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Light-cone representation of the quark Schwinger-Dyson equation
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We use a light-cone approach to solve the Schwinger-Dyson equation for the quark propagator in Minkowski
space. We show how this method can be used to solve the equation beyond the spacelike region, to which one
is usually restricted with the Euclidean-space approach. We work in the Landau gauge, use an infrared-
enhanced model for the gluon propagator, and include instanton effects to get both confinement and vacuum
condensates. With our models reasonable fits to known quantities are obtained, resulting in a light-cone quark
propagator that can be used for hadronic physics at all momentum transfers.
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I. INTRODUCTION have a pole in its propagator at a positive réal., physical
and timelike value ofp?.

For a microscopic QCD description of hadrons and had- Fermion propagators with branch points at complex con-
ronic matter one needs the fully dressed nonperturbativugate locations off the real axis of the variapfehave been
quark and gluon propagators, for which the Schwinger-obtained more than twenty years ago for QEJ and more
Dyson formalism is a natural approach. A full study of QCD, recently for QCD as wel[4]. This has been studied in great
however, requires investigation of hadronic properties at albletail by Maris[7]. In the case of QED, where we know that
momentum transfers. Since an instant form of field theory ishere must be a singularity afzmghys, this is thought to
difficult to use for composite states at medium or high mo-be an artifact of the approximations with no physical signifi-
mentum, a light-cone representation is desirdlile In the  cance. For QCD, the absence of singularities on the real axis
present paper we develop a light-cone formulation of thehas been thought to be related to quark confinementkIs
Schwinger-Dyson equation for the quark propagator for us¢g] and Svkli and Tabakir{8,9] have shown that the imagi-
in developing hadronic light-cone Bethe-Salpeter amplitudesary part of the value gf? where the singularity occurs may
as well as providing new aspects of the quark propagatoke interpreted as a decay width for a single quark state, and
which we discuss below. can be related to the hadronization distance, with reasonable

The Schwinger-Dyson equatioSDE’s) of a field theory  results. However, the fact that in two physical situations as
embody all its dynamic¢see Ref[2] p. 475. They are the different as those of QED and QCD the singularities seem to
complete equations of motion for the Green’s functions ofhave the same origifi7] makes any physical interpretation
the theory, and thus provide a natural way for studying theyifficult. The location of these singularities poses yet another
theory beyond the limited scope of perturbative expansionsdifficulty: it invalidates the Wick rotation, and thus makes
Unfortunately they consist of an infinite tower of coupled the theory as defined in Euclidean metric not equivalent to
integral equations relating fulh-point functions to full a that defined in Minkowski metric.

+ 1)-point functions. Thus, the integral equation satisfied by In this paper we study the SDE for the quark propagator
one propagator may involve another propagator and a thregtarting from its Minkowski-space formulation. In solving
point vertex. The equation for this vertex may in turn includethe equation, we make assumptions about the location of the
another propagator and a four-point vertex or scattering kersingularities similar to those necessary to justify a Wick ro-
nel, and so on. Some physically motivated truncation schemgtion. However, our approach allows us to study the quark
becomes mandatory before the infinite tower can be broughgropagator for timelike as well as spacelike values of the
to a manageable size. As has been stressed in[Bethe  momentum.

Ward identities of gauge theories significantly ease this trun-  Qur treatment of the SDE in a light-cone representation is
cation, since they imply that two-point functiofisropaga- discussed in detail in Sec. Il. The method is an extension of
tors) uniquely determine the longitudinal part of three-pointthe method used in perturbation thedi0] to obtain an
functions(vertices. infinite-momentum-frame formulation, which in many re-

The SDE's for the fermion and gauge boson propagatorspects is equivalent to the light-cone field theory formulation
in QCD and QED have been studied using different approxiof perturbative diagrams. It is also analogous to the method
mations and models. For an excellent review see RHf. for obtaining a light-cone representation of the Bethe-
and references therein. A recurring topic in this area is thesalpeter equatiofBSE) from the standard four-dimensional
question of the analytic structure of the propagators. For thénstant form, however, as explained in Sec. Il, the simple
electron propagator one expects a singularitp%at mf)hys. prescription for projecting onto the light cone cannot in gen-
For a confined particle such as the quark it is not so cleaeral be used for the SDE.
what one should expect; it depends on what the confining In Sec. lll we discuss our models. Section IV contains
mechanism is. Colemaksee Ref.[5] pp. 378—-38B has some technical aspects of solving the equations and test cal-
shown that it is perfectly possible for a confined particle toculations in Minkowski space, using equations derived in the
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Appendix. In Sec. V we present the results of our modelquark. Since isolated quarks are confined, the interpretation

calculations and in Sec. VI we give our conclusions. of this mass is not as straightforward as for the electron SDE.
The light-cone formulation of quantum mechanick|
Il. THE QUARK SDE AND THE LIGHT CONE starts with the demonstration that in the light-cone represen-

tation one obtains light-cone PoinCagenerators, with an
In this section we discuss our light-cone formulation ofjnteraction-free Lorentz boost in one direction. One can also
the SDE. Since the light-cone representation of the BSE foghow that the analogous result is true in a light-cone field
bound SyStemS iS described eXtenSiVer in the “terature, Wﬁ']eory_ Th|s enab'es one to Study h|gh momentum transfer
also briefly review the BSE, which provides motivation for processes, such as form factors in the region above 1 GeV,

the present work, and explain its applicability. which is very difficult in the instant form.
The full dressed quark propagat®(p), satisfies ind Before discussing the light-cone representation of the
space-time dimensions the SD&ee Fig. L SDE we review the well-known light-cone representation of
e the BSE. Since in physical applications of the BS amplitudes
STH(P) =S (P)—2(p), to form factors and transition amplitudes one needs the

- 4 dressed qusrk pr?pagaltor, thle hmain moti;]/ation for our

[e} q ) present work is to formulate a light-cone Schwinger-Dyson

E(p):wd74 (zw)dFgaS(q)Fb(q,p)Dit,’,(p—q), equation to be used with the light-cone Bethe-Salpeter for-
(1) malism in Minkowski space.

There has been a great deal of work on bound-state prob-
whereI'(q,p) and th;(p_q) are the dressed quark-gluon lems in light-cone representations based on the BSE. For
vertex and dressed g|u0n propagator, respecti@(y]) is example, the BSE for the pion in relative coordinates has the
called the self-energy. Indices in Greek letters represent Loform
entz indices and those in Latin letters stand for color indices.

The quantityw is the energy scale necessary in dimensional q;(k):f dU Kk, HW(1), (3)
renormalization. The reason for working in dimensidiin
this paper is twofold. On one hand, we want to keep the

. ! . . Where is the kernel andl is the BS amplitude. One can
approach general so that models with ultrawoletdlvergenmesbtain a light-cone representatiofi] by inserting a delta

can be explored, and on the other hand, we present a sample. on to include the light hell diti d
calculation in Sec. IV of how such a divergence could be . ~. I ght-cone on-shell condition an
: . — . . eliminate thel ~ variable,
renormalized in theMS scheme numerically. This could be
used to tackle the important question of whether or not di-
mensional renormalization can produce sensible physical re- \P(Xaki):J' [dyI[d? 1Kk 5y ) (Y1), (4)
sults in a nonperturbative calculation. We do not try to an-
swer that question in this paper. All our solutions to the SDEBS amplitudes from this type of equation have been used to
are obtained in models with no ultraviolet divergencies.  study the transition from nonperturbative to perturbative re-
The color structure of all quantities in Eq4) is known:  gions[12,13. We emphasize that for such calculations both
The bare vertex isl'g,=y*\,/2, the dressed vertex is on-shell and off-shell aspects of the functioA$p?) and
ry(q,p)=r"(q,p)\p/2, and the gluon propagator is B(p?) are needed. Therefore the prescription of projecting
Dj‘f;(k): 5abDW(k), so that the color indices can be con- onto the light cone as for the BSE is not appropriate. We now
tracted: \,\,62°=16/3. The inverse bare propagator is discuss our approach to the SDE for the quark propagator on
S, 1(p) =p—m,, with the current quark mass, being zero  the light cone.
in the chiral limit or estimated from partially conserved We solve Eq(1) in a light-cone representation by using a
axial-vector currents. method introduced originally for perturbation theory. In Ref.
The solutions of the SDE are of the form [10] Chang and Ma showed how the rules of light-cone per-
turbation theory (LCPT) can be derived from the usual co-

S™Y(p)=pA(p*)—B(p?). 2
Physically, the most significant aspect of the solution for the More accurately, their work refers to the Feynman rules in the

two functions A(p?) and B(p?) is the ratio M(p? infinite momentum frame, but the difference is of no bearing on our
=B(p?)/A(p?), which is interpreted as the effective mass of present discussion.
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variant Feynman rules simply by changing into light-coneis reminiscent of the similar quantity that appears in the one-
variables: loop calculation after the well-known Feynman trick of com-
0.3 o, bining denominators. Particularly, consider the cégés)
Q" =a"*q>, q.=(9°.9°). =1/(s—m3)1, The contribution to this integral coming from

In simple calculations, such as a one-loop self-energy dia?, simple pole infqg at s'=mg—ie becomes, after the

gram of an electron in QELbr even of a quark in QCpan 9. -Integration,

important feature of the new rules becomes apparent: the 1 (—a 1p)

range of integration over thg" variable becomes finite: @ lelma
(_ 1)7a1aa171

+ oo p+ N
Lc dq*—>f0 dq”, [a(1—a)(—s)+(1—a)mi+ami—ie]P

wherep* is the “plus” (longitudina) component of the ex- wh_ere_b is relat(_ad _tod, a;, and to the strength of the singu—
ternal momentum. As shown in RéfL0], this feature is re- larity in fo. This is exactly what one gets when following
lated to the fact that in LCPT there are no diagrams withF€ynman’s procedure for calculating the one-loop version of
lines going backwards in time and no vacuum diagramghis integral, here with the longitudinal momentum fraction
(with the exception of zero modes and instantaneous terms iplaying the role of the Feynman parameter. While this paral-
fermion propagatojs This is a crucial property of light-cone lel bgtween our light-cone approach to a nonpertur'batlve cal-
field theory, since it simplifies tremendously the structure ofculation and the standard approach to a perturbative calcula-
the vacuum. tion cannot be taken too fécertainly we want to compute a
Consider now the form of the integrals needed for theNonperturbative quark propagator and do not want to model
calculation of the quark self-energy in the SDE. In this it With a perturbative one we will make use of it in this
case we are faced with the nonperturbative self-energy did@Per to present a test of our numerical procedure. This is
gram seen in Fig. 1. Incidentaly, this diagram is analogous t&one in Sec. V. _ _
its perturbative one-loop counterpart. The difference lies in Returning to Eq(6), let zo andzg now be singular points
the functional forms of the Green’s functions involved. With- of fq andfg, respectively. Then the integrand in &6) has
out loss of generality, the integrals occuring in our SDE dia-Singularities ins” at pointss; ands, whose imaginary parts

gram can be written as a sum of terms of the form are given by
dq ; ; Im(sy)=1m(zg) — and In(s’)=i[lm(z )—€]
f Sg#1gt2 ... girfo(g?+ie)f[(p—q)®+iel, 1 Qe 27 a—1 ¢/ el
(27)

(5 It is then clear that if we assume that bath andzg are on
where thef , contains factors coming from the quark propa- or below the real axis, then the corresponding singularities of

gator and possibly from the dressed vertex functiencon- the; ir?tegrandsi gndsé will be on opposite sides of the real
tains factors coming from the gluon propagator and also pos2Xis if and only if a/(«—1)<0, i.e., 0<a<1. For values
sibly from the dressed vertex function, and the factorg‘of O_f a outside this I_nterval, both Slngular|t|e§ fall on.the same
come from factors ubiquitous af. Since the external mo- Side of the real axis, and the contour of 8ieintegration can
mentump is held fixed during this integration, possible fac- P& closed with a semicircle that does not contain either of
tors of p#i and possible dependence of the Green’s functionghem. Thusf all the singularities of the functionsofand fg
on p2 are not relevant to the analysis below. In the presenfCCUr on or below the real axis, only the interv@l1) in the
discussion we do not need the detailed form of our modelsntegration overa contributes to the integral This reason-
described in Sec. I, but only the aspects that give the sinlnd is only a slight modification of the one presented in Ref.
gularities which must be considered in carrying out the inte{10]. The integral in Eq(6) then becomes
grals. 1 ieds (1 gi-2¢’
Consider first the scalar case=0 in Eq. (5), i.e., no - S f daf . a Mo(s' +Hiets

0

factorsg”. Using the variables —w 27T (27r)9-2
a=q'/p*, s'=q-q, s=p-p, 4/ =9, —ap,, X[—a 'P(q}%,s,s a,6)]. @)
the integral in Eq(5) becomes We see that to preserve important features of light-cone

4o theory (here reflected in the integral over being over a
f ds'dad qlf (SO —a Q288 )] finite rang@ we must make assumptiomspriori about the
Q GL— | 1= y &8y i

2| a|(27m) location of the singularities ifig and fs. Our assumptions
(6)
where all the integrals are over the entire real line, and We are tacitly assuming that the integrals are ultravioletly con-
2 , 2 . vergent and thus closing the contour with a semicircle at infinity
P(a;”.s,s" a,6)=0q,"ta(l-a)(=9)+(1-a)s'~iae introduces no additional contribution.
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are much like the ones necessary to justify a Wick rotationby replacing it with an on-shell condition. Hopefully this
Our approach, however, allows us to solve the quark SDE focomment clarifies why that is not so.

timelike values of the momentum a possibility not readily

available after a Wick rotation. IIl. MODELS

The steps taken above to show that the integration aver .
There has been an extensive program of research on the

is limited to the interval (0,1) are relevant in more than the . X
formal sense of showing agreement with other light-con SDE during the past decade. See Ré#s14] for reviews.
eI'he usual approach is to model the gluon propagator and to

calculations. In a numerical procedure, after the liait ; :
—.0" is taken, the exact locations of the singularities mightuse symmetries to express the dressed vertex in terms of the
' ropagators, or to use the free vertex. The model is con-

get qurred.fCoT13|derat|ons Of,WT","t regions contrlbuti MUS§irained by the vacuum condensates. We follow this general
be made beforehand. A numerical integration aveverthe o ocequre in our light-cone approach. Since our approach

entire real line would yield incorrect results. In Sec. IV We 5 10ws one to define meson form factors for all momentum
show through a numerical test that our form yields correckransfers, which is not true of instant-form approaches, ap-

results. _ _ _ _ plications of our solutions to hadronic properties will be
The Green’s functions involved in computing the self- most interesting.
energy in Eqs(1) contain factors oy andp. These lead to Since in all recent SDE calculations of the quark propa-

computing the integral in Eq(5) with one or more factors gator either the bare vertex is usétie so-called Rainbow
g~i.® As discussed in Ref10], in some cases the previous approximation or identities are used to express the dressed
reasoning fails for some components of the integfadsially ~ vertex in terms of the dressed propagai@s we discuss in
referred to as “bad” componentsThe issue then arises as to Sec. Il B below, the main problem in obtaining a quark
whether or not one can avoid all such components. In alSDE that represents QCD is to find a realistic model for the
such cases we are able to avoid them and compute only tHBuon propagator. Recognizing that instantons can give the
“good” components. The “bad” components are recoveredMain nonperturbative QCD(NPQCD physics in the
by the requirements of Lorentz symmetry. The results for thénidrange region, but do not give confinement, we employ
integrals we need are given in the Appendix. two models: the polynomial model to give the infrared-
A comment on expressio(¥) as compared to a typical enhancement aspects of QCD, and the instanton model for
light-cone calculation is in order. In most light-cone calcula-Midrange NPQCD. An important part of our effort is to ex-
tions, the integral over all values of [equivalent to the plore how one can use these two models simultaneously and

integral over all values af’ in Eq.(7)] is absent. An on-shell minimize double counting. As we discuss in Sec. V, we are

o ) : : able to do this successfully.
condition that determlnes_ the value @ is usgd mste_ad. n The Lorentz tensor structure of the gluon propagator has
other words, the calculations are performed in the Ilght-con(%h

version of the so-called old-fashioned time-ordered perturba- € general form

tion theory(TOPT). This has become so customary that the
rules of light-cone TOPT are at times identified with the (k)= _ 9,,— KKy D(k2)+§£ _
rules of light-cone theory. - K+ie|\ " Kitie K’+ie

The equivalence between TOP(Either light cone or (8)
equal time¢ and the Feynman rules is usually shown by clos-
ing a contour of integration to pick up a singularity in a Here ¢ is the gauge parameter. The choice of a model is to
propagator and thus put a particle on shell. This can be dongick a value of¢, such as{=0 for the Landau gauge, to
in the equal-time formulatiotby first doing the integral over model the form of the functio® (k?), and the vertex. The
q°, for example or in the light-cone formulatior(by first ~ two essential nonperturbative features that the gluon propa-
doing the integral oveq~, for examplé. One should refrain  gator must be consistent with are confinement and the
from carrying out this procedure in the SDE, in either for- vacuum condensates. It has long been known that with the
mulation. Most certainly, the singularities of the Green'sgluon propagator having akt/ behavior there is confinement
functions involved are more complicated than just a simpld15] and one can fit the string tension. On the other hand, it
pole. In this respect both the light-cone and the equal-timés also known that with the instanton liquid modég] one
formulations are similar. can fit the quark and gluon condensates.

There is an important difference, however, in what a We explore two models fdD (k) in the present work. On
reader of this workmight expect to se&Vhile it has become one hand, we model the gluon propagator with a sum of
the norm to see covariant four-dimensional Feynman ruleterms, each containing a different power of the momentum.
when working in the equal-time formulation, it might have We refer to this as the polynomial modeThis allows for a
been expected that, in this paper, the light-cone approactunable infrared enhancement of the gluon propagator. On
would have gotten rid of one integration already in Ef).  the other hand we want to investigate the consequences of

including instanton effects explicitly into the quark SD&

SFor example, a factor off would imply looking at the integral
with one factorg# (vector casg while a factor likeqpg would lead “The name might not be the most appropriate: “polynomial” sug-

to an integral with a factog”q” (a second rank tensprand so on.  gests a sum of terms involving variablesibeger powers.
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the risk of double counting these effecté/e refer to this as PDG [18] for energies from about 1.3 GeV to 350 G&ée
the instanton model. We discuss the double counting problerRig. 2). Fits to higher energies can always be achieved by
in Sec. V. adding more terms in Eq11) with smallerc,. As can be
seen in Fig. 2, with these parameters, our model underesti-
A. Polynomial model mates the accepted values f@g¢; in the important energy
range of a few hundred MeV to about 1.2 GeV, although it is

We work in the Landau gauge witt=0, and take as our igely believed that it overestimates them in the deep infra-

model gluon propagator red.
K K There is not complete certainty, however, about what hap-
D, (k)= _ 9.,— x—2 | D(K?) (9) pens to the effective coupling or to the gluon propagator at
r K4iel " TKk2+ie ' very low energies. Some resuJtkd,17] suggest that the pole

atk?=0 gets enhanced and could be as strong k& This

with the parametery introduced to allow us to use a would provide an explanation for confinement as shown by
Feynman-like gaugfthe gauge wher® ,,(k)xg,,]. Thus  tHooft [15]. Other results from calculations within the
x=0 for the Feynman-like gauge and=1 for the Landau Dyson-Schwinger formalisni20], and from lattice simula-
gauge. See Ref§4,14] for discussions the choice of gauge tions[21], with confinement, suggest that the pole gets softer
and gauge invariance for the SDE’s in QCD. or disappears and that the gluon picks up an effective mass.

It has been shown elsewhef&7] that renormalization Our model describes an infrared-enhanced gluon propagator,
group arguments yield an approximate relation between thalthough not as strongly askt/
renormalized coupling constant, the renormalized gluon We now introduce the notation for the self-energy in the
propagator, and the effective coupling: SDE, 2 (p) in Eq. (1), for the polynomial model,

2DR(KA)~g5 (k) =4maes(K?), 10
grDRr(k)~ggt(k?) eff(K%) (10) S p) =S5 L (p)—Su(S). 12
where the subscripR denotes renormalized quantities, and
Oet IS the effective running coupling constant. The renor-
malized coupling is related to the running coupling @ﬁ;
=02:1(Q?)]q2- 42, Whereu? is the renormalization point.

where is the SDE self-energy in the polynomial model,
defined by Egs(9)—(11), and S(p) is the dressed quark
propagator in this model. Since the self-consistent calcula-

As discussed in Ref4] Sec. 6.1, Eq(10), and the fact ; :
; ’ S tion depends ors(p), we include it as an argument of the
2

:hat It?] tthLEanda(;J gaug{ﬁ only [t)Te coTb|n3tg;lfrD(lt<h) en- self-energy p(S). This notation is introduced since the so-
ers the , reduces the problem of modeling the NONPeyg,;, for the quark propagator in the instanton medium that
turbative part of the gluon propagator to that of modeling th e discuss next was obtained in RE22] from a similar
nonperturbative part ofv.¢;. We modelagss with the ex- self-consistent equation
pression '

N sy | B. Instanton model
eri(k?)=2, (—1)6'?\|< > = ) (11) . . .
=1 ke+ie As we shall discuss in Sec. V below, one cannot obtain
the known quark condensates with the polynomial model. On
Although the known logarithmic behavior afs¢; in the  the other hand, it is known that with a pure instanton model
high energy limit cannot be fitted accurately with this form, aone can obtain the quark condensate but not the string ten-
reasonable approximation can be obtained up to energieson. For this reason we consider a model with quarks propa-
well beyond our main region of interest. Thus, for example,
with N=2, sp=1 Ge\?, \,;=0.222, ¢;=0.07, \,=0.25,
and c,=0.6 the values forx¢; obtained from our fit are  °Data foragyengtaken from the PDG at http://www-theory.Ibl.gov/
within the accepted error bars as published, for example, by-ianh/alpha/alpha.html
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Bessel functions of the first and second kind, respectively.
The quark propagating in the instanton—anti-instanton me-
dium is illustrated in Fig. 3.

In our instanton model we include instanton effects in the

é é é SDE by using the propagator in E@.5) to effectively add a

contribution to the gluon propagafdhat should account for
the instanton effects. The exact forms used are discussed
below. We are aware of the risk of double counting instanton
FIG. 3. Quark propagating in the instanton medium. effects with such a procedure. Being the complete equations
o ) ) ) - of motion for the Green’s functions of the theory, the SDE’s
gating in the instanton medium and in addition the gluongpoyid contain all nonperturbative effects, including those of
propagator having a H&f structure to get infrared- jhstantond Itis not clear, however, that the equation result-
enhancement effects. _ _ _ing after truncating the SDE and modeling the gluon propa-
Since the instanton forms have been obtained in Euclidyator and the quark-gluon vertex still contains the instanton
ean space, however, one must make an analytic continuatiQfitects. That is exactly what we intend to explore, as well as
to obtain a Minkowski-space formulation, as was describegpe problem of double counting nonperturbative QCD ef-
in detail in the early days of using instantons for QCD fgcts.
bubble nucleatiof5]. It has recently been shown that with a Ultimately, the justification for this model is the scale
Minkowski-space form of an instanton piture with the purely separation of the different phenomena: the instantons give
gluonic Lagrangian for the bubble walls in the early universeye nonperturbative QCD at the length scale of about 1/3 fm,
QCD phase transition one obtains a reasonable estimate @jle the polynomial model gives the far infrared behavior.
the surface tensiof23]. In the present work, however, where pg 5 simple example of the missing physics, if one uses only
we employ a model for the quark propagator in the instantoRe polynomial model for the gluon propagator and ignores
background we do not explore the analytic continuation. Thig,stanton effects consider a delta-function model for the
would be an important topic for a future investigation. gluon propagator. See, e.g., RE¥4] for the solutions to the

The starting point is the solution for the instanton usingspEe in such a model. The quark and mixed quark conden-
the classical actiofi24], which gives for the instanton color gates are given by

field
i 27au,X = a3 f*‘” B(S)
inst _ vy 0[:q(0)q(0):|0)=— — dSS———+—,
Auxa= X2t p? (13 (0l:a(0)ac0):/0) 47%Jo SA(S)+B%(S)
4 _
GinSt(X)'GinSt(X): 192P <0|Q(0)QUG(0)Q(O)|O>
2 2\4"
e = < BSI2-AS)]
. . . . =— S—————
wherep is the instanton size. The quark zero modes in the 4m2Jo SA(S)+B3(S)
instanton backgrounf25], for the + mode with the instan-
ton at positiorz, are +81B(S)[ZSA(S){A(S)— 1}+BZ(S)]]
) ) 1+ e 1§ SA(S)+BA(9)] '
\PZ(X)_ \/P?T(X2+p2)3/2 2 ’Ya(xa_za)uu (14) (16)

wherep is the instanton size and is a unitary color-spin  One can fit the strength of the delta-function gluon propaga-
matrix. From this the widely used model of the quark propa-tor to obtain the correct quark condensate. Then from Egs.
gating in the instanton—anti-instanton medi{i28] was de- (16) it is simple to calculate the mixed quark condensate.
rived. In this model, the quark propagat8i(p) was calcu- The result is an order of magnitude different from the phe-

lated: nomenological value. This is an example of the need to in-
5 S clude both the long-distance and the medium-distance non-
Si(p)=[PAI(P7) —Bi(p)] ", perturbative QCD effects. We return to this when we discuss
Al(P)=1,
262 (15 5The contribution is explicitly added as an additional term in the
B/(P)=KPf%(pP/2), SDE. Indirectly, it implies adding a correction to the gluon propa-
gator.
2 7 .
_c_ Instantons, however, open up the possibility of the presence of a
f(z)= 3lo(2) +15(2)]K41(2), . : . .
(2) z [310(2) F12(2)]K4(2) so-called# term in the QCD Lagrangian that is not considered

L ] ) when deriving the SDE’s. Even so, all evidence suggests that such
where K~0.29 GeV -, the instanton density p  terms, if present at all, must be very small. See R28] Secs. 16.2
~1.667 GeV'}, P=\/—p? and thel’s andK, are modified and 16.3, and references therein.
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the results of our calculations. For completeness we includbackground(as opposed to just the free quarthat gets

here the equation fof . (see Ref[4], Appendix Q dressed with this gluonic cloud. That would result in
, 3 [+ SM(S) { } STHP)=S 1 (P)—2p(S)—2p(S). (22)
fo=—o S )— = —=]|.
472Jo A(S)[S+M?3(S)]2 2.ds We discuss the results with Eqd.2) and (20)—(22) and the

question of double counting in Sec. V.
Notice that in these equatior® and S refer to Euclidean

momenta. . ' ' ) C. The vertex
We now discuss how we include instanton effects in the o ) .
quark SDE. Although the solution given in Eq&5) for the The results reported in this paper were all obtained with

propagator of a quark moving in an instanton background€ approximatiori’,,(p,q) =y, (the so-called rainbow ap-

was obtained by the expansion of an integral equats promma}tmr): The popularity of this approximation is justi-

not derived from a Schwinger-Dyson formalism, it is pos-fied by its simplicity. It suffers the serious drawback of vio-
sible and convenient for us to write that equation in a formlating the Ward-Takahashi identityvTI)

analogous to that of a SDE, as in EG2): (P—q) T ,(p.q) =S X(p)— S Xq) 23)
«(P, .

1y a1
S (P) =S, " (P)—2((S), (17 This identity holds in QED, and the forms for the vertex

. . . discussed below were proposed for QED. Such forms, how-
where,, is the kernel of an integral equation whose exact brop Q

¢ - for th ) b ever, are often used for QCD as well, since the analogous
orm is not necessary for the present arguntemtd whose  jjantity for QCD [known as the Slavnov-Taylor identity

solution is the propagatd, as given in Egs(15). Although 1)1 sT)) reduces to Eq23) if ghost effects are ignored.

this equation is not derived in Reﬂ22] by mo‘?'e“”_g t.he _lgnoring these effects is believed to be important in the in-
gluon propagator in a SDE, we recognize that, in principle, 'ﬁrared region.

implies a model for the gluon propagator, namely, the model s identity can be used to express the longitudinal part

that would yield the solution given by EQELS) in @ trué ot the vertex in terms of the propagator. Ball and CFaa]
SDE. We use this observation in the following discussion. o\ proposed the form

Given that the self-energy is tteimof all one-particle-
irreducible diagrams, one could think of writing an equation &8 .
that would include both types of one-particle-irreducible dia- FM(p,q)=F2C(p,q)+ 2 fi(p2,92%,p- q)T'M(p,q),
i—1

grams as (24)

—1 _c1 )
STHP)=S (P —[2p(S)+X((S)], (18) where the 'M’s are eight transverse tensgi., tensors that
satisfy (p—q)“T'M(p,q)zo, and thus do not contribute to
the WTI]. The form of these tensors is given in £§.4) of

Ref.[27]. The eight scalar functioni$ are not constrained by
the WTI.T 5 is given by

where 3,(S) is the self-energy with the gluon propagator
which would giveS, in the SDE. Solving Eq(17) for Sgl
and substituting into Eq18) we immediately get

_ a1 _ _ _
SHP)=S (P)—2p(S)—[21(9)-2(S)]. (19 Fﬁc(q,p):Yﬂ[A(qz)(l_ﬂ1)+A(P2),31]

As a first approximation one could neglect the terms in A(9?)—A(p?)
the square brackets in this equation, and end up with +(Q+p)La4B1+P(1-B)]—F——H—
q —
S7HP) =S (P)—2p(S). (20

B(g?) —B(p?)

(@ — (25)

Along a different line of thought, one could suggest that a
term simply be added to the starting SDE to account for the
contribution to the self-energy coming from the interactionThis is really a small modification of the vertex proposed by
of the propagato8, with a cloud of gluons described by the Ball and Chiu. In their formg;=1/2, but other values are
polynomial model. This will result in an equation such as: often used to explore the effects of the transverse part. Be-

sides compromising the symmetrylof, , changing the value
S‘l(p)=Sgl(p)—Ep(S)—Ep(S,). (21 of B4 can have serious effects on renormalizability, because
of its effect on the transverse part, as discussed below. The
Finally we consider the case where besides adding this ternWyTl itself is satisfied for any value g8, and for any choice
one proposes that it is the propagaf§rthat should get of f'’s. The converse is also true: any vertex that satisfies the
dressed, i.e., that it is the quark moving through the instantolVTI can be expressed through E¢§24) and (25).

The vertex has been further constrained by other studies,

in particular, Burden and Roberf&8] list a number of re-
80ne could, in principle, extract this form directly from either Eq. quirementd”,, should satisfy, besides the WTI. See a4
(7) or Eq.(12) of Ref.[22]. Sec. 3.7. Exploiting these requirements, and particularly the
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need to maintain multiplicative renormalizability in QED,  The purpose of this section is to present a numerical test
Curtis and Penningtof29] narrowed down the last term in of Eq. (A6), as well as to point out some important techni-

Eq. (24 to calities. The idea is that with a “first guess” for the quark
cp . propagator in the forn8 1(p)=p—m,, the output of the
I,(q,p)=B2lv.(a°=p)—(q+p)(d—p)] right-hand side of the SDE after the first iteration can be

2. 2 2 computed analytically using EA5), or numerically using
G G C ) . (26) Eqg. (A6). Comparison of these two outputs provides infor-
(2= p?)2+[M?(g?) +M?3(p?)]? mation on the reliability of our procedure.
Once we verify that the procedure works accurately for
Here tooB,=1/2 in the original formulation. Applying the jyst the first iteration, we can use it with confidence in fur-
approach explained in Sec. Il, we have found that when usther iterations. This is so because the accuracy of the proce-
Ing dure does not depend of the functional form usedSp)
BC cp (the numerical procedure does not “know” that form
Iu(a,p)=T."(a,p)+1';7(q,p), As usual in numerical integration procedures, only the
numerical values of the functio®(p) [or rather, of the func-
tions A(p?) andB(p?)] on a grid are used. The value of the

in a polynomial model with a term in Eq11) having c . X . ; )

_ . . . .= integral is estimated by calculating the integral of a smooth

=0, that the functiorA remains free of divergencies in the . : . . .
function built over those numerical values, using a simple

Landau gauge, a well-established result. Notice that this im; o : -
. 2 BG . - ) : trapezoidal intrapolation or similar. The accuracy of the pro-
plies that using just’, =T, is, in general, inconsistent.

. o : . ) cedure then depends only on how well this smooth function
We are currently investigating using this form in our approximatesS(p). This in turns depends on how smooth
modeI: Although thaF enta!ls .nleglec'glng the effect of ghOStS(p) is in the region in question, but not on its functional
fields in the STI, it is a significant improvement over theform So, as long as the quark propagator does not develop
rainbow approximation. Also, Het al. have recently derived _.__ " ~ .. . . :
an identity similar to the WTI, but for the transverse singularities in the region being explored, the accuracy of the

. . last (or any othey iteration in that region should be as good
fermion-gauge boson vert¢80], which we shall employ. as that of the first. As already explained above, the only

reason for using a simple perturbative quark propagator in
IV. THE NUMERICAL PROCEDURE this test is that for such a form of the propagator the value of

Equation (A6), derived in the Appendix using the ap- (h€ integralis well known analytically. = .
proach described in Sec. II, is the basis for our numerical Ve then input the above described *first guess” for the

procedure for solving the quark SDE in Minkowski space.duark propagator witm,=2 GeV. Rather than using just
The light-cone approach used to obtain E46), and in  ON€ value fora, in Eq. (A6), we use the full gluon propagator

particular the treatment it makes of the singularities, contain¥/ith parameters as described in Sec. Ill. Namely,
some subtleties and technicalities. Here is a well-known ex-
ample where using light-cone variables leads to a deatt end

lim J dodky oy,
0" ) (k§—ki—mj+ie)"

one must consistently sgf = 3,. This ensures, for example,

C
So 1

k2+ie

gaDr(k?) =4w[ (— 1)%(

So
k2+ie

C2
+(—1)°2\, } .
This integral is perfectly convergent and can be computed,
for example, by closing the contour in tkg integration with
a semicircle at infinity. The integral is, of course, nonvanish-Vhere so=1 GeV, ¢,=0.07,\,=0.222,¢,=0.6, and\,

ing. Using light-cone variables, one would get the integral = 0-25(herea=1+c;). We will also discuss the ultraviolet
divergent case,=0. For the vertex we sdf’= y”. With

) J dk*dk~ - these fqrms we carry out the ir_1tegra|s _in the SDE analyti-
ot 2k k™ —mi+ie)" n=>4. cally using Eq.(A5) and numerically using EqA6). We
present graphs comparing the two outputs. We stress that
If we now think of closing the contour of, say, the inte-  these are not solutions to the SDE but merely the output of
gration, we see that the singularity occurs a3 ¢ie)/k™. ~ running the iterative procedure once. Solutions to the SDE
But then the singularity can always be avoided for &iy are obtained using this same procedure.repeatedly, but t_here
+0. Only fork* =0 is thek ™ integration nonvanishing, but ©ne has no anglytlc result to check against. Those solutions
then, it must have a delta-function-type singularity. In this@ré presented in Sec. V. _
example the shift in the location of the singularities due to Keeping with tradition, the graphs are shown with a re-

the change to light-cone variables has transformed a simpl¢ersedx axis. We use the variab®-= —s, equivalent to the
situation into an intractable one. Euclidean invariant momentum squared. We show, however,

negative values dbz, which lay outside the usual Euclidean
space, and represent the timelike region. The numerical inte-
%0.L. wishes to thank Matthias Burkardt for bringing this example 9ration is carried out up t&¢ , =64 GeV and an estimate
to his attention. of the contribution of the remaining integration out to infinity
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Real part of A, no divergences Real part of B, no divergences
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(“tail contribution”) is added. As will be seen on the graphs the grid to the right of zero, what points are left f&r be-
the consequences of omitting this tail contribution are nuiween zero and? One needs a finer grid faf, of course.
merically important. In fact, in order to reproduce the nu-But this implies that we need the valuesfef(s’) (from the
merical values of Eq(A5), Eq. (A6) demands an elaborate previous iteration on this finer grid. Eventually, it means
integration procedure, which we now outline. that the computatiomust start with a much finer grid than
The integrand in Eq(A6) is singular ats’ =s, i.e., when one on which one intends to obtain the final solutioat
the external and internal momenta are the same. We point olgast in the deep infrared region. Since the behavior of the
that this is a general feature of infrared-enhanced modelsolutions in this region, and upon crossing over to the time-
and not a consequence of our particular form for the gluorlike region, is of great interest to us, we cannot allow for loss
propagator. While this singularity never renders the integrabf accuracy there. The number of points in the initial grid
divergent® in a formal sense, it does pose numerical diffi- would then have to grow exponentially with the number of
culties, since one has to deal with sampling an unboundetierations needed to solve the equation. The number of itera-
integrand. tions could be anywhere from about a doZent small for
The computing market is full of numerical integration exponential growthto about a hundred.
packages that handle all sorts of singularities, but one must One solution is to avoid model gluon propagators with
be careful of what to use. The heart of the issue at hand canfrared enhancement, e.g., to use a Gaussian model. We do
be grasped by examining E¢A6) carefully. It suffices to not feel, however, that Gaussian models are appropriate in
analyze the singularity occurring in the hypergeometric functhe timelike region, and one of the purposes of this paper is
tions whose last argument &/s. When this argument is to explore the effects of a tunable infrared enhancement. We
zero, these functions are perfectly regufarfact, they equal  solve this problem as follows:
one; when this argument is one, the functions are singular. (i) Choose a reasonably fine grid in the region where the
We then need to sample this functiend the whole in- solutions are wanted.
tegrand at a fine grid betwees’/s=0 ands’/s=1. But this (i) Evaluate numerically justq on that grid(the singu-
is almost self-contradicting. Whesiis, say, the first point in larity we are considering now does not occurfi).
(i) Construct a simple intrapolating function on these
values that approximatefs, (using a trapezoidal method or
Theie procedure makes the contribution of this singularity well Similar).
defined. An infrared divergence does appear in the integral ever  (iv) The product of this simple intrapolating function
in Eq. (A4), for m;=0 and largea, . In Eq. (A6) this divergence times the rest of the integrand is then a good approximation
sits in thel” functions. to the integrand.
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Real part of A, ultraviolet divergence Real part of B, ultraviolet divergence
9 10 20 30 40 30 e —20 0 4 0 60 FIG. 5. Comparison of the nu-
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(v) Use the fact that this product can be integrated anawork we do not att.empt to extract that_behavior. In Sec. V,
lytically to estimate the integral without further approxima- W report the locations where the solutions seem to develop
tions. a singularity.

This approach of sampling numerically only a part of the The graphs in Fig. 4 show the real and imaginary parts of
integrand in a numerical procedure is also used in théhe functionsA andB after one iteration using the parame_zters_
method of Gaussian quadratures. The rationale in thatcCVE: AS can be seen from the graphs, the procedure is quite

method is slightlv different. however. A problem similar to accurate(provided the estimate of the tail contribution is
ghtly | ' AP ) added. The relative error is of the order of thousandths of a
the one we describe has been encountered in [Réf.as

: . percent, although it is somewhat larger right befirat not
discussed there in Sec. 4.3.1. ; : 2 2 :
" . . aften the singularity aSg= —mg (or s=mg). As pointed out
Additionally, there is the ever present fact of having to ) g Y 85 o 0) b

: I . Tvpicall . above this is not the singularity treated with the procedure
Integrate over all energies. Typically one integrates up Qyc.ssed in detailed above. The contribution from this sin-

some Iqrge number. Once again this becomes a problem. O@%Iarity was extracted by using the procedure suggested
;hould integrate up to some valuesjlflarge enough for the by the argument of , in Eq. (A4) and dropped in EQA6).
mFegrand to settle into its asymptotic behavior. In our Casepqr values ofs just larger tharmé (or, in the graphs, values
this means values &f large enougtas compared to,since 4 g_ right before the singularitythere is not enough points
for s’~s, the integrand is still displaying highly nontrivial to sample in order to extract the principal value accurately.
behavior. Once again, how can this be done for the largestor values o just smaller thamn? (or, in the graphs, values
values ofs? One needs a larger grid fet. This now means  of 5 right after the singularity the singularity occurs out-
thatthe computation must start on a grid larger than one onsjde the integration region and does not affect the calculation
which one intends to obtain the final solutiof@irthermore,  [as seen in Eq/A6), the integration into the timelike region
in Eq. (A5) the integrals are carried out to infinity. Divergen- stops ats’ =s]. This is the reason why accuracy is affected
cies, when they exist, are treated with the dimensional regusnly on one side of the singularity.
larization method, not by integrating up to some cutoff mo- While this concerns a sample calculation with a bare
mentum. In order to have EGAS) as a reference, we choose propagator, a singularity in the dressed propagator will have
to carry out the integrals in EA6) out to infinity as well.  similar consequences. In this sample calculation the fact that
This is done as follows: the exact location and nature of the singularity is already
(i) From the last value of, on the grid, and from its known has been exploited. This would not be as straightfor-
known or guessed behavioffor large momenta, construct a ward in further iterations. The imaginary parts shown in the
function to approximaté, at larges’. graphs were obtained from the saieprocedure.
(ii) The product of this function times the rest of the in-
tegrand is a good approximation to the integrand for lafge
(iii) Use the fact that this product can be integrated ana- \ x Accepted values for o
lytically out to infinity to estimate the “tail contribution.” 3E) e Setl 13
. . \ —- Set2
As the graphs below show, with this procedure the calcu- !
lations become highly accurate, except around singularities \

1 2 3 4

T \ T T T T T T T

. . . . 520 12
in fo. Sure enough, extracting the behavior of the solutions 3 \\
. . .y . A\
around their own singularities is no easy task, but that rep- AN
resents a separate issue from the ones discussed here. In this Ir 5 N 1
s ,\N‘\‘ _______________
o '1 Pl i

when the behavior was guessed, the correctness of such a guess
was verifieda posteriori The calculation was repeated until agree-
ment was reached in this sense. FIG. 6. Two different fits towqys .

3
Energy (GeV)
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TABLE |. Numerical results.

Vertex: I""=y”, rainbow approximation

Model (—(:ag:)* (—(:dgo-Ga:)) fa M(0)
(MeV) (MeV) (MeV) (MeV)
Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 Set 1l Set 2
Equation(27) 58 288.5 313.5 11115 13 89 86.5 770.5
Equation(28) 221 2275 558 906.5 91.5 117.5 534 1084.5
Equation(29) 1715 153.5 509 975.5 58.5 54,5 308 752.5
Equation(30) 219 159.5 624 1001 91 60 607 804

For comparison

Equations(15) 216.7 456.5 86 417.6
Other 200-250 400-600 92 ~300
calculations Sum rules, lattice QCD Experiment NROM

8See footnote 12.

Figure 5 shows theenormalizedreal parts of the same the divergent termy and it is canceled by a numericalel/
functions, with the crucial difference of setticg=0, rather  subtraction in theMS scheme. The well-known result that
than ¢;=0.07. This causes an ultraviolet divergence. Theis free of ultraviolet divergencies in the Landau gauge ren-
imaginary parts in this calculation contain no divergence, salers this function insensitive to whether or not the subtrac-
they remain basically the same as in the convergent case, afign is performed. Addition of the tail contribution, however,
are not shown. In this case, the analytic results are renormastill significantly affects the nondivergent ternc,& 0.6).
ized in theMS scheme. The numerical calculation was per-For B, it is possible to obtain a finite result by just dropping
formed withd=4+2e, wheree=—10"'. The divergence the tail contribution(this would amount to cutoff renormal-
comes in the tail contributiofwhich is almost constant for ization), but integrating to infinity and performing theel/

A B
015 01 005 0 005 01 05 015 01 005 0 005 01 0I5
[T T T T — T T T T T ] m T 7 T — T T T T ]
22r 03| Hos
2_ ~~
L 5 061 0.6
[}
~u18F ]
g1 04 04
< ~, 048 7
16F a
I g
02k Hoz2
14} g
12F , oF 0
1 " 1 L 1 " " 1 " 1 " 1 1 L 1 " 1 " " 1 " 1 " 1
015 01 005 0 005 0L 0I5 015 01 005 0 005 01 0I5 .
S (Gev? S GV FIG. 7. Solutions to Eq(27)
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subtraction brings agreement with the renormalized result
from Eq. (A5). We do not include in this paper solutions to
the SDE involving this renormalization procedure, but
thought it appropriate to show how such solutions could be
obtained. We point out that it is not clear that dimensional
renormalization yields physically correct results in nonper-
turbative calculations. This method could be used to explore
that important question.

V. RESULTS AND DISCUSSION

S P)=S1(p)—2e(S), (27)
S Hp)=S (P —2p(S), (28)
SHP)=% ' (P)~2p(S)~2p(S) (29
S HpP)=5 1 (P)—2p(9Tp(S), (30

In the present section we give numerical results obtaine@s a reminder, Eq27) is just Eq.(1) with the polynomial
in models that do not contain instanton contributions explic-model for the gluon propagator and does not explicitly in-
itly, and in models that do. As discussed at the end of Sealude the instanton effects contained in E4%), while Egs.
[l B, we study four different variants of the SDE, which we (28)—(30) propose three different ways in which instanton

list here again for easy reference:

effects could be included.

FIG. 9. Solutions to the SDE
using set 1 in the spacelike region.
(a) Result of Eqs(15) from Ref.
[22], (b) Eq. (27), (0) Eq.(28), (d)
Eqg. (29), and(e) Eqg. (30). In (a)

A B
0 0.1 0.2 03 04 0 0.1 0.2 03 0.4 05
T T T T T T T T T T T T T T T T T T T
L : -+ b) i ]
2 e 2
++d) ]
18- 3 *xe) 18 S
1 Qo
W[ <]
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L Lk 4
".‘}fx-,( ey 2}

A=1, not shown.
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e, *xe) 215 N :fj 15 using set 2 in the spacelike region.
@13‘ kY S, L) 5 (@) Result in Egs.(15) from Ref.
E b, hs @ ! WM ! [22], (b) Eq. (27), and (c) Eq.
el s & e (29), (d) Eqg. (29, and (e) Eq.
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We use two different sets of parameters for the gluonseems to improve matters considerably, perhaps with the ex-
propagator and the rainbow approximation for the vertex. Allception of Eq.(29). A plausible explanation for this may be
calculations were performed in the Landau gauge and in thas follows.
chiral limit (m.=0). The parameters for the gluon propaga-  An important feature of Eq19), discussed in Sec. Il B,
tor are to include instanton effects, is the presenc&ot instead of
S, ! in the inhomogeneous term, which occurs also in Egs.
(28) and (30), but not in Eq.(29). In fact, Eq.(28) can be

set 1 [)‘1:0'222' €,=0.07, regarded as an approximation to E80) up to terms of
A,=0.25, ¢,=0.6, order S(p) —S;(p), which can be considered small, as op-
posed toS,*—S; !, which obviously is not small.
The results obtained from Eq27) (no instanton effecjs
[)\1:0_222, ¢,=0.07, with parameter set 2, appear closer to the correct values,
and set 2: often overestimating them. This is most likely due to the fact
No=1.5, c,=0.85.

that parameter set 2 displays stronger infrared enhancement
and overestimates the coupling the intermediate re(gee
Fig. 6). Inclusion of the instanton effects with parameter set
Parameter set 1 and the fit it generates to the coupling, in most cases, does not lead to worse overestimation, as
constant were already discussed in Sec. lll A. Parameter sgbyld be naively expected. With parameter set 1 we have a
2 is introduced in order to improve the poor fit to the phe-sitation where the polynomial part of our model is contrib-
nomenological quantitiesdescribed beloy obtained with = iing very little in the intermediate regidwhich we believe
parameter set 1 when the instanton contributions are not iy pa cricial to the quantities we are compujingnd the

cluged[i.e., \_Nhenbsct)lving Eqiﬁm.t ¢ ters in t instanton effects bring in the bulk of the contribution. With
comparison between both Sets of parameters in terms ?rarameter set 2 both parts are contributing significantly, but

how well they fita ¢ is given in Fig. 6. It is clearly seen that . L .
parameter set 2, while producing a better fit to the phenomt-he'r effects do not add up. Thinking along the lines of the

enological quantities, entails a much larger value for the Cougpproach implied by Ed18) and the discussion that follows,

pling constant for energies under 5 GeV. this probably means that the two types of contributions to the

In Table | we give the values obtained for the quark con-Self-energy are of a different nature and they do not always
densate<'_ ), the mixed quark condensat 200G ) interact constructively. This suggests that the instanton ef-
the pion 'g&a’y constarit. qand the valu& ofeqlv?i B/g.a’t fects arenot being double counted with this procedure, al-

o ) . . though such conjecture needs further testing.
p =0 from the solutions to all four equations with each Fiqures 7 and 8 show araphs of the solutions obtained
parameter set. Igu W grap utl :

Most of the results obtained from E€7) (no instanton USiNg parameter sets 1 and 2, respectively, in(£g. The
effecty with parameter set 1, appear too low. This is mostfOcUS is on the low energy spacelike regioight half of the
likely due to the fact that with this parameter set the couplingdfaphs and the crossover to the timelike regideft half of
constant is too weak in the crucial region of a few hundredh® graphs Already at small timelike energies—the graphs
MeV to about 1.2 GeV. Inclusion of the instanton effects Show energies up to about 360 MeV for parameter set 1 and

1.3 GeV for parameter set 2—the behavior of the functions

has changed dramatically from their behavior in the space-
12This value is often compared to the constituent quark masdike region. The functiord, for example, stops growing, and,
(Mo) of the nonrelativistic quark modéNRQM). As we show in ~ Say, the functiorM for parameter set {see Fig. 7, which
Figs. 7 and 8, the solutions to the SDE vary quite rapidly uponbarely rises from its asymptotic value bf(p?)—m.=0 at
entering the timelike region. The valud, should therefore, at large spacelikegp? to about 90 MeV ap?=0, soars up to
best, be regarded as a rough guide to the valug/sfat p2=0..  almost 400 MeV already gi’~ (360 MeVYy (timelike).
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Of interest is also the behavior of the functiér(Sg) cent lattice gauge calculatiof®28]. With the polynomial
=S:A%(S) +B2(Sg), the denominator of the propagator. model we are able to work in Minkowski space and obtain
The vanishing of this function would indicate a pole in the solutions. With the models that include instanton effects we
guark propagator. Extrapolation of the behavior in the spaceare able to obtain solutions that give much better agreement
like region would suggest a pole at much smaller timelikewith the phenomenological values of the condensates.
energies than those we have plotted, particularly for param- We consider the present work exploratory. It provides the
eter set Ifor set 2 some turning around is already noticeableframework for obtaining light-cone QCD propagators that
at very low spacelike energiesThe behavior ofF right  can be used to obtain light-cone models of hadronic BS am-
around its zero, if there is one, would be difficult to extract, plitudes for studies of hadronic properties at all momentum
since the function®\ and B become singular theresee the transfers.
discussion in Sec. IV

F does seem to drop fast just to the left of the regions we
have plotted. Thus, there seems to be a singularity in the ACKNOWLEDGMENTS
quark propagator on the real axis, in our polynomial model.

The singularity would be ap?~ (360 MeVY for parameter This work was supported in part by NSF Grant No. PHY-

set 1, andp?~(1.3 GeV} for parameter set 2. Further in- 00070888. The authors would like to thank the P25 group at

vestigation of the solutions deeper into the timelike region ig-0S AIaTOS Na(;tlonal La(ljbzr%tory f|<_3|r hOSp't%"a WTen pzrt ]?f

necessary before this can be ascertained. Notice that this rg‘-'s Work was gone, and Andrew Harey and viontaga Aw for
many helpful discussions. We would especially like to thank

fers to Eq.(27) only. . . L T .
This fact is relevant to considerations on the validity of aP'Gter Maris for providing us with his Ph.D. thesis.

Wick rotation. The presence of singularities in the quark
propagator above the real axis creates difficulties with the
Wick rotation. A prerequisitive to not having singularities

above the real axis is to have theam the real axis;’ since In this appendix results are given for integrals that we
we know they must occur somewhere. Of course, manyncounter when using our models for the SDE, described in
questions remain open. The exact location of this singularitysec. |1, In order to solve Eq1) in our model, we need to

and the possibility of others, should be studied in this anc:gjculate integrals of the typgnerea,=1+c,, with ¢, as
other models. Nonetheless, we consider it a good indicatiothtroduced in Eq(11)]

that, in our model, the Euclidean and Minkowski approaches
are probably equivalent.
Figures 9 and 10 compare the solutions to E8g)—(30) J' ddq fo(g?+ie)

APPENDIX: INTEGRATING THE EQUATIONS

for parameters sets 1 and 2, respectively. For comparison, thém . o {1,09*,9* 9"}
solution given by Egs(15) obtained in Ref[22] has been e—o*? (2m)° [(p—=Q)"—mi+ie]™
included as well. The figures include only the spacelike re-  _ 2. 2. v 2.

gion (Euclidean spagesince Eqs(28)—(30) use the result in ={Col P fo.a),p*Cad P Fo,a).p*P Cal P o a)
Egs. (15 from Ref.[22], which was obtained in Euclidean

space. The analytic continuation of this result into the time- +g*"Coy(p%fg.a)}, (A1)
like region exhibits a branch point agf=0 and thus has not

been used. ) )
where we include the cases with no factors, one factor, and

two factorsg#i, and we exploit the Lorentz structure to de-
VI. CONCLUSIONS fine the scalar quantitieS,; .
These integrals include as a particular case the well-

We have shown how to obtain a light-cone form of theknown integrals:

SDE for the quark propagator. For QCD the key question is
the infrared behavior of the gluon propagator, for which we
have used two models. Knowing that the t'Hooft mofid]
gives confinement, we have used polynomial models for the|jm
gluon propagator. Although the instanton liquid fofh®| for .o+
the gluon propagator does not confine, and therefore does not

f o {19*.9"q"}
(2m)® (g?—mj+ie)®[(p—q)2—mi+iel®

— 2. 2. v 2.
have the correct far infrared behavior, it provides the main ={looP%a0,a),P*110(P%20,21),p*P I 2P 20,2
midrange QCD interaction, and allows fits to the conden-
sates, which is essential for obtaining hadronic properties. + 9"l 1(p%ag,a))}- (A2)

With our approach we can obtain solutions for both the en-
hanced infrared behavior of the polynomial type models or
the regular infrared behavior of the instanton model and re- This fact is useful because, for this particular case, the
integrals are well known analytically. This is used in Sec. IV
to present a numerical test of our integration procedures.
BHaving the singularities below the real axis will not save the  For (r,j)=(0,0), (1,0), (2,0, and(0,1), thel’s are known
day, since that leads to singularities above the real axis. to be
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i(—1)"@*a)(—1/2)) [ag+a—di2—]j
Irj(sva01a|)_ (477')d/2 ao,a|
1 aa|+rfl(1_a,)aofl
IKZ R : 3)
0 [a(l—a)(—S)+(1—a)mi+ami—ieltotaid2-]
where we have used the compact notation
r 1,8z, .- -8 | T(apl(ay) ...I'(ay)
bi,by, ... by T'(b)I'(by)...['(by)"
For theC's, we proceed as explained in Sec. Il, in particular as given in(Bgto get
i(—1)"3(—=1/2) [a+1—d2—j| f+=fo(s'+ie)ds'
Ci(sifq.a)= i f QT
(47) a — i
a+tr—1
(Ad)

1d a
g fo a[a(l_a)(_5)+(l—a)s’+a(m§—ie)]al+l*d/2fj :

At this point we want to make sure that if we degf(s’)=1/(s' - m3)2, then Eq.(A4) agrees with Eq(A3). This is most
easily done by closing the contour of integration of ffievariable with an infinite semicircle in tHewer half of the complex
plane to pick up the singularit{ in fo. While this becomes a rather simple exercise in contour integration, and agreement
between the two forms is readily shown, this is not useful for our purposes. In this calculation one is using the analytic form
of fo, which makes the approach not applicable to other forméof We need a procedure that would rely only on the
numerical values of 5. We perform the integrations by closing our contour with an infinite semicircle ongherhalf of the
comelpLex plane to pick up the singularifin s’) of the expression on the second line of B&4). Form;=0, thel’s are known
to be™:

i(—1) @otal(—1/2)]

(477) d/2( m(Z))a0+ a—di2—j

lij(s;a0,8)=

. ap+ta —d/l2—j,a+r,d2+]—a o o -
X +ay—d2—j,a+r;di2+j+r; .
ag,aq,dl2+j+r 2Fa(aotay LaTr, j+r;s/mp) (A5)

Form;=0, closing the contour in the lower half on the complex plane, we get foCthe

f a, is not an integer, then this singularity will be a branch point with its corresponding branch cut, as opposed to a simple pole.
5The expansion of this expression abadut4 is probably more familiar to the expert in dimensional regularization.
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C,i(s:f (,i):_i(—l)‘f"'(—1/2)j
pee (4m) (4]
r 1+b—a (—s)*bf:ds’fQ(s’)(—s’)b’azFl(lJrb—c,b;1+b—a;s’/s)
b,c—b] (-
+I c1-a J'S ds'fo(s')(—s') "%, Fy(a,b;c;s/s’) <0,
b,c—b| -=
1 ei-a jo ds'fo(s)(=s")™* s=0,
- e i ' ! rye-a=b(gryb-1 . . '
r licabl L ds'fo(s")(s—s') (s")*"LF,(1—-a,1-b;1+c—a—b;1-s/s’)
b,c—b| (- , , . ,
\ +T c1-a fo ds'fo(s’)(—s')"%;Fi(a,b;c;s/s’) =0,

(A6)

where a=a+1-d/2—j, b=a+r, and c¢=d/2 grals in Eq. (A6). The procedure is outlined and a
+j+r. Agreement between Egs.(A5) and (A6) numerical test is presented in Sec. IV. Equatioh6)
when fQ(s’)zll(s’—m?,)aO can now be shown by is the basis for all the numerical results obtained in this
using a numerical procedure to perform the inte-paper.
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