2b2v fS0uza&5
e2bv f J

~11uzau2!2J
~11uzau2e22bv f !2J.

~17!

As a check on the consistency of these approximation
is verified that by settingH850 and from the above equa
tion, the integration of Eq.~11! gives a result which is iden
tical to the one of Ref.@22#.

Concerning the matrix element of the interactionH8, we
have adopted the following approximation:

^zaue2bH8uza&'e2b^,zauH8uza&, ~18!

which is valid when the temperature is high and/or the int
action coupling constant is small. It corresponds to the f
torization^zau(H8)nuza&'(^zauH8uza&)n, a result which can
be reproduced, by assuming Eq.~12! and insertingnth unit
operators between factorsH8. As said before, the applicabil
ity of the procedure is limited to relatively small values
the interaction strengthV1 and relatively large values of th
temperature.

Let us now turn the attention to the Bosonic degrees
freedom. The exponent of Eq.~18! is a linear combination of
the boson operatorsb† andb. The coefficients are given b
the expectation values ofS6

2 or S1S2 ~see the Appendix!,
which are functions of the complex variablesza andza* . The
normalized boson coherent state is given by@20#

uzb&5e2
uzbu2

2 ezbb†
u0&. ~19!
04520
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The volume element of the complex integral isd2zb /p ~in
Ref. @20# the coherent states are not normalized and there
the volume element has an extra factore2uzbu2). The calcu-
lation involves an integral of the type

1

pE d2zb^zbue2bvbnb1a1b†1a2buzb&. ~20!

The coefficientsak , which depend on the expectation valu
of powers of the SU~2! generators and which are propo
tional to the interaction strengthV1, have a common value
for the model HamiltonianHII but they differ for the case o
HI .

In order to evaluate the expectation value which appe
in Eq. ~20!, the Baker-Campbell-Hausdorff formula is ap
plied @20,23#. Notice that one cannot apply the approxim
tions described for the fermion sector, because the over
^zbuzb8& show a broader dependence onrb2rb8 and fb

2fb8 . The result is

e2bvbnb1a1b†1a2b5ej1b†
ej2nbej3be2K, ~21!

with

K5j1j3Fe2j2S 1

j2
2

1
1

j2
D 2

1

j2
2G ,

j1~ I !5
2bVa

21bv f
, j1~ II !52

2bVc

21bvb
,

j2~ I !52bvb , j2~ II !52bvb ,

j3~ I !52
b2vbVb

~12e2bvb!
e2bvb,

j3~ II !52
b2Vcvb

~12e2bvb!
e2bvb, ~22!

and where

Va5V1^zauS2
2 uza&

Vb5V1^zauS1
2 uza&

Vc5V1^zau:~S11S2!2:uza&. ~23!

The indicesI and II refer to the two different model Hamil
tonians.

Because the exponential function which contains the
eratorb is acting on the coherent stateuzb&, the operation is
well defined and it gives a factorej3zb. The same holds for
the exponential function which contains the operatorb† and

it gives ej1zb* . The expectation value of the operator whic
containsnb reads

^zbuej2nbuzb&5e2uzbu2euzbu2ej2. ~24!

Finally, the integration over the complex variablezb yields
7-8
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1

pE d2z^zbuej1b†
ej2nbej3buzb&5

ej1j3 /(12ej2)

12ej2
. ~25!

In the following we shall construct the final expression of t
partition function, after the above introduced approxim
tions. We shall restrict to the case ofHI , in order to compare
the results of the approximations with the numerical~exact!
results. A similar analysis can be performed for the case
iv
th
,

or

-

q.
ti

be

04520
-

of

HII @17#. The remaining integration on the complex variab
za , of the fermion part, leads to

S 1

12e2bvb
D ~2J11!E

0

`

dx
e2bv f J

~11x!2J12

3~11xe22bv f !2Jeb16F(b)V1
2J4[x2/(11x)4] , ~26!

with
F~b!52S 1

vb
D 2 bvb@~bvb!22e2bvb2ebvb1bvbebvb2bvb12#

~21bvb!~ebvb21!~12e2bvb!
,

s
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evi-
after substitutingx5r2. F(b) is a smooth function ofb,
which approaches the limit 2b/vb for largeb. The integral,
Eq. ~26!, is a function of the pseudospinJ and its argument is
the product of exponential functions of positive and negat
functions ofJ. That the integral can be represented by
integrand atJ5J0, whereJ0 is the value that maximizes it
can be easily seen by settingV150.

Let us callg(J) the ratio between the integral~26! with
V1Þ0 and the same integral withV150, andJ0 the value of
J which maximizes the integral. We can write the Tayl
expansion ofg(J) as

g~J!5(
n

1

n! S ]ng

]JnD
J5J0

~J2J0!n. ~27!

By using the identity

JnX2J5
1

2n S ]n

]Xn
X2JD Xn, ~28!

with X5ebv f , the expansion in terms of (J2J0) of g(J)
transforms into an expansion in the derivatives]/]X. Thus
the sum~27! is of the form(nDn(J0 ,X)Z0, whereZ0 is the
partition function for the noninteracting case@22# and D is
the differential operator@(X/2)(]/]X)2J0#. We chooseJ0
such that the@(X/2)(]/]X)2J0#Z050. The value ofJ0,
obtained in this way, is given by

J0'VS X2Y

~X1Y!~11XY! D S 12
1

X2D ,

where Y5emb is the fugacity @22#. This expression ap
proachesJ05V for b→` and it gives small values ofJ0 for
b→0. Theg(J0) can be put outside of the sum given in E
~10! and the rest can be summed up as in the noninterac
case@22#.

After these approximations the partition function can
written as

Z5ZfZbZint , ~29!
e
e

ng

whereZf andZb are the partition functions for free fermion
@22# and free bosons, respectively, i.e.,

Zf5
~X1Y!2V~11XY!2V

X2V
,

Zb5
1

12e2bvb
, ~30!

and Zint5g(J0) is the contribution due to the interaction
As mentioned above, the value ofg(J0) is given by the ratio
of the integral in Eq.~26! with V1 different from zero and the
same integral withV150 andJ5J0. The integral withV1
different from zero is calculated numerically, while forV1
50 there is an analytical solution given by@without the fac-
tor Zb appearing in Eq.~26!#

e2be(J11/2)2e22be(J11/2)

ebe2e2be
. ~31!

For b→0 Zint→1 by construction, and the high temper
ture limit is automatically obtained. The partition functio
will be well approximated for largeT. For smallT, especially
T50, the main contribution to the exact partition functio
will be exp(2bE0), where E0 is the ground-state energ
which can always be determined using coherent state
another variational procedure. For the internal energy it w
give a straight line atE5E0. We take as the total result th
approximation described above until the curve crosses
straight line atE5E0.

In what follows we choose the same values of interact
strength as done above when the partition function was
culated numerically.

In Figs. 9 and 10 we show the internal energy and the h
capacity respectively, as a function of the temperature,
tained with the approximate partition function~29!. As it can
be seen from the curves, the approximation works reason
well for high temperatures,T.0.15 GeV. At low tempera-
tures the curves, representing the approximated values, d
7-9
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LERMA H., JESGARZ, HESS, CIVITARESE, AND REBOIRO PHYSICAL REVIEW C66, 045207 ~2002!
ate significantly from the exact results. It will overshoot t
straight line given byE5E0 and end atE5213 GeV for
T50.

The behavior of the curves of Fig. 9 illustrates the agr
ment between the approximated and the exacts results.
valid only for the high temperature region. At lowT, the
main contribution to the partition function comes from t
ground state. The lowest energy is the one of the config
tion where all states in the lower level are occupied while
ones in the upper level are empty. This corresponds to
case (2t)52V, n15n250. In the approximation, the par
tition function reduces to one term, given by the integral~26!
with J5V, and the energy goes to22V1

2V4/vb asT goes to
zero. This value, is of the order of213 GeV if one uses the
already given parameters (V150.04 GeV, V59, and vb
51.6 GeV). The exact calculation yields22 GeV. This de-
viation is caused by the approximation~18!.

Note that, in a more realistic context, the transition to
QGP is believed to take place aroundT50.165 GeV@14#.
For these temperatures our approximate results are ac
able. Also, for these temperatures there is still a sizable
ference between the results obtained with interactions
without interactions. It shows also that the interactions c
not be neglected in the high temperature regime.

Finally, we like to discuss the dependence ofT on the
chemical potentialm, when the pressure of the system
equal to the bag pressureB50.145 GeV@24#. To find such a
dependence one has to introduce a volume. We conside
elementary volume given by the size of a hadr
('1 fm3), as done in Ref.@13#. The pressure is then give
by the ratio of the internal energy and this volume. The res
is depicted in Fig. 11. Without interactions (V150) we re-
produce the results of Ref.@24#. By turning on the interaction
(V150.04 GeV), the chemical potential increases. This
fect shows that the correlated vacuum state is dominate
gluon pairs and it also has contributions from qua
antiquark pairs.

FIG. 11. Temperature as a function of the chemical poten
The solid line indicates the exact results corresponding to the
perturbed (V150) case, the dashed line shows the exact results
V150.04 GeV, and the small-dashed line shows the results of
approximations described in Sec. III.
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We have shown here that the exact result can be appr
mated with the procedure exposed. It has the possibility to
extended to arbitrary Hamiltonians with interaction
which in addition do not have a simpler structure due
symmetries.

IV. CONCLUSIONS

In this work we have introduced the essentials of a
model for QCD. The model consists of two levels with e
ergies6v f , which describe the fermion degrees of freedo
and gluons are introduced via a level of positive ene
which can be filled by gluon pairs with spin zero. The glu
pairs are treated as bosons. Two different Hamiltonians
discussed. The first one (HI) commutes with the symmetry
operatorP, a property which allows us to calculate the e
ergy spectrum easily. However, this Hamiltonian conta
only a certain type of interaction terms which do not inclu
ground-state correlations. The second Hamiltonian (HII )
does contain terms which produce ground-state correlati
Due to the symmetry of the vertices, respect to the excha
of fermion and boson lines, all terms entering inHII have the
same interaction strength. We have shown that the co
sponding spectrum exhibits a quantum phase transition,
pending on the interaction. For small values of the inter
tion V1, fermion pairs and gluon pairs equally populate t
ground state, for intermediate values ofV1 the physical
vacuum is described by quark-antiquark pairs while
larger values ofV1 gluon pairs dominate. In the gluon dom
nated phase the spectrum has a degeneracy of the gr
state, given by one positive- and one negative-parity st
This property gives some hope that a more general versio
the model, with open flavor and spin channels, may sho
Goldstone boson@in the flavor octet (1,1) SU~3! notation#, if
the strength of the corresponding interaction is large enou
The appearance of the gluon and quark-antiquark conden
and of the Goldstone boson may be easily described by u
coherent states, as we have shown for the present versio
the model. The same approach may be useful for the cas
more general models of nonperturbative QCD. Importan
note is that the states at low energy will consist of a n
definite number of quarks, antiquarks, and gluons. The n
conservation of the particle number will be essential in or
to remove the multiplicity of states encountered in mod
with no particle mixing interaction. There, a given state c
be constructed in various manners bydifferent realizations.
The mesons~and in general hadrons! will contain more than
just the valence quarks and antiquarks.

Baryons were also considered in the model@see Eq.~8!#
and due to Pauli-blocking effect the effective degeneracyV
decreases. Also, the transition point to a condensate of p
of quarks-antiquarks and gluons is shifted to larger value
the interaction strength. There is a regime where mesons
already in a condensate phase while the baryons can sti
treated as three quark systems.

We have investigated finite temperature effects, by c
structing the partition function of the model, both exac
and approximately. A method was chosen which allows
control over the approximations made and it can be exten

l.
n-
r
e
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SCHEMATIC MODEL FOR QCD AT FINITE TEMPERATURE PHYSICAL REVIEW C66, 045207 ~2002!
to more realistic systems where, however, an exact solu
is impossible or very difficult to obtain. We have shown th
the use of coherent states makes it possible to introduce
proximations in a controlled way. The results, for the inter
energy, heat capacity, and the equation of state of the sy
at the bag pressure are in agreement with previous calc
tions. The model gives us the possibility to describe in
continuous manner the transition from low energy to
QGP, unique up to now. The model predicts a first or
transition to the QGP.

To summarize, the model is able to describe character
features of QCD at low and at high temperature. This gi
some hope that, in a more general version of it with op
flavor and color@17#, it may describe the hadron spectrum
low energy and the transition to the QGP as well.
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APPENDIX

We want to calculate the expectation values of the ope
tors S0 ,(S1

2 1S2
2 ), and S1S2 using coherent states. W

adopted, as a suitable representation, the normalized co
ent states@20#,

uzf&5
1

~11uzf u!J
ezfS1uJ,2J&,

where uJ,2J& is the eigenstate of the pseudospin alge
with the absolute value of the spinJ and its projectionM
52J.

For the operatorS0 we have

^zf uS0uzf&5
1

~11uzf u2!2J
^J,2Ju~ezf

!S2S0ezfS1!uJ,2J&.

Now, since@S2 ,S0#5S2 and

eAOe2A5O1
1

1!
@A,O#1

1

2!
†A,@A,O#‡1•••, ~A1!

we arrive at

ezf
!S2S0ezfS15~S01zf

!S2!ezf
!S2ezfS1.

This yields
04520
n
t
p-
l
m

la-
a
e
r

tic
s
n
t

-
d

s
s-

a-

er-

a

^zf uS0uzf&5
1

~11uzf u2!2J
^J,2Ju~S01zf

!S2!

3ezf
!S2ezfS1uJ,2J&

5
1

~11uzf u2!2J S 2J1zf
!

]

]zf
D

3^J,2Juezf
!S2ezfS1uJ,2J&.

To calculate the normalization,̂ J,2Juezf
!S2ezfS1uJ,

2J&, we write @20#

~11uzf u!Juzf&5ezfS1uJ,2J&5 (
n50

2J uzf un

An!
A ~2J!!

~2J2n!!
uJ,n&

leading to^J,2Juezf
!S2ezfS1uJ,2J&5(11uzf u2)2J.

With this result, the expectation value ofS0 reads

^zf uS0uzf&5
1

~11uzf u2!2J S 2J1zf
!

]

]zf
!D ~11uzf u2!2J

52
J~12uzf u2!

11uzf u2
.

Next we are going to calculate the expectation value
the operatorS1

2 ,

^zf uS1
2 uzf&5

1

~11uzf u2!2J
^J,2Ju~ezf

!S2S1
2 ezfS1!uJ,2J&

5
1

~11uzf u2!2J

]2

]zf
2 ^J,2Ju~ezf

!S2ezfS1!uJ,2J&

5
1

~11uzf u2!2J

]2

]zf
2 ~11uzf u2!2J

5
2J~2J21!~zf

!!2

~11uzf u2!2
.

Therefore

^zf u~S1
2 1S2

2 !uzf&5
2J~2J21!@~zf

!!21zf
2#

~11uzf u2!2
.

To calculate the expectation value ofS1S2 we use the
identity S1S25S22S0

21S0, and from the above obtaine
results we find
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^zf uS0
2uzf&5

1

~11uzf u2!2J S 2J1zf
!

]

]zf
!D 2

~11uzf u2!2J

5J22
4J2uzf u2

11uzf u2
1

2Juzf u2

11uzf u2
1

2J~2J21!uzf u4

~11uzf u2!2

5J22
2J~2J21!uzf u2

~11uzf u2!2
,

and
y

e

l,

.

C
.

04520
^zf uS1S2uzf&5^zf u~S22S0
21S0!uzf&

5J~J11!2S J22
2J~2J21!uzf u2

~11uzf u2!2 D
2

J~12uzf u2!

11uzf u2

5
2Juzf u2~2J1uzf u2!

~11uzf u2!2
.

Finally, in the limit of largeJ expressions like (2J2k)
are approximated by 2J.
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