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Light-cone representation of the quark Schwinger-Dyson equation

L. S. Kisslinger and O. Linsuain
Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

~Received 9 October 2001; published 29 October 2002!

We use a light-cone approach to solve the Schwinger-Dyson equation for the quark propagator in Minkowski
space. We show how this method can be used to solve the equation beyond the spacelike region, to which one
is usually restricted with the Euclidean-space approach. We work in the Landau gauge, use an infrared-
enhanced model for the gluon propagator, and include instanton effects to get both confinement and vacuum
condensates. With our models reasonable fits to known quantities are obtained, resulting in a light-cone quark
propagator that can be used for hadronic physics at all momentum transfers.

DOI: 10.1103/PhysRevC.66.045206 PACS number~s!: 12.38.Lg, 12.38.Aw, 14.65.Bt
ad
tiv
er
D
a

y
o

th
us
de
to

o
th
n
d

b
re
de
ke
m
g

un

in

to
x

th
th

lea
in

to

on-

t
at

ifi-
axis

-
y
and
able
as
to

n
her
s

t to

tor
g
the

ro-
ark
the

is
of

-
ion
hod
e-
l

ple
n-

ns
cal-

the
I. INTRODUCTION

For a microscopic QCD description of hadrons and h
ronic matter one needs the fully dressed nonperturba
quark and gluon propagators, for which the Schwing
Dyson formalism is a natural approach. A full study of QC
however, requires investigation of hadronic properties at
momentum transfers. Since an instant form of field theor
difficult to use for composite states at medium or high m
mentum, a light-cone representation is desirable@1#. In the
present paper we develop a light-cone formulation of
Schwinger-Dyson equation for the quark propagator for
in developing hadronic light-cone Bethe-Salpeter amplitu
as well as providing new aspects of the quark propaga
which we discuss below.

The Schwinger-Dyson equations~SDE’s! of a field theory
embody all its dynamics~see Ref.@2# p. 475!. They are the
complete equations of motion for the Green’s functions
the theory, and thus provide a natural way for studying
theory beyond the limited scope of perturbative expansio
Unfortunately they consist of an infinite tower of couple
integral equations relating fulln-point functions to full (n
11)-point functions. Thus, the integral equation satisfied
one propagator may involve another propagator and a th
point vertex. The equation for this vertex may in turn inclu
another propagator and a four-point vertex or scattering
nel, and so on. Some physically motivated truncation sche
becomes mandatory before the infinite tower can be brou
to a manageable size. As has been stressed in Ref.@3# the
Ward identities of gauge theories significantly ease this tr
cation, since they imply that two-point functions~propaga-
tors! uniquely determine the longitudinal part of three-po
functions~vertices!.

The SDE’s for the fermion and gauge boson propaga
in QCD and QED have been studied using different appro
mations and models. For an excellent review see Ref.@4#,
and references therein. A recurring topic in this area is
question of the analytic structure of the propagators. For
electron propagator one expects a singularity atp25mphys

2 .
For a confined particle such as the quark it is not so c
what one should expect; it depends on what the confin
mechanism is. Coleman~see Ref.@5# pp. 378–386! has
shown that it is perfectly possible for a confined particle
0556-2813/2002/66~4!/045206~16!/$20.00 66 0452
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have a pole in its propagator at a positive real~i.e., physical
and timelike! value ofp2.

Fermion propagators with branch points at complex c
jugate locations off the real axis of the variablep2 have been
obtained more than twenty years ago for QED@6#, and more
recently for QCD as well@4#. This has been studied in grea
detail by Maris@7#. In the case of QED, where we know th
there must be a singularity atp25mphys

2 , this is thought to
be an artifact of the approximations with no physical sign
cance. For QCD, the absence of singularities on the real
has been thought to be related to quark confinement. S¸avkli
@8# and Şavkli and Tabakin@8,9# have shown that the imagi
nary part of the value ofp2 where the singularity occurs ma
be interpreted as a decay width for a single quark state,
can be related to the hadronization distance, with reason
results. However, the fact that in two physical situations
different as those of QED and QCD the singularities seem
have the same origin@7# makes any physical interpretatio
difficult. The location of these singularities poses yet anot
difficulty: it invalidates the Wick rotation, and thus make
the theory as defined in Euclidean metric not equivalen
that defined in Minkowski metric.

In this paper we study the SDE for the quark propaga
starting from its Minkowski-space formulation. In solvin
the equation, we make assumptions about the location of
singularities similar to those necessary to justify a Wick
tation. However, our approach allows us to study the qu
propagator for timelike as well as spacelike values of
momentum.

Our treatment of the SDE in a light-cone representation
discussed in detail in Sec. II. The method is an extension
the method used in perturbation theory@10# to obtain an
infinite-momentum-frame formulation, which in many re
spects is equivalent to the light-cone field theory formulat
of perturbative diagrams. It is also analogous to the met
for obtaining a light-cone representation of the Beth
Salpeter equation~BSE! from the standard four-dimensiona
instant form, however, as explained in Sec. II, the sim
prescription for projecting onto the light cone cannot in ge
eral be used for the SDE.

In Sec. III we discuss our models. Section IV contai
some technical aspects of solving the equations and test
culations in Minkowski space, using equations derived in
©2002 The American Physical Society06-1
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FIG. 1. Diagrammatic representation of th
SDE for the quark propagator.
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Appendix. In Sec. V we present the results of our mo
calculations and in Sec. VI we give our conclusions.

II. THE QUARK SDE AND THE LIGHT CONE

In this section we discuss our light-cone formulation
the SDE. Since the light-cone representation of the BSE
bound systems is described extensively in the literature,
also briefly review the BSE, which provides motivation f
the present work, and explain its applicability.

The full dressed quark propagator,S(p), satisfies ind
space-time dimensions the SDE~see Fig. 1!:

S21~p!5S0
21~p!2S~p!,

S~p!5
ig2

vd24E ddq

~2p!d
G0a

m S~q!Gb
n~q,p!Dmn

ab~p2q!,

~1!

whereGb
n(q,p) andDmn

ab(p2q) are the dressed quark-gluo
vertex and dressed gluon propagator, respectively.S(p) is
called the self-energy. Indices in Greek letters represent
entz indices and those in Latin letters stand for color indic
The quantityv is the energy scale necessary in dimensio
renormalization. The reason for working in dimensiond in
this paper is twofold. On one hand, we want to keep
approach general so that models with ultraviolet divergen
can be explored, and on the other hand, we present a sa
calculation in Sec. IV of how such a divergence could
renormalized in theMS scheme numerically. This could b
used to tackle the important question of whether or not
mensional renormalization can produce sensible physica
sults in a nonperturbative calculation. We do not try to a
swer that question in this paper. All our solutions to the S
are obtained in models with no ultraviolet divergencies.

The color structure of all quantities in Eqs.~1! is known:
The bare vertex isG0a

m 5gmla/2, the dressed vertex i
Gb

n(q,p)5Gn(q,p)lb/2, and the gluon propagator i
Dmn

ab(k)5dabDmn(k), so that the color indices can be co
tracted: lalbdab516/3. The inverse bare propagator
S0

21(p)5p”2mc , with the current quark massmc being zero
in the chiral limit or estimated from partially conserve
axial-vector currents.

The solutions of the SDE are of the form

S21~p!5p”A~p2!2B~p2!. ~2!

Physically, the most significant aspect of the solution for
two functions A(p2) and B(p2) is the ratio M (p2)
5B(p2)/A(p2), which is interpreted as the effective mass
04520
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quark. Since isolated quarks are confined, the interpreta
of this mass is not as straightforward as for the electron S

The light-cone formulation of quantum mechanics@1#
starts with the demonstration that in the light-cone repres
tation one obtains light-cone Poincare´ generators, with an
interaction-free Lorentz boost in one direction. One can a
show that the analogous result is true in a light-cone fi
theory. This enables one to study high momentum tran
processes, such as form factors in the region above 1 G
which is very difficult in the instant form.

Before discussing the light-cone representation of
SDE we review the well-known light-cone representation
the BSE. Since in physical applications of the BS amplitud
to form factors and transition amplitudes one needs
dressed quark propagator, the main motivation for o
present work is to formulate a light-cone Schwinger-Dys
equation to be used with the light-cone Bethe-Salpeter
malism in Minkowski space.

There has been a great deal of work on bound-state p
lems in light-cone representations based on the BSE.
example, the BSE for the pion in relative coordinates has
form

C~k!5E d4lK~k,l !C~ l !, ~3!

whereK is the kernel andC is the BS amplitude. One ca
obtain a light-cone representation@11# by inserting a delta
function to include the light-cone on-shell condition an
eliminate thel 2 variable,

C~x,k'!5E @dy#@d2l'#K~x,k' ;y,l'!C~y,l'!. ~4!

BS amplitudes from this type of equation have been use
study the transition from nonperturbative to perturbative
gions @12,13#. We emphasize that for such calculations bo
on-shell and off-shell aspects of the functionsA(p2) and
B(p2) are needed. Therefore the prescription of project
onto the light cone as for the BSE is not appropriate. We n
discuss our approach to the SDE for the quark propagato
the light cone.

We solve Eq.~1! in a light-cone representation by using
method introduced originally for perturbation theory. In Re
@10# Chang and Ma showed how the rules of light-cone p
turbation theory1 ~LCPT! can be derived from the usual co

1More accurately, their work refers to the Feynman rules in
infinite momentum frame, but the difference is of no bearing on
present discussion.
6-2
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LIGHT-CONE REPRESENTATION OF THE QUARK . . . PHYSICAL REVIEW C66, 045206 ~2002!
variant Feynman rules simply by changing into light-co
variables:

q65q06q3, q'5~q1,q2!.

In simple calculations, such as a one-loop self-energy
gram of an electron in QED~or even of a quark in QCD!, an
important feature of the new rules becomes apparent:
range of integration over theq1 variable becomes finite:

E
2`

1`

dq1→E
0

p1

dq1,

wherep1 is the ‘‘plus’’ ~longitudinal! component of the ex-
ternal momentum. As shown in Ref.@10#, this feature is re-
lated to the fact that in LCPT there are no diagrams w
lines going backwards in time and no vacuum diagra
~with the exception of zero modes and instantaneous term
fermion propagators!. This is a crucial property of light-cone
field theory, since it simplifies tremendously the structure
the vacuum.

Consider now the form of the integrals needed for
calculation of the quark self-energyS in the SDE. In this
case we are faced with the nonperturbative self-energy
gram seen in Fig. 1. Incidentaly, this diagram is analogou
its perturbative one-loop counterpart. The difference lies
the functional forms of the Green’s functions involved. Wit
out loss of generality, the integrals occuring in our SDE d
gram can be written as a sum of terms of the form

E ddq

~2p!d
qm1qm2 . . . qmnf Q~q21 i e! f G@~p2q!21 i e#,

~5!

where thef Q contains factors coming from the quark prop
gator and possibly from the dressed vertex function,f G con-
tains factors coming from the gluon propagator and also p
sibly from the dressed vertex function, and the factors ofqm i

come from factors ubiquitous ofq” . Since the external mo
mentump is held fixed during this integration, possible fa
tors of pm i and possible dependence of the Green’s functi
on p2 are not relevant to the analysis below. In the pres
discussion we do not need the detailed form of our mod
described in Sec. III, but only the aspects that give the
gularities which must be considered in carrying out the in
grals.

Consider first the scalar case,n50 in Eq. ~5!, i.e., no
factorsqm. Using the variables

a5q1/p1, s85q•q, s5p•p, q'8 5q'2ap' ,

the integral in Eq.~5! becomes

E ds8dadd22q'8

2uau~2p!d
f Q~s81 i e! f G@2a21P~q'8

2 ,s,s8,a,e!#,

~6!

where all the integrals are over the entire real line, and

P~q'8
2 ,s,s8,a,e![q'8

21a~12a!~2s!1~12a!s82 iae
04520
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is reminiscent of the similar quantity that appears in the o
loop calculation after the well-known Feynman trick of com
bining denominators. Particularly, consider the casef G(s)
51/(s2m1

2)a1. The contribution to this integral coming from
a simple pole in f Q at s85m0

22 i e becomes, after the
q'8 -integration,

a21f G~2a21P!

→ ~21!2a1aa121

@a~12a!~2s!1~12a!m0
21am1

22 i e#b
,

whereb is related tod, a1, and to the strength of the singu
larity in f Q . This is exactly what one gets when followin
Feynman’s procedure for calculating the one-loop version
this integral, here with the longitudinal momentum fractio
playing the role of the Feynman parameter. While this pa
lel between our light-cone approach to a nonperturbative
culation and the standard approach to a perturbative calc
tion cannot be taken too far~certainly we want to compute a
nonperturbative quark propagator and do not want to mo
it with a perturbative one!, we will make use of it in this
paper to present a test of our numerical procedure. Thi
done in Sec. IV.

Returning to Eq.~6!, let zQ andzG now be singular points
of f Q and f G , respectively. Then the integrand in Eq.~6! has
singularities ins8 at pointss18 ands28 whose imaginary parts
are given by

Im~s18!5Im~zQ!2e, and Im~s28!5
a

a21
@ Im~zG!2e#.

It is then clear that if we assume that bothzQ andzG are on
or below the real axis, then the corresponding singularitie
the integrandss18 ands28 will be on opposite sides of the rea
axis if and only ifa/(a21),0, i.e., 0,a,1. For values
of a outside this interval, both singularities fall on the sam
side of the real axis, and the contour of thes8 integration can
be closed with a semicircle that does not contain either
them. Thusif all the singularities of the functions fQ and fG
occur on or below the real axis, only the interval~0,1! in the
integration overa contributes to the integral.2 This reason-
ing is only a slight modification of the one presented in R
@10#. The integral in Eq.~6! then becomes

1

4pE2`

1`ds8

2p E
0

1

daE dd22q'8

~2p!d22
a21f Q~s81 i e! f G

3@2a21P~q'8
2 ,s,s8,a,e!#. ~7!

We see that to preserve important features of light-co
theory ~here reflected in the integral overa being over a
finite range! we must make assumptionsa priori about the
location of the singularities inf Q and f G . Our assumptions

2We are tacitly assuming that the integrals are ultravioletly c
vergent and thus closing the contour with a semicircle at infin
introduces no additional contribution.
6-3
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are much like the ones necessary to justify a Wick rotati
Our approach, however, allows us to solve the quark SDE
timelike values of the momentump, a possibility not readily
available after a Wick rotation.

The steps taken above to show that the integration ovea
is limited to the interval (0,1) are relevant in more than t
formal sense of showing agreement with other light-co
calculations. In a numerical procedure, after the limite
→01 is taken, the exact locations of the singularities mig
get blurred. Considerations of what regions contribute m
be made beforehand. A numerical integration overa over the
entire real line would yield incorrect results. In Sec. IV w
show through a numerical test that our form yields corr
results.

The Green’s functions involved in computing the se
energy in Eqs.~1! contain factors ofq” andp” . These lead to
computing the integral in Eq.~5! with one or more factors
qm i.3 As discussed in Ref.@10#, in some cases the previou
reasoning fails for some components of the integrals~usually
referred to as ‘‘bad’’ components!. The issue then arises as
whether or not one can avoid all such components. In
such cases we are able to avoid them and compute only
‘‘good’’ components. The ‘‘bad’’ components are recover
by the requirements of Lorentz symmetry. The results for
integrals we need are given in the Appendix.

A comment on expression~7! as compared to a typica
light-cone calculation is in order. In most light-cone calcu
tions, the integral over all values ofq2 @equivalent to the
integral over all values ofs8 in Eq. ~7!# is absent. An on-shel
condition that determines the value ofq2 is used instead. In
other words, the calculations are performed in the light-co
version of the so-called old-fashioned time-ordered pertur
tion theory~TOPT!. This has become so customary that t
rules of light-cone TOPT are at times identified with t
rules of light-cone theory.

The equivalence between TOPT~either light cone or
equal time! and the Feynman rules is usually shown by clo
ing a contour of integration to pick up a singularity in
propagator and thus put a particle on shell. This can be d
in the equal-time formulation~by first doing the integral ove
q0, for example! or in the light-cone formulation~by first
doing the integral overq2, for example!. One should refrain
from carrying out this procedure in the SDE, in either fo
mulation. Most certainly, the singularities of the Green
functions involved are more complicated than just a sim
pole. In this respect both the light-cone and the equal-t
formulations are similar.

There is an important difference, however, in what
reader of this workmight expect to see. While it has become
the norm to see covariant four-dimensional Feynman ru
when working in the equal-time formulation, it might hav
been expected that, in this paper, the light-cone appro
would have gotten rid of one integration already in Eq.~7!

3For example, a factor ofq” would imply looking at the integral
with one factorqm ~vector case!, while a factor likeq” p”q” would lead
to an integral with a factorqmqn ~a second rank tensor!, and so on.
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by replacing it with an on-shell condition. Hopefully thi
comment clarifies why that is not so.

III. MODELS

There has been an extensive program of research on
SDE during the past decade. See Refs.@4,14# for reviews.
The usual approach is to model the gluon propagator an
use symmetries to express the dressed vertex in terms o
propagators, or to use the free vertex. The model is c
strained by the vacuum condensates. We follow this gen
procedure in our light-cone approach. Since our appro
allows one to define meson form factors for all momentu
transfers, which is not true of instant-form approaches,
plications of our solutions to hadronic properties will b
most interesting.

Since in all recent SDE calculations of the quark prop
gator either the bare vertex is used~the so-called Rainbow
approximation! or identities are used to express the dres
vertex in terms of the dressed propagator~as we discuss in
Sec. III B below!, the main problem in obtaining a quar
SDE that represents QCD is to find a realistic model for
gluon propagator. Recognizing that instantons can give
main nonperturbative QCD~NPQCD! physics in the
midrange region, but do not give confinement, we emp
two models: the polynomial model to give the infrare
enhancement aspects of QCD, and the instanton mode
midrange NPQCD. An important part of our effort is to e
plore how one can use these two models simultaneously
minimize double counting. As we discuss in Sec. V, we a
able to do this successfully.

The Lorentz tensor structure of the gluon propagator
the general form

Dmn~k!5
21

k21 i e
H S gmn2

kmkn

k21 i e
D D~k2!1j

kmkn

k21 i e
J .

~8!

Here j is the gauge parameter. The choice of a model is
pick a value ofj, such asj50 for the Landau gauge, to
model the form of the functionD(k2), and the vertex. The
two essential nonperturbative features that the gluon pro
gator must be consistent with are confinement and
vacuum condensates. It has long been known that with
gluon propagator having a 1/k4 behavior there is confinemen
@15# and one can fit the string tension. On the other hand
is also known that with the instanton liquid model@16# one
can fit the quark and gluon condensates.

We explore two models forD(k2) in the present work. On
one hand, we model the gluon propagator with a sum
terms, each containing a different power of the momentu
We refer to this as the polynomial model.4 This allows for a
tunable infrared enhancement of the gluon propagator.
the other hand we want to investigate the consequence
including instanton effects explicitly into the quark SDE~at

4The name might not be the most appropriate: ‘‘polynomial’’ su
gests a sum of terms involving variables tointegerpowers.
6-4
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FIG. 2. Fitting ae f f with Eq.
~11!. See text for values of param
eters.~a! For energies up to 350
GeV. ~b! A closeup for lower
energies.
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the risk of double counting these effects!. We refer to this as
the instanton model. We discuss the double counting prob
in Sec. V.

A. Polynomial model

We work in the Landau gauge withj50, and take as ou
model gluon propagator

Dmn~k!5
21

k21 i e
S gmn2x

kmkn

k21 i e
D D~k2!, ~9!

with the parameterx introduced to allow us to use
Feynman-like gauge@the gauge whereDmn(k)}gmn]. Thus
x50 for the Feynman-like gauge andx51 for the Landau
gauge. See Refs.@4,14# for discussions the choice of gaug
and gauge invariance for the SDE’s in QCD.

It has been shown elsewhere@17# that renormalization
group arguments yield an approximate relation between
renormalized coupling constant, the renormalized glu
propagator, and the effective coupling:

gR
2DR~k2!'ge f f

2 ~k2!54pae f f~k2!, ~10!

where the subscriptR denotes renormalized quantities, a
ge f f is the effective running coupling constant. The ren
malized coupling is related to the running coupling bygR

2

[ge f f
2 (Q2)uQ25m2, wherem2 is the renormalization point.

As discussed in Ref.@4# Sec. 6.1, Eq.~10!, and the fact
that in the Landau gauge only the combinationg2D(k2) en-
ters the SDE, reduces the problem of modeling the non
turbative part of the gluon propagator to that of modeling
nonperturbative part ofae f f . We modelae f f with the ex-
pression

ae f f~k2!5(
l 51

N

~21!cll lS s0

k21 i e
D cl

. ~11!

Although the known logarithmic behavior ofae f f in the
high energy limit cannot be fitted accurately with this form
reasonable approximation can be obtained up to ener
well beyond our main region of interest. Thus, for examp
with N52, s051 GeV2, l150.222, c150.07, l250.25,
and c250.6 the values forae f f obtained from our fit are
within the accepted error bars as published, for example
04520
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PDG5 @18# for energies from about 1.3 GeV to 350 GeV~see
Fig. 2!. Fits to higher energies can always be achieved
adding more terms in Eq.~11! with smallercl . As can be
seen in Fig. 2, with these parameters, our model undere
mates the accepted values forae f f in the important energy
range of a few hundred MeV to about 1.2 GeV, although i
widely believed that it overestimates them in the deep inf
red.

There is not complete certainty, however, about what h
pens to the effective coupling or to the gluon propagator
very low energies. Some results@19,17# suggest that the pole
at k250 gets enhanced and could be as strong as 1/k4. This
would provide an explanation for confinement as shown
t’Hooft @15#. Other results from calculations within th
Dyson-Schwinger formalism@20#, and from lattice simula-
tions @21#, with confinement, suggest that the pole gets so
or disappears and that the gluon picks up an effective m
Our model describes an infrared-enhanced gluon propag
although not as strongly as 1/k4.

We now introduce the notation for the self-energy in t
SDE,S(p) in Eq. ~1!, for the polynomial model,

S21~p!5S0
21~p!2SP~S!, ~12!

whereSP is the SDE self-energy in the polynomial mode
defined by Eqs.~9!–~11!, and S(p) is the dressed quark
propagator in this model. Since the self-consistent calcu
tion depends onS(p), we include it as an argument of th
self-energySP(S). This notation is introduced since the s
lution for the quark propagator in the instanton medium t
we discuss next was obtained in Ref.@22# from a similar
self-consistent equation.

B. Instanton model

As we shall discuss in Sec. V below, one cannot obt
the known quark condensates with the polynomial model.
the other hand, it is known that with a pure instanton mo
one can obtain the quark condensate but not the string
sion. For this reason we consider a model with quarks pro

5Data forastrongtaken from the PDG at http://www-theory.lbl.gov
;ianh/alpha/alpha.html
6-5
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L. S. KISSLINGER AND O. LINSUAIN PHYSICAL REVIEW C66, 045206 ~2002!
gating in the instanton medium and in addition the glu
propagator having a 1/ka structure to get infrared
enhancement effects.

Since the instanton forms have been obtained in Euc
ean space, however, one must make an analytic continua
to obtain a Minkowski-space formulation, as was describ
in detail in the early days of using instantons for QC
bubble nucleation@5#. It has recently been shown that with
Minkowski-space form of an instanton piture with the pure
gluonic Lagrangian for the bubble walls in the early unive
QCD phase transition one obtains a reasonable estima
the surface tension@23#. In the present work, however, wher
we employ a model for the quark propagator in the instan
background we do not explore the analytic continuation. T
would be an important topic for a future investigation.

The starting point is the solution for the instanton usi
the classical action@24#, which gives for the instanton colo
field

Am(x)a
inst 5

2hamnxn

x21r2
, ~13!

Ginst~x!•Ginst~x!5
192r4

~x21r2!4
,

wherer is the instanton size. The quark zero modes in
instanton background@25#, for the 1 mode with the instan-
ton at positionz, are

Cz~x!5
r

Ax2p~x21r2!3/2

11g5

2
ga~xa2za!U, ~14!

wherer is the instanton size andU is a unitary color-spin
matrix. From this the widely used model of the quark prop
gating in the instanton–anti-instanton medium@28# was de-
rived. In this model, the quark propagatorSI(p) was calcu-
lated:

SI~p!5@p”AI~p2!2BI~p2!#21,

AI~P!51,
~15!

BI~P!5KP2f 2~rP/2!,

f ~z!5
2

z
2@3I 0~z!1I 2~z!#K1~z!,

where K'0.29 GeV21, the instanton density r
'1.667 GeV21, P5A2p2, and theI ’s andK1 are modified

FIG. 3. Quark propagating in the instanton medium.
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Bessel functions of the first and second kind, respectiv
The quark propagating in the instanton–anti-instanton m
dium is illustrated in Fig. 3.

In our instanton model we include instanton effects in t
SDE by using the propagator in Eq.~15! to effectively add a
contribution to the gluon propagator6 that should account for
the instanton effects. The exact forms used are discus
below. We are aware of the risk of double counting instan
effects with such a procedure. Being the complete equat
of motion for the Green’s functions of the theory, the SDE
should contain all nonperturbative effects, including those
instantons.7 It is not clear, however, that the equation resu
ing after truncating the SDE and modeling the gluon pro
gator and the quark-gluon vertex still contains the instan
effects. That is exactly what we intend to explore, as well
the problem of double counting nonperturbative QCD
fects.

Ultimately, the justification for this model is the sca
separation of the different phenomena: the instantons g
the nonperturbative QCD at the length scale of about 1/3
while the polynomial model gives the far infrared behavi
As a simple example of the missing physics, if one uses o
the polynomial model for the gluon propagator and igno
instanton effects consider a delta-function model for
gluon propagator. See, e.g., Ref.@14# for the solutions to the
SDE in such a model. The quark and mixed quark cond
sates are given by

^0u:q̄~0!q~0!:u0&52
3

4p2E0

1`

dSS
B~S!

SA2~S!1B2~S!
,

^0u:q̄~0!gs•G~0!q~0!:u0&

5
9

4p2E0

1`

dSSH S
B~S!@22A~S!#

SA2~S!1B2~S!

1
81B~S!@2SA~S!$A~S!21%1B2~S!#

16@SA2~S!1B2~S!#
J .

~16!

One can fit the strength of the delta-function gluon propa
tor to obtain the correct quark condensate. Then from E
~16! it is simple to calculate the mixed quark condensa
The result is an order of magnitude different from the ph
nomenological value. This is an example of the need to
clude both the long-distance and the medium-distance n
perturbative QCD effects. We return to this when we disc

6The contribution is explicitly added as an additional term in t
SDE. Indirectly, it implies adding a correction to the gluon prop
gator.

7Instantons, however, open up the possibility of the presence
so-calledu term in the QCD Lagrangian that is not consider
when deriving the SDE’s. Even so, all evidence suggests that s
terms, if present at all, must be very small. See Ref.@26# Secs. 16.2
and 16.3, and references therein.
6-6
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the results of our calculations. For completeness we incl
here the equation forf p ~see Ref.@4#, Appendix C!

f p
2 5

3

4p2E0

1`

dS
SM~S!

A~S!@S1M2~S!#2 FM ~S!2
S

2

dM

dSG .
Notice that in these equationsP and S refer to Euclidean
momenta.

We now discuss how we include instanton effects in
quark SDE. Although the solution given in Eqs.~15! for the
propagator of a quark moving in an instanton backgrou
was obtained by the expansion of an integral equation@22#
not derived from a Schwinger-Dyson formalism, it is po
sible and convenient for us to write that equation in a fo
analogous to that of a SDE, as in Eq.~12!:

SI
21~p!5S0

21~p!2S I~SI !, ~17!

whereS I is the kernel of an integral equation whose ex
form is not necessary for the present argument,8 and whose
solution is the propagatorSI as given in Eqs.~15!. Although
this equation is not derived in Ref.@22# by modeling the
gluon propagator in a SDE, we recognize that, in principle
implies a model for the gluon propagator, namely, the mo
that would yield the solution given by Eqs.~15! in a true
SDE. We use this observation in the following discussion

Given that the self-energy is thesumof all one-particle-
irreducible diagrams, one could think of writing an equati
that would include both types of one-particle-irreducible d
grams as

S21~p!5S0
21~p!2@SP~S!1S I~S!#, ~18!

where S I(S) is the self-energy with the gluon propagat
which would giveSI in the SDE. Solving Eq.~17! for S0

21

and substituting into Eq.~18! we immediately get

S21~p!5SI
21~p!2SP~S!2@S I~S!2S I~SI !#. ~19!

As a first approximation one could neglect the terms
the square brackets in this equation, and end up with

S21~p!5SI
21~p!2SP~S!. ~20!

Along a different line of thought, one could suggest tha
term simply be added to the starting SDE to account for
contribution to the self-energy coming from the interacti
of the propagatorSI with a cloud of gluons described by th
polynomial model. This will result in an equation such as

S21~p!5S0
21~p!2SP~S!2SP~SI !. ~21!

Finally we consider the case where besides adding this te
one proposes that it is the propagatorSI that should get
dressed, i.e., that it is the quark moving through the instan

8One could, in principle, extract this form directly from either E
~7! or Eq. ~12! of Ref. @22#.
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background~as opposed to just the free quark! that gets
dressed with this gluonic cloud. That would result in

S21~p!5SI
21~p!2SP~S!2SP~SI !. ~22!

We discuss the results with Eqs.~12! and ~20!–~22! and the
question of double counting in Sec. V.

C. The vertex

The results reported in this paper were all obtained w
the approximationGm(p,q)5gm ~the so-called rainbow ap
proximation!. The popularity of this approximation is justi
fied by its simplicity. It suffers the serious drawback of vi
lating the Ward-Takahashi identity~WTI!

~p2q!mGm~p,q!5S21~p!2S21~q!. ~23!

This identity holds in QED, and the forms for the verte
discussed below were proposed for QED. Such forms, h
ever, are often used for QCD as well, since the analog
identity for QCD @known as the Slavnov-Taylor identit
~STI!# ~STI! reduces to Eq.~23! if ghost effects are ignored
Ignoring these effects is believed to be important in the
frared region.

This identity can be used to express the longitudinal p
of the vertex in terms of the propagator. Ball and Chiu@22#
have proposed the form

Gm~p,q!5Gm
BC~p,q!1(

i 21

8

f i~p2,q2,p•q!Tm
i ~p,q!,

~24!

where theTm
i ’s are eight transverse tensors@i.e., tensors that

satisfy (p2q)mTm
i (p,q)50, and thus do not contribute t

the WTI#. The form of these tensors is given in Eq.~3.4! of
Ref. @27#. The eight scalar functionsf i are not constrained by
the WTI. Gm

BC is given by

Gm
BC~q,p!5gm@A~q2!~12b1!1A~p2!b1#

1~q1p!m@q”b11p” ~12b1!#
A~q2!2A~p2!

q22p2

2~q1p!m

B~q2!2B~p2!

q22p2
. ~25!

This is really a small modification of the vertex proposed
Ball and Chiu. In their formb151/2, but other values are
often used to explore the effects of the transverse part.
sides compromising the symmetry ofGm , changing the value
of b1 can have serious effects on renormalizability, beca
of its effect on the transverse part, as discussed below.
WTI itself is satisfied for any value ofb1, and for any choice
of f i ’s. The converse is also true: any vertex that satisfies
WTI can be expressed through Eqs.~24! and ~25!.

The vertex has been further constrained by other stud
in particular, Burden and Roberts@28# list a number of re-
quirementsGm should satisfy, besides the WTI. See also@4#
Sec. 3.7. Exploiting these requirements, and particularly
6-7
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need to maintain multiplicative renormalizability in QED
Curtis and Pennington@29# narrowed down the last term i
Eq. ~24! to

Gm
CP~q,p!5b2@gm~q22p2!2~q1p!m~q”2p” !#

3
~q21p2!@A~q2!2A~p2!#

~q22p2!21@M2~q2!1M2~p2!#2
. ~26!

Here toob251/2 in the original formulation. Applying the
approach explained in Sec. II, we have found that when
ing

Gm~q,p!5Gm
BC~q,p!1Gm

CP~q,p!,

one must consistently setb15b2. This ensures, for example
in a polynomial model with a term in Eq.~11! having cl
50, that the functionA remains free of divergencies in th
Landau gauge, a well-established result. Notice that this
plies that using justGm5Gm

BC is, in general, inconsistent.
We are currently investigating using this form in o

model. Although that entails neglecting the effect of gh
fields in the STI, it is a significant improvement over th
rainbow approximation. Also, Heet al.have recently derived
an identity similar to the WTI, but for the transvers
fermion-gauge boson vertex@30#, which we shall employ.

IV. THE NUMERICAL PROCEDURE

Equation ~A6!, derived in the Appendix using the ap
proach described in Sec. II, is the basis for our numer
procedure for solving the quark SDE in Minkowski spac
The light-cone approach used to obtain Eq.~A6!, and in
particular the treatment it makes of the singularities, conta
some subtleties and technicalities. Here is a well-known
ample where using light-cone variables leads to a dead e9:

lim
e→01

E dk0dk1

~k0
22k1

22m0
21 i e!n

n.1.

This integral is perfectly convergent and can be compu
for example, by closing the contour in thek0 integration with
a semicircle at infinity. The integral is, of course, nonvanis
ing. Using light-cone variables, one would get the integra

lim
e→01

E dk1dk2

2~k1k22m0
21 i e!n

n.1.

If we now think of closing the contour of, say, thek2 inte-
gration, we see that the singularity occurs at (m0

22 i e)/k1.
But then the singularity can always be avoided for anyk1

Þ0. Only for k150 is thek2 integration nonvanishing, bu
then, it must have a delta-function-type singularity. In th
example the shift in the location of the singularities due
the change to light-cone variables has transformed a sim
situation into an intractable one.

9O.L. wishes to thank Matthias Burkardt for bringing this examp
to his attention.
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The purpose of this section is to present a numerical
of Eq. ~A6!, as well as to point out some important techn
calities. The idea is that with a ‘‘first guess’’ for the qua
propagator in the formS21(p)5p”2m0, the output of the
right-hand side of the SDE after the first iteration can
computed analytically using Eq.~A5!, or numerically using
Eq. ~A6!. Comparison of these two outputs provides info
mation on the reliability of our procedure.

Once we verify that the procedure works accurately
just the first iteration, we can use it with confidence in fu
ther iterations. This is so because the accuracy of the pr
dure does not depend of the functional form used forS(p)
~the numerical procedure does not ‘‘know’’ that form!.

As usual in numerical integration procedures, only t
numerical values of the functionS(p) @or rather, of the func-
tionsA(p2) andB(p2)] on a grid are used. The value of th
integral is estimated by calculating the integral of a smo
function built over those numerical values, using a sim
trapezoidal intrapolation or similar. The accuracy of the p
cedure then depends only on how well this smooth funct
approximatesS(p). This in turns depends on how smoo
S(p) is in the region in question, but not on its function
form. So, as long as the quark propagator does not dev
singularities in the region being explored, the accuracy of
last ~or any other! iteration in that region should be as goo
as that of the first. As already explained above, the o
reason for using a simple perturbative quark propagato
this test is that for such a form of the propagator the value
the integral is well known analytically.

We then input the above described ‘‘first guess’’ for t
quark propagator withm052 GeV. Rather than using jus
one value foral in Eq. ~A6!, we use the full gluon propagato
with parameters as described in Sec. III. Namely,

gR
2DR~k2!54pH ~21!c1l1S s0

k21 i e
D c1

1~21!c2l2S s0

k21 i e
D c2J ,

wheres051 GeV2, c150.07, l150.222, c250.6, andl2
50.25 ~hereal511cl). We will also discuss the ultraviole
divergent casec150. For the vertex we setGn5gn. With
these forms we carry out the integrals in the SDE anal
cally using Eq.~A5! and numerically using Eq.~A6!. We
present graphs comparing the two outputs. We stress
these are not solutions to the SDE but merely the outpu
running the iterative procedure once. Solutions to the S
are obtained using this same procedure repeatedly, but t
one has no analytic result to check against. Those solut
are presented in Sec. V.

Keeping with tradition, the graphs are shown with a r
versedx axis. We use the variableSE[2s, equivalent to the
Euclidean invariant momentum squared. We show, howe
negative values ofSE , which lay outside the usual Euclidea
space, and represent the timelike region. The numerical i
gration is carried out up toSEMAX

564 GeV2 and an estimate
of the contribution of the remaining integration out to infini
6-8
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FIG. 4. Comparison of the nu-
merical and analytic calculation
of the quark propagator after on
iteration. ~a! Analytic result from
Eq. ~A5!; numerical integrations
of Eq. ~A6!: ~b! with tail contribu-
tion, ~c! without tail contribution.
Notice the appearance of a singu
larity and an imaginary part.
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~‘‘tail contribution’’ ! is added. As will be seen on the grap
the consequences of omitting this tail contribution are
merically important. In fact, in order to reproduce the n
merical values of Eq.~A5!, Eq. ~A6! demands an elaborat
integration procedure, which we now outline.

The integrand in Eq.~A6! is singular ats85s, i.e., when
the external and internal momenta are the same. We poin
that this is a general feature of infrared-enhanced mod
and not a consequence of our particular form for the glu
propagator. While this singularity never renders the integ
divergent10 in a formal sense, it does pose numerical dif
culties, since one has to deal with sampling an unboun
integrand.

The computing market is full of numerical integratio
packages that handle all sorts of singularities, but one m
be careful of what to use. The heart of the issue at hand
be grasped by examining Eq.~A6! carefully. It suffices to
analyze the singularity occurring in the hypergeometric fu
tions whose last argument iss8/s. When this argument is
zero, these functions are perfectly regular~in fact, they equal
one!; when this argument is one, the functions are singu

We then need to sample this function~and the whole in-
tegrand! at a fine grid betweens8/s50 ands8/s51. But this
is almost self-contradicting. Whens is, say, the first point in

10The i e procedure makes the contribution of this singularity w
defined. An infrared divergence does appear in the integral ovea
in Eq. ~A4!, for m150 and largeal . In Eq. ~A6! this divergence
sits in theG functions.
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the grid to the right of zero, what points are left fors8 be-
tween zero ands? One needs a finer grid fors8, of course.
But this implies that we need the values off Q(s8) ~from the
previous iteration! on this finer grid. Eventually, it mean
that the computationmust start with a much finer grid than
one on which one intends to obtain the final solutions, at
least in the deep infrared region. Since the behavior of
solutions in this region, and upon crossing over to the tim
like region, is of great interest to us, we cannot allow for lo
of accuracy there. The number of points in the initial gr
would then have to grow exponentially with the number
iterations needed to solve the equation. The number of it
tions could be anywhere from about a dozen~not small for
exponential growth! to about a hundred.

One solution is to avoid model gluon propagators w
infrared enhancement, e.g., to use a Gaussian model. W
not feel, however, that Gaussian models are appropriat
the timelike region, and one of the purposes of this pape
to explore the effects of a tunable infrared enhancement.
solve this problem as follows:

~i! Choose a reasonably fine grid in the region where
solutions are wanted.

~ii ! Evaluate numerically justf Q on that grid~the singu-
larity we are considering now does not occur inf Q).

~iii ! Construct a simple intrapolating function on the
values that approximatesf Q ~using a trapezoidal method o
similar!.

~iv! The product of this simple intrapolating functio
times the rest of the integrand is then a good approxima
to the integrand.

l

6-9
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FIG. 5. Comparison of the nu-
merical and analytical calculation
of the MS-renormalized quark
propagator after one iteration in
an ultraviolet divergent case.~a!
Analytical subtraction in Eq.
~A5!; numerical integrations of
Eq. ~A6!: ~b! with tail contribution
and MS subtraction,~c! without
tail contribution or MS subtrac-
tion.
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~v! Use the fact that this product can be integrated a
lytically to estimate the integral without further approxim
tions.

This approach of sampling numerically only a part of t
integrand in a numerical procedure is also used in
method of Gaussian quadratures. The rationale in
method is slightly different, however. A problem similar
the one we describe has been encountered in Ref.@7#, as
discussed there in Sec. 4.3.1.

Additionally, there is the ever present fact of having
integrate over all energies. Typically one integrates up
some large number. Once again this becomes a problem.
should integrate up to some value ofs8 large enough for the
integrand to settle into its asymptotic behavior. In our ca
this means values ofs8 large enoughas compared to s, since
for s8's, the integrand is still displaying highly nontrivia
behavior. Once again, how can this be done for the larg
values ofs? One needs a larger grid fors8. This now means
that the computation must start on a grid larger than one
which one intends to obtain the final solutions. Furthermore,
in Eq. ~A5! the integrals are carried out to infinity. Diverge
cies, when they exist, are treated with the dimensional re
larization method, not by integrating up to some cutoff m
mentum. In order to have Eq.~A5! as a reference, we choos
to carry out the integrals in Eq.~A6! out to infinity as well.
This is done as follows:

~i! From the last value off Q on the grid, and from its
known or guessed behavior11 for large momenta, construct
function to approximatef Q at larges8.

~ii ! The product of this function times the rest of the i
tegrand is a good approximation to the integrand for larges8.

~iii ! Use the fact that this product can be integrated a
lytically out to infinity to estimate the ‘‘tail contribution.’’

As the graphs below show, with this procedure the cal
lations become highly accurate, except around singular
in f Q . Sure enough, extracting the behavior of the solutio
around their own singularities is no easy task, but that r
resents a separate issue from the ones discussed here. I

11When the behavior was guessed, the correctness of such a
was verifieda posteriori. The calculation was repeated until agre
ment was reached in this sense.
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work we do not attempt to extract that behavior. In Sec.
we report the locations where the solutions seem to deve
a singularity.

The graphs in Fig. 4 show the real and imaginary parts
the functionsA andB after one iteration using the paramete
above. As can be seen from the graphs, the procedure is
accurate~provided the estimate of the tail contribution
added!. The relative error is of the order of thousandths o
percent, although it is somewhat larger right before~but not
after! the singularity atSE52m0

2 ~or s5m0
2). As pointed out

above this is not the singularity treated with the proced
discussed in detailed above. The contribution from this s
gularity was extracted by using thei e procedure suggeste
by the argument off Q in Eq. ~A4! and dropped in Eq.~A6!.
For values ofs just larger thanm0

2 ~or, in the graphs, values
of SE right before the singularity! there is not enough point
to sample in order to extract the principal value accurate
For values ofs just smaller thanm0

2 ~or, in the graphs, values
of SE right after the singularity!, the singularity occurs out-
side the integration region and does not affect the calcula
@as seen in Eq.~A6!, the integration into the timelike region
stops ats85s]. This is the reason why accuracy is affecte
only on one side of the singularity.

While this concerns a sample calculation with a ba
propagator, a singularity in the dressed propagator will h
similar consequences. In this sample calculation the fact
the exact location and nature of the singularity is alrea
known has been exploited. This would not be as straight
ward in further iterations. The imaginary parts shown in t
graphs were obtained from the samei e procedure.

ess

FIG. 6. Two different fits toae f f .
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TABLE I. Numerical results.

Vertex: Gn5gn, rainbow approximation
Model (2^:q̄q:&)1/3 (2^:q̄gs•Gq:&)1/5 f p M (0)

~MeV! ~MeV! ~MeV! ~MeV!

Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 Set 1 Se

Equation~27! 58 288.5 313.5 1111.5 13 89 86.5 770.5
Equation~28! 221 227.5 558 906.5 91.5 117.5 534 1084
Equation~29! 171.5 153.5 509 975.5 58.5 54.5 308 752
Equation~30! 219 159.5 624 1001 91 60 607 804

For comparison

Equations~15! 216.7 456.5 86 417.6
Other 200–250 400–600 92 ;300
calculations Sum rules, lattice QCD Experiment NRQMa

aSee footnote 12.
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Figure 5 shows therenormalizedreal parts of the same
functions, with the crucial difference of settingc150, rather
than c150.07. This causes an ultraviolet divergence. T
imaginary parts in this calculation contain no divergence,
they remain basically the same as in the convergent case
are not shown. In this case, the analytic results are renor
ized in theMS scheme. The numerical calculation was p
formed with d5412e, wheree521027. The divergence
comes in the tail contribution~which is almost constant fo
04520
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the divergent term!, and it is canceled by a numerical 1/e
subtraction in theMS scheme. The well-known result thatA
is free of ultraviolet divergencies in the Landau gauge r
ders this function insensitive to whether or not the subtr
tion is performed. Addition of the tail contribution, howeve
still significantly affects the nondivergent term (c250.6).
For B, it is possible to obtain a finite result by just droppin
the tail contribution~this would amount to cutoff renormal
ization!, but integrating to infinity and performing the 1/e
FIG. 7. Solutions to Eq.~27!
using set 1. The left part of the
graphs (SE,0) represents the
timelike region.
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FIG. 8. Solutions to Eq.~27!
using set 2. The left part of the
graphs (SE,0) represents the
timelike region.
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subtraction brings agreement with the renormalized re
from Eq. ~A5!. We do not include in this paper solutions
the SDE involving this renormalization procedure, b
thought it appropriate to show how such solutions could
obtained. We point out that it is not clear that dimensio
renormalization yields physically correct results in nonp
turbative calculations. This method could be used to exp
that important question.

V. RESULTS AND DISCUSSION

In the present section we give numerical results obtai
in models that do not contain instanton contributions exp
itly, and in models that do. As discussed at the end of S
III B, we study four different variants of the SDE, which w
list here again for easy reference:
04520
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S21~p!5S0
21~p!2SP~S!, ~27!

S21~p!5SI
21~p!2SP~S!, ~28!

S21~p!5S0
21~p!2SP~S!2SP~SI ! ~29!

S21~p!5SI
21~p!2SP~S!SP~SI !, ~30!

as a reminder, Eq.~27! is just Eq.~1! with the polynomial
model for the gluon propagator and does not explicitly
clude the instanton effects contained in Eqs.~15!, while Eqs.
~28!–~30! propose three different ways in which instanto
effects could be included.
.

FIG. 9. Solutions to the SDE

using set 1 in the spacelike region
~a! Result of Eqs.~15! from Ref.
@22#, ~b! Eq. ~27!, ~c! Eq. ~28!, ~d!
Eq. ~29!, and ~e! Eq. ~30!. In ~a!
A51, not shown.
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FIG. 10. Solutions to the SDE
using set 2 in the spacelike region
~a! Result in Eqs.~15! from Ref.
@22#, ~b! Eq. ~27!, and ~c! Eq.
~28!, ~d! Eq. ~29!, and ~e! Eq.
~30!. In ~a! A51, not shown.
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We use two different sets of parameters for the glu
propagator and the rainbow approximation for the vertex.
calculations were performed in the Landau gauge and in
chiral limit (mc50). The parameters for the gluon propag
tor are

set 1: H l150.222, c150.07,

l250.25, c250.6,

and set 2: H l150.222, c150.07,

l251.5, c250.85.

Parameter set 1 and the fit it generates to the coup
constant were already discussed in Sec. III A. Paramete
2 is introduced in order to improve the poor fit to the ph
nomenological quantities~described below! obtained with
parameter set 1 when the instanton contributions are no
cluded@i.e., when solving Eq.~27!#.

A comparison between both sets of parameters in term
how well they fitae f f is given in Fig. 6. It is clearly seen tha
parameter set 2, while producing a better fit to the pheno
enological quantities, entails a much larger value for the c
pling constant for energies under 5 GeV.

In Table I we give the values obtained for the quark co
densatê :q̄q:&, the mixed quark condensate^:q̄gs•Gq:&,
the pion decay constantf p , and the value12 of M5B/A at
p250 from the solutions to all four equations with ea
parameter set.

Most of the results obtained from Eq.~27! ~no instanton
effects! with parameter set 1, appear too low. This is m
likely due to the fact that with this parameter set the coupl
constant is too weak in the crucial region of a few hund
MeV to about 1.2 GeV. Inclusion of the instanton effec

12This value is often compared to the constituent quark m
(MQ) of the nonrelativistic quark model~NRQM!. As we show in
Figs. 7 and 8, the solutions to the SDE vary quite rapidly up
entering the timelike region. The valueMQ should therefore, at
best, be regarded as a rough guide to the value ofB/A at p250..
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seems to improve matters considerably, perhaps with the
ception of Eq.~29!. A plausible explanation for this may b
as follows.

An important feature of Eq.~19!, discussed in Sec. III B,
to include instanton effects, is the presence ofSI

21 instead of
S0

21 in the inhomogeneous term, which occurs also in E
~28! and ~30!, but not in Eq.~29!. In fact, Eq.~28! can be
regarded as an approximation to Eq.~30! up to terms of
order S(p)2SI(p), which can be considered small, as o
posed toS0

212SI
21 , which obviously is not small.

The results obtained from Eq.~27! ~no instanton effects!
with parameter set 2, appear closer to the correct val
often overestimating them. This is most likely due to the fa
that parameter set 2 displays stronger infrared enhancem
and overestimates the coupling the intermediate region~see
Fig. 6!. Inclusion of the instanton effects with parameter s
2, in most cases, does not lead to worse overestimation
could be naively expected. With parameter set 1 we hav
situation where the polynomial part of our model is contr
uting very little in the intermediate region~which we believe
to be crucial to the quantities we are computing!, and the
instanton effects bring in the bulk of the contribution. Wi
parameter set 2 both parts are contributing significantly,
their effects do not add up. Thinking along the lines of t
approach implied by Eq.~18! and the discussion that follows
this probably means that the two types of contributions to
self-energy are of a different nature and they do not alw
interact constructively. This suggests that the instanton
fects arenot being double counted with this procedure, a
though such conjecture needs further testing.

Figures 7 and 8 show graphs of the solutions obtain
using parameter sets 1 and 2, respectively, in Eq.~27!. The
focus is on the low energy spacelike region~right half of the
graphs! and the crossover to the timelike region~left half of
the graphs!. Already at small timelike energies—the grap
show energies up to about 360 MeV for parameter set 1
1.3 GeV for parameter set 2—the behavior of the functio
has changed dramatically from their behavior in the spa
like region. The functionA, for example, stops growing, and
say, the functionM for parameter set 1~see Fig. 7!, which
barely rises from its asymptotic value ofM (p2)→mc50 at
large spacelikep2 to about 90 MeV atp250, soars up to
almost 400 MeV already atp2'(360 MeV)2 ~timelike!.
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L. S. KISSLINGER AND O. LINSUAIN PHYSICAL REVIEW C66, 045206 ~2002!
Of interest is also the behavior of the functionF(SE)
[SEA2(SE)1B2(SE), the denominator of the propagato
The vanishing of this function would indicate a pole in t
quark propagator. Extrapolation of the behavior in the spa
like region would suggest a pole at much smaller timel
energies than those we have plotted, particularly for par
eter set 1~for set 2 some turning around is already noticea
at very low spacelike energies!. The behavior ofF right
around its zero, if there is one, would be difficult to extra
since the functionsA and B become singular there~see the
discussion in Sec. IV!.

F does seem to drop fast just to the left of the regions
have plotted. Thus, there seems to be a singularity in
quark propagator on the real axis, in our polynomial mod
The singularity would be atp2'(360 MeV)2 for parameter
set 1, andp2'(1.3 GeV)2 for parameter set 2. Further in
vestigation of the solutions deeper into the timelike region
necessary before this can be ascertained. Notice that thi
fers to Eq.~27! only.

This fact is relevant to considerations on the validity o
Wick rotation. The presence of singularities in the qua
propagator above the real axis creates difficulties with
Wick rotation. A prerequisitive to not having singularitie
above the real axis is to have themon the real axis,13 since
we know they must occur somewhere. Of course, m
questions remain open. The exact location of this singula
and the possibility of others, should be studied in this a
other models. Nonetheless, we consider it a good indica
that, in our model, the Euclidean and Minkowski approac
are probably equivalent.

Figures 9 and 10 compare the solutions to Eqs.~27!–~30!
for parameters sets 1 and 2, respectively. For comparison
solution given by Eqs.~15! obtained in Ref.@22# has been
included as well. The figures include only the spacelike
gion ~Euclidean space!, since Eqs.~28!–~30! use the result in
Eqs. ~15! from Ref. @22#, which was obtained in Euclidea
space. The analytic continuation of this result into the tim
like region exhibits a branch point atp250 and thus has no
been used.

VI. CONCLUSIONS

We have shown how to obtain a light-cone form of t
SDE for the quark propagator. For QCD the key question
the infrared behavior of the gluon propagator, for which
have used two models. Knowing that the t’Hooft model@15#
gives confinement, we have used polynomial models for
gluon propagator. Although the instanton liquid form@16# for
the gluon propagator does not confine, and therefore doe
have the correct far infrared behavior, it provides the m
midrange QCD interaction, and allows fits to the conde
sates, which is essential for obtaining hadronic propert
With our approach we can obtain solutions for both the
hanced infrared behavior of the polynomial type models
the regular infrared behavior of the instanton model and

13Having the singularities below the real axis will not save t
day, since that leads to singularities above the real axis.
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cent lattice gauge calculations@28#. With the polynomial
model we are able to work in Minkowski space and obta
solutions. With the models that include instanton effects
are able to obtain solutions that give much better agreem
with the phenomenological values of the condensates.

We consider the present work exploratory. It provides
framework for obtaining light-cone QCD propagators th
can be used to obtain light-cone models of hadronic BS a
plitudes for studies of hadronic properties at all moment
transfers.
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APPENDIX: INTEGRATING THE EQUATIONS

In this appendix results are given for integrals that
encounter when using our models for the SDE, describe
Sec. III. In order to solve Eq.~1! in our model, we need to
calculate integrals of the type@here al511cl , with cl as
introduced in Eq.~11!#

lim
e→01

E ddq

~2p!d

f Q~q21 i e!

@~p2q!22m1
21 i e#al

$1,qm,qm qn%

[$C00~p2; f Q ,al !,p
mC10~p2; f Q ,al !,p

mpnC20~p2; f Q ,al !

1gmnC01~p2; f Q ,al !%, ~A1!

where we include the cases with no factors, one factor,
two factorsqm i, and we exploit the Lorentz structure to d
fine the scalar quantitiesCr j .

These integrals include as a particular case the w
known integrals:

lim
e→01

E ddq

~2p!d

$1,qm,qmqn%

~q22m0
21 i e!a0@~p2q!22m1

21 i e#al

[$I 00~p2;a0 ,al !,p
mI 10~p2;a0 ,al !,p

mpnI 20~p2;a0 ,al !

1gmnI 01~p2;a0 ,al !%. ~A2!

This fact is useful because, for this particular case,
integrals are well known analytically. This is used in Sec.
to present a numerical test of our integration procedures

For (r , j )5(0,0), ~1,0!, ~2,0!, and~0,1!, theI ’s are known
to be
6-14
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I r j ~s;a0 ,al !5
i ~21!2(a01al )~21/2! j

~4p!d/2
GFa01al2d/22 j

a0 ,al
G

3E
0

1

da
aal1r 21~12a!a021

@a~12a!~2s!1~12a!m0
21am1

22 i e#a01al2d/22 j
, ~A3!

where we have used the compact notation

GF a1 ,a2 , . . . ,an

b1 ,b2 , . . . ,bm
G5

G~a1!G~a2! . . . G~an!

G~b1!G~b2! . . . G~bm!
.

For theC’s, we proceed as explained in Sec. II, in particular as given in Eq.~7!, to get

Cr j ~s; f Q ,al !5
i ~21!2al~21/2! j

~4p!d/2
GFal112d/22 j

al
G E

2`

1` f Q~s81 i e!ds8

2p i

3E
0

1

da
aal1r 21

@a~12a!~2s!1~12a!s81a~m1
22 i e!#al112d/22 j

. ~A4!

At this point we want to make sure that if we setf Q(s8)51/(s82m0
2)a0, then Eq.~A4! agrees with Eq.~A3!. This is most

easily done by closing the contour of integration of thes8 variable with an infinite semicircle in thelower half of the complex
plane to pick up the singularity14 in f Q . While this becomes a rather simple exercise in contour integration, and agree
between the two forms is readily shown, this is not useful for our purposes. In this calculation one is using the analy
of f Q , which makes the approach not applicable to other forms off Q . We need a procedure that would rely only on t
numerical values off Q . We perform the integrations by closing our contour with an infinite semicircle on theupperhalf of the
complex plane to pick up the singularity~in s8) of the expression on the second line of Eq.~A4!. Form150, theI ’s are known
to be15:

I r j ~s;a0 ,al !5
i ~21!2(a01al )~21/2! j

~4p!d/2~m0
2!a01al2d/22 j

3GFa01al2d/22 j ,al1r ,d/21 j 2al

a0 ,al ,d/21 j 1r G 2F1~a01al2d/22 j ,al1r ;d/21 j 1r ;s/m0
2!. ~A5!

For m150, closing the contour in the lower half on the complex plane, we get for theC’s

14If a0 is not an integer, then this singularity will be a branch point with its corresponding branch cut, as opposed to a simple p
15The expansion of this expression aboutd54 is probably more familiar to the expert in dimensional regularization.
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Cr j ~s; f Q ,al !52
i ~21!2al~21/2! j

~4p!d/2G@al #

3

¦

GF b

11b2aG~2s!2bE
0

s

ds8 f Q~s8!~2s8!b2a
2F1~11b2c,b;11b2a;s8/s!

1GFb,c2b

c,12a G E
s

2`

ds8 f Q~s8!~2s8!2a
2F1~a,b;c;s/s8! s,0,

GFb,c2b

c,12a G E
0

2`

ds8 f Q~s8!~2s8!2a s50,

GF c2b

11c2a2bGs12cE
s

0

ds8 f Q~s8!~s2s8!c2a2b~s8!b21
2F1~12a,12b;11c2a2b;12s/s8!

1GFb,c2b

c,12a G E
0

2`

ds8 f Q~s8!~2s8!2a
2F1~a,b;c;s/s8! s.0,

~A6!
te

a

his
where a5al112d/22 j , b5al1r , and c5d/2
1 j 1r . Agreement between Eqs.~A5! and ~A6!
when f Q(s8)51/(s82m0

2)a0 can now be shown by
using a numerical procedure to perform the in
93

04520
-

grals in Eq. ~A6!. The procedure is outlined and
numerical test is presented in Sec. IV. Equation~A6!
is the basis for all the numerical results obtained in t
paper.
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